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We prove theoretically that when a soft solid is
subjected to an extreme deformation, wrinkles can
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Figure 1: Creases appearing in the large deformation of soft matter, as indicated by arrows.
Left: Large bending of a silicone block with two ends glued to plastic plates, on which bending
moments are applied; Middle: Everted tube of pipe insulation material; Right: Twisted cylinder,
on which axial and circumferential lines were drawn prior to the twist. Notice how all creases are
aligned with a principal direction of stretch.

1. Introduction
When a soft solid is subjected to an extreme deformation, its surface (or a part of it) eventually
buckles, provided it has not ruptured before. Guided by physical intuition and by experimental
evidence (see for example Figure 1), we expect the formation of wrinkles or creases to be arranged
orthogonally to the direction of greatest contraction, and thus aligned with a principal direction
of deformation. However, as we show in this paper, the mathematical equations modelling the
development of such surface instabilities do not necessarily predict that they should be such
principal wrinkles (see Figure 2 on the left). In fact, we find that for the simplest boundary
value problem there is, i.e. that of a deformed semi-infinite solid, the theory predicts that oblique
wrinkles (see Figure 2 on the right) should appear on the free surface prior to the principal
wrinkles. We present these results in Section 2, where we study the theoretical predictions of
wrinkle orientation for the most general model of isotropic, incompressible third-order elasticity
soft solid or equivalently, the Mooney-Rivlin model. These two equivalent models provide a good
mathematical description of isotropic homogeneous soft solids such as rubber, silicone, or gel,
subjected to finite deformations. We establish that, for a certain range of material parameters, the
preferred direction of wrinkle formation is not a principal direction of deformation, and that the
obliquity angle can be as much as 33�, depending on the mode of pre-deformation.

In Section 3 we report experimental attempts to uncover oblique wrinkles on the surface
of a homogeneous block of gelatine subjected to a shear-box deformation [1]. The search of
such occurrence was completely unsuccessful. First of all we did not manage to generate actual
sinusoidal wrinkles on the block, but we always obtained creases, which are indeed expected to
occur prior to the wrinkles [2,3]. Moreover, the creases were not oblique, but aligned with the long
diagonal of the shear-box, itself a direction of principal stretch.

We moved on to tests with a slightly different set-up, allowing us to finally observe the
formation of sinusoidal wrinkles instead of creases. For that set-up, we let the free surface of
the gelatine dry overnight to a certain extent and form a stiff film on top of a softer substrate. It
is then well known [3] that for such a layered structure, sinusoidal wrinkles occur first, and not
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✓

principal wrinkles oblique wrinkles

Figure 2: Graphical representation of principal (left) and oblique (right) wrinkles on the free surface
of a compressed semi-infinite soft solid subject to a uni-axial compression with unique Cauchy
stress component �

1

.

creases (provided the stiffness contrast is large enough); however, we observed that the wrinkles
always appeared in a principal direction of deformation.

In Section 4 we elucidate why oblique wrinkles do not appear experimentally, even in the case
of a coated half-space. Using the Stroh formalism [4] to predict their onset, we find that oblique
wrinkles should appear, indeed, but only as long as the overlaying film is at most two times
stiffer than the substrate. If it is stiffer than that, then the first wrinkles to appear are the principal
ones according to our calculations. However, Hutchinson and Cao [3] used post-buckling Finite
Element simulations of neo-Hookean solids to show that creases dominate wrinkles as long as
the film is less than about ten times stiffer than the substrate. Hence, oblique wrinkles, although
predicted by the theory, will probably never be captured in an experiment.

2. Oblique wrinkles on a half-space
To model isotropic, homogeneous, incompressible soft solids, we use a strain energy density W of
the Mooney-Rivlin type. It is linear in I

1

= tr(C) and I

2

= tr(C�1

), where C is the right Cauchy-
Green deformation tensor,

W =

1

4

µ[(1� �)(I

1

� 3) + (1 + �)(I

2

� 3)], (2.1)

where µ> 0 is the shear modulus, and � is a material parameter such that �1 �  1. Note that
these inequalities ensure the strong ellipticity of the incremental equations of equilibrium [5]. At
� =�1, W recovers the so-called neo-Hookean material (linear in I

