
20 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Performance comparison and optimization of ICN prototypes / SAFARI KHATOUNI, Ali; Mellia, Marco; Venturini, Luca;
Gallo, Massimo; Perino, Diego. - ELETTRONICO. - (2016). (Intervento presentato al convegno Information Centric
Networking Solutions for Real World Applications Workshop co-located with the 2016 IEEE Global Communications
Conference tenutosi a Washington DC (USA) nel December 8, 2016) [10.1109/GLOCOMW.2016.7848997].

Original

Performance comparison and optimization of ICN prototypes

Publisher:

Published
DOI:10.1109/GLOCOMW.2016.7848997

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2653502 since: 2017-03-19T23:26:17Z

IEEE

Performance Comparison and Optimization of ICN
Prototypes

Ali Safari Khatouni1, Marco Mellia1, Luca Venturini1, Diego Perino2, Massimo Gallo2
1Politecnico di Torino, Italy - first.last@polito.it
2Bell Labs, Nokia, France - first.last@nokia.com

Abstract— Information Centric Networking paradigm is a
solid proposal to update the original Internet design. While the
research community is still working on technical improvement,
the technology has reached a stage that allows the design, testing
and deployment of ICN specific applications. To this goal, the
development of testbeds allowing researchers to evaluate their
applications in a real setup is of key importance. There are
few existing ICN prototypes that would allow experimenters
to work in this direction. Their performance is fundamental,
so that they do not create artificial bottlenecks affecting test
reliability. Unfortunately, existing solutions have been designed
to demonstrate the feasibility of the ICN solution, thus lacking of
optimization and scalability required to run reliable scalability
tests. In this paper we address this problem by first, offering
a performance comparison between available ICN prototypes
and, second by proposing a revisited system design, CCN-par, to
increase scalability, and remove bottlenecks that hamper current
software-based testbeds.

I. INTRODUCTION

After about 10 years of research, ICN paradigm has
reached a sufficient level of maturity and researchers are now
designing and testing applications specifically designed for it.
Since the very early stage, prototypes have been made available
to let researchers experiment with the new technology. Two of
the most popular solutions are the CCNx by the Palo Alto
Research Center (PARC) 1, and the CCN-lite 2, a lightweight
and functionally compatible implementation of CCNx. Both
provide all the support to create a ICN-enabled testbed, and are
commonly used to demonstrate ICN protocol and application
feasibility. Besides those two, the NFD 3 prototype has also
been released by the NDN project and is currently used in
the NDN test-bed. Nodes in ICN play an important role, since
they have to support and manage the forwarding operations,
which are based on content names instead of content locations
(i.e., IP addresses). Each node has to keep the Pending Interest
Table (PIT), where the status of forwarded content requests
is maintained, the Forwarding Information Base (FIB), where
forwarding information is stored, and the Content Store (CS),
i.e., the local cache of contents that can be served locally.
These new elements call for specific and optimized data
structures, and their intertwining may create bottlenecks that
emerge when stressing performance. CCNx, CCN-lite and
NFD however have been designed mostly for demonstrating
the feasibility of the approach, and they lack the optimization
that is needed when one would like to stress the overall
performance of the system. Hardware solutions would be the
natural choice for researchers that would like to test application
performance without incurring into testbed scalability issues.
Perino et al. [1] and So et al. [2], designed high-end content
routers that can support high speed name-based forwarding in

1http://blogs.parc.com/ccnx/
2http://www.ccn-lite.net/
3http://named-data.net/doc/NFD/current/

hardware. However, the cost of these solution is very high, and
software-based prototypes are preferred and commonly used
for ICN application scalability testing. The three aforemen-
tioned prototypes implement two different, but very similar,
ICN proposals, namely CCN (CCNx, CCN-lite) and NDN
(NFD). CCN and NDN share most of the architecture design
except for name-lookup algorithms used in PIT and CS. Indeed
the first (CCN) performs longest prefix match on the FIB
and exact match on PIT and CS. On the contrary NDN uses
longest prefix match for all of its data structure (i.e., FIB;
PIT, CS) allowing content consumers to request desired piece
of data for which they do not know (completely) the name.
While this feature is very interesting it can potentially prevent
testbed scalability targeted in this work. For this reason, in the
following, we focus on CCN.

