
10 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Optimized Upload Strategies for Live Scalable Video Transmission from Mobile Devices / Siekkinen, M.; Masala, Enrico;
Nurminen, J. K.. - In: IEEE TRANSACTIONS ON MOBILE COMPUTING. - ISSN 1536-1233. - STAMPA. - 16:4(2017),
pp. 1059-1072. [10.1109/TMC.2016.2585138]

Original

Optimized Upload Strategies for Live Scalable Video Transmission from Mobile Devices

Publisher:

Published
DOI:10.1109/TMC.2016.2585138

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2653133 since: 2017-04-19T11:02:59Z

IEEE

1

Optimized Upload Strategies for Live Scalable
Video Transmission from Mobile Devices

Matti Siekkinen, Enrico Masala, Senior Member, IEEE, and Jukka K. Nurminen, Member, IEEE

Abstract—Sharing live multimedia content is becoming increasingly popular among mobile users. In this article, we study the problem
of optimizing video quality in such a scenario using scalable video coding (SVC) and chunked video content. We consider using only
standard stateless HTTP servers that do not need to perform additional processing of the video content. Our key contribution is to
provide close to optimal algorithms for scheduling video chunk upload for multiple clients having different viewing delays. Given such a
set of clients, the problem is to decide which chunks to upload and in which order to upload them so that the quality-delay tradeoff can
be optimally balanced. We show by means of simulations that the proposed algorithms can achieve notably better performance than
naive solutions in practical cases. Especially the heuristic-based greedy algorithm is a good candidate for deployment on mobile
devices because it is not computationally intensive but it still delivers in most cases on-par video quality compared to the more complex
local optimization algorithm. We also show that using shorter video segments and being able to predict bandwidth and video chunk
properties improve the delivered video quality in certain cases.

Index Terms—scalable video coding, DASH, mobile video streaming, video upload, live video, video transmission

F

1 INTRODUCTION

MANY personal mobile devices, such as smartphones
and tablets, allow capturing video content in digital

format so that it can be efficiently stored, processed and
transmitted. Users of such devices often desire to share
the video content with friends and other people in live
fashion using the wireless upload channels provided by the
mobile device. Such operation is rather challenging when
multimedia content is involved since the wireless channel
characteristics are strongly time varying, hence it is difficult
to achieve reliable low-delay communications.

Considering a generic mobile Internet access scenario,
HTTP is the only communication protocol that is certainly
supported in any case. Unfortunately, HTTP is notori-
ously ill-suited for multimedia communications. However,
recently adaptive HTTP streaming techniques have been
proposed to address the issue of adapting the transmission
rate to the channel conditions by transferring only some
segments of information at a time so that it is possible to
periodically change the transmission rate if needed. The Dy-
namic Adaptive Streaming over HTTP (DASH) [1] standard
in fact allows to describe the characteristics of the media
segments and their rate, so that the best representation can
be chosen at each time during the transmission.

This work focuses on an application context in which a
user wants to provide the possibility to access the content,
live-captured by its mobile device, in near real time using
a standard stateless HTTP web server to a multitude of
viewers. This is, for instance, the case of a user, present at
a live event, that wants to share it with friends so that they

• M. Siekkinen and J. K. Nurminen are with the Department of Computer
Science, School of Science, Aalto University - Finland
Email: matti.siekkinen@aalto.fi, jukka.k.nurminen@aalto.fi

• E. Masala is with the Control and Computer Engineering Department,
Politecnico di Torino, Torino, Italy - 10129, Email: masala@polito.it

Manuscript received Sep 15, 2015.

can watch the event as it happens. Since the receivers of the
communication are many, they might have different prefer-
ences. For example, a user could prefer watching with short
delay while others might appreciate higher quality content
despite the higher delay. In other words, each viewer has a
preference for a different quality-delay tradeoff.

We base our solution on the use of HTTP over TCP to
deliver video content because that allows maximal support
from existing server infrastructure (e.g., CDNs). We assume
that the content is captured and encoded at the mobile de-
vice. Moreover, no additional processing (e.g., transcoding
or other adaptation) is performed on the server side, which
enables using standard HTTP web servers which are very
cost-effective. For these reasons, scalable video coding [2] is
a reasonable choice, since it allows the various viewers to
consume videos with different qualities without the need of
re-encoding content. Scalable video coding (SVC) produces
a layered video sequence where the base layer provides the
most modest quality and the client may improve the quality
by downloading one of more enhancement layers. Note
also that scalability is compatible with the DASH standard,
which is a desirable characteristic since in this way it is pos-
sible to rely on client-side adaptation without requiring any
server side content processing. An additional requirement
of our system is that players report their viewing delay to
dedicated server(s) which in turn report them back to the
mobile device that is transmitting the stream.

The challenge in the considered scenario that we tackle
in this article is to optimize the video transmission process
on the uploading mobile device given the variability over
time of the wireless channel. The video is produced in
segments and each segment has the same number of layers
specified to the SVC encoder, which yields a matrix of video
chunks with time and layer as the two dimensions. Hence,
the problem to solve is to choose, at each time instant, which
is the best video chunk among all the available ones to

2

upload to the server so that the video quality experienced
by all the clients is improved over time as much as possible.

We formulate this optimization problem first with an
objective to find a globally optimal solution, that is, the
optimal solution given a finite length video sequence and
clients with specific delays. However, this optimal solution
cannot be achieved in practice, as it requires knowledge
of the future bandwidth and size and quality information
about video segments that have not yet been generated.
Therefore, we then formulate a problem with an objective
to find a sequence of locally optimal solutions, which is
solvable with a real system.

We present a set of upload scheduling algorithms that
solve the optimization problems and compare their per-
formance using simulations. The results confirm that our
algorithms beat naı̈ve solutions. We also discover that the
video quality delivered by a much simpler greedy algo-
rithm comes very close the locally optimal one, which is
good news as it is a much simpler algorithm to compute.
However, while the locally optimal algorithm performs
well, there is a clear difference to the globally optimal
video quality. This result supports the hypothesis that the
ability to predict bandwidth variations and video sequence
information could substantially improve the video quality.

The paper is organized as follows. First, Section 2 briefly
discusses the use of SVC and DASH for sharing videos cap-
tured with mobile devices. Then, an SVC-based streaming
system design is presented in Section 3. Section 4 contains
analytical formulation of the problem used to investigate
the complexity of finding the optimal solution for the opti-
mization problem. Practical algorithms to solve the problem
are proposed in Section 5 followed by simulation setup in
Section 6 and results in Section 7, where the performance is
analyzed as a function of several parameters. Finally, related
work in the area is presented in Section 8. Conclusions are
drawn in Section 9.

2 SCALABLE VIDEO CODING FOR DASH
Scalable video coding [2] provides mechanisms to create an
embedded bitstream from which different representations
can be extracted by partially decoding the compressed data.
The more data is extracted, the higher the quality. In prac-
tice, the embedded bitstream features a layered structure
that includes a base layer and additional enhancement
layers. The base layer corresponds to the data that can be
decoded independently of the other layers, providing the
lowest supported quality. Additional enhancement layers
improve the quality but increase the required rate and
require all lower layers to be decoded.

Video scalability can be achieved by means of different
techniques. The most important ones are the so-called spa-
tial, temporal and quality (also named SNR) scalability [2].
This work focuses on the scalable extension of H.264/AVC,
Scalable Video Coding (SVC) [3], which provides all these
types of scalability. For simplicity, we will focus only on the
SNR and spatial scalability, but the ideas underlying our
approach can be extended to the other form.

The key advantage of layered coding is that the embed-
ded bitstreams can be tailored to match the desired band-
width by just selecting some layers and dropping others

1	 clients
HTTP servers

Internet

mobile device:
video capture,
encoding, upload

dedicated
servers

= MPD+video content
= viewing delay

Fig. 1. System overview.

without transcoding or re-encoding the content. The SVC in-
trinsic support for adaptation can be exploited by standards
such as DASH, which is a popular HTTP-based approach for
multimedia streaming over the Internet. The Media Presen-
tation Description (MPD) and the description of segments
are covered by the DASH specification which is flexible
enough to describe different resources when produced by
a scalable encoder. In particular, it is possible to arrange the
various layers into different dependent representations by
means of a specific DASH attribute named dependency id.
Thus, clients can request representations as their adaptation
logic requires while being sure of having all the resources
(i.e., lower layers) required for decoding.

Relying on HTTP for streaming media delivery has sev-
eral benefits in addition to the ubiquitous support. Above
all, we mention the ability of the Internet infrastructure to
efficiently support HTTP through proxies and caches [4].

3 SYSTEM DESIGN

3.1 Overview
We propose a system for live video streaming from a mobile
device. Figure 1 illustrates the system and its different
components considered in this work.

As soon as the user starts transmitting, a suitable Media
Presentation Description (MPD) is generated and uploaded
by the mobile node to a simple stateless HTTP server. The
DASH MPD is parametrized (i.e., uses the SegmentTemplate
tag) so that it can be kept unchanged when a new resource
becomes available on the server.

Note that, to achieve low latency, the mobile device
acquires and encodes video data in chunks of predeter-
mined duration, so that they can be simply uploaded to
the HTTP server and made immediately available to the
viewers without any further server processing. As previ-
ously mentioned this allows to keep the system both cheap
and highly scalable in terms of number of viewers.

A critical aspect of the system is how to optimally tune
and configure the parameters of all subsystems so that
the latency is minimized without too much performance
overhead. The main focus of this work is how to deal
with the typical bandwidth fluctuations of the wireless
channel, which leads to the upload scheduling problem that
we formulate in the next subsection. Another important
parameter is the DASH segment size, whose size should be
small to allow for sufficiently frequent upload scheduling
decisions but large to avoid inefficiencies caused by the
HTTP protocol overhead and the coding process.

