
POLITECNICO DI TORINO
SCUOLA DI DOTTORATO

Dottorato in Ingegneria Informatica e dei Sistemi – XVII ciclo

Tesi di Dottorato

Automatic generation of high speed
elliptic curve cryptography code

Daniele Canavese

Tutore Coordinatore del corso di dottorato
Antonio Lioy Matteo Sonza Reorda

Maggio 2016





Contents

List of Figures vi

List of Tables viii

List of Algorithms ix

Introduction x

1 High speed cryptography 1
1.1 Real world applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Domain name system security . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Google encrypted search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.3 Mobile phone protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.1 Cryptography-aware DSLs and compilers . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 Elliptic curve cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.3 Other high speed cryptographic techniques . . . . . . . . . . . . . . . . . . . . 10

2 Elliptic curve cryptography 11
2.1 Mathematical background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.2 Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.3 Elliptic curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.4 Security of elliptic curve crypto-systems . . . . . . . . . . . . . . . . . . . . . . 16
2.1.5 ECDH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Algorithmic background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.1 Binary field arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.2 Elliptic curve arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.3 ECDH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2.4 Summary of decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Implicit computational complexity 33
3.1 Logic background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1.1 Classical logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.1.2 Intuitionistic logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.1.3 Linear logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.1.4 λ-calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.1.5 Dual light affine logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.1.6 Typeable functional assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

III



3.2 Multiplicative inversion in TFA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.1 Data representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.2 Basic operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2.3 Functional BEA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.4 DCEA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Architecture 45
4.1 Code compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1.1 Front-end stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.1.2 Middle-end stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.1.3 Back-end stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Performance evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3 Library building . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.4 UI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5 Languages and representations 52
5.1 Domain specific languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.1.1 HRL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.1.2 aXiom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.1.3 Test cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2 HR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6 Optimizations 61
6.1 Analysis algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.1.1 Control flow graph analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.1.2 Live variable analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.1.3 DAG analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.1.4 Operator chain analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.2 Transformation algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.2.1 Constant folding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.2.2 Algebraic simplification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.2.3 Copy propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.2.4 Dead code elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.2.5 Strength reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.2.6 Common sub-expression elimination . . . . . . . . . . . . . . . . . . . . . . . . 73

6.3 Translation algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.3.1 Bit vector packing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.3.2 Loop unrolling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.3.3 Use of target idioms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.4 Optimization example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7 Experimental results 80
7.1 Impact of optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
7.2 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.2.1 Results on the i7 processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.2.2 Results on the ARMv7 processor . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.3 Comparison against standard libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
7.4 Comparison against other curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

8 Conclusions and future work 88

IV



A Proof rules 90
A.1 CL rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
A.2 IL rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
A.3 LL rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
A.4 DLAL rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
A.5 TFA rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

B Grammars 94
B.1 HRL grammar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
B.2 aXiom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

C Annotations 99

D Additional results 101
D.1 CryptoGen code performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
D.2 Library code performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Notations 105

Acronyms 108

Index 112

Bibliography 115

V



List of Figures

1 Suggested key lengths for 2016. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1.1 DNS security time-line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Google encrypted search time-line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Mobile phone security time-line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Plots of two elliptic curves over R. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Point addition and doubling in E/R. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Steps of the ECDH protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 Man-in-the-middle attack on the ECDH protocol. . . . . . . . . . . . . . . . . . . . . 19
2.5 Algorithm choices for the scalar multiplication implementation. . . . . . . . . . . . . 32

3.1 Example of functional right shift. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2 BEA and DCEA in comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1 General architecture of the framework. . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Architecture of the cryptographic compiler. . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3 Architecture of the C back-end. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4 A sample library configuration file. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1 Two equivalent snippets, in C and HRL. . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.2 Two equivalent snippets, in C and aXiom. . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.3 An aXiom snippet and its output HRL code. . . . . . . . . . . . . . . . . . . . . . . . 58
5.4 The modular reduction algorithm in aXiom. . . . . . . . . . . . . . . . . . . . . . . . 58
5.5 UML class diagram of HR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.1 Example of a control flow graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.2 DAG representation for the (2 ⋅ x + x)/y expression. . . . . . . . . . . . . . . . . . . . 65
6.3 Example of the DAG for a basic block. . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.4 Example of the DAG for some tuple instructions. . . . . . . . . . . . . . . . . . . . . 66
6.5 Example of an operator chain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.6 Constant folding example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.7 Algebraic simplification example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.8 Copy propagation example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.9 Dead code elimination example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.10 Example of hidden strength reduction possibilities. . . . . . . . . . . . . . . . . . . . 72
6.11 Strength reduction example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.12 Common sub-expression elimination example. . . . . . . . . . . . . . . . . . . . . . . . 74
6.13 Bit vector packing example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.14 Loop unrolling example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

VI



7.1 Comparison of various scalar multiplication implementations. . . . . . . . . . . . . . 85
7.2 Comparison of the B-233 and B-283 curve performance against similar curves. . . . 87

VII



List of Tables

1.1 Supposed TLS 1.2 cipher-suite priorities for Google Search in 2016. . . . . . . . . . 4
1.2 Protocol supports of the ECC algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Elliptic curve formulas for various coordinate systems. . . . . . . . . . . . . . . . . . 28
2.2 Elliptic curve costs for various coordinate systems. . . . . . . . . . . . . . . . . . . . . 29
2.3 Elliptic curve costs for various scalar multiplication algorithms. . . . . . . . . . . . . 31

5.1 The instructions available in the HRL language. . . . . . . . . . . . . . . . . . . . . . 55

6.1 CryptoGen algebraic simplification rules. . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.1 Specifications of the tested hardware platforms. . . . . . . . . . . . . . . . . . . . . . 81
7.2 Specifications of the tested elliptic curves and fields. . . . . . . . . . . . . . . . . . . . 81
7.3 Effects of the optimizations on the B-233 curve’s scalar multiplication code. . . . . 82
7.4 Legend of the symbols. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.5 Performances on the i7 processor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.6 Performances on the ARMv7 processor. . . . . . . . . . . . . . . . . . . . . . . . . . . 84
7.7 Scalar multiplication performance on different implementations. . . . . . . . . . . . . 85
7.8 Comparison of the B-233 curve performance against similar curves. . . . . . . . . . 86
7.9 Comparison of the B-283 curve performance against similar curves. . . . . . . . . . 86

C.1 Standard unit annotations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
C.2 Unit annotations offered by the aXiom front-end. . . . . . . . . . . . . . . . . . . . . 100
C.3 Unit annotations offered by the C back-end. . . . . . . . . . . . . . . . . . . . . . . . 100
C.4 Standard function annotations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

D.1 Performance on the i7 processor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
D.2 Performance on the ARMv7 processor. . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
D.3 Performance of the OpenSSL library on the i7 processor. . . . . . . . . . . . . . . . . 104
D.4 Performance of the Crypto++ library on the i7 processor. . . . . . . . . . . . . . . . 104

VIII



List of Algorithms

2.1 Binary field modular reduction algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2 Binary field addition algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 Binary field comb multiplication algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4 Binary field Karatsuba-Ofman multiplication algorithm. . . . . . . . . . . . . . . . . . 22
2.5 Binary field window-based multiplication algorithm. . . . . . . . . . . . . . . . . . . . 23
2.6 Binary field precomputation-based squaring algorithm. . . . . . . . . . . . . . . . . . . 23
2.7 Binary field window-based squaring algorithm. . . . . . . . . . . . . . . . . . . . . . . . 24
2.8 Binary field BEA inversion algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.9 Binary field DCEA inversion algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.10 Binary field EEA inversion algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.11 Elliptic curve add-and-double scalar multiplication algorithm. . . . . . . . . . . . . . 29
2.12 NAF computation algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.13 Elliptic curve NAF-based scalar multiplication algorithm. . . . . . . . . . . . . . . . . 30
2.14 NAFw computation algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.15 Elliptic curve NAFw-based scalar multiplication algorithm. . . . . . . . . . . . . . . . 31

4.1 Generic measurement algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.1 Basic block analysis algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.2 Control flow graph analysis algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.3 Live variable analysis algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.4 DAG analysis algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.5 Operator chain analysis algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.6 Copy propagation algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.7 Dead code elimination algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.8 Strength reduction algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.9 Common sub-expression elimination algorithm. . . . . . . . . . . . . . . . . . . . . . . 74
6.10 Naive implementation of the point doubling with zR = 1. . . . . . . . . . . . . . . . . . 78
6.11 Point doubling code after some initial simplifications. . . . . . . . . . . . . . . . . . . . 78
6.12 Point doubling code after some DAG-based optimizations. . . . . . . . . . . . . . . . . 78
6.13 Optimal point doubling code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

9



Introduction

If you have to keep something secret it’s
because you shouldn’t be doing it in the
first place!

One Day
David Nicholls

Apparently trust is a rare commodity when power, money or life itself are at stake. History is
full of examples. Julius Caesar did not trust his generals, so that:

If he had anything confidential to say, he wrote it in cipher, that is, by so changing
the order of the letters of the alphabet, that not a word could be made out. If anyone
wishes to decipher these, and get at their meaning, he must substitute the fourth letter
of the alphabet, namely D, for A, and so with the others.

Life of Julius Caesar
Suetonius

And so the history of cryptography began moving its first steps. Nowadays, encryption has
decayed from being an emperor’s prerogative and became a daily life operation. Cryptography is
pervasive, ubiquitous and, the best of all, completely transparent to the unaware user. Each time
we buy something on the Internet we use it. Each time we search something on Google we use it.
Everything without (almost) realizing that it silently protects our privacy and our secrets.

Encryption is a very interesting instrument in the toolbox of security because it has very few
side effects, at least on the user side. A particularly important one is the intrinsic slow down
that its use imposes in the communications. High speed cryptography is very important for the
Internet, where busy servers proliferate. Being faster is a double advantage: more throughput and
less server overhead. Using weak algorithms with a reduced key length to increase the performance
of a system can lead to catastrophic results and it is not a suitable solution.

In 2007, TJX Cos., a U. S. apparel and home goods company, was victim of one of the biggest
security breaches so far. A number of criminals intercepted the wireless transfers at two Miami-
area stores and, due to weak encryption, the credit and debit cards of millions of users were
compromised. In March 2007 TJX said that at least 46 millions of MasterCard and Visa cards
were jeopardized [1]. Six months later the statistic was updated to 94 millions [2]. A harsh lesson
for learning that the security must be taken seriously, as well as an exemplification of a bad choice
in a security-performance trade-off.

Informally, a couple of algorithm E(⋅) and D(⋅) can be respectively used to encrypt and decrypt
a message m with two suitable values kE and kD (the encryption and decryption keys), if and only
if the following property holds:

DkD
(EkE

(m)) =m.

10



This is a necessary but not sufficient condition, since also the security of the algorithms must
be taken into account. If kE = kD, E(⋅) and D(⋅) are said to be symmetric algorithms, otherwise if
kE ≠ kD they are known as asymmetric algorithms or public-key algorithms, since usually one key
is publicly available, while the other is private.

Public key algorithms have some peculiar properties making them particularly well suited for
tasks such as digital signatures and sharing secrets amongst a number of parties (e.g. another
key or a nonce). When encrypting huge amounts of data however, symmetric algorithms are
normally preferred since they have superior performance. The high speed public-key cryptography
challenge is a very practical topic with serious repercussions in our technocentric world. This is
particularly interesting for the servers, where achieving a faster asymmetric encryption can speed
up the opening of secure connections and the certificate validations.

Public key cryptography began its journey in 1976, when Diffie and Hellman [3] published their
now famous paper ≪New directions in cryptography≫. They proposed to leverage the Discrete
Logarithm Problem (DLP) to remotely and securely exchange a secret between two parties without
having to meet in person, implementing a protocol now known as Diffie-Hellman (DH). However,
1978 was the time when the first true modern public key crypto-system appeared: RSA, proposed
by Rivest, Shamir, and Adleman [4] and derived from the Integer Factorization Problem (IFP).
Some years later, in 1985, ElGamal [5], influenced by the work of Diffie and Hellman, introduced
the first asymmetric algorithm based on the DLP.

In 1985, Miller [6] and Koblitz [7] independently proposed to use the group of rational points of
an elliptic curve over a finite field to create an asymmetric algorithm. Elliptic Curve Cryptography
(ECC) is based on the Elliptic Curve Discrete Logarithm Problem (ECDLP) and offers several
advantages with respect to other systems based on the DLP and the IFP. The main benefit is that
it requires smaller keys to provide the same security level since breaking the ECDLP is significantly
harder. Figure 1 shows the recommended keys sizes for 2016 as suggested in the Kryptographische
Verfahren: Empfehlungen und Schlussellängen [8] and the Commercial National Security Algorithm
Suite [9], respectively for the commercial and the top secret uses.

25
6
38

4

2,
04

8

3,
07

2

top secret

commercial

key size [bit]

se
cu

ri
ty IFP algorithms

DLP algorithms

ECDLP algorithms

Figure 1: Suggested key lengths for 2016.

Elliptic Curve Cryptography is quite diffused nowadays. For instance, several of the most used
cryptographic libraries contains at least one elliptic curve based implementation (e.g. OpenSSL
and Crypto++ both offers ECDH, the elliptic curve version of DH). In addition, a number of
standards exist to regulate the use of ECC in various data protection protocols (e.g. IPsec [10],
TLS [11] and SSH [12]). A few documents also recommend some specific elliptic curve, most
notably the FIPS PUB 186-4 – Digital Signature Standard (DSS) [13], that suggests 15 curves (5
on prime fields and 10 on binary fields).

The wide adoption of ECC is primarily due to the fact that, if implemented correctly, it can be
very efficient both in time and memory consumption, thus being a good candidate for performing

11



high speed public key cryptography. In addition, some elliptic curve based techniques are known
to be extremely resilient to quantum computing attacks, such as the Supersingular Isogeny Diffie-
Hellman (SIDH) [14].

Traditional elliptic curve cryptography implementations are optimized by hand taking into
account the mathematical properties of the underlying algebraic structures, the target machine
architecture and the compiler facilities. This process is time consuming, requires a high degree of
expertise and, ultimately, error prone. This dissertation’ ultimate goal is to automatize the whole
optimization process of cryptographic code, with a special focus on ECC. The framework presented
in this thesis is able to produce high speed cryptographic code by automatically choosing the best
algorithms and applying a number of code-improving techniques inspired by the compiler theory.
Its central component is a flexible and powerful compiler able to translate an algorithm written in
a high level language and produce a highly optimized C code for a particular algebraic structure
and hardware platform. The system is generic enough to accommodate a wide array of number
theory related algorithms, however this document focuses only on optimizing primitives based on
elliptic curves defined over binary fields.

The framework presented in this dissertation has its roots in the project started in my M. Eng.
thesis [15]. It is both an extension of my previous work, but also a revolution. It is an extension
because they share the same idea: automatic generation and optimization of cryptographic code.
It is a revolution because this new project offers a wider array of cryptographic algorithms and
provides a truly optimizing compiler w.r.t. to its predecessor that was a sort of smart translator.

The improvements achieved by the investigations presented in this dissertation and its com-
panion framework are three folds.

First, two DSLs for describing cryptographic algorithms in a concise and natural way are
proposed and described in Chapter 5. Most of the available cryptographic languages have a very
limited area of application and lack a way to express some custom mathematical properties, which
can be exploited by a compiler to further optimize the code. Two prominent examples are Cryptol
[16], suitable only for describing simple low level cryptographic routines, and CAO [17], fitting only
for implementing high level curve operations. The new languages presented in this document can
be used to express both low and high level routines with an arbitrary complexity. In addition they
also allow the use of Java-like annotations to specify the mathematical properties of a function
such its commutativity.

Second, a new algorithm, named DCEA [18, 19], for computing the multiplicative inverse
on binary fields is presented in Chapter 3. The inversion is by far the slowest field operation
and having at disposal a new faster method can benefit not only the ECC area, but also other
cryptographic realms based on binary fields such as hyperelliptic curves [20] and trace zero varieties
[21, 22]. Experimental results show that DCEA is the fastest algorithm for smaller fields on the
ARM family of processors w.r.t. to other state-of-the-art methods. This algorithm represents the
culmination of a joint work with Emanuele Cesena, Rachid Ouchary, Marco Pedicini and Luca
Roversi.

Third, an optimizing framework, and most notably its compiler, is proposed and discussed in
Chapters 4 and 6. The current scientific research provides very few examples of cryptographic
compilers, bu most of them are only tools with some smart translation capabilities. The CAO
language comes with an ad-hoc compiler [17] and, apparently, it represents one of the most complete
cryptographic compilers so far (excluding this thesis’ work). In spite being used in the CACE FP7
European project [23], it supports only a small selection of the code-improving techniques exploited
by the framework presented in this document. The experimental results consolidate the pay-off of
the approach described in this dissertation, showing that the automatically generated code of the
scalar multiplication is up to 7.1 times faster than the OpenSSL implementation and up to 1123.6
times faster than its Crypto++ counterpart.
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Thesis organization

This dissertation is structured as follows.
Chapter 1 introduces some real-world scenarios were the use of high speed cryptography should

be, or was, beneficial and the related works. For the sake of completeness, it reports also some
interesting works and publications non directly related to the ECC.

Chapter 2 presents the mathematical theory behind the elliptic curves and their algorithms.
Its content is mainly taken from Handbook of Elliptic and Hyperelliptic Curve Cryptography [24]
and Guide to Elliptic Curve Cryptography [25]. It can be freely skipped if the reader is already
familiar with these concepts.

Chapter 3 is basically a reworked version of the papers ≪Can a Light Typing Discipline Be
Compatible with an Efficient Implementation of Finite Fields Inversion?≫ [18] and ≪Light com-
binators for finite fields arithmetic≫ [19]. It deals with the mathematics behind the create of the
DCEA method, an original algorithm for computing a multiplicative inverse in a binary field. It
can be freely skipped if the reader is not interested in its internals.

Chapter 4 contains the architectural overview of the compilation framework. It provides a brief
description of its main components and their internal structure.

Chapter 5 describes the DSLs for implementing a generic cryptographic primitive, their features
and instruction sets. In addition, their internal representation in the compiler is also introduced.

Chapter 6 has its roots in the compiler theory. It contains the list of analysis, transformation and
translation passes supported by the framework for optimizing the code performance. Furthermore,
it presents also a simple, but complete optimization example on a real ECC function.

Chapter 7 provides the experimental results. It reports and comments the times obtained by
the generated code on two different hardware platforms (an Intel i7 and an ARMv7) and compares
the results against two cryptographic libraries (OpenSSL and Crypto++) and other kind of curves.

Appendix A reports the proof rules for the logic families introduced in Chapter 3.
Appendix B contains the grammars for HRL and aXiom, the two DSLs described in Chapter 5.
Appendix C presents all the annotations supported by the aforementioned languages.
Appendix D provides several additional experimental results.
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Chapter 1

High speed cryptography

There are two types of encryption: one
that will prevent your sister from reading
your diary and one that will prevent your
government.

Bruce Schneier

This chapter is devoted to exploring the current front-line of high speed cryptography. It is
split into two parts. The first one lists a series of real world scenarios where the application of
high speed cryptography has been or will be beneficial, while the second part contains a selection
of related papers, documents and reports.

1.1 Real world applications

This section presents some interesting examples of real world scenarios where encrypting faster
was particularly advantageous and/or where we are still waiting this to happen.

1.1.1 Domain name system security

The DNS is a hierarchical system for automatically associating domain names with various other
kinds of information, most prominently their IP addresses. It provides the Internet a vital infras-
tructure for its correct operation, so that its security is a fundamental prerequisite for our modern
interconnected world. This case is one of the most conspicuous examples where the cryptographic
speed played, and still plays, a pivotal role.

