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The	majority	of	the	numerical	methods	developed	in	the	computational	electromagnetics	context	fall	
into	 one	 of	 the	 following	 categories:	 the	 ones	 solving	 integral	 equations,	 such	 as	 the	 method	 of	
moments,	 and	 those	working	 on	 partial	 differential	 equations	 PDEs ,	 e.g.	 finite‐difference	 FD 	 or	
finite‐element	methods	 FEM .	Focusing	on	the	latter	class,	we	will	describe	an	application	of	spectral	
methods.	
	
Even	if	spectral	methods	have	been	introduced	in	the	mid‐1940s,	their	first	rigorous	study	was	carried	
out	 by	 Gottlieb	 and	 Orszag	 in	 1977,	 who	 summarized	 the	 state	 of	 the	 art	 in	 their	 theory	 and	
application.	Then,	domain	decomposition	approaches	were	introduced	to	extend	spectral	methods	to	
complex	domains,	generating	a	class	of	schemes	known	as	spectral	element	methods	 SEMs .	Among	
all	the	schemes	that	have	been	developed,	the	mortar	element	method	 MEM 	is	very	interesting:	here,	
local	basis	 functions	are	defined	 in	each	sub‐domain;	 then,	 they	are	“glued”	at	 the	common	edges	of	
adjacent	patches	by	enforcing	continuity	conditions	almost	everywhere.	This	allows	 to	use	different	
resolutions	 in	 different	 patches	 i.e.	 different	 degrees	 of	 the	 basis	 functions ,	 and	 the	 possibility	 to	
hybridize	this	numerical	method,	joining	it	with	other	schemes.	
	
A	formulation	of	scattering	problems	concerning	electromagnetic	passive	structures	will	be	described.	
This	is	based	on	the	decomposition	of	the	structure	into	two	sub‐regions,	an	internal	and	an	external	
one,	by	applying	the	equivalence	theorem.	Electric	and	magnetic	current	densities	are	used	to	provide	
the	 excitation	 of	 the	 internal	 boundary‐value	 problem,	which	 consists	 of	 a	 system	 of	 coupled	 PDEs	
obtained	 from	 Maxwell’s	 equations.	 Then,	 the	 numerical	 procedure	 aimed	 at	 synthesizing	 the	
expansion	 and	 test	 functions	 is	 described.	 Finally,	 this	 formulation	 is	 applied	 to	 two	 classes	 of	 2‐D	
electromagnetic	 devices:	 dielectric	 periodic	 structures	 diffraction	 gratings 	 and	 axisymmetric	
waveguide	components.	The	domain	decomposition	strategy	for	dielectric	structures	 is	conveniently	
chosen	 in	such	a	way	to	obtain	domains	with	homogeneous	dielectric,	preventing	Gibbs	phenomena	
and	then	ensuring	fast	convergence	rates.	Moreover,	the	flexibility	in	the	geometry	description	opens	
up	 the	 possibility	 to	 describe	 well	 structures	 with	 rounded	 dielectric	 corners	 without	 any	 profile	
discretization.	On	the	other	hand,	metallic	waveguide	components	exhibiting	sharp	metal	corners	can	
be	effectively	studied	by	augmenting	the	MEM	basis	functions	including	the	asymptotic	field	behavior,	
reducing	in	this	way	the	number	of	functions	required	for	an	adequate	field	representation.		
	