In this paper we present a performance comparison of
CCNx and CCN-lite. Based on our results, we identify bot-
tlenecks and present CCN-par (as Paris, being it developed
during an internship in Paris), an optimized version of CCN-
lite in which all critical data structures (of PIT, FIB, and CS)
have been optimized by using hash tables instead of simple but
inefficient lists, and by optimizing the queuing disciplines that
packets have to follow inside the Linux kernel. In addition, we
add support to the new dynamic forwarding paradigm proposed
by Carofiglio et al. [3]. CCN-par is tested and its performance
compared against CCNx and CCN-lite under different scenar-
ios. We use the Grid-5000 distributed testbed, in which Linux
nodes in France cities are connected by 10Gbps WAN links.
Experiments show that CCN-par guarantees consistent scalable
performance, topping to more than 50,000 packets per second
of forwarding rate, i.e., 2.5x faster than CCNx and 5x faster
than CCN-lite. In a nutshell, CCN-par allows researchers to
test their application in a system where the testbed is not
the bottleneck per se, and thus to evaluate the performance
of the application in a consistent and coherent way. CCN-par
is currently proprietary design of Nokia Bell Labs, and we
plan to open it for researchers in the near future.

II. SYSTEM DESIGN

In this section we describe CCN-par, a Linux kernel
module written in C implementing a forwarding node of the
CCN architecture. It can be installed on Linux kernel as a
kernel module and is backward compatible with CCNx and
CCN-lite. CCN-par is based on CCN-lite, which uses simple
linked list for implementing CCN node basic building blocks
and hence is a good starting point for building a scalable CCN
prototype. Thanks to its modularity CCN-lite (and hence CCN-
par) allows a gradual optimization of its basic components and
the possibility to evaluate the gain at each step. The kernel
module is built on top of the NaNET socket designed by Gallo
et al. [4].

A. Data Structure

In CCN nodes data structures have a direct impact on the
performance of basic building blocks. The FIB has been deeply
investigated to be efficiently implemented by Tree Bitmap,
Bloom Filter, or Cookoo Filter in [5], [6], [7], [8], [9], [10],
[1] and [11] respectively. There are several known structures
which are used for the implementation of the PIT: Counting
Bloom Filter [12], [1], Hash-Table [13], [14], [15], and Name
prefix trie [16]. These sophisticated structure can be adopted
in the other building blocks too. However, CCN-lite uses a
linear list for all data structures for the sake of simplicity. In
CCN-par we replace linked lists with a Linear Hash Table
(LHT) with the twofold objective of maintaining reasonable
complexity and providing efficient lookup i.e., O(1), despite
the fact that it is not the most efficient data structure in terms
of memory usage. We plan to extend our work by verifying
the main bottleneck of our kernel module and improve it with
more efficient structures.

B. Scheduling

Our kernel module runs in a single thread. Hence, all pack-
ets are processed in the main thread. If a packet arrives during
the process of another one, the module receives the kernel
interrupt of the packet but postpones the packet processing.
At packet arrival, our kernel module needs to schedule the
received packet. We use a non preemptive scheduler, that first
finishes the process of the current packet and then starts the
process of the next packet in the waiting queue. To this end, we
use Workqueue, the kernel facility to call a function at future
time. There are two main approaches to use Workqueue: using
the global Workqueue or creating a dedicated Workqueue for
our system. Global Workqueue is the shared Workqueue that is
used by the device driver and kernel itself. Our kernel module
schedules packets with a Workqueue such that works are
simply packets’ processing that need access to CPU. Therefore,
we define a dedicated Workqueue to put all arriving packets’
processes work inside Workqueue. The kernel will then put a
packet under service after finishing the previous works (packets
in queue). CCN-lite uses a global Workqueue that, as we show
in the Sec. IV, causes a kernel crash because the module
interferes with the kernel I/O.