Figure 1.1 shows the time-line of the DNS security.
The origin of the DNS dates back to the ARPANET network, but the first modern ideas of

its implementation appeared in 1983 [26, 27]. The initial specifications of the DNS infrastructure
did not include any form of security since the Internet, at the time, was still in its infancy. This
started, however, to be a severe issue, especially after the growth of the Internet in the nineties.
Without any kind of protection, an attacker could easily inject fake records into a resolver’s cache
in order to divert the traffic somewhere else. These attacks are collectively known as DNS spoofing
or DNS cache poisoning attacks.

The first serious attempt to solve these problems arrived only in 1999, when DNSSEC [28] was
proposed. The idea behind this improved system is that each answer from a DNSSEC protected
zone is digitally signed via a DNS server’s key and, by verifying such signature, a resolver is able to
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Figure 1.1: DNS security time-line.

check its authenticity. Note that DNSSEC offers only message authentication and does not provide
confidentiality of data. In a few months, it quickly became evident that this solution was not able
to scale for large networks and the whole Internet. Eventually, no DNS server actually implemented
such system. This was mainly due to the latency added by signing the answer messages and the
increased number of the exchanged packets.

In 2005, the IETF modified the original DNSSEC protocol to overcome some scalability issues
[29, 30, 31]. The main difference was the management of a child server’s public key update. In the
original protocol, when a child server changes its public key it must send to its parent server all its
records, then the parent server signs them with its private key and send them back to the child.
In the new version, when a child server updates its public key, it has only to send it, conveniently
signed, to its parent server, which stores it in a special record, called a Delegation Signer resource
record (DS). This change is supposed not to decrease the security of the system [32] and has the
advantage of requiring less encryption and network traffic. However, its drawback is that the
resolvers must perform a double signature verification (the child server’s answer signature and the
parent server’s DS) instead of only one as in the original version.

In 2007, a very small number of name servers and resolvers became DNSSEC-capable, such as
TDC, a Danish ISP provider [33]. However, it took another three years of technological advance-
ment to see the first worldwide real applications of DNSSEC. After several months of testing, it
was successfully deployed to all the thirteen root name servers in 2010 [34], but nothing more.
After six years, in 2016, there are currently 1252 top level domains and 1090 are signed [35], but
only about 15 % of the resolvers is DNSSEC-ready [36].

DNSCurve [37] is a proposed security extension for the DNS by Bernstein and an alternative
to DNSSEC. The latter system leverages RSA [29] and uses large per-recordset signatures. On
the other hand, DNSCurve exploits elliptic curves on 256 bit and performs smaller per-packet
encryption and authentication. In 2010, OpenDNS, one of the biggest world-wide companies
offering DNS resolution services, started to use DNSCurve [38]. This technology however has not
yet been officially adopted by the IETF.

Thirty-three years have passed after the DNS initial specifications, but its security level is
still far from being adequate. The lack of fast (and cheap) software and hardware cryptographic
implementations has surely influenced the adoption’s delay of a trusted domain name system, and
still does.
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1.1.2 Google encrypted search

If an attacker eavesdrops a communication between a victim and a web search engine, he can
accesses several private and (probably) unwanted information about the target individual. These
might include the victim’s interests, hobbies, political tendencies, sexual preferences and so on.
Confidentiality via encryption can provide a safe barrier for securing the users’ privacy. This,
however, poses several technical challenges such as implementing a fast cryptographic system.

Google Inc. is one of the biggest technology companies in the world. It was founded in 1998
by Larry Page and Sergey Brin. The most widely used and known product that Google offers is
its search engine known as Google Search, launched in 1997.

Figure 1.2 sketches the Google encrypted search time-line.
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Google Search is launched

Google Inc. is founded

initial encrypted search tests

U. S. logged users by default use encryption

full encrypted search in place (except for ads)

security for no one

security for someone

security for everyone?

Figure 1.2: Google encrypted search time-line.

Up to the early months of the 2010 every search conducted via the Google engine (accessible
through the URL http://www.google.com/) was using the traditional HTTP protocol, without any
kind of protection or security mechanism. This allowed anybody to easily intercept a query by
means of a sniffing tool, without recurring to cryptanalytic attacks.

In May 2010 Google started to test a secure search via the HTTPS protocol using a specialized
URL: https://www.google.com/, later changed to https://encrypted.google.com/ [39].

One year later, in 2011, Google started to automatically redirect all the U. S. users logged in
their account to the encrypted search engine by default [40].

At the end of 2013 Google decided to (silently) moving all the web search queries to HTTPS
except for the clicks on advertisements [41].

Interestingly, up to 2013 Google used RSA-1024 in their certificates, due to performance reasons.
Only at the end of that year they completely switched their systems to make use of RSA-2048 [42].
In 2003, Shamir and Tromer [43] showed that RSA-1024 can be theoretically broken in about one
year by making use of a hypothetical custom device costing about 10 million of dollars.

Table 1.1 shows the supposed TLS 1.2 cipher-suites priorities for https://www.google.com/ in
2016. The list was populated via a scan performed with the cipherscan tool1. Interestingly, the first
4 preferred cipher-suites are ECC-based and all the elliptic curve algorithms works on the P-256
curve, whose security is debated [44]. The cipher-suites are obviously not in a strictly decreasing
security order, but some speed constraints were take into account to sort them.

1cipherscan can be freely downloaded from https://github.com/jvehent/cipherscan.
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priority cipher-suite

1 ECDHE(P-256)-RSA-2048 +CHACHA20-POLY1305 + SHA-256
2 ECDHE(P-256)-RSA-2048 +AES-128-CBC + SHA-256
3 ECDHE(P-256)-RSA-2048 +AES-128-CBC + SHA-1
4 ECDHE(P-256)-RSA-2048 +RC4 + SHA-1
5 RSA-2048 +AES-128-GCM + SHA-256
6 RSA-2048 +AES-128-CBC + SHA-1
7 RSA-2048 +AES-128-CBC + SHA-256
8 RSA-2048 + 3DES-CBC + SHA-1
9 RSA-2048 +RC4 + SHA-1

10 RSA-2048 +RC4 +MD5
11 ECDHE(P-256)-RSA-2048 +AES-256-GCM + SHA-384
12 ECDHE(P-256)-RSA-2048 +AES-256-CBC + SHA-1
13 ECDHE(P-256)-RSA-2048 +AES-256-CBC + SHA-384
14 ECDHE(P-256)-RSA-2048 +AES-128-CBC + SHA-256
15 RSA-2048 +AES-256-GCM + SHA-384
16 RSA-2048 +AES-256-CBC + SHA-1
17 RSA-2048 +AES-256-CBC + SHA-256

Table 1.1: Supposed TLS 1.2 cipher-suite priorities for Google Search in 2016.

1.1.3 Mobile phone protection

Telephony was one of the biggest technological revolutions achieved by the mankind. Intrinsically
pervasive, it became much more ubiquitous when the first cellular networks eventually started to
be available to the public. Ensuring a secure communication channel over the air is important for
several reasons. Intercepting other’s private calls can disclose not only personal matters, but also
sensitive information such as business-related discussions. This necessity for security is further
exacerbated in modern times, where a user can buy products and browse the dangerous Internet
directly with his smart-phone .

In this scenario, cryptography is a key element since its plays a twofold role. First, it should
be used to authenticate users (or, better, their devices) in the network. Second, it should be used
to ensure the confidentiality of the traffic. Modern mobile phone operators have to cope with
thousands of transmissions per second and they must deal with tebibytes per second bandwidths.
All these exchanged information must be adequately protected and fast encryption is mandatory
to be able to keep up with such enormous data transfers. History, however, tells that not always
the right choices were made when dealing with the troublesome speed-security trade-off.

Figure 1.3 shows the time-line of the security in the mobile phone world.

The first mobile telephone technology was completely analog in nature and without any kind
of protection. Just after the Second World War several initial commercial attempts were made,
such as the Mobile Telephone Service (MTS) launched in 1946 in the United Stated and operated
by Bell Systems and Motorola.

The year 1991 was a milestone in the communication area: the GSM [45] system was born.
GSM introduced the use of SIMs, small integrated circuits used to securely store contacts, messages
and other sensitive information. A SIM card contains a 128 bit key known as the authentication
key used to perform various operations. These primarily include the user authentication within the
network (performed through a challenge protocol) and generating shared keys for securing the voice
calls via symmetric encryption. In this context, the authentication key effectively has the role of
a pre-shared secret between the mobile device and the operator, allowing the GSM to completely
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Figure 1.3: Mobile phone security time-line.

avoid the use of public key algorithms. This choice was done for a number of reasons, most
notably because asymmetric encryption is notoriously slow and complex to implement in hardware
and software. Unfortunately this lead to some very bad architectural decisions. Most of the SIM
manufacturers chose to implement the COMP128v1 algorithm (in hardware) used in the tasks of
the user authentication and key exchange. COMP128v1 receives in input the 128 bit authentication
key and another 128 bit random number to produce two outputs: a 32 bit and a 64 bit values. The
algorithm code was confidential and it was never officially published, however, in 1998 it was fully
reconstructed via reverse engineering2. Note that this approach completely violates the Kerckhoff’s
principle. The same year, shortly after the COMP128v1 reconstruction, Wagner, Goldberg, and
Briceno [46] showed how to mount a chosen-challenge attack on COMP128v1 and extract the
authentication key in less than 8 hours, allowing to fully clone a SIM. The symmetric ciphers used
in the original GSM specifications were A5/1 and its faster (and weaker) brother A5/2. In 1999,
Biryukov, Shamir, and Wagner [47] cryptanalyzed A5/1 in real-time by recovering the key in one
second after listening only two minutes of cipher-text. In the same year, Goldberg, Wagner, and
Green [48] made use of a similar approach to break A5/2.

In 1998, the GSM standard was upgraded and new encryption algorithms were introduced. New
versions of COMP128 were proposed and, as usual, never officially published, but in 2013 they were
reverse engineered and partially recovered3. The new stream cipher A5/3, nicknamed KASUMI,
was also introduced. It is a faster (and significantly weaker) version of another cryptographic
algorithm known as MISTY1 [49]. In 2010, Dunkelman, Keller, and Shamir [50] proved that
KASUMI can be broken in two hours with a simple PC. The same attack does not affect MISTY1.

In 2006, the ETSI included in the latest GSM specifications the support for a new cipher,
SNOW 3G [51]. In 2012, Kircanski and Youssefr [52] showed that related-key attacks are possible,
questioning the real SNOW 3G security.

Even if the most recent GSM updates mitigate some attack types, about 52 % of the connections

2The code of COMP128v1 is available at http://www.scard.org/gsm/a3a8.txt.

3The code of COMP128v2 is available at http://www.hackingprojects.net/2013/04/secrets-of-sim.html.
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in 2015 was through a 2G technology [53], that is they were still making use of the oldest GSM
encryption algorithms such as A5/1 and A5/2.

In the current literature there exist a number of publications proposing how to include fast
public key systems, and ECC in particular, into the GSM to increase its security [54, 55]. Their
suggestions, however, still remain on paper.

1.2 Related works

The following paragraphs introduce the literature related to the project presented in this disserta-
tion and the world of elliptic curve cryptography.

1.2.1 Cryptography-aware DSLs and compilers

In the last years, the research has produced very few works on how to automatically generate
cryptographic code. This section splits the current literature in three parts: automatic generation
of cryptographic functions in software (this dissertation’s area of interest), in hardware and auto-
matic generation and verification of cryptographic protocols. Although the last two arguments are
out of scope w.r.t. to this thesis’ investigations, they are still mentioned since they offer several
innovative ideas.

Cryptographic functions in software

The scientific literature has a surprising low number of dissertations on the topic of producing
efficient cryptographic function implementations purely in software.

In 2003, Abdelrahman, Talkhan, and Shaheen [56] designed a language named CL, an acronym
of Cryptography Language, allowing a developer to describe very low level primitives as the ones
for the block ciphers. The authors also developed a compilation tool-chain that supports multiple
back-ends, claiming that they can generate different implementations both in C and VHDL starting
from CL. Differently from the compiler described in this thesis, the CL one does not perform any
kind of optimization and supports only low level operations.

CAO, which stands for C And Occam, is a DSL proposed in 2005 by Barbosa et al. [17]. It
comes with an ad-hoc compiler able to produce optimized C code. It was used in the CACE FP7
European Project [23], aimed to facilitate the development of hardware and software encryption
products. CAO is an imperative language created for describing high level cryptographic primitives
such as operations on elliptic curves, but it lacks the constructs needed to develop low level routines
(such as the arithmetic operations on fields). Differently, the languages described in Chapter 5 have
a wider range of applicability, allowing to implement both high level and low level primitives. In
addition, the CAO compiler implements only a very limited subset of the optimization techniques
performed by this thesis’ framework (for instance it cannot make use of assembler instructions and
perform bit vector optimizations).

Another interesting cryptographic DSL is qhasm and its related tools. It was initially presented
by Bernstein [57] in a talk at the Fast Software Encryption 2005 conference4. It is a sort of
hardware independent assembly language that allows to use most of the instructions available in the
traditional assembler languages, but with a more readable syntax and without directly referencing
the machine registers. It was recently complemented with a lexical preprocessor called maq by
Schwabe [58]. It bears several similarities to the HRL language (Section 5.1.1), but, differently,

4The slides are available at https://cr.yp.to/talks/2005.02.21-2/slides.pdf.
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qhasm cannot handle high level types such as bit vectors and completely lacks the ability to call
other functions. This severely hinder its applicability to higher level cryptographic primitives.

In 2010, Perez and Scott [59] designed a cryptographic compiler for pairing-based cryptogra-
phy. The tool can automatically choose the most appropriate pairing function of an elliptic curve
and generate its code in C. This is an interesting development, although not directly related to
generating encryption primitives.

Cryptographic functions in hardware

A number of interesting papers present how to produce optimized hardware description language
implementations for manufacturing cryptographic primitives directly on integrated circuits.

In 1997, Ananian [60] proposed an optimizing compiler for the Tiger programming language,
a DSL introduced by Appel [61]. This tool can translate and optimize the code into behavioral
VHDL by applying a quite limited number of code improving techniques.

Cryptol is a language for describing cryptographic algorithms whose first documentations ap-
peared in 2003 and it is currently owned by Galois Inc. [16]. It was developed with the participation
of the NSA and it was originally designed for expressing primitives that can be efficiently imple-
mented in hardware. It is a purely functional language and as such does not directly support
looping instructions, which can only simulated via recursion. Differently, the languages presented
in Chapter 5, are imperative, support loops in various forms and they were created for developing
efficient implementations in software.

Cryptographic protocols

Several recent studies investigate how to produce secure cryptographic protocols and mainly focus
on how to formally prove their correctness rather than improving their efficiency.

In 2005, Lucks, Schmoigl, and Tatl [62] proposed both a high level language to describe crypto-
graphic protocols and a compiler than can generate Java code implementations. Their framework
performs only the translation, without any type of optimizations nor security verifications.

Bhargavan et al. [63] in 2008 developed a compiler for generating cryptographic protocol im-
plementations starting from high level multi-party sessions. The tool can produce the final code
in ML, a general purpose functional programming language. In addition, the compiler is also able
to prove the security of the protocol via a special typing system for ML.

Bangerter et al. [64] introduced in 2011 cPLC, a language that is able to describe virtually any
kind of cryptographic protocol. The authors also developed a related compiler that can produce
well structured and documented C and Java code, but without any form of optimizations nor proof
of its security properties.

ZKCrypt is an optimizing cryptographic compiler developed in 2012 by Almeida et al. [65]. It
supports only zero knowledge protocols [66], but it is able to verify and prove a number of security
properties about its specifications. It can also generate optimized code in C or Java. The authors
do not detail the optimization algorithms, but suggests that at least algebraic simplifications are
supported.

1.2.2 Elliptic curve cryptography

Elliptic Curve Cryptography is quite diffused nowadays, so this section presents only a small but
interesting selection of ECC related publications.
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History

In 1985, Miller [6] and Koblitz [7] independently proposed to use the group of rational points
defined by an elliptic curve as a way to build a public key crypto-system. They both identified
two main advantages over more traditional asymmetric algorithms such as RSA. First, a greater
flexibility in the choice of the group and, second, the absence of a sub-exponential algorithm to
break an elliptic curve (if some proper parameters are chosen).

In 1992, Rivest et al. [67] presented ECDSA, the elliptic curve version of DSA. This was in
a response to the NIST’s request for public comments on their first proposal for their Digital
Signature Standard (DSS).

In 1995, Schoof [68] published three different algorithms for computing the number of points
in an elliptic curve defined over a finite field. This important result greatly helped to efficiently
build elliptic curves suitable for cryptographic applications.

In 1996, Boneh and Lipton [69] proved several important properties of ECDH, the elliptic
curve version of DH. In particular, they showed that if no sub-exponential algorithm exists for
breaking the ECDLP, then no sub-exponential algorithm also exists for breaking the ECDHP (see
Section 2.1.4 for further information).

In 1997, the Certicom5, a U. S. cryptography company now acquired by BlackBerry Limited,
started the ECC challenge6. They challenged the public to break some elliptic curves offering
a prize up to 100 000 $. The challenges are split in level I and II. The latter are believed to be
computationally infeasible and all of them are still unsolved.

In 1998, Law et al. [70] introduced ECMQV, a new key agreement algorithm using elliptic
curves and based on the Diffie-Hellman scheme.

Respectively in 2002 and 2004 the ECC challenges for a 109 bit curve on a prime and a binary
field were solved6. They are the biggest factorized elliptic curves so far.

In 2005, the NSA presented its strategy for securing top secret data and recommended the use
of ECC for key agreement and digital signatures [71].

In 2014, Feo, Jao, and Plût [14] proposed the Supersingular Isogeny Diffie-Hellman (SIDH), a
quantum-resistant elliptic curve variation of DH based on the difficulty of finding isogenies between
supersingular elliptic curves.

Standards

There are a number of standards, best practices and recommendations regarding ECC. A few of
them also suggest some specific elliptic curves and fields.

In 2000, the IEEE published the IEEE Standard Specifications for Public-Key Cryptography
[72]. It proposes several key agreement and digital signature schemes based on ECC. In addition,
it gives several advices on how to choose the curve parameters and how to handle the keys.

In 2005, the ANSI produced the ANSI X9.62:2005, Public Key Cryptography for the Financial
Services Industry: The Elliptic Curve Digital Signature Algorithm (ECDSA) [73]. It describes how
ECDSA should be implemented and contains some suggestions about the elliptic curve domain
parameters. In the same year, the German company ECC Brainpool introduced the ECC Brainpool
Standard Curves and Curve Generation [74]. In this document they recommend how to generate
strong pseudo-random elliptic curves and give the parameters for a set of 14 suggested curves on
prime fields.

5See https://www.certicom.com/.

6More information are available at https://www.certicom.com/index.php/the-certicom-ecc-challenge.
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In 2006, Bernstein [75] proposed the Curve25519 defined on a prime field with order 2255 − 19.
Though not an official standard, this curve gained some popularity, especially in open source
projects.

In 2010, Certicom Research presented the SEC 2: Recommended Elliptic Curve Domain Pa-
rameters [76], a document describing a set of 20 recommended elliptic curves (8 on prime fields
and 12 on binary fields).

In 2011, the ANSI proposed the ANSI X9.62:2011, Public Key Cryptography for the Financial
Services Industry - Key Agreement and Key Transport Using Elliptic Curve Cryptography standard
[77]. It details how various ECC key agreement and transport algorithms should be implemented
and suggests some selection criteria for the elliptic curve domain parameters.

In 2013, the NIST proposed the FIPS PUB 186-4 – Digital Signature Standard (DSS) [13].
It contains a series of recommendations about how to implement a number of algorithms for
performing digital signatures such as DSA, RSA and ECDSA. In addition, it gives some advices
on how to generate the curve parameters and suggests 15 elliptic curves (5 on prime fields and 10
on binary fields).

Applications

One of the most important application of ECC is in a number of data protection protocols such as
IPsec [10], TLS [11] and SSH [12] which implement several elliptic curve base techniques. Table 1.2
lists the supported ECC algorithms in these protocols.

protocol ECDH ECDSA ECMQV

IPsec ² ² �
TLS ² ² �
SSH ² ² ²

Table 1.2: Protocol supports of the ECC algorithms.