3

3.2 Viewing Delay
Our system is designed to optimize the quality-delay trade-
off. We define the viewing delay as the time interval be-
tween the moment that the mobile device has finished
encoding a particular video segment and the moment that
the client player attempts to play that segment. The viewing
delay can be some default delay chosen by the player soft-
ware or it may be user specified, i.e. user explicitly sets the
desired delay-quality tradeoff, if the player software allows
it. The client player knows the start time of the stream from
the MPD from which the viewing delay can be calculated.

In this work, we do not account for the variable time
that is spent by the client player to download a video chunk
from the HTTP server. In other words, we assume that the
client can instantly fetch a chunk as it arrives to the server.
In a real system, the retrieval latency is non-negligible but
also unknown to the uploader. Therefore, a straightforward
way to account for it would be to add a constant delay to
the client reported viewing delay as a safety margin when
optimizing the chunk uploading. The margin would ensure
that the client manages to fetch appropriate chunks in time.

When a new video viewing client joins the system, it
must transmit its viewing delay to the transmitting mobile
device. The delay can be selected by the player software or
it may be user specified, i.e. user explicitly sets the desired
delay-quality tradeoff. In the system that we envision, the
transmitting mobile device gets the client delays through
dedicated servers to which the viewing clients report their
delay. Note that as the amount of this information is tiny,
only a small number of servers is required for a large num-
ber of clients. In other words, the video content is delivered
using a common HTTP server infrastructure, whereas the
delay information is obtained in a way that is specific to our
system. In case a mobile client uses legacy player software
that does not support reporting the viewing delay, the client
can view the stream but the transmitting mobile device does
not account for it when optimizing its chunk uploading
strategy. Hence, such clients may experience worse video
quality than those that report their viewing delays.

4 UPLOAD SCHEDULING PROBLEM

4.1 Problem Statement
The optimization problem can be stated as finding the
upload schedule for the video chunks of the various layers
already encoded by the mobile device that maximizes the
expected quality for all the clients that are playing the video
content. Moreover, it is of paramount importance to make
sure that the base layer is always received by all clients in
order to avoid annoying playback interruptions.

The schedule must take into account the dependencies
between layers, i.e., it cannot upload a chunk at layer l
if layer l − 1 has not yet been uploaded. Clients are not
expected to start playback at the same time. Therefore,
the quality experienced by them is directly proportional to
the delay, with respect to the real-time, that clients use in
playing back the content. The more they lag behind real-
time, the higher is the quality.

In this work we focus on maximizing the average of
the quality experienced by all clients. However, more so-
phisticated objective functions could be used to merge the

TABLE 1
Symbols used throughout the paper.

All times are expressed as multiple of chunks unless otherwise noted
TC DASH segment duration in seconds
d Number of DASH segments in the video
i Segment index (starting from 0)

i
πdk
i Segment index of the ith chunk of upload schedule πdk
L Number of layers created by the video encoder
l Layer index

l
πdk
i Layer index of the ith chunk of upload schedule πtk
l̄i Highest available layer for segment i

l̄
πdk
i Highest available layer for segment i after uploading chunks

according to schedule πdk
θtm ⊂ πk Subschedule (ordered list) of generated but not uploaded

chunks at t
si,l Size of chunk i at layer l
qi,l Increment of quality of chunk i at layer l
t Current encoding time in number of segments generated
N Number of clients
n Client index
δn Delay of client n watching the video
Π The set of all valid upload schedules for a video of d segments
πk A chunk upload schedule for a video of d segments
S(πk) Size of a schedule πk , i.e., bits required to upload chunks

belonging to it
x
πk
i,l (t) Selector variable (0 or 1) modeling the availability of chunk i at

layer l
Qn Quality experienced by client n watching the whole video
Vk Number of chunks to be uploaded according to schedule πk
Bt Number of bits that can be uploaded during segment t

…

i = 0
l = 0
l = 1
l = 2

s2,1 q2,1

s0,0 q0,0

Time

t δ0
δ1

δ2

i = 1 i = 2 i = 6 i = 5

l3 = 2 l2 = 1 l2 = 2 l0 = 3

Fig. 2. Representation of chunks, split into the available layers, and the
relevant time instants in the system. Chunks in gray have already been
successfully uploaded to the server.

qualities of all clients in a single metric, such as maximizing
the minimum of the qualities experienced by all clients, or
using the minimax criterion [5].

4.2 Global Optimization Problem

In the following we analytically formulate the problem. We
call it global optimization problem because we aim to find
the global optimum as opposed to a local one, which we
discuss in Section 4.3. Table 1 describes all the symbols used.

We refer to Fig. 2 that illustrates a generic situation in
which a number of DASH segments have been encoded,
each one into several layers. The current time is indicated
by t and it is counted in terms of segments of video elapsed,
i.e. generated. The mobile device is encoding the data for
the new DASH segment which is represented by the chunks
with dashed lines in the figure, and the new data will be
available only after TC seconds, i.e., the DASH segment du-
ration. The gray chunks are the one that, given the previous
upload schedule decisions and upload channel conditions,
are available on the server at time t.

Let i be the index of the segment, starting from 0,
produced by the encoder on the mobile device, and l be

4

the layer, starting from 0, corresponding to each chunk in
the segment. We represent a chunk as a pair of segment
index and layer (i, l). At the encoder, the size si,l and the
incremental contribution to quality qi,l of each chunk (i, l) is
known, as well as how many layers, for each segment, have
already been successfully uploaded to the server. This is
indicated by the l̄i values. As for quality, we simply measure
it by computing the peak signal-to-noise ratio (PSNR) when
l layers for the segment are available, as it is commonly done
in the video communication research community.

Let N be the number of clients currently watching the
video. Each one started playback with a certain initial delay
with respect to the encoding time. Without loss of generality,
we approximate such value considering the point on the
segment boundary at which chunks must be available to
allow playback. In other words, if the delay of the client
is not a multiple of the segment duration TC , it will be
rounded toward the lowest value which is a multiple of
TC . Therefore, the situation can be summarized as in Fig. 2
where each client delay δn, expressed in number of seg-
ments, coincides with a segment boundary.

In this paper, we consider only the bandwidth limita-
tions on the video uploader’s side. In other words, our
solution provides the optimal quality for a set of clients
provided that they have enough downstream bandwidth.
Mobile networks typically have asymmetric bandwidth al-
locations so that the upstream bandwidth is narrower than
the downstream one, hence the uploader side is usually
the bottleneck. This assumption also limits the computa-
tional complexity of the problem to a feasible level. The
upstream bandwidth is generally not known beforehand but
the uploader can measure it while uploading. Bt denotes
the number of bits that can be uploaded during the time
interval when the tth video segment is being generated.

We want to find the chunk upload schedule that pro-
vides the best quality for all clients among all the possible,
and potentially numerous, schedules. More formally, a spe-
cific kth upload schedule is an ordered list of chunks

πk = ((iπk1 , lπk1), . . . , (iπkVk , l
πk
Vk

)) (1)

drawn from the set of chunks of a video that has duration
of d segments. A valid schedule cannot contain chunks of
a segment for which all the lower layer chunks are not
included. We denote the set of all K such valid policies for
a video of d segments by

Π = (π1, . . . , πK) (2)

The size of an upload schedule πk is

S(πk) =
∑

(i,l)∈πk

si,l (3)

Obviously, not all chunks belonging to an upload sched-
ule are immediately available at the server for viewing.
As the uploader progresses, more and more chunks will
be available for clients. As a consequence, the larger the
viewing delay of a client, the more chunks, i.e., the better
quality, it will be able to play. We model the availability of a
particular chunk belonging to an upload schedule πk with
a selector variable xπki,l (t). It is one if at time instant t, which
is counted in video segments from the start, the chunk (i, l)

has been uploaded to the server and zero otherwise. Hence,
it is a step function for each chunk belonging to the schedule
and zero function for chunks that do not belong to the
schedule. Using the selector variable, we can express the
quality experienced by client n when watching video of d
segments uploaded according to schedule πk as

Qπkn =
∑
(i,l)

(
xπki,l (i− 1 + δn)qi,l

)
(4)

Hence, given a video of d segments, our objective is to
solve the following problem

maximize
πk∈Π

f(Qπk0 , . . . , QπkN−1)

subject to: S(πk) ≤
d+max δ1,...,δN∑

i=1

Bi, (5)

where f(·) is a function that merges together the qualities
experienced by each single client into a single value. The
constraint comes from the observation that it is useless to
upload further chunks after all clients have played the last
segment. It takes d + δn segments time for client n to play
all the d video segments. Hence, the sum in the constraint
equals the number of bits that can be uploaded until all
the clients have played all the d segments. We do not set
any constraints on how early a specific chunk is allowed
to appear in a schedule. Consequently, if the chunk is not
available at the time that it is scheduled for upload, the
uploader simply waits until it has been generated.

In the rest of the paper, we set the function f(·) to the
average of the quality experienced by all clients, i.e.,

f(Qπk0 , . . . , QπkN−1) =
1

N

N−1∑
n=0

Qπkn . (6)

The previous formulation becomes:

maximize
πk∈Π

1

N

N−1∑
n=0

∑
(i,l)

(
xπki,l (i− 1 + δn)qi,l

)

subject to: S(πk) ≤
d+max δ1,...,δN∑

i=1

Bi (7)

Intuitively, the optimal solution should maximize the
video quality considering all the clients. The tricky part
is to decide whether it is better to send an enhancement
layer chunk of a recently encoded segment (i.e., with high
i) or of an older segment (smaller i) given that clients are
viewing the stream with different playback delays. A very
recent chunk would usually benefit all the clients, whereas
an older one will be useless to those clients that have already
played the corresponding segment. As the quality increment
q delivered by a chunk varies, the optimal solution needs to
compare them to deem whether, for instance, an older low
layer chunk with high q value is a better choice than a more
recent top layer chunk with smaller q value.