C. Aging Mechanism

The content consumer is responsible for requesting the
content by mean of generating an interest packet, if he/she
wants the Data. Interest and data packet in the network are
associated with expiration times (i.e., PIT timer for the interest
and content validity for the data). Expiration time is useful to
create soft state system and protect CCN node from different
kinds of security attacks. Occasionally, malicious users may
try to create an interest flooding attack by requesting multiple
times non existing contents. PIT timers are also essential in
case of packet losses, in order to delete the corresponding
PIT entry and allow a re-expressed interest to be forwarded.
Accordingly, aging is implemented for all CCN-par building
blocks to protect them from different types of attacks and keep
valid data in tables. Each building block’s entry has a different
expiration time and periodically, the system checks entries in
all tables to find expired entries. The potential drawback is
that at each check, we spend CPU time and lock the table
under control. To avoid this, and schedule the aging operation

Fig. 1: CCN-lite Workqueue.

Fig. 2: CCN-par Workqueue.

in the future, we create a Workqueue which, as soon as an
entry is inserted to the table, stores the corresponding work in
charge of the deletion of the expired entry. With the modified
design, the Linux kernel will invoke the deletion function in a
future time equal to the expiration time of the inserted entry.
Figs. 1, 2 illustrate the queue design in CCN-lite and CCN-par
respectively. Fig. 2 presents the CCN-par dedicated Workqueue
for aging and scheduling and the global Workqueue used by
the host OS.

D. Cache Replacement Policy

The built-in caching capability of CCN provides effective
content distribution at a global scale without requiring special
infrastructure. Therefore, we replace the linked list of CCN-
lite with LHT to organize CS. The important part in the cache
design is the replacement policy. Replacement policy can affect
the performance of the node because if the node does not store
popular contents, cache miss will occur, causing an additional
lookup in the FIB, the interest will be eventually forwarded,
and finally satisfied with the permanent copy of the content.
Least Recently Used (LRU) has been used in the context of
CCN [17], [18], [19]. Other works consider different policies,
such as Most Recently Used (MRU) and Most Frequently
Used (MFU). Interestingly, [20] shows LRU performance to
be indiscernible from MRU/MFU, but much better than the
single FIFO offered by CCN-lite. In CCN-par, we implement
LRU through a list of recently used entries that is directly
connected with the LHT for fast look-up, insert, and delete
operations.

E. Dynamic Forwarding Algorithm

Carofiglio et al. [3] propose a family of optimal distributed
algorithms for interest forwarding. The algorithm is optimal as
it minimizes the total number of pending interest at the node. In
CCN architecture, each node stores the number of unsatisfied
interests in the PIT. The number of pending interests reflects
(i) content proximity: The length of the path and the response
time associated to the given content; (ii) Congestion status.
As observed in Sec. I, the interest forwarding decision is
based on the LPM to find the output interfaces in the FIB.
The CCN node collects the data from the network which are
intended to handle packet from input to the potential sources.
Moreover, it is possible to exploit them to provide congestion
control mechanism and multi-path forwarding. We use the
algorithm designed in [3]. Let us describe the main steps of
the algorithm. At each packet reception (Data or Interest), the
number of Pending Interest (PI) which associate to a given FIB
entry and a particular output interface is updated, this update
may be incremental or decremental. The interface average is
recomputed with the instantaneous value of PI and the moving

average is updated repeatedly itself. The output interface
selection is based on the random weighted algorithm for each
arriving packet. The weight normalization is done according
to the normalized weights for each prefix/output interface and
sum of all weights of all interfaces of the particular prefix.
At the beginning of the algorithm each interface has a weight
equal to one. Accordingly, after node startup, the forwarding
process is uniform over all available output interfaces.

III. EXPERIMENT SETUP

Our experiments were conducted in Grid5000 [21].
Grid5000 is an experimental platform distributed over different
sites across France, offering a monitoring infrastructure that
makes evaluating a new network design simple and efficient.
Grid5000 is a perfect tool to create an isolated network to
test network applications and distributed computing and obtain
results that are not affected by high CPU load caused by
concurrent experiments thanks to the exclusive reservation
of the content producers available. High speed links assure
negligible and constant latencies between the different nodes,
and avoid bandwidth bottlenecks that are important in our test
because we want to be sure to have the bottleneck on CCN-par.
For our tests, we built a custom Linux kernel image (Debian
Ubuntu 3.2.0-24-generic x86 64 GNU/Linux), including our
kernel module, CCNx software, and several other applications
we need to analyze the results and used it as the operating
system that is deployed on reserved grid5000 nodes. We use a
set of machines located on the Nancy site equipped with dual
2.5 GHz Intel Xeon L5420 Quad-core and 15GB RAM.