A Wireless Sensor Network (WSN) is a distributed system constituted by small network nodes,
known as motes, containing a battery, some processing hardware and a sensor. WSNs are used to
continuously monitor physical conditions in an environment and their usage is quickly spreading
in several areas such as industrial machinery control and building structural health monitoring.
Elliptic Curve Cryptography has started becoming a popular alternative to other conventional
asymmetric algorithm due to its speed and flexibility. Several publications proposed key exchange
and digital signature schemes based on elliptic curves, customized for this environments. For
instance, in 2008, the TinyECC library was introduced by Liu and Ning [78] and quickly became
well-known in the WSN field due to its performance and flexibility. More recently, in 2013, Kodali
et al. [79] presented a novel method for performing the scalar multiplication on an elliptic curve
specialized for the WSN’s platforms. There are also some hardware proposals, such as the one
described by Ahmed et al. [80], which presents a FPGA implementation of a 160 bit ECC processor
with excellent area results for a mote.

Similarly, a Mobile Ad-hoc NETwork (MANET) is an infrastructure-less network of wireless
mobile devices that automatically configure themselves. MANETs have a wide area of applications,
from vehicle communications, where are known as VANETs to smart-phones. In 2010, Dahshan and
Irvine [81] proposed a fast key distribution method based on the elliptic curve discrete logarithm
problem for low power and processing constrained devices such as the MANET nodes. Manvi,
Kakkasageri, and Adiga [82] presented the use of ECDSA in VANETs to perform high speed
message authentication between vehicles. Huang, Yeh, and Chien [83] presented an original ECC
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approach for anonymous batch authentication and key agreement in vehicular networks, showing
that their method provides less delays and message losses w.r.t. to the more common ECDSA.

1.2.3 Other high speed cryptographic techniques

Elliptic curves are not the only alternative to traditional public key algorithms. This section
reports some other techniques for the sake of completeness.

In 1978, McEliece [84] developed a crypto-system based on the hardness of decoding a general
linear code. Even if it never gained a practical use in the real world, recently it received some
focus since it is very resilient to quantum computing attacks. Even if it is faster than RSA, the
algorithm’s main disadvantage is that its key size is much larger. In 2008, Bernstein, Lange, and
Peters [85] suggested a public key size of 1 537 536 bit (about 187.7 KiB) for coupling the McEliece
method with a symmetric cipher on 128 bit.

In 1989, Koblitz [20] extended the same basic idea behind the elliptic curve cryptography to
the rational points over an hyperelliptic curve. This algebraic structures allow even smaller key
sizes w.r.t. ECC since they are theoretically harder to break, but so far no protocol or standard
implements or regulates them.

In 1998 and later in 2001, Frey [21, 22] proposed to use trace zero varieties over elliptic curves in
cryptography. They are sub-groups of the rational points defined over an elliptic curve with some
peculiar properties that allow them to achieve better performance w.r.t. the traditional elliptic
curves. Trace zero varieties have still to receive an official standardization.

In 2001, Patarin [86] proposed the hidden field equations as a public key crypto-system having a
key size comparable to the ECC’s ones. They make use of different polynomials on finite extension
fields and are based on the hardness of finding the solutions to a system of multivariate quadratic
equations. The ‘hidden’ adjective comes from the fact that the algorithm tries to hide the extension
fields and their polynomials by making use of private affine transformations.

10



Chapter 2

Elliptic curve cryptography

In mathematics you don’t understand
things. You just get used to them.

Johann von Neumann

Elliptic curves are known to the mathematicians for over a hundred years and have been used
to solve a wide array of problems, such as proving the Fermat’s Last Theorem [87]. One of their
most recent and prominent roles is in the cryptography sector, where they are used to design strong
and efficient public-key cryptographic systems.

This chapter introduces both the mathematical and algorithmic background of ECC. In order
to keep the discussion short, all the theorem’s proofs are omitted. The core of the following sections
is mostly taken from the following sources:

� Roberto Avanzi et al. Handbook of Elliptic and Hyperelliptic Curve Cryptography. Chapman
& Hall/CRC, 2005. isbn: 1584885181;

� Darrel Hankerson, Alfred John Menezes, and Scott Vanstone. Guide to Elliptic Curve Cryp-
tography. Springer, 2003. isbn: 038795273X;

� Kenny Fong et al. ≪Field Inversion and Point Halving Revisited≫. In: IEEE Transactions on
Computers 53 (8 2004), pp. 1047–1059. doi: 10.1109/TC.2004.43;

� Daniele Canavese et al. ≪Can a Light Typing Discipline Be Compatible with an Efficient
Implementation of Finite Fields Inversion?≫ In: FOPARA 2013, proceedings of the 3rd In-
ternational Workshop on Foundational and Practical Aspects of Resource Analysis. Bertinoro
(Italy), 2014. doi: 10.1007/978-3-319-12466-7_3.

2.1 Mathematical background

This section is structured in a progressive way, starting with the most basic notions and culminating
with the discussion of a complete cryptographic protocol, that is ECDH.

2.1.1 Groups

Groups constitute not only the basis for building a fully working ECC system, but they have also
a pivotal role in most of the current cryptographic algorithms.
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Definition (Group). A group (G, ○) is a set G coupled with a binary operation ○∶G × G → G,
called the group operation, which satisfies the following properties:

� the closure, that is a ○ b ∈ G, ∀a, b ∈ G;

� the associativity, that is (a ○ b) ○ c = a ○(b ○ c), ∀a, b, c ∈ G;

� the existence of an identity, that is ∃e ∈ G ∶ e ○a = a ○ e = a, ∀a ∈ G;

� the existence of inverses, that is ∃a−1 ∈ G ∶ a ○a−1 = a−1 ○a = e, ∀a ∈ G.

Definition (Abelian group). A group (G, ○) is an Abelian group (or commutative group) if the
group operator is commutative, that is if a ○ b = b ○a, ∀a, b ∈ G.

From now on, each group that will be discussed is assumed to be Abelian.

Example. The natural numbers N and the usual addition operation + do not form a group, while
(Z,+), (Q,+), (R,+) and (C,+) are all valid (Abelian) groups.

Definition (Order). The order of a group G is the number of elements that contains and its is
denoted by ∣G∣.

Definition (Finite group). A group (G, ○) is a finite group if ∣G∣ <∞.

Finite groups are the most interesting ones in the computer science since they can be represented
and stored in a machine’s memory.

2.1.2 Fields

The notion of field is relatively trivial and can be though as an extension of a group.

Definition (Field). A field (F, ○, ◽) is a set F coupled with two binary operations ○∶F×F→ F and
◽∶F × F→ F, called the field operations, such that:

� (F, ○) is an abelian group with the identity element denoted by e;

� (F∖{ e} , ◽) is an abelian group;

� the distributivity holds, that is (a ○ b) ◽ c = (a ○ b) ◽(b ○ c), ∀a, b, c ∈ F.

In order to simplify the formulas, and by abuse of notation, the symbol F will be used to specify
a field having the addition and the multiplication as its operations, i.e. (F,+, ⋅). In F we can then
define:

� the element 0 ∈ F as the additive identity;

� the element 1 ∈ F as the multiplicative identity;

� the additive inverse of a, denoted by −a, such that a + (−a) = 0, ∀a ∈ F;

� the multiplicative inverse of a, denoted by a−1, such that a ⋅ a−1 = 1, ∀a ∈ F ∖ {0};

� the subtraction of a and b as a − b = a + (−b), ∀a, b ∈ F;

� the division of a and b as a/b = a ⋅ b−1, ∀a ∈ F ∧ ∀b ∈ F ∖ {0}.

Definition (Order). The order of a field F is the number of elements that contains and it is
denoted by ∣F∣.

12
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Definition (Finite field). A field F is a finite field if ∣F∣ <∞.

From now on, the notation Fp will be used to denote a finite field with order p whose operations
are the addition and multiplication.

Definition (Characteristic). The characteristic of a field F, denoted by char(F), is zero if the field
is not finite, otherwise it is the smallest positive integer n such that:

1 + . . . + 1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n addends

= n ⋅ 1 = 0.

Proposition. The characteristic of any finite field is prime.

An interesting fact is that the smallest finite field is F2, containing only 0 and 1, that are the
two identity elements. In F2 the addition operation is the exclusive or, so that 1 + 1 = 1⊕1 = 0.
From this it follows that char(F2) = 2.

Definition (Field homomorphism). Let be F and F′ two fields. A field homomorphism ψ∶F → F′
is an application that:

� ψ(a + b) = ψ(a) + ψ(b), ∀a, b ∈ F;

� ψ(a ⋅ b) = ψ(a) ⋅ ψ(b), ∀a, b ∈ F;

� ψ(1) = 1.

Definition (Extension field). Given two fields F and F′, we say that F′ is an extension field of F
if there exists a field homomorphism ψ∶F→ F′. This will be denoted as F′/F.

Extension fields are an effective and simple way of building a bigger field from a smaller one.
Frequently the base field is F2 since it represents a single bit, and its extensions an ordered sequence
of bits.

Definition (Degree). Given an extension field F′/F, its dimension is called degree and it is denoted
by deg(F′/F).

Example. Obviously C/R since each complex number can be represented by means of two real
numbers, hence deg(C/R) = 2.

Definition (Binary field). A field with characteristic 2 is called a binary field.

The notation F2n will denote a binary (finite) field of degree n coupled with the usual addition
and multiplication operations. Obviously F2n/F2.

Remark. An element a ∈ F2n can be represented as a polynomial in t with binary coefficients
modulo an irreducible polynomial m(t) of degree n, called the modulus. This will be denoted by
F2n[t]/m(t).

Example. The AES cipher [89] internally make use of the finite field F28[t]/t8 + t4 + t3 + t + 1.

2.1.3 Elliptic curves

Elliptic curves are planar curves built upon a field and their points create a group that follows
some peculiar properties.

Definition (Rational point). Given a field F, a F-rational point is a point on an algebraic curve
with all of its coordinates in F.
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Definition (Elliptic curve). An elliptic curve E over a field F is denoted by E/F. It is a smooth
curve with at least one F-rational point and defined by the Weierstraß equation:

E ∶ y2 + a1xy + a3y = x3 + a2x2 + a4x + a6. (2.1)

Since an elliptic curve is smooth it has no points of self-intersection or cusps.

Example. Figure 2.1 depicts the plots of two elliptic curves over R.

−4 −2 2 4

−4

−2

2

4

(a) Plot of y2 = x3 − 3x + 3.

−4 −2 2 4

−4

−2

2

4

(b) Plot of y2 = x3 − 4x.

Figure 2.1: Plots of two elliptic curves over R.

Definition (Set of points). Given an elliptic curve E/F, the notation E(F) denote the set containing
all the points laying on the curve E.

Definition (Point at infinity). The set of all the points of a curve E/F is equal to:

E(F) = { (x, y) ∈ F2 ∶ y2 + a1xy + a3y = x3 + a2x2 + a4x + a6 }∪{P∞ } .

The point P∞ is called the point at infinity.

Intuitively the point at infinity is the point where an elliptic curve intersects an horizontal axis
laying at infinity.

Proposition. Let be E/F an elliptic curve. Then, (E(F),+) is a group and the operation + is
known as point addition. Given three points P (xP , yP ), Q(xQ, yQ), R(xR, yR) with P ≠ Q, the
following formulas hold:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R = P + P∞ Ô⇒
⎧⎪⎪⎨⎪⎪⎩

xR = xP
yR = yP

R = −P Ô⇒
⎧⎪⎪⎨⎪⎪⎩

xR = xQ
yR = −yQ − a1xQ − a3

R = P + P Ô⇒
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

λ = (3x2P + 2a2xP + a4 − a1yP )/(2yP + a1xP + a3)
xR = λ2 + a1λ − a2 − 2xP

yR = λ(xP − xR) − yP − a1xR − a3

R = P +Q Ô⇒
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

λ = (yP − yQ)/(xP − xQ)
xR = λ2 + a1λ − a2 − xP − xQ
yR = λ(xP − xR) − yP − a1xR − a3.
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The point subtraction can be easily defined as P −Q = P + (−Q).

Remark. The point at infinity is the identity element for the point addition, that is given any
elliptic curve PE/F, then:

P + P∞ = P∞ + P = P, ∀P ∈ E(F).

In order to keep the formulas compact, the notation 2P = P + P will be used to denote the
addition of a point to itself. This operation is also known as point doubling.

The point addition and doubling have two simple geometrical explanations if the underlying
field is R, as depicted in Figure 2.2. The addition R = P +Q can be performed graphically by:

1. tracing the line passing through P and Q;

2. finding −R as the third intersection point between the line and the elliptic curve;

3. finding R as the vertically opposite point of −R.

Analogously, R = 2P can be found by:

1. tracing the elliptic curve tangent line passing through P ;

2. finding −R as the second intersection point between the line and the elliptic curve;

3. finding R as the vertically opposite point of −R.

−4 −2 2 4

−4

−2

2

4

P

Q

−R

R

(a) Graphical explanation of R = P +Q.

−4 −2 2 4

−4

−2

2

4

P ≡ Q
−R

R

(b) Graphical explanation of R = 2P .

Figure 2.2: Point addition and doubling in E/R.

By generalizing the idea behind the point doubling, it can be defined the operation of scalar
multiplication, also known as point multiplication, as:

n ⋅ P = P + . . . + P
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n addends

, ∀P ∈ E(F) ∧ ∀n ∈ N.

Note that, obviously, 0 ⋅ P = P∞.
In cryptography, the family of elliptic curves defined over the binary fields are of particular

interest. This is mainly due to the fact that they can be implemented both in hardware and
software in a very efficient way.
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Definition (Admissible change of variables). Let E/F be an elliptic curve defined by the Equa-
tion 2.1. Let be u ∈ F∖{0} and r, s, t ∈ F. An admissible change of variables is defined by the
mapping:

⎧⎪⎪⎨⎪⎪⎩

x ↦ u2x′ + r
y ↦ u3y′ + u2sx′ + t.

By making use of a proper admissible change of variables, the Weierstraß equation can be
significantly simplified.

Definition (Supersingular elliptic curve). Let E/F2n be an elliptic curve defined by the Equation 2.1
where a1 = 0. The admissible change of variables (x, y) ↦ (x + a2, y) transform the curve E into a
supersingular elliptic curve defined by the equation:

y2 + a3y = x3 + a′4x + a′6 with a3 ≠ 0.

Supersingular curves are not normally used in cryptography, so their group law is not further
investigated in this context. Additional information about their security is given in Section 2.1.4.

Definition (Non-supersingular elliptic curve). Let E/F2n be an elliptic curve defined by the Equa-
tion 2.1 where a1 ≠ 0. The admissible change of variables (x, y)↦ (a21x+a3/a1, a31y+(a21a4+a23)/a31)
transform the curve E into a non-supersingular elliptic curve defined by the equation:

y2 + xy = x3 + a′2x2 + a′6 with a′6 ≠ 0.

The group law equations for a non-supersingular curve can then be simplified in:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R = P + P∞ Ô⇒
⎧⎪⎪⎨⎪⎪⎩

xR = xP
yR = yP

R = −P Ô⇒
⎧⎪⎪⎨⎪⎪⎩

xR = xQ
yR = xQ + yQ

R = P + P Ô⇒
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

λ = xP + yP /xP
xR = λ2 + λ + a′2
yR = λ(xP + xR) + xR + yP

R = P +Q Ô⇒
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

λ = (yP + yQ)/(xP + xQ)
xR = λ2 + λ + xP + xQ + a′2
yR = λ(xP + xR) + xR + yP .

2.1.4 Security of elliptic curve crypto-systems

In public key cryptography, each party possesses two keys: a public key and a private key. These
two values are linked together by a relationship by means of a particular one-way function.

Definition (One-way function). Let Σ∗ be the set of all the binary strings and f a function such
that f ∶Σ∗ → Σ∗. We say that f is a one-way function if:

� f is injective;

� f(x) is at most polynomially longer or shorter than x;

� ∀x ∈ Σ∗, f(x) can be computed with PTime complexity;
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� ∀y ∈ Σ∗, there is no PTime algorithm that return either x ∈ Σ∗ such that y = f(x) or ‘error’
if y /∈ Im(f).

In other words, a one-way function f has PTime complexity, but its inverse f−1 must not have
PTime complexity. Chosen a private key k, a public key can be quickly computed with K = f(k)
and safely published, since retrieving the private key by computing k = f−1(K) is computationally
unfeasible.

Interestingly, there are no proofs of any true one-way function’s existence, since this would
imply proving that PTime ≠ NPTime. This means that the security of a public-key crypto-system
relies on the unproven hypothesis of the hardness of some computational problem. The elliptic
curve scalar multiplication is supposed to be a one-way function, that is computing the product
Q = n ⋅ P is easy, but retrieving n knowing P and Q is hard.

Definition (ECDLP). Let be E/F an elliptic curve and P,Q ∈ E(F) two points. Finding the
smallest integer n such that Q = n ⋅ P is called the Elliptic Curve Discrete Logarithm Problem
(ECDLP). The value n is known as the discrete logarithm of Q and it is denoted by n = logP Q.

For historical reasons, the point division needed to find n = Q/P is called logarithm in this
context. This is due to the ECDLP similitude to the DLP, another hard problem widely used
in cryptography. In fact, all the DLP-based algorithms can be transformed into an elliptic curve
variant (e.g. DH becomes ECDH and DSA becomes ECDSA).

The order of an elliptic curve E/F is its number of points ∣E(F)∣. Since Equation 2.1 has at
most two solutions for each x ∈ F, it is easy to prove that:

1 ≤ ∣E(F)∣ ≤ 2 ∣F∣ + 1.

Counting the exact number of points in a curve is very important. Unfortunately there are
no equations to perform such task, only algorithmic approaches such as the Schoof-Elkies-Atkin’s
[90], Satoh’s [91] and the Arithmetic Geometric Mean (AGM) [92] algorithms.

In cryptography, the key size of an elliptic curve crypto-system is usually the bit length of the
integer factor n in the ECDLP. This value can be computed as l = log2(∣E(F)∣).

While there is no formal proof that the ECDLP is intractable, no known algorithm exists to
compute the discrete logarithm in PTime (up to now). All the known methods have an ExpTime
complexity, starting with the simplest one: the brute-force attack, which has an expected running
time of O (2l). Several better approaches are known in literature, such as the baby-step giant-step

[93] and Pollard’s rho [94] algorithms, all of them having a complexity of O (2k/2).
When picking a binary elliptic curve, there are several parameters that must be chosen. Inter-

estingly, however, not all the valid values produces equally strong curves. Given an elliptic curve
E/F2n some of the minimum security checks include:

� ∣E(F2n)∣ should be large enough (at least 2160) to avoid brute-force attacks;

� E should be non-supersingular, since supersingular curves are more susceptible to the Tate
pairing attacks [95], making much easier to solve the ECDLP on them;

� n should be prime to avoid Weil descent attacks [22];

� ∣E(F2n)∣ should be prime (at least 2160) or almost prime (i.e. h ⋅ p where p is prime and
1 ≤ h ≤ 4). This is needed to avoid the Pohlig-Hellman [96] and Pollard’s rho [94] attacks;

� 2kn −1 should not be divisible by ∣E(F2n)∣ for all 1 ≤ k ≤ c, where c is an integer large enough
so that the ECDLP is considered intractable (at least 20) to avoid Weil [97] and Tate [95]
pairing attacks.
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Since choosing a strong elliptic curve is not an easy task, a common approach is not to generate
a pseudo-random curve on-the-fly, but to rely on a standard curve, such as one suggested in the
FIPS PUB 186-4 – Digital Signature Standard (DSS) [13].

2.1.5 ECDH

Elliptic Curve Diffie-Hellman (ECDH) is the elliptic curve variation of DH. Several of the most
used security protocols implement it, such as IPsec [10], TLS [11] and SSH [12].