Also, we assume that the upload bandwidth is enough
to always accommodate the base layer (i.e., l = 0) of each
chunk, whereas the upload of higher layers is subject to
bandwidth availability. If the upstream bandwidth is less
than the base layer bitrate, live video streaming is impos-
sible and video playback at the viewer side will eventually

5

stall no matter which upload schedule is used. In practice,
as we will see in the next section, we prioritize base layer
chunks so that buffering events, which are particularly
disruptive for video quality, are completely avoided given
that the above bandwidth availability assumption holds.

4.3 Local Optimization Problem

Without any knowledge of the upcoming bandwidth, the
global optimization problem cannot be solved. In case
bandwidth prediction techniques are applicable, the global
optimization problem can be solved, although in such a
case the optimality depends on the prediction accuracy.
Furthermore, the size and quality of chunks belonging to
future video segments are generally unknown. For these
reasons, it is useful to know how simpler solutions that rely
on finding local optima compare to the globally optimal
solution. We next formulate such a problem that does not
rely on the knowledge of future bandwidth availability.

The idea is that every time a new segment has been
generated, we try to find an optimal upload schedule for
those chunks that have already been generated but not yet
uploaded. In this way, we iteratively solve a series of local
optimization problems.

Let θtm ⊂ πk denote a particular subschedule that deter-
mines a specific ordered list of already generated but not yet
uploaded chunks to upload during the generation of video
segment t. For example, the white blocks in Figure 2 can be
members of such a subschedule. A valid subschedule is such
that a combination of them forms a valid upload schedule
for video of d segments:

⋃d
t=0 θ

t
m ∈ Π. Using this notion, we

can formulate the problem as follows:

for each t:
t=0,...,d

maximize
θtm

1

N

N−1∑
n=0

∑
(i,l)

(t∑
j=1

(
x
θjm
i,l (i− 1 + δn)

)
qi,l

)
subject to: S(θtm) ≤ Bt (8)

In the above formulation, whenever a new video seg-
ment has been generated, we try to upload those chunks
that maximize the quality considering all the clients. The
difference to the global problem formulation (Eq (5)) is that
in the above we proceed iteratively for each t, and that in
each step we sum up the selector variables from all the
subschedules until now, i.e., the previously chosen ones and
the current tth one that we try to find, in order to determine
the quality that a particular client will experience.

Note that, even in this local optimization problem, we
need some estimate of Bt, i.e., the amount of bandwidth
available during the time that the next video segment is
being generated. We use the knowledge of the amount of
available bandwidth during the previous segment as we will
see in the next section.

4.4 Problem Analysis

4.4.1 Constant Size Chunks
To get some insight into the complexity of the problem, we
first consider a simpler case in which all chunks have the
same size, i.e., ∀i, l : si,l = S′. For simplicity’s sake, in
this analysis we assume to have a perfect knowledge of the

upload channel conditions for the next segment duration
(i.e., we know Bt for each value of t).

If all chunks have the same size, they can be character-
ized only by the quality qi,l they can provide to the decoded
video sequence. Let us denote the number of chunks that
can be uploaded by V , i.e., that is the length of the schedule
that solves the problem at hand. It is obviously a function
of S′ and bandwidth. Let us further consider that t video
segments have been encoded until now. Hence, these V
chunks can be part of any of the t segments. Therefore, the
number of possible combinations is the number of ways to
allocate V elements in t bins. This is a well-known com-
binatorial problem whose solution is the so called multiset
coefficient [6]:((

V

t

))
=

(
V + t− 1

t

)
=

(V + t− 1)!

t!(V − 1)!
(9)

Note that this is an upper bound of the number of possible
combinations that need to be explored to find the optimal
solution to Eq (8). In general, less than V elements can be
assigned to each bin (a segment in our case) because some
layers may have already been uploaded.

Considering the two flavors of the optimization problem,
the number of chunks that can be uploaded is Vloc =

⌊
Bt
S′

⌋
and Vglob =

⌊∑d+max δ1,...,δN
i=1 Bi

S′

⌋
for the local and global

problems, respectively. In addition, we only need to con-
sider the chunks of those video segments that the clients
have not yet played, which reduces the solution space for
the local optimization problem. In other words, t is bounded
by the viewing delay. In case of the global problem, t simply
equals d. In case of the local problem, it is feasible to
calculate the coefficient given a reasonable number of layers.
On the contrary, solving the global problem through brute
force search is not computationally feasible because V and t
become too large in Eq (9).

4.4.2 Variable Size Chunks - The Knapsack Problem
Video chunks are generally not of the same size. The more
general problem where the chunk sizes differ can be viewed
as a variation of the well-known knapsack problem. In that
problem, one is given a set of items each of which has a
weight and value and the task is to find the set of items
whose combined value is as large as possible and which
fit into a bag that can hold at most a specified amount of
weight. In our case, the bag is the total amount of bits that
can be transmitted, i.e., the bandwidth summed up over
the time interval, and each chunk represents an item with
weight being its size in bits and value its quality.

Both the local and the global optimization problems can
be cast as the knapsack problem. We are specifically dealing
with the 0/1 knapsack problem in which an item can be
included in the solution only once or not at all. This problem
can be solved efficiently using dynamic programming in
O(nW) time whereW is the bag size, i.e., the amount of bits
that can be transmitted, and n is the number of chunks. Our
problem presents some additional constraints: 1) a higher
layer chunk cannot be included unless a lower layer chunk
of the same segment is already part of the solution, and
2) the solution to our problem is an ordered set of items
and the value of an item depends on its position in the

6

time time

1 2 6

1 2 3 4 5

1 2 3 4 5 6 7

segment length

gradual uploading strategy moderate uploading strategy

1 2 3 4 5 6 7

1 2 3 4 5

1 2 3

ba
nd

w
id

th

time

segment length

steep uploading strategy

segment length

1 2 4

1 2 3 3 4

1 2 3 4 5 6 7

base layer enhancement layer 1 enhancement layer 2
ba

nd
w

id
th

ba
nd

w
id

th

Fig. 3. Chunk uploading order for the three diagonal strategies.

bag. Neither of these constraints increases the complexity
of the problem as we can handle both of them with simple
comparison operations as we will show in the next section.

5 PROPOSED ALGORITHMS

5.1 Naive Upload Strategies

We define three naı̈ve strategies: horizontal, vertical, and diag-
onal strategies. These strategies are called naı̈ve because they
do not adapt to the playback schedule of clients. We define
these strategies for the purposes of comparative evaluation.
These strategies are summarized in the following, more
details can be found in [7].

The horizontal strategy uploads all the base layer seg-
ments in order, then it continues with the first enhancement
layer and so on. Therefore, it minimizes delay for all clients
before enhancing quality. On the contrary, the vertical strat-
egy uploads all layers of a video segment before moving on
to the next one, hence it prioritizes quality instead of delay.
It is clear that in almost all cases neither of these strategies
is optimal. Instead, they can be considered as the extreme
strategies in between which the optimal one lies.

The diagonal strategy lies in between the previous two.
We specify three flavors of it: gradual, moderate, and steep
diagonal. Common to all the three strategies is that the
lower the layer, the more chunks of that layer will have been
uploaded at a given point of time. In addition, the strategies
adapt to bandwidth variation by uploading the base layer
chunk whenever a new segment is available. Only after that,
these algorithms decide on which higher layer chunks to
upload before the next segment is expected to be available.
The three flavors differ in the number of segments that a
higher layer lags behind its immediate lower layer.

Figure 3 illustrates their upload progress. The gradual
strategy spends the excess time, after uploading each of the
base layer chunks, by filling up the gaps in the the first
enhancement layer. The moderate strategy, instead, always
uploads a chunk corresponding to a first enhancement layer
if excess time remains and only after that uploads a segment
corresponding to the second enhancement layer. Finally, the
steep strategy ensures that the lag between the enhancement
layers is at most one segment by filling up the gaps on all
those layers with the same priority.

5.2 Locally Optimal Upload Strategy

We first consider algorithms for the local optimization prob-
lem. We present two variants. The first one is a greedy
algorithm based on a simple heuristic. The second one
is based on solving the knapsack problem using dynamic

programming. Both algorithms iteratively calculate the set
of chunks to upload after new segment becomes available.
In this way, the algorithms adapt if the viewing delays of
clients changes or new clients join and existing ones leave.

5.2.1 Simple heuristic
Our first algorithm relies on the following assumption:
when uploading more layers to a segment, the quality,
i.e., the PSNR, of that segment increases at a rate that is
smaller than the rate at which the chunk size increases
with each new layer. In other words, with each new layer,
we need to transmit more bits in order to increase the
quality by the same amount. Our encoding experiments
suggest that this assumption usually holds. In fact, this is
a consequence of the convexity of the rate-distortion curves
that exhibit diminishing quality gain as the bitrate increases.
Consequently, we propose a greedy algorithm that uses
PSNR increase by the chunk divided by its size in bits as a
heuristic to maximize upon each selection of the next chunk
to upload. Because of the underlying assumption, we only
need to compare the next missing chunk of each segment
when making a selection. The pseudocode is shown in
Algorithm 1. The algorithm is run each time a new video
segment has been generated.