To orchestrate our tests we used a modified version of
Lurch 4, an open source tool that allows a complete setup
of a CCN network and the execution of some automated tests,
together with statistics collection. Lurch builds a topology, by
limiting the link capacity between nodes by means of token
bucket regulators, sets up the routing tables and the CCN faces
and sets up the content repositories (i.e., content producers).
When running a test, Lurch run content producers and content
consumers, generating random requests according to different
distributions and file popularities, collect the statistics from
network interfaces, cache and CPU and gather all the logs
in an archive. The CCNx implementation evaluated in this
work is CCNx-0.8.0 wile CCN-lite is 0.2.0. Lurch starts
ccncatchunks2, an application on top the CCNx node, used
to retrieve named contents, at each content consumer node in
our topology. The ccncatchuck2 application generates interest
packets with a specific content name and a sequential chunks
number. In the topology used in the experiment some nodes are
designed as content producers and run ccndelphi, an applica-
tion available in lurch, that replies randomly generated content
to interests belonging to a specific prefix. The ccndelphi
application available in Lurch runs on content producers and
replies with random generated content to every interest that it
receives with specified name prefix.

A. Performance metrics

We define several metrics according to the nature of the
CCN router. Additionally, we collect the processing time of
each building block of CCN-par. Metrics are used to evaluate
the efficiency of the prototypes, including the time spent for

4http://systemx.enst.fr/lurch

Fig. 3: An example of 6-1-6 star topology for experiments.

different operations in CCN-par. These metrics are described
in the following:

• Packet forwarding rate: Routers should be designed
and tuned to be robust against the worst case scenario.
In particular, they should be able to forward at peak
packet rate. The main performance metric in our
analysis is peak and average packet forwarding rate
of the prototypes.

• Bandwidth usage: Content consumers need to retrieve
contents which split in different chunks. An important
factor to monitor is the link bandwidth usage. In fact
nodes contribute to deliver chunks from content pro-
ducers to the consumers. Hence, one of the important
goal of the network is minimizing its total bandwidth
usage.

• Average packet processing time: To better understand
the actual relevance of the various operations. We
need a deep analysis of the processing time of a
packet inside a CCN-par node. To this goal, we
define particular metrics for the monitoring of packet
processing in relay node. We collect quantitative data
about crucial operations of the node. We consider
average packet processing time, content processing,
interest processing, packet parsing, nonce lookup, FIB
lookup, and PIT lookup.

IV. RESULTS

In this section, we present our performance evaluation of
CCN-par, CCN-lite, and CCNx. We designed the experimental
scenarios in order to highlight the behavior of a CCN router in
working conditions. Specifically, in IV-A we analyze a scenario
where a router is pushed to reach the peak of its processing
capabilities; in IV-B we explore how much the same router is
relieved by introducing the caching capability; and, finally, in
IV-C we show how a CCN node reacts to sudden link failures.

A. Packet Forwarding Without Cache

We assume the peak throughput is obtained when the CPU
of the router is fully utilized. In this test, content consumers
send interest packets to the content producers via the CCN
router, and then the content producer sends back corresponding
data packets via the CCN router. To saturate the CCN router,
we use several content consumers to generate interest packets,
and multiple content producers to respond with data packets.
Fig. 3 shows the network configuration for the first scenario.
Each machine in the topology represents a dedicated machine
as described in Sec. III.

In this set of experiments, the size of CS, which serves as
cache for the contents, is set to zero to eliminate the content

processing time for CS. The names are distinct and contain
three components and the length is variable from 15 characters
to 35 (e.g., ccnx:/nokia/OBJNUM0000/1234). All tables have
equal size (15,000 elements) except the CS. The workload is
generated by content consumers at Constant Bit Rate until the
link is saturated. The test is repeated with different number
of nodes from 7 to 51 nodes in order to increase the load on
the router. Every content consumer runs the ccncatchunks2
to send interest packets. Interests have names like ccnx :
/prefix/OBJNUM0000/chunk number, where prefix has
5 to 15 characters and chunk number is the progressive
identifier of the chunk. Interest packets sent from content
consumer ith will be routed to content producer ith, which
runs the ccndelphi program to reply with randomly generated
data packets. The data packet is set to 1024 Byte.