1

) and at � = 1, the so-called
Extreme-Mooney [6] material (linear in I

2

).
As shown by Rivlin and Saunders [7], when we expand the Mooney-Rivlin strain energy

density in powers of the Green-Lagrange strain E= (C� I)/2, and neglect terms of order higher
than cubic, we find that (2.1) is equivalent to the most general model of isotropic, incompressible,
third-order elasticity

W = µ

0

tr(E2

) +

1

3

A tr(E3

), (2.2)
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Figure 3: Two shearing deformations and their tilting angle � of a soft solid initially occupying
a cube of side L. Left: Simple shear, where the top and the bottom faces move on parallel planes.
Right: Shear-box, where the initial front and back square faces become rhombic. In the latter case,
two of the Eulerian principal directions are aligned with the diagonals of the rhombi.

where µ

0

> 0 is the second-order Lamé coefficient and A is the third-order Landau constant. The
connection between those constants is [8] µ

0

= µ, A=�µ(� + 3), which puts bounds on A in
order to ensure strong ellipticity of the incremental equations: �4µ

0

A�2µ

0

.
To model finite strains, we consider homogeneous deformations of a semi-infinite solid. We

place ourselves in the Cartesian coordinate system (x

1

, x

2

, x

3

) of axes aligned with the Eulerian
principal directions (along the eigenvectors of b, the left Cauchy-Green deformation tensor).
We denote the eigenvalues of b by �

2

1

, �2
2

and �

2

3

, and call �
1

= �< 1 the principal stretch of
contraction, �

2

the principal stretch along the normal to the free surface, and �
3

the third principal
stretch. Because of the incompressibility constraint detb= 1, we know that �

3

= (�

1

�

2

)

�1. The
homogeneous deformation is maintained by the application of a constant Cauchy stress �, and
we take the stress component along the direction x

2

to be zero, i.e., �
22

= 0, as the boundary
of the half-space is assumed to be free of traction. We will consider the following archetypes of
deformation,

(i) Uniaxial compression: �
1

= �, �
2

= �

�1/2, �
3

= �

�1/2;
(ii) Plane strain: �

1

= �, �
2

= �

�1, �
3

= 1;
(ii) Simple shear: �

1

= �, �
2

= 1, �
3

= �

�1;
(iv) Shear-box: �

1

= �, �
2

= 1/(�

p
2� �

2

), �
3

=

p
2� �

2.

and we will use � as our parameter of bifurcation, calling it �
cr

when the threshold for wrinkles
is reached. Note that other quantities can be used, such as the material compressive strain [3]
"

cr

= 1� �

cr

, or the angle of tilting � for shearing deformations, see Figure 3. For simple shear
(iv), � is given by tan�= �

�1 � � [9], and for the shear-box deformation, by cos�= �

p
2� �

2

[10].
We denote by ✓ the obliquity angle, i.e, the angle between the wavefront of the wrinkles and

the direction of the largest stretch. At ✓= 0

�, the wrinkles are normal to the direction of greatest
compression, while at ✓ 6= 0

�, they are oblique, see Figure 2.
For principal wrinkles, the wavefront is aligned with x

3

and varies sinusoidally in the x

1

-
direction, while the amplitude decays exponentially with x

2

. For the Mooney-Rivlin model, the
bifurcation criterion for principal wrinkles is independent of the material constants µ and � (or
µ

0

and A). It reads as
✓
�

1

�

2

◆

cr

= �

0

' 0.2956, (2.3)

where �
0

is the real root of the cubic

�

3

+ �

2

+ 3� � 1 = 0. (2.4)
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This result can be traced back to Biot [13], Flavin [14], and Green and Zerna [15]. In Table 1, we list
the critical stretches and strains corresponding to the modes of deformation (i)-(iv) for principal
wrinkles and for oblique wrinkles on an Extreme-Mooney material.

Table 1: Critical stretches and strains for principal wrinkles in archetype modes of deformation,
together with the associated angle of tilting for shear deformations, and the corresponding
original reference (first five columns). For oblique wrinkles, the critical stretches, strains, tilting
angles and obliquity angles are reported for the Extreme-Mooney solids (last four columns).