Algorithm 1 Greedy approach
1: input: chunk sizes and qualities si,l, qi,l;
2: input: client viewing delays δn;
3: init: not yet uploaded avail. chunks C ←

⋃L−1
l=0 (0, l);

4: init: client viewing positions Pn ← −δn;
5: init: time till next segment is available tnext;
6: while C 6= ∅ do
7: update qualities qi,l weighted by Pn;
8: repeat
9: Wup ← estimate upload budget(Bi, tnext);

10: for all (i, l̄i) ∈ C : l̄i < L− 1 do
11: hi ←

qi,l̄i+1−qi,l̄i
si,l̄i+1

. Compute heuristic

12: end for
13: i′ ← arg maxi hi
14: upload (i′, l̄i′ + 1) and remove it from C;
15: l̄′i ← min(L− 1, l̄′i + 1) . Update uploaded layer
16: Bi ← measure upload rate();
17: update tnext;
18: until Wup too small to upload another chunk
19: wait until new segment is available;
20: add chunks of new segment into C;
21: update Pn and tnext;
22: end while

There are a few things to clarify in the code. We initialize
the set of chunks available for upload but not yet uploaded
to the chunks of the first segment (line 3). In other words,
the algorithm starts running after the first video segment
has been generated. After initialization, the algorithm enters
a loop in which it stays until the video is no longer being
generated and there are no more chunks left to upload that
would benefit any client. In the beginning of the loop, the
chunk qualities are recomputed so that the quality increase
is weighted by the number of clients that will benefit from
its upload, i.e., those that are currently viewing a more
ancient segment. There is a second inner loop (lines 8-18)
within which the algorithm selects and uploads chunks one
by one based on the heuristic value until the latest upload
rate measurement suggests that the remaining upload bud-
get would no longer enable uploading another chunk before

7

the next video segment becomes available. After that, the
algorithm waits until this happens, adds the new chunks to
the set of chunks available for upload, and proceeds again
to select and upload them.

Note that the amount of time spent idle waiting for
chunks of new segment to become available depends, on
one hand, the accuracy of the upload rate estimation and,
on the other hand, the chunk sizes. If chunk sizes are
large, the expected amount of accumulated idle waiting
time is also larger than in the case of small chunks because
the duration of the idle time is directly related to chunk
sizes. We investigate the effect of this phenomenon on the
performance of the algorithms in Section 7.

The complexity of Algorithm 1 is O(V t) which can
be slightly improved if the hi data is not searched for
maximum every time but it is kept in a structure such
as a sorted heap that allows building in O(t log t) time
but inserting in O(log t) time, operation that needs to be
performed V − 1 times. Therefore, the final complexity is
O(t log t+ V log t) = O((t+ V) log t).

5.2.2 Using Dynamic Programming
Our second algorithm for the local optimization problem
is based on solving the 0/1 knapsack problem using dy-
namic programming. The pseudocode of the algorithm is
presented in Algorithm 2 and of the knapsack solver in
Algorithm 3.

Algorithm 2 Local optimization using 0/1 knapsack solver
1: input: chunk sizes and qualities si,l, qi,l;
2: input: client viewing delays δn;
3: init: not yet uploaded avail. chunks C ←

⋃L−1
l=0 (0, l);

4: init: client viewing positions Pn ← −δn;
5: init: time till next segment is available tnext;
6: while C 6= ∅ do
7: update qualities qi,l weighted by Pn;
8: repeat
9: Wup ← estimate upload budget(Bi, tnext);

10: Π← solve knsack(C, qi,l, Pn,Wup); . Algorithm 3
11: upload Π;
12: remove Π from C;
13: Bi ← measure upload rate();
14: update tnext;
15: until Wup too small to upload another chunk
16: wait until new segment is available;
17: add chunks of new segment into C;
18: update Pn and tnext;
19: end while

Algorithm 2 only differs from Algorithm 1 in the con-
tents of the inner loop (lines 8-15). Upload budget is es-
timated in the same way but instead of computing the
heuristic, the algorithm calls the knapsack solver algorithm.
The reason why this call is enclosed in the inner loop is that
the sack size, i.e., the amount of bits that can be uploaded
until the next segment is available, is an estimate. In case it
gets underestimated, the loop ensures that a new solution is
calculated until there is no more slack time.

Algorithm 3 is in most parts a standard 0/1 knapsack
solver that uses dynamic programming. The only specifici-
ties are 1) lines 6-8 that set the quality of the base layer
chunks with imminent deadline to infinity in order to surely
include them into the schedule; 2) the second condition on
line 17, which ensures that no upper layer chunks will be
added into the schedule before all the lower layer chunks of

Algorithm 3 0/1 knapsack solver for local optimization
1: input: set of not yet uploaded available chunks C;
2: input: chunk qualities qi,l;
3: input: viewing positions of clients Pn in segments from start;
4: input: number of bits Wup to schedule for upload;
5: init: Π← ∅
6: for all (i, 0) : i− Pn < 2 do
7: qi,0 ←∞ . Ensure that base layer is never late
8: end for
9: for j = 0 to Wup step winc do

10: m[0, j]← 0;
11: Π[0, j]← ∅;
12: end for
13: c← 0;
14: for all chunks (i, l) ∈ C and i ≥ min(Pn) do
15: c← c+ 1;
16: for j = 0 to Wup step winc do
17: if si,l ≤ j and (i, l − 1) ∈ Π[c− 1, j − si,l] then
18: if m[c− 1, j − si,l] + qi,l > m[c− 1, j] then
19: m[c, j]← m[c− 1, j − si,l] + qi,l
20: Π[c, j]← Π[c− 1, j − si,l] ∪ (i, l)
21: else
22: m[c, j]← m[c− 1, j]
23: Π[c, j]← Π[c− 1, j]
24: end if
25: else
26: m[c, j]← m[c− 1, j]
27: Π[c, j]← Π[c− 1, j]
28: end if
29: end for
30: end for
31: sort Π[c,Wup] in descending order by qi,l/si,l
32: return Π[c,Wup];

the considered segment are included; and 3) the penultimate
line, which sorts the chunks in the resulting schedule by
quality increase per bit. The sorting is done because the
given bit budget, i.e., sack size, may be an overestimate
of the true one and sorting ensures that the most valuable
chunks are uploaded first. Finally, we increment the sack
size by winc at each iteration (line 16) instead of one. The
reason is that the sack size is relatively large in terms
of bits and bit by bit incrementing would result in too
much computation. We set the value of winc empirically by
avoiding too large increment that would degrade the output
of the algorithm. In the simulations (Section 7), we used
50Kbit and 100Kbit as winc depending on the input video
sequence.

5.3 Globally Optimal Upload Strategy

We also designed an algorithm to compute the globally
optimal upload schedule. Obviously, such an algorithm re-
quires some way to predict the future bandwidth variation.
In addition, the future chunk sizes and qualities need to
be somehow known or estimated. We use this algorithm
with an oracle that has perfect knowledge of the future
bandwidth and chunk information in the evaluation section
in order to understand how far the schedule given by the
locally optimal algorithm is from the best possible one.

The algorithm consists almost solely of the 0/1 knapsack
solver which is executed only once. We show the pseu-
docode of the solver in Algorithm 4. It follows the exact
same logic as Algorithm 3 but there are a few important
details that differ.

The algorithm needs to keep track of how much time
uploading each sack would take because the chunk qualities

8

Algorithm 4 0/1 knapsack solver for global optimization
1: input: set of all chunks C;
2: input: chunk sizes and qualities si,l, qi,l;
3: input: viewing delays of clients δ;
4: input: bandwidth information Bi;
5: init: Wup ←

∑d+max δ1,...,δN
i=1 Bi;

6: init: client viewing positions Pn ← −δn;
7: init: Π← ∅
8: for j = 0 to Wup step winc do
9: m[0, j]← 0;

10: Π[0, j]← ∅;
11: end for
12: c← 0;
13: for all chunks (i, l) ∈ C and i ≥ min(Pn) do
14: c← c+ 1;
15: for j = 0 to Wup step winc do
16: update Pn and qi,l given Π[c− 1, j − si,l];
17: if si,l ≤ j and (i, l − 1) ∈ Π[c− 1, j − si,l] then
18: if m[c− 1, j − si,l] + qi,l > m[c− 1, j] and m[c− 1, j −

si,l] + qi,l > m[c, j − 1] then
19: m[c, j]← m[c− 1, j − si,l] + qi,l
20: Π[c, j]← Π[c− 1, j − si,l] ∪ (i, l)
21: else
22: m[c, j]← m[c− 1, j]
23: Π[c, j]← Π[c− 1, j]
24: end if
25: else
26: m[c, j]← m[c− 1, j]
27: Π[c, j]← Π[c− 1, j]
28: end if
29: end for
30: end for
31: return Π[c,Wup];

depend on time. Hence, the chunk qualities need to be
updated prior to deciding whether to include a chunk into
a sack (line 16). Note that the locally optimal algorithm
does not need to account for this issue because the viewing
positions of clients do not change during the generation
(and playback) of one segment.

Because of the time dependency of chunk qualities, a
chunk may deliver a worse quality when put into a larger
sack than when put into a smaller size sack. In other words,
the more time passes, the worse the quality of a chunk gets
because there are fewer and fewer clients that would benefit
from its upload. This is not taken into account by a standard
0/1 knapsack solver. We handle this issue by adding the
second condition in the if statement on line 18.

Finally, the algorithm does not sort the resulting sched-
ule as the locally optimal one does because the chunks
must be uploaded in the order specified by the algorithms
solution. Otherwise, the optimality cannot be guaranteed
since the viewing progress by clients have been accounted
for in the solution, unlike in the local algorithm.

6 SIMULATION SETUP

In order to quantify the performance of the different algo-
rithms, we simulated the behavior of the different uploading
algorithms in a number of different situations using Matlab.
We used real SVC-encoded video sequence information as
input to the simulations. The simulation parameters and
their value ranges are summarized in Table 2.

In particular, we encoded the standard video sequences
known as city, crew, harbour, soccer at 30 frames per second
(fps) and 4CIF (704×576) resolution. We believe these se-
quences may well represent content that is live captured and

TABLE 2
Simulation parameters.