We measure the packet forwarding rate of the CCN-par,
CCNx, and CCN-lite as shown in Fig. 4. Each point represents
an average value over 5 repetitions. Y-axis shows the packet
forwarding rate in Packet per Second (pps) and X-axis indi-
cates the topology of the network, for instance 3.1.3 indicates 3
content consumer-producer pairs and the node under test in the
center of the network. Fig. 4 illustrates that CCN-lite cannot

3-1-3 4-1-4 5-1-5 6-1-6 9-1-9 14-1-14 20-1-20 25-1-25

Topology

0

10

20

30

40

50

60

R
a
te
 (
kp

p
s)

Peak rate for ccn-par

Peak rate for ccn-lite

Peak rate for ccnx

Average rate for ccn-par

Average rate for ccn-lite

Average rate for ccnx

Fig. 4: Packet forwarding rate.
forward packet at a rate higher than 13 kpps (considering the
experiment setup at Sec. III). Moreover, whenever the rate goes
higher, the kernel abruptly crashes. From our investigations,
the main reason of the crash is the scheduling mechanism, as
it uses a system-global workqueue to schedule the processing
of the arriving packets. The same workqueue is used by Linux
to schedule I/O operations, which are thus interfered by CCN-
lite, consequently resulting in a kernel crash.

Both CCNx and CCN-par sustain higher peak rates than
CCN-lite, however Fig. 4 shows a considerable difference be-
tween the average and the peak rate of the CCNx (continuous-
line and dashed-line respectively). The main reason of this
low average performance can be found in a very unstable
behavior, much fluctuating between highs and lows, whereas
CCN-par has a way steadier forwarding rate. To the best of
our knowledge, the main reason of this behavior is the CCNx
aging process and scheduling. Indeed, the aging mechanism in
CCNx periodically probes all expired elements slowing down
the node, using CPU resources and block tables shared with
the other CCNx processes.

In Fig. 5 and 6, Y-axes and X-axes illustrate CDF and
the transmission rate in KByte/sec (KB/s) respectively. Solid

0 200 400 600 800 1000 1200 1400 1600
KByte/sec

0.2

0.4

0.6

0.8

1.0

C
D
F

CCN-Par consumer (Incoming)

CCNx consumer (Incoming)

CCN-Par content producer (Outgoing)

CCNx content producer (Outgoing)

Fig. 5: Results for nodes without cache on data packet direc-
tion.

0 10 20 30 40 50 60 70 80 90
KByte/sec

0.2

0.4

0.6

0.8

1.0

C
D
F

CCN-Par content producer (Incoming)

CCNx content producer (Incoming)

CCN-Par consumer (Outgoing)

CCNx consumer (Outgoing)

Fig. 6: Results for nodes without cache on interest packet
direction.

FIB Lookup Packet parsing Nonce Lookup PIT Lookup
2800 ns 2000 ns 850 ns 180 ns

TABLE I: Average Tables Lookup.

and dashed-line in Fig. 5 show the transmission rate for
the data packet direction on the link between central node
and a consumer or a content producer respectively. In our
terminology, incoming means all packets (data and interest)
received by a node and outgoing indicates all packets are sent
by a node. It is worth noticing that the CCN-par has a stable
forwarding bit rate at 1400 KByte/s when there are interests
from the content consumer. Notice that the rate of CCNx is
really low in average and unstable. These results illustrate that
CCN-par supports more stable bit rate. Figs. 5 and 6 show that
the captured traffic on the central node has almost constant
bit rate. In terms of bandwidth usage the links between the
producer and the CCN router and the links between the content
consumer and the CCN router exhibit the same bit rate because
the node does not drop packets and does not respond with
cached content.