�

cr

"

cr

�

cr

Ref. �

oblique

cr

"

oblique

cr

�

oblique

cr

✓

oblique

Uni-axial 0.444 56% [13] 0.537 46 % 34

�

Plane strain 0.544 46% [13] 0.562 44 % 29

�

Simple shear 0.296 70% 72

� [21] 0.522 48 % 54

�
33

�

shear-box 0.471 53% 51

� [10] 0.539 46 % 45� 33

�

Destrade et al. [16] found an explicit secular equation for surface waves in deformed Mooney-
Rivlin materials, from which the bifurcation criterion here can be found by taking the wave speed
to be zero. We used this explicit secular equation to predict the formation of wrinkles (it is too
long to reproduce here). In parallel, we also used the bifurcation criterion based on z, the surface
impedance matrix [17–20], which is a simple version of a method we will use for layered media
in Section 4. It reads

det z= 0, (2.5)

where z is the Hermitian, positive semi-definite solution of the algebraic Riccati equation

zN
2

z� izN
1

+ iN†
1

z+N
3

= 0. (2.6)

Here N
1

, N
2

, N
3

are the 3⇥ 3 blocks of the 6⇥ 6 Stroh matrix (see the appendix), and the
superscript † denotes the Hermitian conjugate. To solve this equation numerically we rely on
Riccati solvers found in Mathematica and Matlab, which give the positive definite solution. The
results from this method were the same (within machine precision) as those given by the explicit
secular equation found in [16]. There are three short analytical expressions of the bifurcation
criterion in some special cases.

For the neo-Hookean material (i.e., � =�1 in (2.1), or A=�2µ

0

in (2.2)), Flavin [14] found the
following bifurcation criterion

�

2

1

�

2

3

(�

2

1

cos

2

✓ + �

2

3

sin

2

✓) = �

2

0

. (2.7)

For the Extreme-Mooney material (i.e., � = 1 in (2.1), or equivalently A=�4µ

0

in (2.2)), we
find the following explicit bifurcation criterion

�

4

0

+ �

3

0

+ �

2

1

�

2

3

(�

4

1

�

4

3

� �

2

3

� �

2

1

)�

0

(�

0

+ 1) + 4�

6

1

�

6

3

= 0, (2.8)

with �
0

now given by Equation (2.7). Using Mathematica, the reals roots of (2.8) can be obtained,
and then substituted into Equation (2.7) to get an explicit buckling criterion.

Finally, for a wrinkle-front aligned with the long diagonal of the shear-box (✓= 0

�), we have
again principal wrinkles, and Equation (2.3) applies.

For Cases (i)-(iv) we find that there is a range of values for � starting at � =�1 (neo-Hookean
solid), where principal wrinkles appear first, and another range up to � = 1 (Extreme-Mooney
solid), where we expect oblique wrinkles to appear. Figure 4 illustrates this occurrence for the
shear-box deformation (Case (iv)), in which we see that principal wrinkles are expected when
�1 � .�0.3, and oblique wrinkles when �0.3. �  1. For the Extreme-Mooney material,
the obliquity angle is ✓' 33

�, and the critical stretch is �
cr

= 0.539, compared to �

cr

= 0.471

for principal wrinkles. We focused on this deformation because of its ease of experimental
implementation (see next section), but the other deformations yielded a similar behaviour, with
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= �
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no
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Figure 4: Left: Dependence of the critical compressive stretch �

cr

on the obliquity angle ✓,
for different values of � in the shear-box compression test. As � varies from � =�1 (neo-
Hookean material) to � = 1 (Extreme-Mooney material) [� =�1.0,�0.6,�0.3, 0, 0.3, 0.6, 0.8, 1.0,
see arrow], the maximum of the plot shifts from ✓= 0

� (principal wrinkles appearing at 53%
strain) to ✓' 33

� (oblique wrinkles, appearing at an earlier strain of 46%). Right: Flow-chart for
the corresponding numerical procedure.

more or less marked differences between the values of �
cr

for principal wrinkles and for oblique
wrinkles, as summarised in Table 1.

In general, the numerical procedure to find the critical values of the compressive stretch and of
the corresponding obliquity angle is straightforward and robust. After non-dimensionalisation,
the critical values turn out to be independent of µ (or µ

0

), and so we can plot �
cr

against ✓ for a
given solid characterised by the single material parameter � (or the ratio A/µ

0

).

3. Experimental buckling with the shear-box deformation
To build a shear-box we assembled four acrylic plates (10 cm⇥ 10 cm⇥ 1.0 cm) into a cube with
four hinged edges. We then prepared 12 different gels, using commercial gelatine in several forms:
solid leafs, powders, or concentrated cubes to be dissolved in water. We varied the concentrations,
from that prescribed by the manufacturers to three times the normal concentration. We poured
about 300ml of gelatine into the shear-box and let it set into a homogeneous solid phase, either at
room temperature or at refrigerated temperature, from 4 to 12 hours depending on the specimen.