Parameter Value range (default value, if applicable)
simulation repetitions 500
number of clients 1-100 (5)
client viewing delay 0-30 s
average uplink rate R 1-6 Mbps (2Mbps)
rate variation range (0.5− 1.5)× R
rate change probability pr 0.1− 0.9 (0.5)
video duration 80 s
video frame rate 30 fps
video segment length 2 s
video resolutions QCIF (176x144), CIF (352x288), 4CIF (704x576)
SVC layers 3
layer bitrates (SNR) 0.5, 1, 1.5 Mbps
layer bitrates (spatial) 0.1, 0.4, 2.3 Mbps
video sequences city, crew, harbour, soccer
type of scalability SNR/spatial scalability
video segment fragments 1-4 (1)

(a) Base layer (L0) (b) Enh. layer #1 (c) Enh. layer #2

Fig. 4. Visual comparison of a detail of the reconstructed city sequence
when more layers of SNR scalability are considered. Frame #1.

transmitted to make it immediately available to viewers.
We employed SNR scalability with three layers (base and
two enhancements). The sequences are balanced in terms
of spatial details, since soccer and crew present movements
but not so many tiny details, while the opposite holds for
the other two sequences. To perform encoding we resorted
to the JSVM encoding software v. 9.19.15. The encoding has
been configured for the DASH environment by creating 60-
frame segments that can be decoded independently from the
previous and subsequent segment. Each segment employs a
single I frame at the beginning, followed by P frames every
4 frames. Intermediate frames are hierarchically coded B
frames. The sequence is terminated by a P frame not to intro-
duce dependencies on the next segment. The same structure
is replicated for the two SNR enhancement layers. The lay-
ers have been encoded with a fixed quantization parameter
in order to achieve approximately 500 kbit/s, 1000 kbit/s
and 1500 kbit/s for each of the three layers, respectively.
For the spatial scalability case the same coding structure
has been used but three different resolutions are employed:
QCIF (176×144), CIF (352×288) and 4CIF (704×576). In this
case the average bitrate is about 100 kbit/s for the base layer,
400 kbit/s for the intermediate one and 2300 kbit/s for the
higher one. These values increase more rapidly than with
SNR scalability since each layer is expected to both handle
a higher number of pixels and provide an increased visual
quality.

The standard video sequences have 300 frames, therefore
to generate a sufficiently long video sequence we concate-

9

TABLE 3
Encoding PSNR (dB) when an increasing number of SNR/spatial

enhancement layers is available.

Sequence SNR scalability spatial scalability
base layer L1 L2 base layer L1 L2

city 31.82 34.99 36.42 34.06 34.14 36.28
crew 31.41 35.25 37.18 32.99 35.37 38.19
harbour 27.72 31.14 33.05 31.91 33.11 33.99
soccer 30.41 34.39 36.98 30.06 35.49 38.22

nated the four sequences twice (in the order city, crew,
harbour, soccer), which yields a 80 s video. Table 3 reports the
encoding PSNR for the various layers of each sequence for
the case of SNR and spatial scalability. A visual comparison
of the quality provided by the three layers is shown in Fig. 4.

0.5	 x	 R	 R	 1.5	 x	 R	

1-pr 1-pr 1-pr

1.1	 x	 R	

1-pr

… 0.9	 x	 R	

1-pr pr/2

…
pr/2 pr/2

pr/2

pr

pr

pr/2

pr/2 pr/2 pr/2 pr/2

pr/2

Fig. 5. Markov chain used to model upload rate variation. R is the mean
upload rate.

We used a Markov chain based model of the wireless
channel. The model comprises 11 states corresponding to
available bandwidth of 0.5 to 1.5 times the average as illus-
trated in Figure 5. Such models allow capturing the graceful
degradation and improvement of the channel capacity while
the user is mobile and of the available bandwidth when
more clients join to share the resources of the wireless
network that the user is connected to. The model takes
two parameters: R is the mean upload rate and pr is the
probability of transitioning from the current state to next
or previous state, both transitions being equally likely (i.e.,
pr/2). As each simulated scenario was repeated 500 times,
we used at each iteration a different seed (the iteration
number) for the random number generator associated with
the Markov model. This manoeuvre ensures that the average
upload rate measured over all the iterations does not change
significantly between different simulated scenarios having
different values of pr but the same R.

The video sequences are encoded in such a way that
the average bitrate of all the layers combined together is
slightly below the highest average bandwidth level in our
simulations, while the average bitrate of the base layer is
slightly below the lowest average bandwidth level. In other
words, all test cases have enough bandwidth to deliver at
least the base layer to all clients regardless of their viewing
delays. By selecting the test cases in this way, we make an
implicit assumption that the client has some knowledge of
how much the bandwidth typically varies when choosing
the encoding parameters, otherwise the video playback at
the viewer side will eventually stall.

Each of the simulated scenarios corresponding to a
specific set of parameter values (number of clients, aver-
age available bandwidth, and bandwidth variation) was
repeated 500 times and results were averaged. For each of
these 500 simulations we drew uniformly random viewing

delay between zero and 30 seconds for each client. These
viewing delays were given to the algorithms as input pa-
rameters except for the naı̈ve algorithms which are oblivious
to viewers progress. Note that the exact same 500 sets of
viewing delays were used in the different scenarios ensuring
that the results are comparable.

We measure different video quality related metrics in
order to compare the performance of the algorithms. The
average PSNR experienced by the viewers is the main met-
ric. The average layer played is a metric that in most cases
heavily correlates with the PSNR. We also keep track of the
buffering time which is the amount of time that the client’s
playback buffer is empty and the player must pause to wait
for missing content due to unlucky scheduling decisions.

7 PERFORMANCE EVALUATION

7.1 Video Quality

Figure 6 plots the results in terms of the resulting PSNR
for the median client with different amounts of average
available bandwidth. Median client here means that we
compute the average PSNR for each client of a simulated
session and then take the median of those results. The
whiskers in the figure correspond to the median of worst
and best quality of all the simulation rounds. The state
transitioning probability pr of the Markov model was set to
0.5 and the video quality metrics are averaged over the five
clients simulated. In addition to PSNR, we also analyzed
the average layer played by clients. However, since they
both behave similarly, we only focus on the average PSNR
because it is the metric that our algorithms optimize for.
As one might expect, the more bandwidth is available, the
better is the video quality regardless of the strategy.

avg upload rate (Mbps)
1 2 3 4 5 6

m
e
d
ia

n
 o

f
a
v
g
 P

S
N

R

29

30

31

32

33

34

35

36

vertical
horizontal
grad. diag.
mod. diag.
steep diag.
greedy
local ks
global ks

Fig. 6. Average video quality as a function of the average amount
of available upstream bandwidth. Whiskers mark the median of each
simulation round’s best and worst qualities.

The first curious observation is that the vertical strategy
delivers surprisingly high video quality. In this case, these
results are a bit misleading because the vertical upload
strategy is the only one that causes any noticeable amount of
buffering time. Specifically, it yields a buffering ratio (total
buffering time divided by video duration) of 1.7 and 0.3
for 1 Mbps and 2 Mbps average upload rates, respectively
(3 Mbps is just enough to deliver all the layers). All the
other strategies yield practically zero buffering ratio for
all evaluated cases. Hence, the good playback quality of

10

the vertical strategy is undermined by high buffering ra-
tio, which we deemed unacceptable when designing our
algorithms. Among the other naı̈ve strategies, it seems that
the gradual diagonal is the most suitable for the simulated
scenarios. However, the issue with any diagonal strategy is
that they do not adapt to the network conditions. As ex-
plained in [8] for an equivalent diagonal download strategy,
the “slope” of the best possible diagonal strategy depends
on the available rate and its variation. Hence, a diagonal
strategy with fixed parameters only works optimally with
specific network conditions. Adjusting a diagonal strategy
to the network conditions is essentially what our proposed
algorithms do. In our simulations, the gradual diagonal
strategy just happened to fit the simulation setup well and
the moderate and steep not so well.

Obviously, the strategy that outperforms all the others in
every scenario is the one based on the global optimization
algorithm (Alg 4) that requires oracle knowledge about
future bandwidth and chunk sizes and qualities. The local
optimization with knapsack solver (Alg 2), which we call lo-
cal knapsack (ks in the figure), delivers the second best video
quality. However, the greedy algorithm performs equally
well. It is even marginally better in some cases, which is
probably caused by the fact that the knapsack solution is
constructed using imperfect knowledge of the amount of
bandwidth available to upload chunks. The results thus
suggest that using the greedy algorithm, which is much sim-
pler to compute, is a good choice in most cases. However,
it should be remembered that the greedy algorithm relies
on the assumption that the quality per bit decreases when
adding layers. If this assumption cannot be guaranteed, it is
better to use the local knapsack algorithm.

We also see that the range between the worst and best
case qualities delivered by our algorithms is reasonably
small, which is an indication that they deliver a relatively
fair level of video quality to different clients. Note that we
expect and want to see some differences between clients
with different delay, because the algorithms are designed
to take advantage of the the delay vs. quality tradeoff. To
further illustrate this point, we plot the tradeoff for the dif-
ferent strategies in Figure 7 in a chosen scenario. The clients
who benefit the most from the optimized upload strategies
compared to the naı̈ve strategies are those having having
relatively short delay. In other words, while enabling the
delay-quality tradeoff, our algorithms also deliver a more
balanced video quality to the clients with different delays
compared to the naı̈ve upload strategies. If a more even
quality is desired, one could design a different objective
function and adjust the algorithms accordingly.

There is a clear difference between the globally optimal
video quality and the quality delivered by the two strategies
based on local optimization, which suggests that a capability
to predict bandwidth variation, such as the solution pre-
sented in [9], and upcoming video chunk information would
notably improve the video quality. We also evaluated the
video quality with a version of the local knapsack that has
oracle knowledge about the amount of bandwidth available
during the current segment’s time interval. In other words,
instead of estimating the bandwidth (line 9 of Alg 2) the
uploader knows exactly the upload budget. We learned that
this knowledge does not substantially improve the results.

delay
5 10 15 20 25 30

a
v
g

 P
S

N
R

30

31

32

33

34

35

vertical
horizontal
grad. diag.
mod. diag.
steep diag.
greedy
local ks
global ks

Fig. 7. Tradeoff between video quality and delay with 2 Mbps average
upload rate.