It is an anonymous key agreement protocol that allows two end-points to establish a shared
secret, usually a value used to derive a cryptographic key needed to encrypt data later via a
symmetric cipher.

Let suppose that A wants to communicate with B. The protocol works by following these steps,
also graphically depicted in Figure 2.3:

1. A chooses an elliptic curve E/F, a random base point G ≠ P∞ on E and sends them to B;

2. A and B respectively generate two random integers nA ≠ 0 and nB ≠ 0;

3. A computes RA = nA ⋅G and sends it to B;

4. B computes K = nB ⋅RA;

5. B computes RB = nB ⋅G and sends it to A;

6. A computes K = nA ⋅RB .

E/F, G

RA

RB

A B

1choose E/F and G ∈ E(F) 1

2choose nA ∈ Z 2 choose nB ∈ Z

3RA = nA ⋅G 3

4 K = nB ⋅RA

5 RB = nB ⋅G5

6K = nA ⋅RB

Figure 2.3: Steps of the ECDH protocol.

At the end of the communication, K is the secret shared between A and B. This can easily
proved since K = nA ⋅QB = nA ⋅ (nB ⋅G) = nB ⋅ (nA ⋅G) = nB ⋅QA =K. To derive a symmetric key,
a common technique is to compute an hash value of K’s x coordinate.

The only private data are the two integers nA and nB , while all the other values are public.
In order to recover the shared secret K, an attacker must intercept QA (or QB) and compute the
value nA = QA/G (or nB = GB/G). In other words, the attacker must solve the ECDLP, assumed
to be computationally unfeasible, at least if a proper curve is chosen (Section 2.1.4).

Definition (ECDHP). Let be E/F an elliptic curve and G,A,B ∈ E(F) three points where A = a ⋅G
and B = b ⋅ G. The problem of finding the point K = a ⋅ b ⋅ G knowing only A,B,G is called the
Elliptic Curve Diffie-Hellman Problem (ECDHP).
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If an attacker can solve the ECDHP, then ECDH is broken. Note also that if the ECDLP can
be efficiently solved, then the ECDHP can also be easily solved. First a = A/G (or b = B/G) can
be computed and then K = a ⋅B (or K = b ⋅A) can be easily obtained. Thus ECDHP is no harder
than ECDLP, however, in the general case, it is not yet known if the ECDHP is equally hard as
the ECDLP.

Definition (ECDDHP). Let be E/F an elliptic curve, G,A,B,K ∈ E(F) four points where A = a⋅G,
B = b ⋅G and K = k ⋅G. The problem of finding if K = a ⋅ b ⋅G knowing only G,A,B,K is called the
Elliptic Curve Decision Diffie-Hellman Problem (ECDDHP).

The ECDHP is concerned with computing the secret point (the shared secret). The ECDDHP
puts a much harder constraint: the adversary must not learn any information about the shared
secret, or, in other words, the attacker must not be able to distinguish the secret point from any
other random point. Also, in this case, if the ECDHP can be efficiently solved, also the ECDDHP
can be easily solved. In fact, the adversary can compute K ′ = a ⋅ b ⋅G (solving the ECDHP) and
then comparing K ′ with K. It follows that the ECDDHP is no harder than the ECDHP. The only
known complexity lower bound is

√
∣E/F∣ when the group order is prime [98].

The ECDH and DH protocols suffer from a series of man-in-the-middle attacks that follow the
schema sketched in Figure 2.4. The idea is that an intruder E can intercept all the communications
between A and B, impersonates B when communicating with A and vice-versa. The intruder can
then establish a double ECDH connection with A and B, decrypting and encrypting all the traffic
that the two end-points are exchanging.

E/F, G E/F, G

RA RE

RBRE

A E B

1choose E/F and G ∈ E(F) 1 1

2choose nA ∈ Z 2 choose nE ∈ Z 2 choose nB ∈ Z

3RA = nA ⋅G 3
RE = nE ⋅G

3

4 KA = nE ⋅RA 4 KB = nB ⋅RE

5 RB = nB ⋅G55

6KA = nA ⋅RE 6KB = nE ⋅RB

Figure 2.4: Man-in-the-middle attack on the ECDH protocol.

Fortunately, avoiding such family of attacks is relatively easy. The solution is to provide some
mutual authentication method for the two end-points (e.g. certificates). The authenticated version
of ECDH is also known as the Station-To-Station (STS) protocol.

2.2 Algorithmic background

This section is completely devoted to the algorithms needed to efficiently perform arithmetics over
binary fields and binary elliptic curves. The procedures listed in the following paragraphs are
designed to be implemented in software, since an optimal hardware design requires a different
approach. All these algorithms are known in the current literature (with small variations) except
one: the DCEA (Algorithm 2.9), which is also the core discussion of Chapter 3.
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As convention, all the following algorithms works on an elliptic curve E defined over a generic
field F2n[t]/m(t) with degree n and modulus m(t).

2.2.1 Binary field arithmetic

Binary fields are frequently used in cryptography since their implementations offer good perfor-
mance both in software and hardware.

A binary field F2n contains 2n polynomials. They can be represented as a list of their n binary
coefficients (a bit vector). For instance, the polynomial t4 + t2 + t + 1 over F25 can be expressed as
(1,0,1,1,1 )2.

In this document, the leftmost element in a bit vector is the coefficient of the highest degree
monomial. This representation allows a developer to easily model in a programming language a
generic binary field element. To avoid confusion, the notation a(t) will be used to denote a generic
polynomial in t, while a indicates its bit vector representation.

In literature, it is quite common to write the binary field algorithms by making use of machine
word arrays. In the following paragraphs, however, the presented routines are rewritten in a higher
level in order to work on bit vectors. This makes them easier to read, but also closer to how the
actual implementations are in the HRL and aXiom languages (Chapter 5).

Modular reduction

The modular reduction is used to reduce a polynomial a(t) with deg(a(t)) < 2n into another
polynomial b(t) ∈ F2n[t]/m(t) with deg(b(t)) < n.

From a mathematical point of view, the only requirement is that m(t) to be irreducible (see
Section 2.1.2). In practice, however, if the modulus m(t) is known in advance and m(t) = tn + r(t)
with deg(r(t)) ≤ ⌊n/2⌋, a special reduction procedure can be implemented. This algorithm is much
faster than the generic one [25] and its code is shown in Algorithm 2.1.

algorithm Reduce(a field element a(t)) return a(t) mod m(t)

1 u←a[0→ n − 1]
2 foreach exponent ei of r(t) do
3 u←u⊕(a≫n)≪ ei
4 end
5 v←u[0→ n − 1]
6 foreach exponent ei of r(t) do
7 v← v⊕(u≫n)≪ ei
8 end
9 return v[0→ n − 1]

Algorithm 2.1: Binary field modular reduction algorithm.

The algorithm speed depends solely on the modulus degree and on the number of non-null
monomials in the modulus. For this reason, a common approach is to make use of trinomial and
pentanomial moduli [13].

Addition and subtraction

The addition in a binary field is the fastest operation since it is a simple bitwise exclusive or
between the two addends. This can intuitively proved since a + b = a⊕ b in F2 and this must also
hold in any extension field F2n . For sake of completeness, its code is given in Algorithm 2.2.
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algorithm Add(two field elements a(t) and b(t)) return a(t) + b(t)

1 return a⊕ b
Algorithm 2.2: Binary field addition algorithm.

Since the exclusive or is the inverse operation of itself, the addition and the subtraction are the
same operation, that is a(t) + b(t) = a(t) − b(t).

Interestingly, this algorithm is independent from the field modulus, but not from its degree.

Multiplication

The field multiplication is a crucial operation in the ECC since it is used very frequently during
the point calculations. In literature there exist several methods to efficiently compute the product
between two binary polynomials, but two techniques are particularly prominent: the comb and
the Karatsuba-Ofman methods. In addition, a special technique can be also implemented if some
cryptographic hardware support is available.

Note that all these algorithms return a polynomial with 2n bits, so that it must be further
reduced.

The comb method [25], also known as comba, is a sliding-window technique shown in Algo-
rithm 2.3, where w represents the window width. Suppose that the goal is to obtain a(t) ⋅b(t). This
method works in two distinct phases. First, all the products of a(t) ⋅c(t),∀c(t) with deg(c(t)) ≤ w
are computed and stored in a table. Second, b(t) is analyzed w bit at times and the final product
is constructed by summing the right entries in the pre-computation table multiplied by a proper
factor td.

algorithm Comb(two field elements a(t) and b(t)) return a(t) ⋅ b(t)

1 u← b[0→ n − 1]
2 table[0]←0
3 table[1]←u
4 for i←2 to 2w do
5 if i mod 2 = 0 then
6 table[i]← table[⌊i/2⌋]≪1
7 else
8 table[i]← table[i − 1]⊕u
9 end

10 end
11 for i←0 to ⌈n/w⌉ do
12 index← convert a[i ⋅w → i ⋅ (w + 1)] into an integer
13 v← v⊕ table[index]≪(j ⋅w)
14 end
15 return v

Algorithm 2.3: Binary field comb multiplication algorithm.

When the window width equals to 1, this method becomes the so called school-book method
where the multiplication is performed bit-by-bit, the most naive and slow approach.

Obviously, the value of w plays a major role in the algorithm performance. On one hand,
if it is too small, the pre-computation phase is very fast, but the second half of the algorithm
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is significantly slowed down. On the other hand, if w is very large, the table construction step
dominates too much the total computation time. The optimal size of the window width heavily
depends on the target architecture and the field degree.

While the comb method is a window-based method, the Karatuba-Ofman [99] relies on the idea
to simplify a bigger multiplication into three smaller and simpler ones. The factors a(t) and b(t)
can be split into two smaller polynomials, so that:

a(t) = aH(t) ⋅ t⌈n/2⌉ + aL(t)
b(t) = bH(t) ⋅ t⌈n/2⌉ + bL(t).

Thus, the product a(t) ⋅ b(t) can be written as:

a(t) ⋅ b(t) = (aH(t) ⋅ t⌈n/2⌉ + aL(t)) ⋅ (bH(t) ⋅ t⌈n/2⌉ + bL(t)) =
= aH(t)bH(t)tn+
+ ((aH(t) + aL(t))(bH(t) + bL(t)) + aH(t) + bH(t) + aL(t) + bL(t))t⌈n/2⌉+
+ aL(t)bL(t).

The smaller field multiplication operator can be implemented through a comb or another
Karatsuba-Ofman algorithm. Initially proposed to perform product of multi-digit integer num-
bers, this approach can be easily modified to work on binary fields.

The Algorithm 2.4 implements the previously mentioned ideas.

algorithm Karatsuba(two field elements a(t) and b(t)) return a(t) ⋅ b(t)

1 aL←a[0→ ⌈n/2⌉ − 1]
2 aH ←a[⌈n/2⌉→ n]
3 bL← b[0→ ⌈n/2⌉ − 1]
4 bH ← b[⌈n/2⌉→ n]
5 u←aH ⋅ bH
6 v←aL ⋅ bL
7 w←(aH ⊕aL) ⋅ (bH ⊕ bL)
8 w←w⊕u⊕ v
9 z1←0

10 z1[n→ ⌈n/2⌉ − 1 + n]←u
11 z2←0
12 z2[0→ ⌈n/2⌉ − 1]← v
13 z3←0
14 z3[⌈n/2⌉→ n − 1]←w
15 return z1⊕ z2⊕ z3

Algorithm 2.4: Binary field Karatsuba-Ofman multiplication algorithm.

On some processors, a third, faster approach to tackle the multiplication can be developed, if
some special assembler instructions are supported (Section 6.3.3). If these facilities are available,
the code shown in Algorithm 2.5 can be used, where w represents a proper window width.

The algorithm treats the multiplication by simplifying it in several w×w products. For instance,
on some Intel CPUs, a 64 × 64 bits multiplication can be fully performed via a special assembler
operation (Section 6.3.3).
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algorithm WindowMultiply(two field elements a(t) and b(t)) return a(t) ⋅ b(t)

1 u←0
2 for i←0 to ⌈n/w⌉ do
3 for j←0 to ⌈n/w⌉ do
4 u←a[i ⋅w → i ⋅ (w + 1)] ⋅ b[j ⋅w → j ⋅ (w + 1)]
5 v← v⊕u≪(w ⋅ (i + j))
6 end

7 end
8 return v

Algorithm 2.5: Binary field window-based multiplication algorithm.

If some hardware support is available, the WindowMultiply algorithm is usually the fastest
one. Otherwise, the Comb method is the quickest one for fields with a small degree, while the
KaratsubaOfman approach is best suited for the larger fields.

Squaring

Computing the square of a polynomial is a relatively common operation in ECC. Technically, this
can be accomplished by a multiplicative procedure, however, an ad-hoc algorithm can be devised
to achieve better performance. There exists two fundamental techniques to perform the squaring.
The first one works well on all the platforms, while the second one requires some special hardware
support, but has vastly superior performance.

The first algorithm has a simple and elegant bit-wise explanation. The square of a bit vector
a can be constructed by inserting a zero between all the bits of a. For instance, the square of
(1,1,0,1,0 )2 is (1,0,1,0,0,0,1,0,0 )2. To increase the computation speed, a static look-up table
can be used to produce the result using a window-based approach [25]. Its code is shown in
Algorithm 2.6, where w represents the window width.

algorithm PrecomputedSquare(a field elements a(t)) return a2(t)

1 table←(⊕w−1
i=0 ((j≫ i) mod 2)≪(2i))j ,∀j ∈ [0,2w − 1]

2 u←0
3 for i←0 to ⌈n/w⌉ do
4 index← convert a[iw → i(w + 1)] into an integer
5 u[2wi→ 2w(i + 1)]← table[index]
6 end
7 return u

Algorithm 2.6: Binary field precomputation-based squaring algorithm.

As expected, the window width w greatly affects the running time of the algorithm. Several
implementations (e.g. OpenSSL) makes use of w = 8, since accessing and manipulating bytes is
easy and well supported in several hardware architectures.

As in Algorithm 2.5, if the CPU implements some special cryptographic circuitry (Section 6.3.3),
the Algorithm 2.7 can be used instead, achieving better performance.

Note that in order to obtain the final squarings, a reduction is still needed to be performed on
the algorithm results.
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algorithm WindowSquare(a field elements a(t)) return a2(t)

1 u←0
2 for i←0 to ⌈n/w⌉ do
3 for j←0 to ⌈n/w⌉ do
4 u←a[i ⋅w → i ⋅ (w + 1)] ⋅ a[j ⋅w → j ⋅ (w + 1)]
5 v← v⊕u≪(w ⋅ (i + j))
6 end

7 end
8 return v

Algorithm 2.7: Binary field window-based squaring algorithm.

Inversion and division

The multiplicative inverse computation is the slowest elementary operation that can be achieve on
a binary field, so its optimization is crucial in order to obtain better performance on higher level
algebraic structures.

In literature, there exist various algorithms that can be used to perform such computations
[88], most of them based of the Euclidean algorithm. The core concept of these approaches is that
the multiplicative inverses can be efficiently computed by leveraging the fact that for all the binary
polynomials c(t) the following assumption holds:

gcd(a(t), b(t)) = gcd(b(t) + c(t)a(t), a(t)).

By iteratively applying the aforementioned equation, the inverse can be computed. All the
algorithms proposed in this section return the already reduced multiplicative inverse, so that a
modular reduction round is not needed.

All the following techniques make use of the fls(⋅) operator that computes the find last set of
a binary tuple, that is the index of the leftmost bit set to one. If a bit vector a is translated into
an unsigned integer a, computing the last set is the same as calculating ⌈log2(a)⌉. This is also
equivalent to compute the degree of the polynomial a(t), so that fls(a) ≡ ⌈log2(a)⌉ ≡ deg(a(t)).
Some processors (e.g. all the modern AMD64 families) allow to compute this values directly in
hardware, speeding up significantly the execution time of the multiplicative inversion algorithms
(Section 6.3.3).

The Binary Euclidean Algorithm (BEA) computes a−1(t) by finding a g(t) such that:

a(t)g(t) +m(t)h(t) = 1.

At the end of the computations, the polynomial g(t) is a−1(t) since a(t)g(t) = 1+m(t)h(t) = 1.
Its code is listed in Algorithm 2.8.

An interesting variation of the BEA method is the DCEA [18, 19]. From an algorithmic point
of view, the main difference is that the two nested loops of the Binary Euclidean algorithm are
merged together into a single, bigger one having a slightly restructured order of the instructions.
This approach is discussed in detail in Chapter 3 and its code is listed in Algorithm 2.9.

Traditional compilers are quite sensitive to how the source is organized and they can produce
radically different assembly code even with a slight variation on the input source code. Even if
the BEA and DCEA apply the same operations, the final performance of their implementations
can be different, potentially giving the developer a faster technique to compute the multiplicative
inverse.
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algorithm BEA(a field elements a(t)) return a−1(t)

1 u←a
2 v←m
3 g1←1
4 g2←0
5 while true do
6 while u[0] = 0 do
7 u←u≫1
8 if g1[0] = 0 then
9 g1← g1≫1

10 else
11 g1←(g1⊕m)≫1
12 end

13 end
14 if u = 1 then
15 return g1
16 end
17 if fls(u) < fls(v) then
18 u↔ v
19 g1↔ g2
20 end
21 u←u⊕ v
22 g1← g1⊕ g2
23 end

Algorithm 2.8: Binary field BEA inversion algorithm.

The Extended Euclidean Algorithm (EEA) makes use of a similar approach, but exploits the
degree difference of the polynomials deg(u(t))−deg(v(t)) to avoid some iterations. A drawback of
this approach is that it requires to perform several shifts whose value cannot be known at compile
time, thus being harder to optimize. Note that the BEA and DCEA only require to perform right
shifts of 1 position.

The EEA pseudo-code is listed in Algorithm 2.10.
The inversion computation can be exploited to achieve the division by leveraging the fact

that b(t)/a(t) = b(t) ⋅ a−1(t). However the BEA, DCEA and EEA algorithms can also be easily
modified to directly produce the dividend, avoiding a multiplication. In order to compute b(t)/a(t),
Algorithms 2.8, 2.9 and 2.10 can be changed by replacing g1←1 with g1← b . On termination, the
result will be g1 = b ⋅ a−1.

2.2.2 Elliptic curve arithmetic

The arithmetic of elliptic curves consists of four operations: point addition, doubling, negation
and scalar multiplication. Since these operations are mapped to the base field algebra, a fast field
arithmetic is a necessary prerequisite to achieve good performance in ECC.

Base operations

The point addition, doubling and negation are performed on the coordinates of some points, that
are elements of the underlying field. An elegant and simple way to represent the complexity of
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algorithm DCEA(a field elements a(t)) return a−1(t)

1 u←a
2 v←m
3 g1←1
4 g2←0
5 direction← backward
6 while true do
7 if direction = backward then
8 if u[0] = 0 and g1[0] = 1 then
9 g1← g1⊕m

10 end
11 direction← forward
12 else
13 if u[0] = 0 then
14 u←u≫1
15 g1← g1≫1

16 else
17 if fls(u) < fls(v) then
18 u↔ v
19 g1↔ g2
20 end
21 u←u⊕ v
22 g1← g1⊕ g2
23 end
24 direction← backward
25 end
26 if u = 1 then
27 return g1
28 end

29 end

Algorithm 2.9: Binary field DCEA inversion algorithm.

a point operation is to express it as an equation that specifies how many field operations are
executed. The following symbols are used to denote the base field operation costs: M for the field
multiplication, S for the field squaring and I for the field inversion. Since the binary field addition
(a bitwise exclusive or) has a negligible cost, it is omitted for simplicity.