The gelatine block was then subjected to a shear-box deformation (Case (iv)), simply by
applying manual pressure on two opposite hinged edges of the box (see Figure 3 on the
right for a schematic representation of the deformed state). To ensure that the solid deformed
homogeneously, we injected olive oil between the sides of the block and the walls to enhance
the gliding. This precaution lead to a central area where it was reasonable to consider that the
deformation was homogeneous, i.e. where initially parallel lines remained parallel in the current
configuration, see Figure 5 on the left. We carried on the deformation manually until the free
surface buckled as noticed by the naked eye, see examples on Figure 5. The corresponding critical
tilting angle � was recorded.

Experimentally, we noted that we did not observe the formation of small-amplitude sinusoidal
wrinkles but of creases instead, see Figure 5 on the left. Moreover the creases were always aligned
with the long diagonal of the shear-box, and thus not oblique. We measured that the creases
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Figure 5: Left: Freshly solidified gelatine tends to exhibit surface creases instead of sinusoidal
wrinkles when subject to an extreme deformation, see arrows. Right: Here the gelatine was left
overnight to solidify and a stiffer layer/skin formed on the surface on top of the soft substrate;
when deformed the coated block produced sinusoidal wrinkles.

appeared at ✓= 38

� ± 2

�, irrespective of the concentration and type of gelatine used for the gel
sample.

Hence we conclude that the theoretical predictions of Section 2 were not verified
experimentally. The main problem is that of crease formation trumping wrinkles; this was to be
expected as creases have been predicted to appear much earlier than wrinkles on homogeneous
blocks. For instance, Hong et al. [22] showed through Finite Elements simulations that creases
appear on a neo-Hookean half-space deformed in plane strain at a 35% compressive strain, so
that the 46% required for sinusoidal wrinkles is never attained.

To bypass this problem we focused instead on wrinkles appearing when a soft semi-infinite
solid is coated with a thin stiff layer. Those are then remarkably stable and their onset is
well predicted by incremental analysis; they develop into nonlinear patterns only with further
compression, see Cao and Hutchinson [3] or Jin et al. [23] for details. Figure 6 displays
experimental evidence of the formation of regular sinusoidal wrinkles for bending and torsion
deformations.

Experimentally we let the gelatine blocks dry out overnight at refrigerated temperatures, so
that a skin formed on their surface due to surface dehydration during the longer cooling process.
When deformed in the shear-box, the buckling surface now exhibited regular, sinusoidal wrinkles,
at least in the center of the block, where the homogeneous deformation was taking place, see
Figure 5 on the right. We noted that the wavelength of the wrinkles was much smaller than the
dimensions of block, and thus that the half-space idealisation was justified for the modelling (for
an analysis of the influence of the finite depth of the block, see the recent work by Jin et al. [23]).
However, oblique wrinkles were not observed, but principal wrinkles instead, again at a titling
angle of 38� ± 2

� (corresponding to a strain of "cr = 38%). In the next section we explain why this
absence of experimental oblique wrinkles is indeed in agreement with theoretical predictions.
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Figure 6: Formation of regular sinusoidal wrinkles on wrist supports made of gels enclosed by a
stiff film casing, by bending (left) or torsion (right).

4. Wrinkles on a coated half-space

(a) Layered structure
We consider that the top surface of the gelatine block (in contact with air) has dried out and
stiffened faster than the rest of the enclosed block during the solidification process. We model
the resulting heterogeneous structure as a composite material: a thin film of thickness 2h, say, in
the region �h x

2

 h, in bonded contact with a substrate in the region h x

2

1. The strain
energy of each solid is expanded up to third order of Green strain as

W

f

= µ

0f

tr
⇣
E2

⌘
+

1

3

A

f

tr
⇣
E3

⌘
, W

s

= µ

0s

tr
⇣
E2

⌘
+

1

3

A

s

tr
⇣
E3

⌘
, (4.1)

respectively. Now consider the mechanical response of these two solids to common modes of
deformation such as uni-axial tension under Cauchy tensile stress T or simple shear under
Cauchy shear stress S. Then, up to second order in the strain, we have for the film and for the
substrate

T

f

= 3µ

0f

"+ 3(µ

0f

+A

f

/4)"