Hence, so far it appears that the uploader should be able to
see further in the future in order to make a difference.

We wanted to make sure that the video sequence
specifics do not play a major role in the performance of the
different uploading strategies. Hence, we ran the same set of
simulations separately with the different video sequences.
We repeated each 10s short sequence 8 times in order to
obtain 80s long sequences. The simulation results are plotted
in Figure 8. The results are qualitatively the same across the
different video sequences. Quantitatively the results differ
just because the different sequences yield different PSNR
values as we saw earlier in Table 3. Hence, we conclude that
the contents of the video sequence does not have a major
effect on the performance of the algorithms.

video sequence
city crew harboursoccer city crew harboursoccer

m
e
d
ia

n
 o

f
a
v
g
 P

S
N

R

28

30

32

34

36

38

vertical
horizontal
grad. diag.
mod. diag.
steep diag.
greedy
local ks
global ks

4Mbps avg upload rate2Mbps avg upload rate

Fig. 8. Average video quality with different video sequences and 2Mbps
and 4Mbps upload rates.

We next examined the impact of the rate of variation
of the available upstream bandwidth and the number of
clients. We changed the state transition probability pr of the
Markov model (Figure 5) and simulated the resulting video
quality. The results are plotted in Figure 9. The average
video quality becomes slightly worse when there are more
clients in the system, which is logical as it is more difficult
to optimize the quality experienced by many clients with
different viewing delays than to optimize it, for instance, for
just one client. But the fact that the rate of variation of the
upstream bandwidth seems to have visually no effect on the
results is a surprise. In fact, it undermines our hypothesis
that the global knapsack performs better than the local
knapsack because of its capability to “see” into the future.
We uncover the reason in the next step of evaluation where
we look at the role of the chunk size.

11

upload rate variability (p
r
)

0.1 0.5 0.9

m
e
d
ia

n
 o

f
a
v
g
 P

S
N

R

29

30

31

32

33

34

35

36

(a) bandwidth variation (5 clients)

number of clients
1 10 100

m
e
a
n
 o

f
a
v
g
 P

S
N

R

29

30

31

32

33

34

35

36 vertical
horizontal
grad. diag.
mod. diag.
steep diag.
greedy
local ks
global ks

(b) number of clients (bwvar= 0.5)

Fig. 9. Impact of upload rate variation and number of clients on the video
quality. The average upload rate was 2 Mbps.

Before continuing with the evaluation, we wish to inform
the reader about the role of the type of scalability. The results
presented in the previous section were generated using a
video sequence that was encoded using SNR scalability.
We also investigated how the type of scalability used in
the encoding influences the video quality by reproducing
the results with a video sequence encoded using spatial
scalability. The results were similar to the case of SNR
scalability suggesting that the type of scalability plays a
minor role in this work.

7.2 Fragmenting the Video Chunks

If the video is divided into large chunks, each chunk takes
potentially a long time to deliver and the probability of the
available bandwidth to change during the upload is greater
than in the case of video divided into small chunks. Further-
more, larger chunks tend to cause larger amount of idle time
because the uploader determines that it cannot upload the
whole enhanced layer chunk before a new segment becomes
available. Only the locally optimal algorithms are concerned
with this effect since the globally optimal algorithm does not
pause to wait for the next segment to be available.

Even if the video content is chunked into several seconds
long chunks, each chunk can be delivered in smaller frag-
ments. Considering HTTP-over-TCP-based video delivery,
such fragmentation can be easily achieved on the HTTP
layer by the uploading client. Fragmenting video chunks
may increase header overhead. HTTP level header overhead
can be almost completely mitigated by using, for instance, a
Websocket-based uploader client. On the other hand, indi-
vidual IP packets are transported by TCP. It typically uses
a maximum segment size of around 1.5 kB, which imposes
a limit to a fragment size below which the TCP/IP header
overhead increases. However, considering that in the video
sequence we use in the evaluation, the size of the base layer
chunk, i.e., the layer with the lowest bitrate, is a bit more
than 60 kB on the average, this overhead is insignificant
unless we split chunks into more than 40 fragments.

To quantify the effect of fragmentation, we simulated
scenarios where the 2 s video chunk is delivered in 1-
4 fragments. Each video chunk can be played only after
all the fragments have arrived, as would be the case with
fragmentation taking place in the HTTP layer. In other
words, individual fragments cannot be played. Similarly,
the fragments of a given video chunk are available for
uploading only after the entire segment has been generated.

number of fragments
1 2 4

m
e
d
ia

n
 o

f
a
v
g
 P

S
N

R

29

30

31

32

33

34

35

36

greedy
local ks
global ks

Fig. 10. Impact of fragmentation on
video quality.

change in avg upload bandwidth (Mbps)
1->4->2 4->1->2

m
e
d
ia

n
 o

f
a
v
g
 P

S
N

R

29

30

31

32

33

34

35

36

greedy
greedy, 4 fragments
local ks
local ks, 4 fragments
global ks

Fig. 11. Impact of change in aver-
age available upload bandwidth.

Figure 10 shows how the video quality changes when
increasing the number of fragments. Note that the global
knapsack performs the same with or without fragmentation.
The reason is that fragmentation presents an advantage only
with local strategies because they can use the remaining
idle time before next segment arrival to transmit fragments.
In other words, fragmentation reduces the idle wait time
but that time is already zero when using the global knap-
sack algorithm because it computes the entire schedule at
once. As a result, the video quality delivered by the two
local algorithms clearly improves with fragmentation and is
nearly on par with the global algorithm when using four
fragments. This is good news as it means that in certain
cases by fragmenting the video segments to small enough
pieces we can achieve almost optimal video quality using
the locally optimal algorithms.

7.3 Longer Time Scale Changes in Available Band-
width
So far we have only simulated such upload rate variation
that happens in short time scale and the average rate re-
mains constant. That kind of variation could be attributed to
client churn in a base station and time dependent variations
in channel quality due to, e.g., interference. So, the mobile
device itself remains stationary. In this section, we investi-
gate what happens when the average upload rate changes
during the streaming session. Such variation happens in
a longer time scale and would typically be caused by the
uploading mobile device moving from good coverage area
to a worse one causing degradation of the link quality.

We studied the above described scenarios by letting the
upload rate vary around the mean as before but by changing
the mean rate itself. We simulated two situations where
within the time it takes to generate all the video segments
(e.g, video duration), the average upload rate either linearly
increases from 1 to 4 Mbps or vice versa, after which the
average upload rate stabilizes to 2 Mbps in both cases.
Hence, the overall average upload rate is the same over the
whole session in the two scenarios.

The results on the left of Figure 11 show that when
the average upload rate increases, the locally optimal al-
gorithms are unable to anticipate the rate change in the
way that the oracle is (knapsack global). They cannot match
the video quality of the oracle algorithm even with frag-
mentation enabled. However, this effect is not visible in
the scenario where the average upload rate decreases. In
that case, the locally optimal algorithms with fragmentation
provide a video quality that is on par with the oracle.

12

The reason for this difference in behavior can be ex-
plained by reasoning what is the advantage of the oracle
in both cases. In case of increasing upload rate, the oracle
algorithm can take more risky choices in uploading en-
hancement layer chunks of earlier segments even if it slows
down the progress of uploading the lower layer chunks
because it knows that later on it will have more capacity to
catch up. The locally optimal algorithms do not know this
and, therefore, they will choose to upload lower layers first
that improve the PSNR the most. However, later on when
the upload rate has increased and there is plenty of capacity
left over, it is too late to upload the enhancement layers of
the earlier segments. This phenomenon does not exist in the
case of decreasing average upload rate.

To conclude, these results demonstrate that being able
to predict the upload rate and to apply the global knapsack
algorithm has potential to improve the results compared to
the local knapsack or greedy algorithm, especially when the
mean rate increases over a relatively long period of time.

8 RELATED WORK

Layered video coding has been around for well over a
decade, hence its use in a number of wireless environments
has been extensively studied. For instance, Wu et al. [10]
present one of the first pieces of work that studies the use of
layered coding to transmit video over broadband wireless
networks. Schierl et al. [11] discuss in a more general sense
the use of scalable video coding with mobile video transmis-
sion. More recently, Migliorini et al. [12] analyze SVC video
streaming over WiMax and look specifically at the impact of
different encoding options. Van Der Schaar et al. [13] inves-
tigate how to optimize SVC video quality when transmitted
over 802.11a/e that uses coordinated channel access (HCF)
instead of random access MAC. SVC streaming in mobile
ad-hoc networks has also been investigated [14], including
scenarios with multiple video sources [15]. Hsu et al. [16]
study broadcasting of scalable video streams over dedicated
broadcast networks. Hu et al. [17] propose algorithms for
femtocell cognitive radio networks that enable near optimal
delivery of scalable video so that capacity use is maximized
and interference limited. Kang et al. [18] consider how to
schedule scalable video for 3G broadcast and multicast.
They emphasize protecting the base layer with ARQ mecha-
nisms to avoid missed segments. Other works focus on more
specific scenarios or requirements. Ramzan et al. [19], for in-
stance, present an overview of peer-to-peer (P2P) streaming
of scalable video. Also Abboud et al. [20] studied the use
of SVC in P2P Video-on-Demand systems. They specifically
looked into the SVC layer selection algorithms and the
quality metric trade-offs within. An interesting application
of SVC is presented by Hsu et al. [21]. They leverage the
scalability to trade quality to battery life of a mobile device
when the latter is scarce. The use of caches in the context
of scalable video has also been investigated. For example,
Kangasharju et al. [22] study the problem of distributing
layered video over the Internet through caches. Specifically,
they examine which videos and which layers in the videos
should be cached. They model their problem as a 2-resource
stochastic knapsack and present heuristics to solve it.