Computing the base field multiplicative inversion is by far the most expensive operation, how-
ever, by making use of some special coordinate systems, the number of divisions and inversions
can be significantly reduced. Note that the complexity of a point operation depends not only on
the chosen coordinate system, but also on how the equations are factorized (Section 6.2.6). In the
following paragraphs, four coordinate systems will be analyzed:

� the affine coordinate system is the simplest (as well the slowest) one and make use of the
formulas reported in Section 2.1.3;

� the projective coordinate system maps the point (x ∶ y ∶ z) into the affine point (x/z, y/z) if
z ≠ 0 and P∞ = (0 ∶ 1 ∶ 0) if z = 0;
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algorithm EEA(a field elements a(t)) return a−1(t)

1 u←a
2 v←m
3 g1←1
4 g2←0
5 while u ≠ 1 do
6 j←fls(u) − fls(v)
7 if j < 0 then
8 u↔ v
9 g1↔ g2

10 j←−j
11 end
12 u←u⊕(v≪ j)
13 g1← g1⊕(g2≪ j)
14 end
15 return g1

Algorithm 2.10: Binary field EEA inversion algorithm.

� the Jacobian coordinate system maps the point (x, y, z) into the affine point (x/z2, y/z3) if
z ≠ 0 and P∞ = (1,1,0) if z = 0;

� the López-Dahab coordinate system maps the point (x; y; z) into the affine point (x/z, y/z2)
if z ≠ 0 and P∞ = (1; 0; 0) if z = 0.

Several cryptographic protocols require to use points in an affine space, so that, if needed, once
all the computations are performed a normalization phase must be done to convert a point in non-
affine space into the affine one. These operations are performed scarcely, hence their performance
costs are usually negligible.

Table 2.1 lists the formulas for the base operations in the four coordinate systems, while Ta-
ble 2.2 shows their respective optimal complexity costs [24], when correctly factorized.

Usually the López-Dahab coordinate system offers superior performance, as clear from the cost
formulas.

Scalar multiplication

The scalar multiplication is the operation that dominates the computational time in the elliptic
curve arithmetic. Several algorithms can be implemented to obtain the product in an efficient
manner and in this section three of them are presented. All these approaches are completely
independent from the choice of the coordinate systems.

The scalar multiplication algorithms’ complexities can be written as a function of the point
addition and doubling costs, respectively denoted by the A and D symbols. The negation is
omitted since its performance are usually negligible.

One of the simplest algorithms is the add-and-double and its code is shown in Algorithm 2.11.
It is based on the observation that any natural number n = (nl−1, . . . , n0 )2 can be written as:

n = n020 + n121 + n222 + n323 + . . . = n0 + 2(n1 + 2(n2 + 2(n3 + . . .))).
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f = d + e
zR = (a + b)zP zQ
xR = xP zQ(e + b) + xQzP (a + d)
g = xP zQfc + (a + b)d
yR = i(a + b) + (fc + zR)xR

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a = a6z4P
zR = z2Px2P
xR = x4P + a
b = y2P + a2zR + a

yR = bxR + zRa

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

xR = xP
yR = xP zP + yP
zR = xP

Table 2.1: Elliptic curve formulas for various coordinate systems.

If n is on l bits and it is randomly generated, its Hamming weight (the number of non-null items
that it contains) will be l/2 in the average case. That means that the Algorithm 2.11 performs
about l/2 point additions per multiplication. This method is quite fast on small integers, but its
performance deteriorate quickly when l starts to increase. For most of the interesting cases in
ECC, the add-and-double approach is unsuitable, but it can be modified to achieve faster speeds
by making use of an alternative representation instead of the traditional binary one.

Definition (Signed-digit representation). The signed-digit representation of an integer n in radix
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system addition doubling negation

affine 1I + 2M + 1S 1I + 2M + 1S 0M
projective 14M + 1S 7M + 3S 0M
Jacobian 14M + 5S 4M + 5S 1M
López-Dahab 13M + 4S 3M + 5S 1M

Table 2.2: Elliptic curve costs for various coordinate systems.

algorithm AddAndDouble(n ∈ N, P ∈ E(F)) return n ⋅ P

1 Q←P∞
2 for i←0 to l − 1 do
3 if ni = 1 then
4 Q← Q + P
5 end
6 P ← 2P

7 end
8 return Q

Algorithm 2.11: Elliptic curve add-and-double scalar multiplication algorithm.

b is given by the summation:

n =
l−1

∑
i=0

nib
i, ∣ni∣ < b.

A signed-digit representation where the radix is 2 is called a signed-binary digit representation.
In this case ni ∈ {−1,0,1}.

Definition (NAF). A signed-digit representation is in Non-Adjacent Form (NAF) if ni ⋅ni+1 = 0,
for all i ≥ 0. This form is denoted by (nl−1, . . . , n0 )NAF .

Example. A signed-binary digit representation of 478 is (1,0,−1,1,1,0,0,−1,1,0 ) and its unique
NAF is (1,0,0,0,−1,0,0,0,−1,0 )NAF = 29 − 25 − 21 = 512 − 32 − 2 = 578.

Computing the NAF representation of an integer can be performed by using the Algorithm 2.12.
Its running time is linear with respect to the bit length of the input integer n.

algorithm ComputeNAF(n = (0,0, nl−2, . . . , n0 )2) return the NAF of n

1 c0 ← 0
2 for i← 0 to l − 1 do
3 ci+1 ← ⌊(ci + ni + ni+1)/2⌋
4 n′i ← ci + ni − 2ci+1
5 end
6 return (n′l−1, . . . , n′0 )NAF

Algorithm 2.12: NAF computation algorithm.

Algorithm 2.13 shows the add-and-double procedure modified to use the NAF representation.
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algorithm NAFMultiply(n ∈ N, P ∈ E(F)) return n ⋅ P

1 (nl−1, . . . , n0 )NAF = ComputeNAF(n)
2 Q←P∞
3 for i← l − 1 to 0 do
4 Q←2Q
5 if ni = 1 then
6 Q← Q + P
7 else if ni = −1 then
8 Q←Q − P
9 end

10 end
11 return Q

Algorithm 2.13: Elliptic curve NAF-based scalar multiplication algorithm.

Remark. The NAF of an integer n on l bits is unique, its Hamming weight is minimal among all
the signed-digit representations of n and its average value is l/3.

The Algorithm 2.13 in average computes l/3 additions/subtractions w.r.t. to the l/2 additions
of the Algorithm 2.11. The idea behind the NAF can be extended using a radix greater than 2,
allowing an ad-hoc method to be faster.

Definition (NAFw). A width-w NAF (NAFw) of a positive integer n is a signed-digit represen-
tation of n where each ni is zero or odd, ∣ni∣ < 2w−1 and among any w consecutive coefficients at
most one is zero. This form is denoted by (nl−1, . . . , n0 )NAFw

.

Similarly to a value’s NAF, the NAFw is also unique and the Algorithm 2.14 can compute it.

algorithm ComputeNAFw(n = (0,0, nl−2, . . . , n0 )2) return the NAFw of n

1 i←0
2 while k ≠ 0 do
3 if n[0] = 1 then
4 n′i←nmods 2w

5 n←n − n′i
6 else
7 n′i←0
8 end
9 n←n≫1

10 i← i + 1

11 end
12 return (n′l−1, . . . , n′0 )NAFw

Algorithm 2.14: NAFw computation algorithm.

In Algorithm 2.14, the mods operator performs a signed modular reduction defined as:

nmods 2w =
⎧⎪⎪⎨⎪⎪⎩

(n mod 2w) − 2w if n mod 2w ≥ 2w−1

n mod 2w otherwise.

The scalar multiplication method based on the NAFw representation is shown in Algorithm 2.15.
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algorithm NAFwMultiply(n ∈ N, P ∈ E(F)) return n ⋅ P

1 (nl−1, . . . , n0 )NAF = ComputeNAFw(n)
2 compute Pi = i ⋅ P for all i ∈ {1,3,5, . . . ,2w−1 − 1}
3 Q←P∞
4 for i← l − 1 to 0 do
5 Q←2Q
6 if ni > 0 then
7 Q← Q + Pni

8 else if ni < 0 then
9 Q←Q − P−ni

10 end

11 end
12 return Q

Algorithm 2.15: Elliptic curve NAFw-based scalar multiplication algorithm.

Remark. The NAFw of an integer n on l bits is unique and its average Hamming weight is l/(w+1).

The NAFwMultiply computes less and less additions and subtractions as the NAFw width
w is increased. However, if w is too large, the initial pre-computation phase, where the table
Pi is calculated, starts to dominate the running time and can significantly slow-down the whole
procedure.

Table 2.3 lists the average complexity costs of the aforementioned multiplication algorithms.

algorithm average cost with an l bit length integer

AddAndDouble l
2
A + lD

NAFMultiply l
3
A + lD

NAFwMultiply (2w−2 + l
w+1

− 1)A + (l + 1)D

Table 2.3: Elliptic curve costs for various scalar multiplication algorithms.

2.2.3 ECDH

If a scalar multiplication algorithm is available, the ECDH implementation is trivial.

In order to establish a shared secret via the ECDH protocol (Figure 2.3), each party must
perform two main phases:

1. a public key generation phase, where given a random integer nA (or nB), the value RA = nA ⋅G
(or RB = nB ⋅G) is computed;

2. derive the secret point by computing K = nA ⋅RB (or K = nB ⋅RA).

If we exclude the random data generation, the whole protocol reduces itself to calculating
only two scalar multiplications, so that the algorithms presented in Section 2.2.2 can be directly
applied.
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2.2.4 Summary of decisions

In order to achieve the fastest scalar multiplication a series of decisions must be taken. They are
briefly summarized in Figure 2.5

Reduce

Add

Comb Karatsuba WindowMultiply

PrecomputedSquare WindowSquare

BEA DCEA EEA

a mod b

a + b

a ⋅ b

a2

a−1

affine projective Jacobian López-Dahabcoordinates

AddAndDouble NAFMultiply NAFwMultiplyn ⋅ P

Figure 2.5: Algorithm choices for the scalar multiplication implementation.

First, the field operation algorithms must be selected, one for each of the five base operations
(modular reduction, addition, multiplication, squaring and inversion/division). Some algorithms
such as the Comb are window-based, so a proper window width must be also picked. Second,
the best coordinate system for the curve base operations (point addition, doubling and negation)
should be chosen. It is usually the López-Dahab system. Finally, a proper algorithm for the scalar
multiplication must be selected.

Note that all these choices depend by the field structure, the curve parameters, the hardware
platform features and the algorithm implementations. Changing even only one of these factors
might require a new search for the optimal suite of algorithms from scratch.
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Chapter 3

Implicit computational complexity

The mathematics is not there till we put
it there.

The Philosophy of Physical Science
Sir Arthur Eddington

Mathematical logic families usually focus on formal proofs, that is their goal is to prove that
some property holds or not. Algorithms, on the other hand, focus on computational mechanisms,
by showing the processes needed to compute a value. In the 1930s Haskell Brooks Curry and
later William Alvin Howard in the 1960s, started to note a number of equivalences between some
kind of logical families and programming languages. This led to the so-called Curry-Howard
correspondence [100], stating that some proof systems and programming languages are structurally
the same. In other words, proving something in a certain logic family is equivalent to write an
algorithm with a particular programming language and vice-versa.

Several interesting properties can be proved by applying the Curry-Howard correspondence to a
program. Remarkably, inferring the computational complexity class of an algorithm is one of these.
The branch of Implicit Computational Complexity (ICC) is interested in proving the complexity
of some algorithm without an explicit reference to a machine model and to cost bounds. In this
context, there is a logic family, known as Dual Light Affine Logic (DLAL), that offers a peculiar
property: any algorithm translatable in DLAL has FPTime complexity. This is due to the fact
that this logic system does not have the expressivity to represent non-FPTime algorithms.

All the ECC algorithms have PTime complexity (except the ECDLP-solving ones), so they can
be rewritten in DLAL form [101, 18, 19]. The DLAL version of an algorithm might suggest how
to better reorganize its operations and data structures, thus potentially leading to a restructured
algorithm with better performance.

This chapter is split into two sections. The first one gives a brief, not too formal background
behind DLAL. The second one is the core of this chapter and describes how DCEA (Algorithm 2.9)
was developed by introducing the DLAL version of BEA (Algorithm 2.8), since DCEA is basically
the functional BEA translated into an imperative language.

The content of this chapter is based on the following sources:

� Torben Braüner. ≪Introduction to Linear Logic≫. 1996. url: http://www.brics.dk/LS/96/
6/BRICS-LS-96-6.pdf (visited on 03/26/2016);

� Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and types. Cambridge University
Press, 1989. isbn: 0-521-37181-3;
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� Patrick Baillot and Kazushige Teruib. ≪Light types for polynomial time computation in
lambda calculus≫. In: Information and Computation 207 (1 2008), pp. 41–62. doi: 10.1016/
j.ic.2008.08.005;

� Emanuele Cesena, Marco Pedicini, and Luca Roversi. ≪Typing a Core Binary Field Arith-
metic in a Light Logic≫. In: FOPARA 2011, proceedings of the 2nd International Workshop
on Foundational and Practical Aspects of Resource Analysis. Madrid (Spain), 2011. doi:
10.1007/978-3-642-32495-6_2;

� Daniele Canavese et al. ≪Can a Light Typing Discipline Be Compatible with an Efficient
Implementation of Finite Fields Inversion?≫ In: FOPARA 2013, proceedings of the 3rd In-
ternational Workshop on Foundational and Practical Aspects of Resource Analysis. Bertinoro
(Italy), 2014. doi: 10.1007/978-3-319-12466-7_3;

� Daniele Canavese et al. ≪Light combinators for finite fields arithmetic≫. In: Science of
Computer Programming 111 (3 2015), pp. 365–394. doi: 10.1016/j.scico.2015.04.001.

3.1 Logic background

This section gradually builds the mathematical background needed to comprehend DLAL starting
from the basic notion of the classical logic. For the sake of brevity, all the inference and proof rules
are omitted in the following paragraphs, but they are available in Appendix A.

From now on, the meta-variables consisting of an upper Latin letter (e.g. X and Y ) range over
formulas, while the meta-variables denoted with an upper Greek letter (e.g. Γ and ∆) range over
list of formulas.

The notation Γ⊢∆ indicates a sequent, that is a generalization of an implication. Its meaning
is that if all the formulas in Γ are true, then at least one formula in ∆ hold. The parameters
of the sequent operator ⊢ are known as contexts (Γ and ∆ in this case). Every term in the left-
hand context is known as an antecedent, while the terms in the right-hand side context are called
succedents or consequents. For instance, ⊢B means that B is true and A1,A2 ⊢B means that
A1 ∧A2⇒B.

3.1.1 Classical logic

The formulas of the classical logic can be defined via the BNF rule:

s ::= “0” | “1” | s “∧” s | s “∨” s | s “⇒” s.

Where ∧, ∨ and ⇒ are the usual logical and, or and implication operators. The negation ¬X
does not appear in the list since it can be defined as X⇒0.

The proof rules for the CL are listed in Appendix A.1.

3.1.2 Intuitionistic logic

The Intuitionistic Logic (IL) is very close the classical one. The main difference is that the IL
is based on the notion of constructive proof. CL is concerned about the existence of a particular
mathematical object, while IL is interested in determining how to build it. For instance, the
expression ∃x ∶ x mod 2 = 0 is true in CL if it can be inferred somehow that at least one even
number exists, while it is true in IL only if a method for finding at least one even number is found.

The formulas of the IL can be constructed exactly with the same BNF rule of the CL. The
proof rules are however slightly different and are shown in Appendix A.2.
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An interesting interpretation of the IL is the so-called Brouwer-Heyting-Kolmogorov functional
interpretation [102], where the formulas are interpreted by means of their proofs. That is:

� X ∨Y is considered true if at least one of the terms X or Y is true and there is a method by
which it is possible to find out which holds;

� X ∧Y is considered true if both X and Y are true;

� ¬X is considered true if the proof of X leads to absurdity;

� X⇒Y is considered true if there exists a method by which a proof of Y can be inferred from
the proof of X.

Since IL poses very strict constraints, several classical rules are abolished or modified. For
instance, in the general case, X ∨(¬X) holds in CL, but not in IL since there is no general method
of finding, for any given X, whether X or ¬X is true.

3.1.3 Linear logic

The Linear Logic (LL) is a refinement of both CL and IL, which takes ideas from both the families.
In CL (and also in IL, but with a slightly different semantic), X⇒Y means that whenever X

is true, then also Y holds, but X still holds. In real worlds scenarios, this might not be always
the case since the implication is ‘causal’. A causal implication can not be executed an indefinitely
number of times, since the premises are modified after their use. In physics, the modification of a
premise is known as reaction. For instance, the phrase ‘X sells an apple to Y ⇒ Y gets an apple’
can be executed only if X has still some apples. This can be modeled in LL, but not in CL or IL.

The LL formulas can be described by means of the syntactical rule:

s ::= “0” | “1” | “⊺”| “�”| s “⊗” s | s “`” s | s “&” s | s “⊕” s | s “⊸” s | “!”s | “?”s.

This logic family introduces several new unique operators that can be interpreted as working
on resources instead on truth values, that is:

� the X ⊗Y and X&Y expressions respectively denote the multiplicative conjunction and
additive conjunction. In both the cases it means that X and Y are available, but in the first
case both X and Y will be consumed, while in the latter only one will be used.

� the X ⊕Y and X`Y instead denote the multiplicative disjunction and additive disjunction.
Their meaning is that at least one resource between X and Y is available, but in the first
case both the resources are used, while only one is consumed in the latter.

� the X⊸Y is the linear implication. It has a causal interpretation and it expresses that when
X is available, it is consumed and Y is produced.

� the !X expresses the of course operator (also known as bang operator). Intuitively it means
that the resource X is available an infinite number of times.

� the ?X formula uses the why not operator. It specifies that the resource X is available a
finite number of times.

The values 0, 1, ⊺ and � are the identity elements respectively for ⊕, ⊗, & and `.
The LL allows to express several intuitionistic rules. For instance, X⇒Y becomes !X⊸Y ,

that is X implies Y when Y is caused by some interaction of X.
The inference rules for the linear logic are reported in Appendix A.3.
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3.1.4 λ-calculus

The vast majority of the modern programming languages follow the imperative programming
paradigm (e.g., C, Java, but also HRL and aXiom). These languages specify what must be done,
step by step, essentially modeling how to change the program’s states. In contrast, declarative
programming languages focus on what the program should accomplish, without explicitly specify-
ing how to do it. Functional programming is a particular kind of declarative programming where
the computation of a value is treated as the evaluation of a mathematical function. Some modern
languages implements this idea (e.g. Haskell and ML).

The λ-calculus was introduced by Alonzo Church and it is the abstract mathematical represen-
tation of the functional programming languages. It was shown that it is Turing-complete [105], so
that theoretically any algorithm can be written with it.

Each term in a λ-calculus expression is known as a λ-term. There exists three kind of λ-terms:

� variables;

� λ-abstractions denoted as λx.Y , where x is a variable and Y a λ-term;

� λ-applications denoted by XY , where X and Y are λ-terms.

A λ-abstraction models an anonymous function with a single input parameter. For instance,
λx.(2x) is the λ-calculus equivalent of the function f(x) = 2x and λx.(λy.(x+y)) is the equivalent
of f(x, y) = x + y.

A λ-application instead represents the instantiation of a λ-abstraction with a particular input.
For instance, (λx.(2x))3 = 6 since it means f(3) = 2 ⋅ 3 = 6.

The λ-calculus might be typed or untyped. In a typed λ-calculus, each λ-term is tagged with
a specific type and, from now on, only typed systems will be described. Typed systems are much
complex than their untyped counterparts, but they offer several remarkable relationships with the
programming languages world.

A relatively simple, yet not trivial, type system is the Simply Typed λ-Calculus (STLC),
denoted by the symbol λ→. More complex typed systems can be created by extending it.

If τ indicates any basic type, then the following BNF rule can be used to describe the types of
a λ→-term:

t ::= τ | t “⇒”t .

If c indicate any constant and x any variable, a λ→-term can be defined by the rule:

s ::= c | x | s s | “λ”x “:” t “.” s.

With respect to the untyped λ-calculus, the λ→-applications are tagged with a type. For
instance, λx ∶ t.(2x) can be used only when the variable x has type t.