2

, S

f

= µ

0f

",

T

s

= 3µ

0s

"+ 3(µ

0s

+A

s

/4)"

2

, S

s

= µ

0s

", (4.2)

respectively, and similarly for other modes of deformation. (Here, the measure of strain " is in
turn the elongation 1� � (from Case (i)) and the amount of shear ��1 � � (from Case (iii)).) A
consistent way to ensure that the response of the film is always ‘stiffer’ than that of the substrate
is to take

µ

0f

= �µ

0s

, A

f

= �A

s

, (4.3)

where � > 1 is defined as the stiffness ratio. For the constants of the Mooney-Rivlin material (2.1),
this translates as

µ

f

= �µ

s

, �

f

= �

s

. (4.4)

Then the film is always stiffer than the substrate, in the sense that the magnitude of its response
to any mechanical stress is � times that of the substrate.

(b) Principal wrinkles
For our layered structure, the formulas we use below can readily be deduced by specialising the
results of [11,24] to the present context. We write the bifurcation criterion for principal wrinkles
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as
det (� z

f

� z
s

) = 0, (4.5)

where z
f

, z
s

are non-dimensionalised surface impedance matrices for the film and the substrate,
respectively. The substrate impedance is given explicitly by z

s

=�iBA�1, where

A=

"
1 �

2

1

�

�2

2

i i�
1

�

�1

2

#
, B=

"
2i i�

1

�

�1

2

(1 + �

2

1

�

�2

2

)

�1� �

2

1

�

�2

2

�2�

2

1

�

�2

2

#
, (4.6)

and as before, �
1

is the principal strech of contraction and �

2

is the principal stretch along the
normal to the surface. The film impedance is given by z

f

=�iM
3

M�1

1

, where M
1

, M
3

are the
respective top-left and bottom-left 2⇥ 2 sub-matrices of the matricant M=NNNEEENNN�1. Here,

NNN =

"
A A

B B

#
, EEE = Diag

⇣
e�2kh

, e�2(�1�
�1
2 )kh

, e2kh, e2(�1�
�1
2 )kh

⌘
, (4.7)

the overbar denotes the complex conjugate and k is the wavenumber of the wrinkle. It is easy to
check that det z

s

= 0 is equivalent to the bifurcation criterion (2.3), as expected. Also, notice that
here the bifurcation criterion is independent of the material parameters �

s

, �
f

; only the stiffness
ratio � = µ

f

/µ

s

matters.
We may then follow the same strategy as Cao and Hutchinson [3] to find the critical amount of

deformation signalling the onset of sinusoidal wrinkles. When � = 1, the system is homogeneous
and non-dispersive: the wrinkles appear when �

1

�

�1

2

= 0.2956, see Equation (2.3). When � > 1,
the film/substrate structure is dispersive and to each value of kh corresponds a value of �

1

�

�1

2

for
which Equation (4.5) is satisfied. By varying kh we can find the maximal value for �

1

�

�1

2

, which
will be the critical value at which the structure wrinkles. Then by varying � , we can plot Figure 7
(left), for all the considered cases of deformation. The routine described in the flowchart of Figure
7 (right) allows us to obtain a general curve of the maximum critical stretch ratio �

1

�

�1

2

against
� . Then, the critical value of �

1

�

�1

2

is related to the critical value of stretch or strain according to
each different mode of deformation Cases (i)-(iv).
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Figure 7: Left: Critical strain "
cr

for principal wrinkles on a coated substrate against the stiffness
ratio � for various compression tests. The result of Allen [25] in linear elasticity is reported
in dashed line. Right: Flowchart for the critical stretch finding routine (Here x := kh and F(x)

denotes the algorithm in the red, dashed box).

Figure 7 (left) recovers Figure 2 of Cao and Hutchinson [3] when the film and the substrate are
both neo-Hookean and the deformation is plane strain. In the figure we also report the analytical
solution of Allen [25] for the buckling of a thin strut on a half-space in linear elasticity. As pointed
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out in [3], it becomes reliable when � is large, i.e. when the deformation allowed before wrinkling
is small and close to the linear regime.