Table I presents a detailed view on the average packet
processing time in CCN-par. For each packet either interest or
content computes the processing time in each main building
blocks. Moreover, to have more accurate value each sample
is an average of thousand packets, the Table I illustrates an
average of million samples. Table I indicates that the FIB
lookup time is less than 3000 nano seconds and it is triple
as nonce lookup time. The FIB lookup is the most expensive
operation in CCN-par because we use LPM to forward packet
to the destination and we implement dynamic forwarding
mechanism on FIB which causes extra operations. Moreover,
the reason to have costly FIB lookup in our test is that the
FIB entry has name prefix as ccnx:/nokia but the interest
name has three components like ccnx:/nokia/OBJNUM0000/1.
Accordingly, the LPM in FIB needs three lookup operations
for name prefix size to find the output face. The PIT lookup

spends 180 nano seconds and is significantly lower than the
other operations. At first glance it seems odd but there are
two main reasons. First, we use exact match which is faster
than LPM. Second, ccncatchunks2 generates a new interest
after the receiving of the last interest or expiration time of the
last interest. Therefore, in our network we do not have many
unsatisfied interest packets in the PIT table. According to the
result of the other building blocks, if the PIT table is full, we
observe a PIT lookup time of about 3µ, smaller than the one
for the FIB. The second most expensive operation is packet
parsing. It uses 2µ seconds and it is more costly than nonce
lookup. This high cost for parsing is mainly due to the choice
of using TLV schema for the packet, header fields instead of
fixed-length. The TLV indeed allows for customizations of the
protocol, but results in much longer packet processing time,
as highlighted in Table I.

B. Packet Forwarding With Cache

In this scenario, we show the results for the node with
cache. Consumers send interest packets with content name
as defined in Sec. IV-A to the central node, which replies
with content in cache if present or forwards it to the possible
content producer(s). We choose the topology with 20 content
consumer-producer pairs as presented in Fig. 3. The popularity
of the contents in the Internet is the critical factor which
influences the behavior of caches. As a matter of fact, it is well
known that the most of the traffic is made by the few number
of popular contents, while the few part of the demand is made
by almost single requests for very rare contents. In terms of
probability distributions, such a behavior is usually associated
to the Zipf distribution. Therefore, we used Zipf distribution
for popularity of content. In this set of experiments, we set the
CS size equal to 15,000 contents.

The first set of results indicates that the peak forwarding
rate is almost equal to the results in Sec. IV-A but the average
forwarding rate is 10% less (is not reported here because of
lack of space). However, we should take into account that we
can compare these two scenarios in terms of network resource
usage. Delivering a single data packet from a content producer
to the central router would result in satisfying future interest
packets for the same data packet. Since data packets are larger
than interest packets, the outgoing data rate should be much
higher than incoming data rate, as depicted in Fig. 7.

0 200 400 600 800 1000 1200 1400 1600
KByte/sec

0.2

0.4

0.6

0.8

1.0

C
D
F

CCN-Par consumer (Incoming)

CCN-Par content producer (Incoming)

CCNx consumer (Incoming)

CCNx content producer (Incoming)

CCN-Par consumer (Outgoing)

CCN-Par content producer (Outgoing)

CCNx consumer (Outgoing)

CCNx content producer (Outgoing)

Fig. 7: Results for nodes with cache.
Fig. 7 demonstrates that serving content directly from CS is

more efficient and improves network throughput. Fig. 7 shows
that in case of CCN-par, the link in producer side experiences
less traffic at peak with respect to consumer side. In other
words, interests are satisfied by the CS in CCN-par. Table II
details the average processing time for different type of packets

Content Interest All
43 µs 5 µs 21 µs

TABLE II: Average packet processing time

in CCN-par. Unexpectedly, the average content processing time
is significantly higher than interest processing time. Content
packet forwarding has an average time equal to 43µ seconds.
Although, it is two folds of the average time spent for all
packets. Remember that in a CCN node contents are stored in
a cache based on their cache policy. Hence, the main reason
of this behavior is that for each data packet in the current
scenario, we have extra operations: first, we have a lookup
in cache; if it exists, it will be dropped. Otherwise, it will be
added to CS and the LRU should be updated. The CS becomes
full after few seconds of run. Therefore, each insertion in CS
needs a deletion in advance.