In a sequent, the notation x ∶ X indicates a typed context, that is a variable x paired with a
type X. For instance the sequent x1 ∶ X1 ⊢x2 ∶ X2 means that if x1 has type X1 then x2 has type
X2. This allows to express inference rules for the types.

The following rules can be used to infer the types of a term:

x ∶ T ∈ Γ
var

Γ⊢x ∶ T
Γ⊢X ∶ (T1⇒T2) Γ⊢Y ∶ T1 app

Γ⊢XY ∶ T2
Γ, x ∶ T1 ⊢Y ∶ T2 abs.

Γ⊢(λx ∶ T1.Y ) ∶ (T1⇒T2)

In other words:
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� the rule var states that if we know that the variable x has type T in the context Γ, then we
deduce that x has always type T ;

� the rule app states that if X has type T1⇒T2 and Y has type T1, then the application XY
has type T2;

� the rule abs states that if the variable x has type T1 and Y has type T2, then λx ∶ T1.Y has
type T1⇒T2.

Basically, if the proof of a λ→ program can be demonstrated, then the program is type-correct.
For instance, let suppose to have a λ→ program where:

� there are only two basic types: int (the integers) and bool (the booleans);

� a boolean variable can assume the values true and false;

� an integer variable can assume any natural number N.

Let consider the program:

((λx ∶ int.(λy ∶ bool.x))3)false.

By performing the substitution in x and then in y, it becomes (λy ∶ bool.3)false and finally only
3. The result type is obviously an int, since this program map the function f(x, y) = x where x is an
integer and y a boolean. Formally, the goal is to prove that ⊢((λx ∶ int.(λy ∶ bool.x))3)false ∶ int.
This can be accomplished via the following proof tree:

⊢x ∶ int ⊢ y ∶ bool
var

x ∶ int, y ∶ bool⊢x ∶ int
abs

x ∶ int⊢(λy ∶ bool.x) ∶ bool⇒ int
abs ⊢λx ∶ int.(λy ∶ bool.x) ∶ int⇒ bool⇒ int ⊢3 ∶ int
app ⊢(λx ∶ int.(λy ∶ bool.x))3 ∶ bool⇒ int ⊢ false ∶ bool

app .⊢((λx ∶ int.(λy ∶ bool.x))3)false ∶ int

An interesting fact about the traditional functional programming in general is that there are
no side effects1 involved. This allows to represent in a very elegant and simple way proofs, but it
has a number of drawbacks:

� interactions with the real world need side effects (e.g. I/O from files, streams and sockets);

� directly accessing an array cell also needs side effects;

� iteration cannot be done in the classical λ-calculus since requires side effects, but it can be
simulated through recursion.

To mitigate these issues, most of the modern functional programming languages supports some
form of side effects (e.g. Haskell and Scheme).

There are a number of Curry-Howard correspondences between several typed λ-calculi and
some logic families. For instance, the λ→ corresponds to a fragment of IL known as minimal logic.

1In this context, a side effect is a change in a program state that does not depend on a function input parameters.
A function without side effects called twice with the same parameters will perform the same tasks twice, while a
function with some side effects can perform different jobs even if executed with the same input arguments.
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3.1.5 Dual light affine logic

Dual Light Affine Logic (DLAL) is a typed λ-calculus system that is a simplification of LL proposed
by Baillot and Teruib [104] in 2008. The types in DLAL can be expressed by means of the BNF
rule:

t ::= τ | t “⊸”t | t “⇒”t | “∀”τ “.” t | “§”t .

Where τ represent any basic type. The linear implication ⊸ has the same semantic as in LL,
while the logical implication ⇒ is intuitionistic. The of course ! and why not ? operators are
replaced by the neutral operator § (also known as the paragraph operator). Intuitively, a §-rule
may use multiple occurrences of its argument without detailing if the number of occurrences is
finite or not.

The proof rules for DLAL are presented in Appendix A.4.
By the Curry-Howard correspondence, the typeability proofs in DLAL represents a program.

In addition, it can be shown that any program in DLAL has FPTime complexity. Non-FPTime
algorithms cannot be expressed in DLAL since it lacks the semantic power to do so. That means
that all the ECC algorithms listed in Chapter 2 can, theoretically, be represented as λ-terms in
DLAL since they model a function f ∶ F∗2 ↦ F∗2.

3.1.6 Typeable functional assembly

The Typeable Functional Assembly (TFA) logic family was introduced by Cesena, Pedicini, and
Roversi [101] in 2011. TFA is a slight variant of DLAL, introduced to simplify the use of several
programming patterns that are quite common in the binary field algorithms. In general, λ-terms
in TFA that work on bits and array of bits recall a style similar to programming a Turing machine.

The types in TFA can be expressed by means of the same formula of DLAL. The only difference
is in the proof rules, available in Appendix A.5, which simplifies the typing in this logic family
w.r.t. DLAL.

3.2 Multiplicative inversion in TFA

One of the multiplicative inversion that are implemented in this dissertation’s companion project is
DCEA. The basic ideas on which it is built are derived from the translation of BEA (Algorithm 2.8)
in TFA. This section starts by introducing how the Binary Euclidean algorithm can be rewritten
as a purely functional λ-term and concludes with the description of DCEA.

Only the most relevant parts of the λ-terms are presented. A more complete description is
available in ≪Can a Light Typing Discipline Be Compatible with an Efficient Implementation of
Finite Fields Inversion?≫ [18] and ≪Light combinators for finite fields arithmetic≫ [19].

3.2.1 Data representations

Booleans (i.e. bits) in λ-calculus can be represented via the so-called Church booleans, that is:

False = 0 = λx.λy.x
True = 1 = λx.λy.y

In the following sections, for the sake of brevity, the usual Arabic number notation will be used
instead of writing the full λ-term of a Church boolean.
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Tuples (or lists) can be modeled recursively by:

∅ = λf.λx.x
(a0 ) = λf.λx.(f a0 x)

(a1, a0 ) = λf.λx.(f a1 (f a0 x))
⋮

(an−1, . . . , a0 ) = λf.λx.(f an−1 (f an−2 (f an−3 (. . .
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n times f

x)))).

As before, by abuse of notation, the representation (an−1, . . . , a0 ) will be used to indicate the
λ-term derived from the normal tuple definition.

A Church word is a tuple of bits (i.e. a bit vector) written as a λ-term. For instance, the tuple
(1,0,1,1 )2 can be modeled as:

λf.λx.(f 1 (f 0 (f 1 (f 1 x)))).

In this context, each element of a Church word (a bit) can have three values: 0, 1 and �. The
bottom value � simplifies the programming of some functions. By convention, the leftmost bit in
a Church word is the MSB and the rightmost one is the LSB.

A bit matrix is a tuple of Church words, hence its content can be specified row by row. Similarly,
the notation ⟨an−1, . . . ,0⟩ will be used do denote a set of threaded words, that is a bit matrix where
the columns contains the values specified in the tuples an−1, . . . ,0.

3.2.2 Basic operations

The BEA essentially need to perform two basic bit operations: the exclusive or and the right shift
of 1 position.

The exclusive or is the simplest one and the bit-to-bit version can be described by the λ-term
Xor defined as:

Not = λx.λy.λz.(x z y)
Xor = λx.λy.(x (Not y) y).

For example:

Xor 0 1 = (λx.λy.(x (Not y) y)) 0 1 =
= 0 (Not 1) 1 =
= 0 ((λx.λy.λz.(x z y)) 1) 1 =
= 0 ((λy.λz.(1 z y)) 1) 1 =
= 0 ((λy.λz.y) 1) 1 =
= 0 1 1 =
= 1.

39



3 – Implicit computational complexity

In λ-calculus, a tuple can be recursively defined as empty or consisting of its first element
(called the head) and another list (called the tail). By recursively splitting a list into heads and
tails, it can be preprocessed element by element. For instance, to extract the head and the tail of
a tuple, the following functions can be used:

Head = λx.(x True) retrieves the head of the tuple x

Tail = λx.(x False) retrieves the tail of the list x.

The bitwise exclusive or can be obtained by means of the Map[F ] meta-function that applies
a function F to all the elements of a list. Its code is not listed here since it is well known in the
current literature [103].

The right shift of 1 position is more complex and in this case is performed on an entire bit
matrix of threaded words. One requirement is that only some columns must be shifted, while some
others must remain unaffected. The core idea is to append a new row of zeros at the end, reverse
vertically the matrix via to the wRev function [18, 103], delete the last row and reverse the matrix
again. This has the effect to right shift all the columns, so in order to avoid the modification of
a certain threaded word a slightly different technique must be used. An example of the actual
approach is sketched in Figure 3.1. Note that performing a right shift, in this context, means
shifting a column’s content upward.

0 0 1

1 0 1

0 0 0

1 0 1

⎛
⎜⎜⎜⎜⎜
⎝

⎞
⎟⎟⎟⎟⎟
⎠

a a′ b

(a) Initial setup.

0 0 1

0 1 1

1 0 0

0 1 1

1 0 0

⎛
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⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

a a′ b

(b) Extended matrix.
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1 0 0

0 1 1
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⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

a a′ b

(c) Reversed matrix.

0 1 1

1 0 0

0 1 1

1 0 0

⎛
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⎝

⎞
⎟⎟⎟⎟⎟
⎠

a a′ b

(d) Shifted matrix.

Figure 3.1: Example of functional right shift.

Let suppose that the matrix has three columns and four rows (Figure 3.1a). The first column
a must not be affected by the right shift, the second column a′ is used as a support for ‘canceling’
the effect of the matrix right shift on a and the third column b must be shifted. It is important
to observe that, due to the λ-calculus constraints, the matrix can be iterated only in a particular
direction. Each step effectively receives an input matrix and creates an output matrix. The
notations ain and aout respectively denote the column a extracted from the input or output matrix.
To perform the right shift, the following steps are then executed:

1≫. the output matrix is extended by adding one new row at the end, then a′out← (ain,0 ),
aout← (0, the first four rows of a′out ) and bout← ( bin,0 ) (see Figure 3.1b);

2≫. the matrix is reversed vertically and the last row is deleted (see Figure 3.1c);

3≫. the matrix is reversed vertically again, thus obtaining the final result (see Figure 3.1d). Note
that the a column is unchanged while b is correctly shifted (at the beginning it was (1,0,1,1 )2
and at the end is (0,1,0,1 )2).
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3.2.3 Functional BEA

If the modulus of the binary field is m = (mn−1, . . . ,m0 ), then the main λ-term of BEA in TFA
can be written as:

wInv =λu.(wProj(d
(λw.wRevInit(BkwV st(wRev(FwdV st tw)))))

(MapThread[λu.λv.λg1.λg2.⟨u, v, g1, g2,m, stop, b0, b1, v′, g′2,m′⟩]
u

m

(0, . . . ,0,1 )
(0, . . . ,0 )
m

(0, . . . ,0 )
(�, . . . ,� )
(�, . . . ,� )
(0, . . . ,0 )
(0, . . . ,0 )
(0, . . . ,0 ))).

(3.1)

The λ-term wInv make use of the same variables u, v, g1 and g2 used in Algorithm 2.8. It is
a function that works on a polynomial a ∈ F2n and reduces to its multiplicative inverse, so that
wInv a = a−1.

The imperative version of BEA works by using four bit vectors u, v, g1 and g2. Its functional
counterpart wInv is more complex and works on a bit matrix consisting of eleven columns whose
initial setup is:

λf.λx.(f (u0, m0, 1, 0, m0, 0, �, �, 0, 0, 0)
(f (u1, m1, 0, 0, m1, 0, �, �, 0, 0, 0)
(f (u2, m2, 0, 0, m2, 0, �, �, 0, 0, 0)
(f (u3, m3, 0, 0, m3, 0, �, �, 0, 0, 0)

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
x . . . )))).

This matrix is represented by the set of threaded words:

⟨u, v, g1, g2,m, stop, b0, b1, v′, g′2,m′⟩.

From left to right, the columns are:

� u, v, g1 and g2, representing the same named variable in the classical BEA;

� m, that is the field modulus;

� stop, used to indicate that the multiplicative inverse has been found (or not);

� b0 and b1, specify a sort of state, essentially containing the result of the checks if u[0] ?= 0

and g1[0] ?= 0;
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� v′, g′2 and m′, that are three support variables for ‘invalidating’ the global right shift on v,
g2 and m, so that only u and g1 are actually changed.

The MapThread meta-function is used to build the initial matrix and this setup phase is quite
clear in Equation 3.1.

In an imperative language exiting from a loop as soon as required is often trivial (e.g. via the
break instruction in C), but in TFA this can not be done so easily. The value d in Equation 3.1
amounts to n2, that is the square of the field F2n ’s degree. It represents the maximum number
of passes that the functional term must perform to achieve its job. In other words, wInv always
executes d = n2 iterations, even if fewer steps can be used to compute the inverse.

The basic idea of wInv is to work on the threaded words simulating the iteration through
recursion. At each pass the following tasks are executed:

1. the FwdV st function updates the threaded words performing a forward visit, if needed;

2. the wRev function reverses the matrix from top to bottom (a sort of ‘vertical’ transposition);

3. the BkwV st function updates the threaded words performing a backward visit (since the
matrix is now reversed), if needed;

4. the wRevInit function works as the wRev, but in addition reinitializes some bits in the
matrix.

During a forward visit, wInv accesses the columns in the matrix iterating from the LSBs bit
to the MSBs, and vice-versa during a backward visit.

In a forward visit, the FwdV st function essentially performs one of the following mutually
exclusive steps:

1↓. if stop[0] = 1 then FwdV st does nothing since the algorithm has already computed the
inverse;

2↓. if u[0] = 0∧ g1[0] = 0, the step 1≫ is performed in order to avoid changes to the columns u,
g1 and m;

3↓. if u[0] = 0∧ g1[0] = 1, the column m is added to the column g1 (via an exclusive or) and the
step 1≫ is executed as before;

4↓. if u = 1 the inverse has been found and stop[n − 1] becomes 1.

After a forward visit, the matrix is reversed by wRev and a backward visit begins by executing
one of the following mutually exclusive steps:

1↑. if stop[0] = 1 then BkwV st does nothing since the algorithm has already computed the
inverse;

2↑. if the steps 2↓ or 3↓ were executed (this information is store in the columns b0 and b1), then
the last row of the matrix is erased, effectively performing the step 2≫;

3↑. if u ≠ 1∧u[0] = 1, it sets u[i] with Xor u[i] v[i] and g1[i] with Xor g1[i] g2[i] until it
finds the least j ≥ 0 such that v[j] = 1 and u[j] = 0, thus performing the find last set
operations in the traditional BEA. If such j exists it sets v[i] with Xor v[i] u[i] and g2[i]
with Xor g2[i] g1[i].
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After that the matrix is reversed via the wRevInit and another pass might begin.
At the end of all the d2 iterations, the wProj function is used to extract the column g1 from

the threaded words, since it will contain the multiplicative inverse.
Note that writing wInv is not enough to prove that it is in TFA. Its type must also deducible

from the proof rules of TFA. The discussion of the wInv typeability is omitted, but can be found
in ≪Light combinators for finite fields arithmetic≫ [19].

3.2.4 DCEA

The DLAL Certified Euclidean Algorithm is an imperative version of the λ-term wInv (Equa-
tion 3.1) that leverages its core ideas. Figure 3.2 shows the BEA and the DCEA side by side
emphasizing the similarities between the two algorithms.

1 u←a
2 v←m
3 g1←1
4 g2←0
5 while true do
6 while u[0] = 0 do
7 u←u≫1
8 if g1[0] = 0 then
9 g1← g1≫1

10 else
11 g1←(g1⊕m)≫1
12 end

13 end
14 if u = 1 then
15 return g1
16 end
17 if fls(u) < fls(v) then
18 u↔ v
19 g1↔ g2
20 end
21 u←u⊕ v
22 g1← g1⊕ g2
23 end

(a) BEA.

1 u←a
2 v←m
3 g1←1
4 g2←0
5 direction← backward
6 while true do
7 if direction = backward then
8 if u[0] = 0 and g1[0] = 1 then
9 g1← g1⊕m

10 end
11 direction← forward
12 else
13 if u[0] = 0 then
14 u←u≫1
15 g1← g1≫1

16 else
17 if fls(u) < fls(v) then
18 u↔ v
19 g1↔ g2
20 end
21 u←u⊕ v
22 g1← g1⊕ g2
23 end
24 direction← backward
25 end
26 if u = 1 then
27 return g1
28 end

29 end

(b) DCEA.

Figure 3.2: BEA and DCEA in comparison.

The main differences are that the DCEA includes only one loop, while the BEA has two nested
iterations, and a slightly different order of operations. In the pseudo-code of Figure 3.2b the
direction variable is used to emulate the forward and backward visits in wInv. The right shift
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is much easier to do in an imperative environment, so that it is completely performed during the
forward visit. Note that the check on the direction variable can be safely removed, since each loop
iteration executes a forward and a backward visit.

It is easy to prove that the two algorithms are equivalent and have the same complexity. Never-
theless, a different ordering and categorization of the instructions can allow a compiler to perform
different types of code improvements, potentially generating a faster implementation. Chapter 7
details the performance of all the multiplication inversion algorithms described in Chapter 2, in-
cluding DCEA.
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Chapter 4

Architecture

Some people think technology has the
answers.

Kevin Mitnick

The framework (named CryptoStudio) is an extensible software system that can be used to pro-
duce a wide array of optimized cryptographic functions. In spite of its flexibility, this dissertation
focuses solely on generating high speed ECC code.

We can distinguish three main types of users that may want to use it to achieve different goals:

� the end-user is interested only in producing a final library for some platform — he is not
required to know the framework internal structure or to be a cryptography expert;

� the cryptography developer that wants to add new cryptographic algorithms to the system;

� the framework developer whose goal is to add new features to the framework, such as a new
optimization pass to the compiler.

The simplified architecture of the framework is sketched in Figure 4.1.

cryptographic algorithms

cryptographic compiler

source files

performance evaluator

report

library builder

library configuration

final library

Figure 4.1: General architecture of the framework.

From the end-user point-of-view, the whole system can be viewed as a black box that produces
the final optimized library starting from a configuration file, describing its content. The only
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manual action that the user has to do is write the configuration file, while the rest is handled by
the framework. Since these files usually have the same basic structure, some ready-to-use templates
are provided as a commodity. Under the hood, however, the framework internal mechanisms are
handled by three main components: the cryptographic compiler, the performance evaluator and
the library builder.

The cryptographic compiler is by far the most important and complex module of the whole
infrastructure. It is a fully fledged optimizing compiler used to produce a set of source files imple-
menting the chosen cryptographic primitives. The cryptographic compiler translates an algorithm
written in a hardware independent language into an ad-hoc optimized version for a specific math-
ematical structure and processor. Actually the only supported output language is C, but its
structure is flexible enough to easily accommodate other programming languages. It comes with
a stock of already written, and tested, cryptographic algorithms supporting the most common
operations for the binary fields and elliptic curves.

Once the source files have been generated, their are execution times are measured by the means
of a performance evaluator. Its job is to assess the running time of the produced cryptographic
functions with the greatest accuracy possible. This is performed by actually compiling the code,
running it several times and extracting an estimation via a statistical analysis of the results. The
output of this software component is a report stating the function execution times with various
compilation flags, so that also some suitable compilation options can be chosen when producing
the library.

Finally, the library builder is in charge of collecting the outputs of the other two tools and
effectively creating the final cryptographic library. It achieves this goal with a two phase approach.
First, it generates the makefiles and scripts needed to compile the library from scratch. Second, it
uses the evaluation report for picking the best (fastest) implementations from the generated source
files pool. This last step is needed since the same cryptographic primitive can be (frequently)
implemented by a number of algorithms and/or with different execution parameters (e.g. the size
of a sliding window). The performance evaluation step can be skipped if there is only one possible
implementation for each cryptographic primitive.

4.1 Code compilation

The cryptographic compiler tool (named CryptoGen) represents the core component of the frame-
work and its task is to produce a set of highly optimized and specialized source files starting from
an algorithm written in a very high level hardware independent language.