(c) Oblique wrinkles
For oblique wrinkles we must first integrate numerically the following differential Riccati
equation for the film’s surface impedance matrix z

f

= z
f

(x

2

),

dz
f

dx
2

= z
f

N
2

z
f

� iz
f

N
1

+ iN†
1

z
f

+N
3

, (4.8)

from its initial value [24] z
f

(�h) = 0 to its value z
f

(h). Then we compute the substrate’s (constant)
surface impedance matrix z

s

as the positive semi-definite solution to the algebraic Riccati
equation (2.6). Finally we adjust the compressive stretch � until the following bifurcation criterion
is met

det (z
f

� z
s

) = 0. (4.9)

Notice that here z
f

and z
s

are dimensional quantities, in contrast to the impedance matrices
from Section 2. because N

1

, N
2

, N
3

in (4.8) (in (2.6), respectively), depend on µ

f

, �
f

(µ
s

, �
s

,
respectively).

Here the analysis is further complicated by the increase in the number of parameters. For a
given stiffness ratio � and a given deformation, we must vary not only kh to find the critical
stretch, but also the obliquity angle ✓ and the material parameter �

f

= �

s

. Figure 8 (right) displays
the flow-chart for the overall procedure used (In particular we used the Matlab code fminsearch to
maximise the function F(kh, ✓).) For our purposes it suffices to record, for a given deformation,
the smallest critical strain "cr obtained for an oblique wrinkle for a given �

f

= �

s

and to plot that
curve. Then by varying �

f

= �

f

from �1 to 1, we obtain a family of curves. Here we present the
results for the shear-box deformation, to compare them to our earlier experiments (we found
similar figures for the other deformations).
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Figure 8: Left: Critical strain "

cr

for oblique wrinkles on a coated substrate against the stiffness
ratio � for the shear-box compression test. The lower colour curves are for oblique wrinkles; they
all merge into the upper black curve for principal wrinkles, early when �

s

is away from 1.0 and
at about � ' 2.3 when it is close to 1 (Extreme-Mooney model). The coloured curves correspond
to �

s

= 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 as indicated by the arrow. For negative or null values
of �

s

, only principal wrinkles are predicted as the favoured mode of buckling. Right: Flowchart
for the critical stretch finding routine (Here x := kh, and F(x, ✓) denotes the algorithm in the red,
dashed box).
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Figure 8 (left) shows that oblique wrinkles (coloured curves underneath the thick black curve
for principal wrinkles) precede principal wrinkles only when � . 2.3 for the materials close
to the Extreme-Mooney model (�

s

' 1.0) and � . 2.0 for most materials (�
s

away from 1.0).
(Specifically, we found that the Extreme-Mooney material predicts principal wrinkles when
� � 2.20, 1.50, 3.62, 2.28 for Cases (i)�(iv), respectively.)

In conclusion: When the stiffness ratio � is small, creases precede wrinkles; When it
is large enough to support wrinkles, principal wrinkles precede oblique wrinkles. So, even
though oblique wrinkles exist as first bifurcation mode in theory, they will never be observed
experimentally.

5. Discussion
To complete the paper we must qualify our concluding statements above.

First of all our stiffness ratio � is one measure among others of the stiffness contrast between
film and substrate. In practice it is unlikely that the proportion between µ0f and µ0l, and Af and
As, should be exactly the same, as in (4.3). So a whole host of possibilities has been missed in this
investigation.

Another caveat is that the Finite Element simulations of creases evoked in the paper all
used the neo-Hookean strain energy density, which does not predict oblique wrinkles. Similarly,
semi-analytical investigations into localised solutions, such as the one by Fu and Ciarletta [26]
also rely on neo-Hookean models. It thus remains an open question whether oblique wrinkles
can precede creases in simulations of compressed Mooney-Rivlin solids. However, our study
indicates that they could theoretically only appear in a narrow range of low stiffness contrast,
where experiments (our table-top ones, and the comprehensive set of controlled ones presented
by Jin et al. [23]) have so far failed to exhibit any evidence of their existence.

Also, guided by our experiments, we adopted the half-space approximation for the substrate,
because the observed wavelength was small compared to the dimensions of the block. If the
thickness h of the stiff layer were comparable to that of the soft substrate, it might be possible that
the finite depth of the substrate plays a role in the search for oblique wrinkles. The competition
between creases and wrinkles is also affected in that regime, and the onset of one compared to the
other is more complicated than here, see the analysis of Jin et al. [23] for neo-Hookean solids.
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Appendix
The submatrices N

1

, N
2

, and N
3

of the Stroh matrix can be found from the general expression in
Ref. [16] as
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where, for a Mooney Rivlin material (2.1) or equivalently, a third-order elasticity solid (2.2),
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