Joint source channel coding has also been applied in the
context of wireless transmission. Kondi et al. [23] present
a system in which the video is encoded by accounting for
the characteristics of the wireless channel over which the
video will be transported. Specifically, they investigate the
application of unequal error protection (UEP) to scalable
video, making more efforts to correctly transport the most
important frames. Others also focused on optimizing error
control schemes for SVC. For instance, Kang et al. [24]
propose a cross-layer error control scheme for scalable video
broadcasting in CDMA2000 systems. Similarly, Zhang et
al. [25] present a UEP scheme for scalable video transmis-
sion over 3G network. Also Yang et al. [26] propose to
employ UEP with scalable video but they focus specifically
on error differentiation, i.e., congestion vs. bit-error induced
packet loss, on the transport level. Such loss differentiation
is no longer typically done as modern mobile networks pro-
vide a highly reliable service, such as the LTE link layer that
runs a two-layer ARQ mechanism in order to prevent any bit
errors from propagating to higher layers [27]. More recently,
Ji et al. [28] have also studied joint source-channel coding for
broadcasting to heterogeneous devices, Li et al. [29] design
a scheme that combines SVC and adaptive modulation and
coding for wireless video multicasting, Lin et al. [30] also
study video multicasting in a multirate wireless network
proposing a rate scheduling model that optimizes the visual
quality for a multicast group while guaranteeing a mini-
mum quality to all clients, and Otwani et al. [31] develop
optimal scheduling policies for scalable video transmission
over single and multiuser wireless channels. Our work is
complementary to theirs in that joint source-channel coding
could be used to improve the efficiency of the transmission
of individual segments over the wireless channel. However,
merging the two solutions may be challenging: We do not
know precisely when a video segment will be transmit-
ted when using our scheduler. Therefore, it is difficult to
tune encoding parameters since channel characteristics, e.g.,
bandwidth, may have changed by the time of transmission.

The possibilities of SVC in the context of DASH video
streaming have received increasing attention in the last few
years. The challenges and opportunities presented by the
use of scalable video content in DASH are investigated,
for instance, in [4], [32], which particularly focus on net-
work caches. Zahran et al. [33] show how multiple TCP
connections can be used on high-delay links in order to
optimize the performance of DASH streaming of scalable
video content. Probably the closest pieces of work that
we are aware of are those presented by Andelin et al. [8]
and Chen et al. [34]. They both investigate layer switching
algorithms for clients receiving SVC content and, in the
former, combined with DASH. Differently from our work,
the authors focus on the downstream scheduling of stored
SVC-encoded content. Wang et al. [35] also present an adap-
tive framework for streaming stored SVC content. Although
the problem formulation in the work by Li et al. [36],
which presents a solution for distributed streaming quality
adaptation, resembles that of ours, their system is designed
for streaming on-demand pre-encoded SVC content. Hu et
al. [37] approach the video quality optimization problem in
wireless networks with a proxy deployed at the network
edge. The proxy delivers SVC streams at dynamically cho-

13

sen rates that are selected on the basis of the queue size
at the access network. Freris et al. [38] studies delivery
of on-demand scalable video to clients that are connected
to multiple networks having different characteristics, such
as cognitive multiradio devices. Also Xing et al. [39] have
investigated a similar problem.

For the case of mobile video upload it is possible to use
a server to transcode video and redistribute it using plain
DASH [40], but a near real-time system can be achieved
only by limiting the video resolution, otherwise the server
becomes a bottleneck. This is a strong motivation for our
approach to use a standard stateless HTTP servers and
produce ready-to-distribute content directly on the mobile
device. Our approach requires the mobile device to be capa-
ble of real-time encoding SVC video which has been shown
to be feasible [41] but is currently not widely available.

Quality of experience aspects of video streaming have
also been studied extensively. Recent examples include [42]
that report on a large scale measurement study of mobile
video usage. Krishnan et al. [43] study the effect of initial
joining time and buffering events on the engagement in
watching videos. Dobrian et al. [44] provide some insights
into mapping the considered QoE metrics to user behavior
through a utility function and present a predictive model of
Internet video QoE in their follow-up work [45].

Our previous work [7] tackled the issue of SVC upload
over HTTP from mobile devices to multiple clients by
presenting some heuristic scheduling strategies. The present
work substantially extends it with an analytical formulation
and analysis of the problem considering both global and
local optimization goals, as well as optimized algorithms
(both optimal and approximate) that can run on mobile de-
vices with limited complexity. The simulation results show
that performance is close to the highest achievable by an
oracle-based optimal scheduling algorithm.

The encoding workload by the mobile device increases
since scalable coding adds complexity, which may raise
concerns about the impact on battery life. It is clear that SVC
encoding will increase the energy consumption compared
to non-scalable encoding. However, hardware-accelerated
encoding process in smartphones appears to be a relatively
small contributor to the total energy consumption compared
to the camera itself when shooting and streaming live
video [46]. Moreover, Chen et al. demonstrated the fea-
sibility to design hardware-supported SVC encoders with
reasonable energy consumption (300-400 mW) [41].

9 CONCLUSIONS

This work investigated the problem of designing optimized
adaptation strategies for a multi client scenario when a live
video content is shared by a mobile user. Scalable video
coding and chunked HTTP streaming have been considered,
as well as stateless HTTP servers not to negatively influence
the scalability of the system. The upload scheduling prob-
lem has been analytically formulated, its complexity has
been analyzed and a globally optimal, a locally optimal, and
a simple greedy algorithms have been provided. Simulation
results show that in most cases the local and greedy algo-
rithms perform equally well and that in some cases they can
deliver nearly as good video quality as the globally optimal

solution. However, we also demonstrate other situations
where they miss opportunities to improve the video quality
and perform inferior to the globally optimal algorithm. The
complexity of the proposed algorithms is limited, hence they
can be effectively employed in mobile devices.

ACKNOWLEDGMENTS

This work was supported by the Academy of Finland, grant
number 278207, and Aalto Science Institute.

REFERENCES

[1] ISO/IEC 23009, “Dynamic adaptive streaming over HTTP
(DASH),” 2012.

[2] J.-R. Ohm, “Advances in scalable video coding,” Proceedings of the
IEEE, vol. 93, no. 1, pp. 42–56, 2005.

[3] ISO/IEC 14496-10 & ITU-T H.264, “Annex G extension of the
H.264/MPEG-4 AVC,” Nov. 2007.

[4] Y. Sanchez, T. Schierl, C. Hellge, T. Wiegand, D. Hong, D. De
Vleeschauwer, W. Van Leekwijck, and Y. Le Louedec, “iDASH:
improved dynamic adaptive streaming over HTTP using scalable
video coding,” in Proceedings of the 2nd ACM conference on Multi-
media systems, San Jose, CA, USA, Feb. 2011, pp. 257–264.

[5] G.J. Sullivan and T. Wiegand, “Rate-distortion optimization for
video compression,” IEEE Signal Processing Magazine, vol. 15, no.
6, pp. 74–90, Nov. 1998.

[6] R. P. Stanley, Enumerative Combinatorics, vol. 1, Cambridge
University Press, 2nd edition, Dec. 2011.

[7] M. Siekkinen, A. Barraja, J.K. Nurminen, and E. Masala, “Ex-
ploring the delay versus quality tradeoff in real-time streaming
of scalable video from mobile devices,” in Proc. of 2nd IEEE Intl.
Workshop on Mobile Multimedia Computing (MMC ICME Workshop),
Torino, Italy, June 2015.

[8] T. Andelin, V. Chetty, D. Harbaugh, S. Warnick, and D. Zappala,
“Quality selection for dynamic adaptive streaming over HTTP
with scalable video coding,” in Proceedings of the 3rd ACM
Multimedia Systems Conference, Feb. 2012, pp. 149–154.

[9] H. Riiser, T. Endestad, P. Vigmostad, C. Griwodz, and
P. Halvorsen, “Video streaming using a location-based bandwidth-
lookup service for bitrate planning,” ACM Trans. Multimedia
Comput. Commun. Appl., vol. 8, no. 3, pp. 24:1–24:19, July 2012.

[10] D. Wu, Y.T. Hou, and Y.-Q. Zhang, “Scalable video coding and
transport over broadband wireless networks,” Proceedings of the
IEEE, vol. 89, no. 1, pp. 6–20, Jan. 2001.

[11] T. Schierl, T. Stockhammer, and T. Wiegand, “Mobile video
transmission using scalable video coding,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 17, no. 9, pp. 1204–
1217, Sept. 2007.

[12] D. Migliorini, E. Mingozzi, and C. Vallati, “Performance eval-
uation of H.264/SVC video streaming over mobile WiMAX,”
Computer Networks, vol. 55, no. 15, pp. 3578–3591, 2011.

[13] M. Van Der Schaar, Y. Andreopoulos, and Z. Hu, “Optimized
scalable video streaming over IEEE 802.11 a/e HCCA wireless
networks under delay constraints,” IEEE Transactions on Mobile
Computing, vol. 5, no. 6, pp. 755–768, June 2006.

[14] M. Qin and R. Zimmermann, “An adaptive strategy for mobile
ad hoc media streaming,” IEEE Transactions on Multimedia, vol. 12,
no. 4, pp. 317–329, June 2010.

[15] T. Schierl, K. Ganger, C. Hellge, T. Wiegand, and T. Stockhammer,
“SVC-based multisource streaming for robust video transmission
in mobile ad hoc networks,” IEEE Wireless Communications Maga-
zine, vol. 13, no. 5, pp. 96–103, Oct. 2006.

[16] C.-H. Hsu and M. Hefeeda, “Flexible broadcasting of scalable
video streams to heterogeneous mobile devices,” IEEE Transactions
on Mobile Computing, vol. 10, no. 3, pp. 406–418, Mar. 2011.