The diagram in Figure 4.2 sketches the main building blocks of the cryptographic compiler.
This component was designed by leveraging several paradigms behind the compiler theory.

From an architectural point-of-view, it can be split in three sub-components that are always exe-
cuted sequentially:

1. the front-end stage is in charge of translating the input algorithm into an intermediate rep-
resentation known as HR, more suitable for the optimization process. In addition, this phase
also performs various lexical, syntactical and semantic checks to ensure that only correct
algorithms are compilable.

2. the middle-end stage is where most of the optimizations take place. Note that since the HR
is hardware independent, these optimizations cannot include some machine specific idioms.
If producing optimized code is not required this phase can be skipped.

3. the back-end stage takes in input the (unoptimized or optimized) HR and produces the final
source files. A back-end implementation can optionally include some additional optimization

46



4 – Architecture

front-end stage

middle-end stage

back-end stage

input source file

front-end coordinator front-ends

HR

HR optimizer HR passes

optimized HR

back-end coordinator back-ends

output source files

Figure 4.2: Architecture of the cryptographic compiler.

passes that may exploit some hardware specific features (e.g. by using special assembler
instructions of the target machine).

This architecture allows a very flexible and modular approach to the compilation process,
allowing to easily switch between front-ends, back-ends and adding new optimization passes.

4.1.1 Front-end stage

The front-end stage main job is to translate an input algorithm into an equivalent HR model,
eventually performing some sanity checks on the input source file.

A front-end coordinator is in charge of selecting the right front-end module in order to perform
the checks and the HR translation. The selection can be actually performed in two different ways:,
by looking at the input source file extension or by forcing the compiler to use a specific front-end
via a special API call.

The output of the front-end stage consists of:

� the list of errors found in the input source file — it is empty if the input code is lexically,
syntactically and semantically correct.

� the list of warnings found in the input source file;

� the HR translation of the input source file. It is blank only if the error list is non-empty.

4.1.2 Middle-end stage

The middle-end stage is in charge of the optimizations. The optimizations are enabled and config-
ured directly in the code by a series of special annotations (Appendix C). This phase is optional,
and, if skipped, the HR will be left untouched and unoptimized.

All the optimization passes can be categorized in two main types:

� the analysis passes are used to perform some kind of inspection on the code. They fill some
data structure in the memory and do not alter the code.
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� the transformation passes are instead used to actually modify the code in order to boost its
performance. A transformation pass can also not modify the code is some constrain is not
matched (e.g. a dead code elimination pass will not remove anything if all the code is live).

All the available passes are described in detail in Chapter 6.
The middle-end stage establishes a partial ordering between the optimizations since a pass may

require that some other passes must be completed before its execution. This is the typical case of
a transformation optimization that relies on the results previously gathered by some analysis pass.
The framework developer only needs to specify these precedence relationships and the compiler will
take care of choosing an appropriate order when performing the middle-end stage optimizations.

Note that, since the HR is machine independent, some code-improving techniques (e.g. use of
assembler instructions) cannot be applied and are hence delegated to the back-end stage.

4.1.3 Back-end stage

The back-end stage is the last step in the code generation chain. It takes the HR, optionally per-
forms some hardware dependent optimizations and produces the final code. In spite of supporting
a multiple back-end system, only the C language one is actually implemented. The Figure 4.3
shows its internal architecture.

HR

C translator C rules

C file header file

Figure 4.3: Architecture of the C back-end.

The C back-end core component is a C translator that iteratively executes a set of translation
rules to produce the final output files, that are a C implementation and header files. The translation
rules can be added via the Eclipse extension paradigm and can be classified in two main categories:

� data type rules are used to translate HR data types into C data types;

� instruction rules are instead used to translate a single HR into one or more C instructions.

Note that each back-end is free to implement any kind of work-flow and the aforementioned
one is only one possible scenario.

4.2 Performance evaluation

In this thesis context, measuring the running time of a code region is important for a least two
reasons. First, as stated before, the time measures are used to discriminate the best algorithm
implementations from the slowest ones. Second, this information can provide the user an interesting
report in order to check how fast is a cryptographic library (e.g. for comparing its performance
against another implementation).

Measuring with great accuracy the execution time of some code is not as easy as it seems,
especially on high-end modern hardware platforms. Several factors can effectively influence the
quality of a measurement, such as:
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� implicit delays induced by the measurement function calls (e.g. due to the call assembler
instruction itself or stack pushes/pops);

� the measurement functions may be called too early or too late (e.g. due to an out-of-order
execution of a CPU core);

� the measured function is temporarily stopped by the operating system (e.g. due to a kernel
preemption or due to an interrupt service routine execution).

Most of these issues can be mitigated, but not completely removed, so that a statistical approach
computed over a set of repeated measures is mandatory to achieve a stable result.

The performance evaluator (named Chronon) is implemented through a plug-in system that
is able to choose the best measurement strategy according to the target hardware platform. Ac-
tually, all the implemented measurement functions make use of the generic template listed in
Algorithm 4.1.

algorithm Measure(a function f) return the execution time of f

1 T ←∅
2 for i←1 to p do
3 start← current time
4 for s times do
5 call f with some random parameters
6 end
7 end← current time
8 T [i]←(end − start)/p
9 end

10 q1← compute the lower quartile of T
11 q3← compute the upper quartile of T
12 foreach t ∈ T do
13 if t /∈ [q1 − θ(q3 − q1), q3 + θ(q3 − q1)] then
14 remove t from T
15 end

16 end
17 return the mean of T

Algorithm 4.1: Generic measurement algorithm.

The algorithm executes the measurement in four consecutive steps:

1. the arithmetic means for a set of p populations containing s samples is computed;

2. the lower and upper quartiles are computer over the p means;

3. the outliers are discarded by using the interquartile range [106] with a sensitivity constant
0 ≤ θ ≤ 1 (the lower the constant the stricter the analysis);

4. the final value is computed as the grand mean of the surviving means.

Currently, the tool supports two functions to acquire the current time:

� the clock_gettime() function for computing the execution time in nanoseconds. This is a
POSIX compliant function available on most of the Linux and BSD modern systems.
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� the rdtsc and rdtscp assembler instructions for estimating the execution time in clock ticks
[107]. These instructions are available on most of the modern AMD64 processors. This
strategy was partially inspired by the SUPERCOP toolkit [108]. If available, this approach
is much more reliable and accurate than the aforementioned one.

4.3 Library building

The library builder (named CodePack) is the component in charge of creating the final library. It
can be though both as a high level front-end of the whole framework for the end-user, but also as
a system orchestrator whose task is executing the other framework components in the right order
with the right parameters.

The builder internal structure is relative simple and straightforward. Its only input is a config-
uration file specifying the cryptographic algorithms that must be included in the final library and
their parameters, if any. Once launched, the tool will parse the configuration file and, by means
of the cryptographic compiler and the performance evaluator tools, will produce the final library.
Its structure was developed with extensibility in mind and is able to handle several programming
languages, compilers and compilation tool-chains via a modular approach, although actually it
handles only the C programming language.

The Figure 4.4 shows a very simple example configuration file (in XML) that will create a library
containing the modular reduction and multiplication for F2163 . Note that the final multiplication
implementation will be selected as the fastest one between two combs (Algorithm 2.3) with a
window width of 3 bit and 4 bit.

The library builder can be used in two different modalities:

� in the on-line mode, it immediately generates and evaluates the code, effectively allowing
the end-user to build a library on-the-fly;

� in the off-line mode, CodePack works in two stages. First, it generates the code and a proper
makefile. Second, the user manually runs the makefile, potentially on a different machine
than the one containing CodePack. This will produce the final library consisting of the fastest
implementations.

In spite of requiring some manual effort, the off-line mode is particularly interesting in two
scenarios. On one hand, when the user needs very accurate measurements, by running the perfor-
mance evaluation in a more stable environment (e.g. with no graphical interface and no services
running in background). On the other hand, it decouples the code generation from the code eval-
uation phase, thus allowing to produce a library for an hardware platform different from the one
running the framework. For instance, the code generation can be performed on a PC while the
final target of the library is a DSP or a micro-controller.

4.4 UI

The framework comes bundled with a complete UI for the Eclipse 4 platform. It consists of:

� some wizards able to guide the user to quickly create a new CryptoStudio project;

� a number of source code editors, one for each supported language (Chapter 5), which fully
support keyword highlighting, auto-completion and on-the-fly validation of the code. The
compiler is automatically invoked when a source file is saved.
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1 <library name="sampleLibrary" xmlns="http://security.polito.it/cryptostudio/codepack/library">
2 <operation>
3 <implementation name="reduce" main="reduce">
4 <unit name="bfReduction">
5 <parameter name="BF_DEGREE_">163</parameter>
6 <parameter name="BF_EXPONENTS_">(7, 6, 3, 0)</parameter>
7 <parameter name="BF_REDUCTION_">reduce</parameter>
8 </unit>
9 </implementation>

10 </operation>
11 <operation>
12 <implementation name="comb3" main="multiply">
13 <unit name="bfMultiplicationComb">
14 <parameter name="BF_DEGREE_">163</parameter>
15 <parameter name="BF_WINDOW_">3</parameter>
16 <parameter name="BF_MULTIPLICATION_">multiply</parameter>
17 </unit>
18 </implementation>
19 <implementation name="comb4" main="multiply">
20 <unit name="bfMultiplicationComb">
21 <parameter name="BF_DEGREE_">163</parameter>
22 <parameter name="BF_WINDOW_">4</parameter>
23 <parameter name="BF_MULTIPLICATION_">multiply</parameter>
24 </unit>
25 </implementation>
26 </operation>
27 </library>

Figure 4.4: A sample library configuration file.

� various menus allowing the user to call both the performance evaluator and the library
builder;

� several views that can be used to debug the compiler passes (e.g. showing the control flow
graph of a function).

The system was developed by leveraging the MVC paradigm, so that the developer can also
make use of the framework programmatically via the API instead of the UI.
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Chapter 5

Languages and representations

Language is the source of
misunderstandings.

Antoine de Saint-Exupery

Being able to model an algorithm with ease is a vital feature of any compilation tool-chain. In
this chapter the supported input languages and their internal representations are discussed.

5.1 Domain specific languages

The current scientific world offers a great variety of languages that can be adopted to specify
with clarity and unambiguity how an algorithm works. Most of the modern general purpose
programming languages can be chosen to describe a cryptographic primitive, however, by making
use of a DSL the developer’s job can be greatly simplified, allowing him to write the code with less
effort and major clarity.

Even if there exists some (few) cryptography oriented DSLs, for instance CAO [17] and Cryptol
[16], two new languages were designed in order to better capture the features offered by the
framework, namely:

� HRL, an assembler-like DSL;

� aXiom, a high level DSL with a built-in syntactic preprocessor.

5.1.1 HRL

HRL is, in a nutshell, the textual representation of the HR used internally by the cryptographic
compiler (Sections 4.1 and 5.2).

It was primarily developed for testing purposes, but, nonetheless, it is a fully fledged program-
ming language and can be used to write very complex algorithms. In spite of lacking several high
level constructs (e.g. for loops), HRL and aXiom offer nearly the same expressive power. If an
algorithm can be implemented in aXiom it can also be written in HRL. Its grammar in BNF form
is given in Appendix B.1.

It is an imperative, procedural, strongly typed and hardware independent programming lan-
guage. It has virtually no syntactic sugar, providing a very restricted instruction set. It has two
main restrictions:
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� it follows the three-address code paradigm [109], that is each HRL instruction can have at
most three operands: one for the output and two for the inputs. This affects the code
writing since the more complex instructions must be break down into simpler statements.
For instance, the expression x← y + z +w can be rewritten as t← y + z and x← t +w.

� Jumps and branches can only be expressed by gotos.

Several modern optimizing compilers make use of similar representations in order to significantly
simplify the code analysis and transformation algorithms, such as GIMPLE [110], one of GCC’s
internal representations.

HRL supports only two basic data types:

� the logical type, that is the boolean type, identified by the logical keyword;

� the relative type, specifying a relative number in Z (a signed integer). They are declared
specifying a range via the syntax [x, y], allowing a variable to hold any integer number in
the range from x to y (bounds included).

Knowing the integer range of a variable is useful for various reasons. First, the compiler can
easily compute how many bits are needed to store a value. Second, the DSL validation process can
perform stricter checks on the input source file, thus reducing the probability of an error. Third,
the optimization process can take advantage of this additional knowledge in order to produce a
faster code. For instance, if a variable x can contain only integers in the [0,10] interval, the
expression if x ≤ 20 then y ← 1 else y ← −1 can be simplified into y ← 1.

The only available type constructor is the tuple constructor that allow to create a vector of
size elements of the same type type via the syntax size of type. The tuple constructor can be used
recursively to produce multi-dimensional matrices (e.g. size1 of size2 of type).

Note that a bit has the type [0, 1] and a bit vector has the type size of [0, 1]. These types
are processed in a special way by the C back-end in order to enhance their performance due to
their wide use in cryptography (Section 6.3.1).

Apart the name, the data type and an optional initial constant value, every variable (and
function parameter) must also specify an I/O direction, indicating the allowed and forbidden
operations on the data. The available directions are ro, wo and rw, used respectively to specify
read-only, write-only and read-and-write variables. Read-only variables are effectively constants
since their value cannot change during the code execution. This information is used both to enforce
several validation checks and for optimization purposes.

Functions can be declared with any number of parameters and can contain an arbitrary list of
operations. The Table 5.1 summarizes all the available instructions, that are:

� the nop instruction that does nothing. It was introduced primarily as a placeholder for labels,
since it simplifies the HR translation phase in the front-ends.

� The goto and the if-goto jump instructions;

� the push and the call instructions used to perform function calls. The push instruction insert
a value into a fictitious call stack and the call operation executes a function by passing all
the data stored in the stack, thus allowing to overcome the three-address code constraint.

� The <- copy instruction. It works on every data type and allows also to clone mono and
multi-dimensional tuples.

� Two special copy instructions that can respectively extract a single element from a tuple and
overwrite a tuple element;
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� two other copy instructions used to shrink or expand bit vectors, respectively the reduce and
extend instructions;

� a conversion operation, the relative instruction, which converts a bit vector into an unsigned
relative;

� the usual operators for manipulating bits (and logicals), which are and, inclusive/exclusive
or, not, left/right shifts and the find last set;

� various operators for working with integers, allowing to perform additions, subtractions,
multiplications, integer divisions, round-up divisions1, modulo reductions and sign negations;

� the traditional six comparison operators able to evaluate equalities, inequalities and less/-
greater than (or equal to) comparisons.

HRL supports also a form of code annotations. Similarly to Java, the annotations are meta-
data that do not alter the semantic of the code, but provide the compiler additional information
so that it can produce better code. All the annotations starts with the : character (semicolon)
and can be applied to the whole source file or to a function. They can be used to achieve different
effects such as to enable an optimization pass or to change some internal compiler parameter. Two
particularly important annotations are the :export and :import ones. The first is used to declare
that a function should be callable from outside of the current compilation unit, while the latter
is used to access an exported function defined in another source file (thus allowing the developer
to split the implementations in several files). The complete list of annotations can be found in
Appendix C.

The Figure 5.1 shows two semantically equivalent code snippets in C and HRL. The imple-
mented algorithm works on a tuple of 79 bits, performs a not and then a right shift of 2 positions.
It clearly shows that the HRL code is much more concise and readable (and thus maintainable)
than its C counterpart, despite being severely limited in its syntactic sugar.

1 void f(uint8_t x[10])
2 {
3 int i;
4

5 /* The "x <- not x". */
6 for (int i = 0; i < 10; ++i)
7 x[i] = ˜x[i];
8 x[9] &= 127;
9 /* The "x <- x >> 2". */

10 for (int i = 0; i < 9; ++i)
11 x[i] = (x[i] >> 2) ˆ
12 (x[i + 1] << 6);
13 x[9] >>= 2;
14 }

(a) Snippet in C.

1 function f
2 x in rw 79 of [0, 1]
3 {
4 x <- not x
5 x <- x >> 2
6 }

(b) Snippet in HRL.

Figure 5.1: Two equivalent snippets, in C and HRL.

1Given two unsigned integers x and y, the round-up division computes the value ⌈x/y⌉, while the integer division
returns ⌊x/y⌋.
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syntax name

nop no operation
goto x unconditional jump
if x goto y conditional jump
push x call stack push
call x function call
x <- y copy
x[y] <- z copy to tuple
x <- y[z] copy from tuple
x <- reduce y tuple reduction
x <- extend y tuple extension
x <- relative y relative conversion
x <- y and z and
x <- y or z inclusive or
x <- y xor z exclusive or
x <- not y not
x <- y << z left shift
x <- y >> z right shift
x <- findlastset y find last set
x <- y + z addition
x <- y - z subtraction
x <- y * z multiplication
x <- y / z integer division
x <- y z round-up division
x <- y mod z modulo reduction
x <- - y negation
x <- y = z equal to
x <- y /= z not equal to
x <- y < z less than
x <- y <= z less than or equal to
x <- y > z greater than
x <- y >= z greater than or equal to

Table 5.1: The instructions available in the HRL language.

5.1.2 aXiom

aXiom is the primary input language of the cryptographic compiler. It was designed to be as close
as possible to the mathematical language typically used to describe algorithms via pseudo-code.

Despite bearing some similarities to HRL, it has far less grammatical constraints and boasts a
number of new powerful constructs. It is an imperative, procedural and strongly typed program-
ming language that supports multi-operand expressions, various types of loop instructions and a
built-in syntactic preprocessor. Its grammar is available in Appendix B.2.

It supports the same data types of HRL (logicals, relatives and tuples), but it offers a number
of useful data type aliases that includes:

� int8, int16, int32, int64 uint8, uint16, uint32 and uint64 for declaring signed or unsigned
integers on 8, 16, 32 and 64 bits;

� int and uint respectively specifying a signed or unsigned integer that can be stored exactly
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on one machine word;

� bit referring to a simple bit.

In addition a special pseudo-constant named wordsize is available and returns the size of a
machine word in bits (usually 8, 16, 32 or 64).

aXiom relaxes the constrains imposed by HRL by removing the three-address code limitation,
so that complex statements can be easier written, such as x <- (y or (0, 1, 1)) << (1 + 2). This
introduces however the necessity to establish a precise order of computation amongst the various
operators. Their precedence in aXiom is the same as in most of the programming languages such
as C, C++ and Java. As usual in the imperative programming languages, the round parenthesis
( and ) can be used to change the calculations’ priorities.

In addition, some special operators are available to further simplify the code development.
They include:

� the size operator returns the number of elements in a tuple or one if applied to a non-tuple
(scalar) type;

� the zeros, ones, one operators create a tuple respectively containing all zeros, all ones and all
zeros except the first element that is one;

� the lowones and highones operators create a tuple respectively containing all zeros except the
lower or higher elements that are ones;

� the tuple operator converts a relative value into a tuple of bits;

� the min and max operators compute the minimum and maximum value between two relative
values;

� the x[y, z] operator is used to perform the tuple slicing, that is it returns the sub-tuple
consisting of the bits extracted from the bit vector x from the y-th position to the z-th
position.

In addition, all the binary operators can be transformed into n-ary variadic operators by using
the do keyword. For instance, the snippet do + (1, 2, 3, 4, 5) is equivalent to 1 + 2 + 3 + 4 + 5.

aXiom supports also a powerful form of operator overloading, allowing the user to redefine
the semantic of the traditional symbolic operators (e.g. + and /), but also to define new named
operators. For instance, the developer can declare the named operator log and use it via the snippet
x <- log(y). A binary operator must be declared as a special function having three parameters (one
write-only for the output and two read-only for the inputs), while a unary operator must have two
arguments (one write-only for the output and one read-only for the input). For instance, the log
operator can be defined as operator log(y in wo uint, x in ro uint)2.