C. Dynamic forwarding

Fig. 8: Network topology.
We focus on a simple multi-path network scenario, where

users are connected to three repositories via three non dis-
joint paths. Usersaccess the central router and retrieve two
different named objects with a prefix as we mentioned in
Sec. IV-A. We define a toy network to show the effect of
the dynamic forwarding in CCN-par. In this topology we can
easily visualize in details what happens to specific name prefix
with different output faces in FIB. Fig. 8 shows the network
topology and the role of each node. As depicted, consumers
request two different name prefix. Moreover, the relay node
forwards interest packets to three distinct repositories, the
name prefix (ccnx:/nokia) has two output faces in the relay
node. In this set of experiments, we set the size of CS
equal to zero to prevent the CS processing time. All tables
have size equal to 15,000 element. Notice that the workload
is generated by content consumers at CBR until the link
is saturated. Request forwarding decisions are based on the
selection of LPM interfaces in the FIB. Indeed, FIB entries
specify name prefix rather than full object names because
it is unfeasible to maintain per-object name information. At
each packet reception, the value associated to a given name
prefix and to a particular output interface is updated. At the
beginning, each interface has a same weight and the packet
forwards uniformly over available output faces.

We now focus on the bit rate of the links from content pro-
ducers to the central node. As shown in Fig. 9 the traffic from
producer #1 to CCN-par is steady at 1200 KByte/Sec because
there is just one output face for this name prefix. However,
the second prefix (ccnx:/nokia) has two available faces in FIB.
The producer #0 is turned off after 15 seconds to see how
the dynamic forwarding algorithm reacts. At the beginning of
the test, the interest are forwarded uniformly between the two
available output faces. When content producer #0 stops, the
content consumer still waits for receiving the last requested
contents, that content producer #0 will never provide. In the

(a) Link between content producer #0 and
CCN-par.

(b) Link between content producer #1 and
CCN-par.

(c) Link between content producer #2 and
CCN-par.

Fig. 9: Results for dynamic forwarding.

meanwhile, CCNx deamon retransmits unsatisfied interests,
which are discarded by the router since the first interest still
exists in the PIT. The node deletes the PIT entry after a timeout
of 20s and all interest packets are forwarded to the only active
content producer for the same name prefix.

V. CONCLUSION

CCN is a state-of-the-art communications technology. It
holds an important promise to enable new services and create
a new category of applications software. Our work explores
the implications of CCN on software router design, storage
and network performance. Our CCN architecture and imple-
mentation operates in a wide range of network environments.
To assess the performance of the design, we have implemented
the proposed prototype based on CCNx protocol and set up
a testbed for large scale experimentation. The experimental
evaluation in various network scenarios confirms efficiency and
robustness w.r.t the other existing prototypes. We evaluate the
viability of building a high-performance CCN router out of
common PC hardware and the Linux system. Our preliminary
evaluation shows that CCN-par supports forwarding at 50 kpps.

There are few research challenges that need to be solved
before applying CCN in today’s Internet. First, we need to
design data structures which can support name forwarding
and lookup at wire-speed. For instance, designing a high-
performance distributed algorithm for FIB lookup. Second,
CCN architecture has been proposed recently by researchers,
which means that it is still at an immature step. For the future
work we design the FIB with a more efficient data structure
as mentioned in Sec. II. In addition, packet parsing is the
second costly operation in our design which can be improved
by means of a more sophisticated data structure or design
well structured data packet format instead of the current TLV
version.

REFERENCES

[1] M. Varvello, D. Perino, and J. Esteban, “Caesar: A content router for
high speed forwarding,” in Proceedings of the Second Edition of the
ICN Workshop on Information-centric Networking.

[2] W. So, A. Narayanan, and D. Oran, “Named data networking on a
router: Fast and dos-resistant forwarding with hash tables,” in Proceed-
ings of the Ninth ACM/IEEE ANCS.

[3] G. Carofiglio, M. Gallo, L. Muscariello, M. Papalini, and S. Wang,
“Optimal multipath congestion control and request forwarding in
information-centric networks,” in Network Protocols (ICNP), 2013 21st
IEEE International Conference on.