[17] D. Hu and S. Mao, “On medium grain scalable video streaming
over femtocell cognitive radio networks,” IEEE Journal on Selected
Areas in Communications, vol. 30, no. 3, pp. 641–651, Apr. 2012.

[18] K. Kyungtae, Y. Cho, J. Cho, and H. Shin, “Scheduling scalable
multimedia streams for 3G cellular broadcast and multicast ser-
vices,” IEEE Transactions on Vehicular Technology, vol. 56, no. 5, pp.
2655–2672, Sept. 2007.

14

[19] N. Ramzan, E. Quacchio, T. Zgaljic, S. Asioli, L. Celetto,
E. Izquierdo, and F. Rovati, “Peer-to-peer streaming of scalable
video in future Internet applications,” IEEE Communications Mag-
azine, vol. 49, no. 3, pp. 128–135, Mar. 2011.

[20] O. Abboud, T. Zinner, K. Pussep, S. Al-Sabea, and R. Steinmetz,
“On the impact of quality adaptation in SVC-based P2P video-
on-demand systems,” in Proceedings of the Second Annual ACM
Conference on Multimedia Systems, New York, NY, USA, 2011,
MMSys ’11, pp. 223–232, ACM.

[21] C.-H. Hsu and M. Hefeeda, “Achieving viewing time scalability
in mobile video streaming using scalable video coding,” in Proc.
of the First Annual ACM SIGMM Conference on Multimedia Systems
(MMSys), Scottsdale, AZ, 2010, pp. 111–122, ACM.

[22] J. Kangasharju, F. Hartanto, M. Reisslein, and K.W. Ross, “Dis-
tributing layered encoded video through caches,” IEEE Transac-
tions on Computers, vol. 51, no. 6, pp. 622–636, 2002.

[23] L.P. Kondi, F. Ishtiaq, and A.K. Katsaggelos, “Joint source-channel
coding for motion-compensated DCT-based SNR scalable video,”
IEEE Transactions on Image Processing, vol. 11, no. 9, pp. 1043–1052,
Sept. 2002.

[24] K. Kyungtae and W.J. Jeon, “Differentiated protection of video
layers to improve perceived quality,” IEEE Transactions on Mobile
Computing, vol. 11, no. 2, pp. 292–304, Feb. 2012.

[25] Q. Zhang, W. Zhu, and Y.-Q. Zhang, “Channel-adaptive re-
source allocation for scalable video transmission over 3G wireless
network,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 14, no. 8, pp. 1049–1063, Aug. 2004.

[26] F. Yang, Q. Zhang, W. Zhu, and Y.-Q. Zhang, “End-to-end TCP-
friendly streaming protocol and bit allocation for scalable video
over wireless Internet,” IEEE Journal on Selected Areas in Communi-
cations, vol. 22, no. 4, pp. 777–790, May 2004.

[27] A. Larmo, M. Lindstrom, M. Meyer, G. Pelletier, J. Torsner, and
H. Wiemann, “The LTE link-layer design,” IEEE Communications
Magazine, vol. 47, no. 4, pp. 52–59, Apr. 2009.

[28] W. Ji, Z. Li, and Y. Chen, “Joint source-channel coding and
optimization for layered video broadcasting to heterogeneous
devices,” IEEE Transactions on Multimedia, vol. 14, no. 2, pp. 443–
455, Apr. 2012.

[29] P. Li, H. Zhang, B. Zhao, and S. Rangarajan, “Scalable video
multicast with adaptive modulation and coding in broadband
wireless data systems,” IEEE/ACM Transactions on Networking, vol.
20, no. 1, pp. 57–68, Feb. 2012.

[30] K.C. Lin, W.-L. Shen, C.-C. Hsu, and C.-F. Chou, “Quality-
differentiated video multicast in multirate wireless networks,”
IEEE Transactions on Mobile Computing, vol. 12, no. 1, pp. 21–34,
Jan 2013.

[31] J. Otwani, A. Agarwal, and A.K. Jagannatham, “Optimal scalable
video scheduling policies for real-time single- and multiuser wire-
less video networks,” IEEE Transactions on Vehicular Technology,
vol. 64, no. 6, pp. 2424–2435, June 2015.

[32] Y. Sanchez, T. Schierl, C. Hellge, T. Wiegand, D. Hong, D. De
Vleeschauwer, W. Van Leekwijck, and Y. Le Louedec, “Efficient
HTTP-based streaming using scalable video coding,” Signal Pro-
cessing: Image Communication, vol. 27, no. 4, pp. 329–342, 2012.

[33] S. Ibrahim, A. H. Zahran, and M. H. Ismail, “SVC-DASH-M:
Scalable video coding dynamic adaptive streaming over HTTP
using multiple connections,” in IEEE 21st International Conference
on Telecommunications (ICT), May 2014, pp. 400–404.

[34] S. Chen, J. Yang, Y. Ran, and E. Yang, “Adaptive layer switching
algorithm based on buffer underflow probability for scalable video
streaming over wireless networks,” IEEE Transactions on Circuits
and Systems for Video Technology, 2015.

[35] X. Wang, M. Chen, T.T. Kwon, L.T. Yang, and V.C.M. Leung,
“AMES-cloud: A framework of adaptive mobile video streaming
and efficient social video sharing in the clouds,” IEEE Transactions
on Multimedia, vol. 15, no. 4, pp. 811–820, June 2013.

[36] X. Li and B. Veeravalli, “A differentiated quality adaptation
approach for scalable streaming services,” IEEE Transactions on
Parallel and Distributed Systems, vol. 26, no. 8, pp. 2089–2099, Aug.
2015.

[37] H. Hu, X. Zhu, Y. Wang, R. Pan, J. Zhu, and F. Bonomi, “Proxy-
based multi-stream scalable video adaptation over wireless net-
works using subjective quality and rate models,” IEEE Transactions
on Multimedia, vol. 15, no. 7, pp. 1638–1652, Nov. 2013.

[38] N.M. Freris, C.-H. Hsu, J.P. Singh, and X. Zhu, “Distortion-aware
scalable video streaming to multinetwork clients,” IEEE/ACM
Transactions on Networking, vol. 21, no. 2, pp. 469–481, Apr. 2013.

[39] M. Xing, S. Xiang, and L. Cai, “A real-time adaptive algorithm for
video streaming over multiple wireless access networks,” IEEE
Journal on Selected Areas in Communications, vol. 32, no. 4, pp. 795–
805, Apr. 2014.

[40] B. Seo, W. Cui, and R. Zimmermann, “An experimental study
of video uploading from mobile devices with HTTP streaming,”
in Proceedings of the 3rd ACM Multimedia Systems Conference, Feb.
2012, pp. 215–225.

[41] L.-G. Chen, T.-D. Chuang, Y.-J. Chen, C.-T. Li, C.-J. Hsu, S.-Y.
Chien, and L.-G. Chen, “An H.264/AVC scalable extension and
high profile HDTV 1080p encoder chip,” in VLSI Circuits, 2008
IEEE Symposium on, June 2008, pp. 104–105.

[42] M.Z. Shafiq, , J. Erman, L. Ji, A.X. Liu, J. Pang, and J. Wang,
“Understanding the impact of network dynamics on mobile video
user engagement,” in Proc. ACM International Conference on Mea-
surement and Modeling of Computer Systems (SIGMETRICS), Austin,
TX, 2014, pp. 367–379.

[43] S.S. Krishnan and R.K. Sitaraman, “Video stream quality impacts
viewer behavior: Inferring causality using quasi-experimental de-
signs,” in Proc. of the 2012 ACM Conference on Internet Measurement
Conference (IMC), Boston, MA, 2012, pp. 211–224.

[44] F. Dobrian, V. Sekar, A. Awan, I. Stoica, D. Joseph, A. Ganjam,
J. Zhan, and H. Zhang, “Understanding the impact of video
quality on user engagement,” in Proc. of the ACM SIGCOMM
Conference, Toronto, ON, Canada, 2011, pp. 362–373.

[45] A. Balachandran, V. Sekar, A. Akella, S. Seshan, I. Stoica, and
H. Zhang, “Developing a predictive model of quality of experience
for internet video,” in Proc. of the ACM SIGCOMM Conference,
Hong Kong, China, 2013, pp. 339–350.

[46] S.V. Rajaraman, M. Siekkinen, and M.A. Hoque, “Energy con-
sumption anatomy of live video streaming from a smartphone,”
in Personal, Indoor, and Mobile Radio Communication (PIMRC), IEEE
25th Annual International Symposium on, Sept 2014, pp. 2013–2017.

PLACE
PHOTO
HERE

Matti Siekkinen obtained the degree of M.Sc.
in computer science from Helsinki University of
Technology in 2003 and Ph.D from Eurecom /
University of Nice Sophia-Antipolis in 2006. He
is currently a postdoctoral research fellow at
Aalto University. His current research focuses on
mobile computing and networking with a special
interest in mobile multimedia services.

PLACE
PHOTO
HERE

Enrico Masala received the Ph.D. degree in
computer engineering from the Politecnico di
Torino in 2004. In 2003, he was a visiting re-
searcher at the Signal Compression Laboratory
of UCSB. Since 2011 he is assistant professor in
the Control and Computer Engineering Depart-
ment at the Politecnico di Torino. His main re-
search interests include performance optimiza-
tion of multimedia communications over packet
networks with particular emphasis on content
distribution over the web.

PLACE
PHOTO
HERE

Jukka K. Nurminen is a principal scientist at
VTT and adjunct professor at Aalto University.
In 2011-15 he spent five years as a professor
at Aalto working on mobile cloud computing and
energy-efficiency. He has almost 25 years expe-
rience of software research at Nokia Research
Center.Jukka received his M.Sc degree in 1986
and Ph.D. degree in 2003 from Helsinki Univer-
sity of Technology. His research interest are fo-
cused on systems and solution that are energy-
efficient, distributed, or mobile.