[4] M. Gallo, L. Gu, D. Perino, and M. Varvello, “Nanet: Socket api
and protocol stack for process-to-content network communication,” in
Proceedings of the 1st International Conference on Information-centric
Networking.

[5] W. Eatherton, G. Varghese, and Z. Dittia, “Tree bitmap: Hard-
ware/software ip lookups with incremental updates,” SIGCOMM Com-
put. Commun. Rev.

[6] W. Quan, C. Xu, A. Vasilakos, J. Guan, H. Zhang, and L. Grieco, “Tb2f:
Tree-bitmap and bloom-filter for a scalable and efficient name lookup
in content-centric networking,” in Networking Conference, 2014 IFIP.

[7] Y. Wang, K. He, H. Dai, W. Meng, J. Jiang, B. Liu, and Y. Chen, “Scal-
able name lookup in ndn using effective name component encoding,”
in Proceedings of the 2012 IEEE 32Nd International Conference on
Distributed Computing Systems.

[8] S. Dharmapurikar, P. Krishnamurthy, and D. E. Taylor, “Longest prefix
matching using bloom filters,” in Proceedings of the 2003 Conference on
Applications, Technologies, Architectures, and Protocols for Computer
Communications.

[9] H. Song, F. Hao, M. Kodialam, and T. Lakshman, “Ipv6 lookups using
distributed and load balanced bloom filters for 100gbps core router line
cards,” in INFOCOM 2009, IEEE.

[10] S. Ding, Z. Chen, and Z. Liu, “Parallelizing fib lookup in content centric
networking,” in Networking and Distributed Computing (ICNDC), 2012
Third International Conference on.

[11] B. Fan, D. G. Andersen, M. Kaminsky, and M. D. Mitzenmacher,
“Cuckoo filter: Practically better than bloom,” in Proceedings of the
10th ACM International on Conference on Emerging Networking Ex-
periments and Technologies.

[12] W. You, B. Mathieu, P. Truong, J. Peltier, and G. Simon, “Dipit: A
distributed bloom-filter based pit table for ccn nodes,” in Computer
Communications and Networks (ICCCN), 2012 21st International Con-
ference on.

[13] D. Perino and M. Varvello, “A reality check for content centric network-
ing,” in Proceedings of the ACM SIGCOMM Workshop on Information-
centric Networking.

[14] H. Yuan, T. Song, and P. Crowley, “Scalable ndn forwarding: Concepts,
issues and principles,” in Computer Communications and Networks
(ICCCN), 2012 21st International Conference on.

[15] M. Varvello, D. Perino, and L. Linguaglossa, “On the design and
implementation of a wire-speed pending interest table,” in Computer
Communications Workshops (INFOCOM WKSHPS), 2013 IEEE Con-
ference on.

[16] H. Dai, B. Liu, Y. Chen, and Y. Wang, “On pending interest table in
named data networking,” in Proceedings of the Eighth ACM/IEEE Sym-
posium on Architectures for Networking and Communications Systems.

[17] G. Carofiglio, M. Gallo, L. Muscariello, and D. Perino, “Modeling
data transfer in content-centric networking,” in Proceedings of the 23rd
International Teletraffic Congress.

[18] L. Muscariello, G. Carofiglio, and M. Gallo, “Bandwidth and storage
sharing performance in information centric networking,” in Proceedings
of the ACM SIGCOMM Workshop on Information-centric Networking.

[19] D. Rossi and G. Rossini, “Caching performance of content centric
networks under multi-path routing (and more),” Relatório técnico,
Telecom ParisTech.

[20] K. Katsaros, G. Xylomenos, and G. C. Polyzos, “Multicache: An
overlay architecture for information-centric networking,” Comput. Netw.

[21] F. Cappello, E. Caron, M. Dayde, F. Desprez, Y. Jegou, P. Primet,
E. Jeannot, S. Lanteri, J. Leduc, N. Melab, G. Mornet, R. Namyst,
B. Quetier, and O. Richard, “Grid’5000: a large scale and highly
reconfigurable grid experimental testbed,” in Grid Computing, 2005.
The 6th IEEE/ACM International Workshop.