The language does not support directly the goto instruction, which has been replaced by more
developer friendly constructs, that are:

� the usual if and if-else constructs to perform the branches in a structured way;

� the while and do-while loop constructors, working exactly as in C, C++ and Java;

2This behavior is due to the fact that in aXiom (and HRL) the functions do not have an explicit return value
such as in C or Java.
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� the for instruction, which can be used to easily create loops with an integer counter ranging
over a user-specified interval or to iterate over tuples.

When writing a cryptographic algorithm, the need to create hard-coded look-up tables arises
quite frequently. In order to concisely describe this kind of tuples, aXiom supports a powerful
feature known as tuple comprehension that allows the developer to create arrays using a com-
pact math-like representation without explicitly using a loop. For instance, (2 * i | i in [0, 99])
creates the tuple containing the first 100 even numbers since it has the same meaning as the
mathematical expression (2i ∶ ∀i ∈ [0,99] ).

Figure 5.2 shows two equivalent snippets, in C and aXiom, showing this language’s enhanced
compactness and clarity.

1 void f(uint8_t x[10])
2 {
3 int i;
4 int j;
5

6 /* The "for 10". */
7 for (i = 0; i < 10; ++i)
8 {
9 /* The "not x". */

10 for (int j = 0; j < 10; ++j)
11 x[j] = ˜x[j];
12 x[9] &= 127;
13 /* The "(not x) >> 2". */
14 for (int j = 0; j < 9; ++j)
15 x[j] = (x[j] >> 2) ˆ
16 (x[j + 1] << 6);
17 x[9] >>= 2;
18 }
19 }

(a) Snippet in C.

1 function f(x in rw 79 of bit)
2 {
3 for 10
4 x <- (not x) >> 2
5 }

(b) Snippet in aXiom.

Figure 5.2: Two equivalent snippets, in C and aXiom.

Some (a few, actually) programming languages perform a preprocessing phase before the actual
compilation, modifying the source code accordingly to some transformation rules. aXiom imple-
ments a syntactical preprocessor that allows the developer to perform some code manipulation in a
safe way. Note that the C and C++ programming languages include a lexical preprocessor acting
quite differently from the aXiom one. A lexical preprocessor works on tokens and strings, while a
syntactical one is grammar-aware and manipulates abstract syntax trees.

By working at a grammatical level, the aXiom preprocessor is able to perform additional sanity
and type checks that cannot be done relying only on the lexical data. For instance, the expression
4 * M + 1 will evaluate to 12 if M is defined as #define M 2 + 3 in C, while in aXiom will correctly
evaluate to 21 since the preprocessor computes M beforehand. The aXiom preprocessor is invoked
when a construct is prefixed by the special static keyword. Actually only three static constructs
are supported:

� static constants are read-only variables whose value is computed on-the-fly by the preproces-
sor and substituted in the output HR. They are similar to the C symbolic constants declared
through the #define directive.
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� Static ifs are if instructions whose condition is computed on-the-fly during the compilation.
If it is true only the ‘then’ branch is included in the HR, otherwise the ‘else’ branch is included
(if present). Their behavior is similar to the C directives #if and #ifdef.

� Static fors are for loops whose bounds are computable at compile time. During the transla-
tion into HR, they are completely unrolled, allowing a sort of pre-optimization of the code.

The Figure 5.3 shows an aXiom snippet with some static constructs and the output in HRL.
Note that the SIZE constant has been replaced by its value and that the static if and static for
have disappeared.

1 static SIZE in ro uint8 <- 10 * 7 + 9
2

3 function f(x in rw SIZE of bit)
4 {
5 i in ro uint
6

7 static if SIZE mod 2 = 0
8 {
9 for i in [1, 3]

10 x <- x << i
11 }
12 else
13 {
14 for i in [2, 4]
15 x <- x >> i
16 }
17 }

(a) Snippet in aXiom.

1 function f
2 x in rw 79 of bit
3 {
4 i in ro uint
5

6 i <- 2
7 x <- x >> i
8 i <- 3
9 x <- x >> i

10 i <- 4
11 x <- x >> i
12 }

(b) HRL output.

Figure 5.3: An aXiom snippet and its output HRL code.

To further emphasize the expressivity of aXiom, the Figure 5.4 compares the pseudo-code of
the modular reduction algorithm (Algorithm 2.1) with its aXiom counterpart.

1 u←a[0→ n − 1]
2 foreach exponent ei of r(t) do
3 u←u⊕(a≫n)≪ ei
4 end
5 v←u[0→ n − 1]
6 foreach exponent ei of r(t) do
7 v← v⊕(u≫n)≪ ei
8 end
9 return v[0→ n − 1]

(a) Reduction pseudo-code.

1 u <- a and lowones(N, 2 * N)
2 static for e in E
3 u <- u xor ((a >> N) << e)
4

5 v <- u and lowones(N, 2 * N)
6 static for e in E
7 v <- v xor ((u >> N) << e)
8

9 out <- v[0, N]

(b) Reduction aXiom code.

Figure 5.4: The modular reduction algorithm in aXiom.
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5.1.3 Test cases

When developing a new cryptographic algorithm, it is important to make use of an adequate
number of tests to validate its correctness. CryptoGen allows a developer to write a test case
directly in one of its input languages (HRL or aXiom) via the :test function annotation. This
annotation accepts a single parameter that can be success or failure if the function is expected
respectively to succeed or to fail. A test function must declare exactly one write-only logical
parameter that will contain the test result.

This approach allows the developer to quickly build a series of platform-independent test cases
in the same language as the cryptographic algorithm itself.

For instance, Listing 5.1 shows a code snippet with two tests in aXiom.

1 :export
2 function f(out in wo int, in1 in ro int, in2 in ro int)
3 {
4 out <- in1 / in2 + in1 mod in2
5 }
6

7 :test(success)
8 function test1(result in wo logical)
9 {

10 x in rw int
11

12 f(x, 10, 4)
13 result <- x = 4
14 }
15

16 :test(faiilure)
17 function test2(result in wo logical)
18 {
19 x1 in rw int
20 x2 in rw int
21

22 f(x1, 10, 4)
23 f(x2, 4, 10)
24 result <- x1 = x2
25 }

Listing 5.1: Code snippet containing two test cases.

Once a test case is written, it is the CryptoGen back-end’s job to create an output file that
will perform the tests and assess their results. For instance, the C back-end will produce a file
containing a main() function calling all the declared tests and printing the results on the standard
output via a number of printf() calls.

5.2 HR

During the various compilation stages, a compiler frequently constructs a sequence of semantically
equivalent intermediate representations of the source input code.

CryptoGen’s intermediate representation is known as High level intermediate Representation
(HR). It was designed to be simple and very close to the mathematical language. It is the internal
abstract meta-model of HRL (Section 5.1.1) and hence hardware independent. Its UML class
diagram is sketched in Figure 5.5.
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Figure 5.5: UML class diagram of HR.

The root of the meta-model is represented the unit, that is the source file, which contains all
the data needed to describe the full source code. It acts as a container of symbols and it can be
complemented by a number of annotations.

A symbol is a named instance of some kind. The instances can be distinguished in three
categories:

� data instances, which represent global/local variables and function parameters;

� functions themselves;

� labels, which are simply references to a single instruction.

A data instance contains a direction (read-only, write-only or read-and-write) that specifies
what I/O is allowed on its content, a proper data type (e.g. relative number) and an optional
initialization constant value.

A function contains a list of symbols, instructions and annotations. The symbol list specifies
both the function parameters and its local variables. Each instruction instead contains four values:
three operands and a value stating the type of instruction, since HR follows the three-address code
paradigm. An operand can be a symbol or a constant value. The supported instruction types are
listed in Table 5.1.
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Chapter 6

Optimizations

If you can’t make it good, at least make it
look good.

Bill Gates

One of the many advantages that a compiler offers is the ability to automatically produce faster
(and/or smaller) code w.r.t. to a manually written one. This feature is particularly tempting when
the source code is vast and complex, since a manual optimization process is time consuming and
error prone. CryptoGen leverages several optimization techniques taken from the compiler theory
field for aiding the developer to produce better code in a simpler way.

In this context, the term end-compiler denotes a generic compiler used to compile the code pro-
duced by CryptoGen (e.g. GCC). In spite of the modern end-compilers’ complexity and smartness,
CryptoGen is able to perform a number of optimizations than cannot be performed otherwise. This
is mainly due to a lack of semantics in lower level languages such as C, C++ or assembler. When
translating some source code written in a high level programming language into a lower level one,
often some meta-data is lost, hindering the ability of an optimizer to perform its job. For instance,
all the variables in the C programming language are typed, but their assembler counterpart is
not. That means that all the data type information is lost, thus denying the ability to perform
some data type specific optimizations. CryptoGen, by operating at a higher level, where more
semantics is involved, is able to complement the end-compiler’s optimizer performing some code
transformations that cannot be easily done at the lowest levels.

As introduced in Section 5.1, the input languages managed by CryptoGen support the notion
of annotation. The annotations represent the main method through the developer can specify
additional meta-data to aid the optimization process and enable/disable certain kind of code-
improving techniques.

The algorithms described in the following paragraphs are mostly inspired and adapted from
the techniques presented in the following sources:

� Alfred Vaino Aho et al. Compilers: Principles, Techniques, and Tools. Addison Wesley, 2006.
isbn: 978-0321486813;

� Ken Kennedy and John Randal Allen. Optimizing Compilers for Modern Architectures: a
Dependence-based Approach. Morgan Kaufmann Publishers Inc., 2001. isbn: 1-55860-286-0.

This chapter is split into four sections. The first one is devoted to present the analysis algorithms
used to correctly apply the code transformations described in the second section. The third section
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introduces some smart translation techniques that can be used to produce a better C code. Finally,
the last section introduces a minimal, but interesting example of code optimization.

6.1 Analysis algorithms

The analysis passes perform some kind of reasoning on the code, without altering it. They are used
to understand the code structure in order to execute some transformation by keeping its functional
behavior intact.

6.1.1 Control flow graph analysis

Many interesting optimization techniques need to know in advance how the control flow interacts
with the instructions of a program. A preliminary code analysis usually starts with locating the
basic blocks, that are sequences of consecutive instruction with:

� exactly one entry point for the control flow, represented by its first instruction;

� exactly one exit point for the control flow, represented by its last instruction.

In other words, the instructions in a basic block are always executed in a linear manner without
intermediate jumps or branches. The first instruction in a basic block is often known as the leader
instruction. In order to split a function into its constituting basic blocks it is sufficient to identify
the leaders, for instance, by means of the Algorithm 6.1.

algorithm ComputeBasicBlocks(a function F ) return the basic blocks of F

1 B← (≪entry≫ )
2 foreach instruction i ∈ F do
3 if i is the first instruction of F or
4 i has a label or
5 the instruction preceding i is a jump then
6 B← new empty basic block

7 B←B ∪ (B )
8 end
9 B←B ∪ ( i )

10 end

11 B←B ∪ (≪exit≫ )
12 return B

Algorithm 6.1: Basic block analysis algorithm.

Note that the algorithm adds two fictitious blocks named ≪entry≫ and ≪exit≫ representing
the control flow entry and exit point of a function. Due to the properties of the HR, in this
context, a function has exactly one entry and one exit point of the control flow. From this, it
follows that the smallest sequence of basic blocks (i.e. for a function without instructions) consists
of {≪entry≫,≪exit≫}.

Basic blocks are quite important due to their flow execution simplicity. A great number of
relatively simple basic block local optimizations can frequently increase the speed of the code,
without the need to resort to much complex inter-basic blocks transformation techniques.
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A number of code-improving algorithms, directly or indirectly, need to understand the relation-
ships amongst the various basic blocks. The control flow graph is a graph where the nodes are the
basic blocks and the edges indicate which blocks can follow which other blocks in the control flow
of the program. Figure 6.1 shows a function and its control flow graph.

1 function f
2 x in wo [0, 2000]
3 y in ro [0, 2000]
4 {
5 z in wo [0, 1]
6

7 l0: z <- y + 5
8 b <- z < 100
9 if b goto l1

10 z <- 2
11 goto l2
12 l1: z <- 3
13 l2: z <- z + 1
14 b <- z < 1000
15 if b goto l0
16 x <- z mod 2
17 }

(a) Source code in HRL.

≪entry≫

l0: z <- x + 5
b <- z < 100
if b goto l1

z <- 2
goto l2

l1: z <- 3

l2: z <- z + 1
b <- z < 1000
if b goto l0

x <- z mod 2

≪exit≫
(b) Control flow graph.

Figure 6.1: Example of a control flow graph.

The notations succ[B] and prec[B] are used to respectively denote the set of all the basic
blocks that follow or precede B in the control flow graph. The Algorithm 6.2 can be used to
compute this information [109].

In CryptoGen, the basic block and control flow graph analysis are activated by specifying the
:controlFlowGraphAnalysis annotation.

6.1.2 Live variable analysis

Variables and function parameters play an important role in a program, so that understanding
when their content is used and modified is vital for several code-improving transformations.

With the notation use[B] it is denoted the set of variables used by the basic block B, that is the
variables that are read by the instructions in B. Analogously, def[B] indicates the set of variables
defined by the basic block B, that is the variables whose content is modified by the instructions in
B. In a three-address code representation, such as HR, computing these sets is trivial. As a rule
of thumb, if a variable is on the left hand side of the <- in HRL it is defined, otherwise it is used.

Let v be a variable and i an instruction in a program. It is said that the variable v is live at i
if its value is used along some path in the control flow graph starting from the instruction i. If a
variable is not live at i, it is called dead at i. That means that if v is live at i, its content can be
used by some instruction following i in the control flow. Given a basic block B, the set of variables
live on entry in[B] contains all the variables that are live at the first instruction of B. Similarly,
the set of variables live on exit of B, denoted by out[B], contains all the variables that are live at
the last instruction of B. The Algorithm 6.3 can be used to compute these two sets for each basic
block of a function [109].

To enable the live variable analysis, the unit must be annotated with the :liveVariableAnalysis
annotation. This pass automatically activates the control flow graph analysis, if needed.
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algorithm ComputeCFG(a function F ) return the control flow graph of F

1 B←ComputeBasicBlocks(F )
2 foreach basic block B ∈ B do
3 succ[B]←∅
4 prec[B]←∅
5 end

6 succ[0]←{B[1] }
7 foreach basic block B ∈ B ∖{≪entry≫,≪exit≫} do
8 if the last instruction of B is an unconditional jump then
9 B′← basic block containing the target label of the jump

10 succ[B]← succ[B]∪{B′ }
11 prec[B′]←prec[B′]∪{B }
12 else
13 if the last instruction of B is a conditional jump then
14 B′← basic block containing the target label of the jump
15 succ[B]← succ[B]∪{B′ }
16 prec[B′]←prec[B′]∪{B }
17 end
18 B′← basic block following B
19 succ[B]← succ[B]∪{B′ }
20 prec[B′]←prec[B′]∪{B }
21 end

22 end

23 return (B,{ succ[B] }B∈B ,{prec[B] }B∈B )
Algorithm 6.2: Control flow graph analysis algorithm.

algorithm ComputeLiveliness(a function F ) return the set of live variables

1 (B,{ succ[B] }B∈B ,{prec[B] }B∈B )←ComputeCFG(F )
2 in[≪exit≫]←∅
3 foreach basic block B ∈ B ∖{≪exit≫} do
4 while any in[⋅] is changed do
5 out[B]←⋃S∈succ[B] in[S]
6 in[B]←use[B]∪(out[B]∖def[B])
7 end

8 end

9 return ( { in[B] }B∈B ,{out[B] }B∈B )
Algorithm 6.3: Live variable analysis algorithm.

6.1.3 DAG analysis

Several important techniques for optimizing a basic block require a more structured representation
of the instructions than a simple list. A DAG model is particularly interesting for the mathematical
expressions and hence for the cryptography realm. For instance, the expression (2 ⋅x+x)/y can be
represented with the DAG shown in Figure 6.2.
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/

+ y

⋅

2 x

Figure 6.2: DAG representation for the (2 ⋅ x + x)/y expression.

This approach can be extended to a whole basic block with some proper modifications, that is:

� each node has up to two children representing the two input operands of a generic instruction
(since HR is a three-address code representation);

� the leaves are labeled with a constant, a variable name or with the nop instruction;

� the intermediate nodes are labeled with an instruction type and a list of variables where the
value of the computation is written;

� the custom binary/unary operators are represented with a single node with one/two children.

Figure 6.3 shows an example DAG constructed for a basic block. Note that the expressions
x <- y + 1 and w <- y + 1 are merged together in the graph since the analysis detected that they
compute the same value.

1 y + 1
2 x * 2
3 y + 1
4 w / z

(a) Source code in HRL.

/ ⟨u⟩

* ⟨z⟩

+ ⟨x, w⟩ 2

y 1

(b) DAG.

Figure 6.3: Example of the DAG for a basic block.

Care must be taken for the correct translation of the copy from/to tuple instructions. For
instance, the code shown in Figure 6.4 contains the instructions x <- y[i] and v <- y[i] that can
be apparently merged during the DAG construction. However, if i = j this cannot be done since
the instruction y[j] <- u will alter the content of y[i].

A way to circumvent these troublesome situations, as shown in Figure 6.4, is to alter the
representation for the tuple instructions by:

� modeling a copy from tuple instruction in the usual way, that is x <- y[z] is represented by
means of a node with two children y and z and labeled with x;

� representing a copy to tuple instruction x[y] <- z by means of a node with three children x,
y and z. These special nodes deny the subsequent merging for an instruction involving y.

The pseudo-code for building the DAG of a basic block is given in Algorithm 6.4.
The :dagAnalysis annotation activates this pass and also the control flow graph analysis, if

needed.
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1 y[i]
2 <- u
3 y[i]

(a) Source code in HRL.

<-[] ⟨x⟩

y i

[]<-

j u

<-[] ⟨v⟩

y

(b) DAG.

Figure 6.4: Example of the DAG for some tuple instructions.

6.1.4 Operator chain analysis

When performing certain types of optimizations, it is useful to detect successive applications of
the same operator such as in x + y + z + w or x ⋅ y ⋅ z ⋅ w. These sequences are known as operator
chains and they are particularly important when performing a number of simplifications for the
algebraic expressions.

An effective way of locating them is through the DAG of a basic block, where an operator chain
can be viewed as a particular sub-graph with all the intermediate nodes have the same instruction
type.

For instance, the example sketched in Figure 6.5 depicts an operator chain rooted in the node
* ⟨x⟩. By analyzing the DAG, it is simple to observe that it corresponds to the mathematical
expression x = ((c ⋅ d) ⋅ b) ⋅ (b ⋅ v).

1 v <- e + f
2 w <- b * v
3 u <- c * d
4 z <- u * b
5 x <- z * w
6 y <- w + a

(a) Source code in HRL.

* ⟨x⟩

* ⟨z⟩ * ⟨w⟩

* ⟨u⟩ + ⟨v⟩

c d

b

* ⟨x⟩

* ⟨z⟩ * ⟨w⟩

b* ⟨u⟩

c e

+ ⟨y⟩

a

d

+ ⟨v⟩

e f

(b) DAG.

Figure 6.5: Example of an operator chain.

Given a particular node n of a DAG, finding the biggest operator chain rooted in n is a relatively
simple task, since it reverts to perform a depth first search extended until a node with an instruction
incompatible with the node n’s instruction is found.

The Algorithm 6.5 implements this idea.
This analysis is enabled by specifying the :operatorChainAnalysis annotation and it automatically

activates the DAG analysis, if needed.

6.2 Transformation algorithms

The following paragraphs describe a number of annotation-aware code-improving techniques that
alter the code,but preserve its semantic. These passes can be classified in two main categories:

� the peephole optimizations make use of a window-based approach, by analyzing and modifying
a list of consecutive instructions;
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algorithm ComputeDAG(a basic block B) return the DAG of B

1 V [⋅]←∅, O[⋅]←∅, N ←∅
2 foreach instruction i ∈ B do
3 out← the output operand of i or nil if does not exist
4 in1← the first input operand of i or nil if does not exist
5 in2← the second input operand of i or nil if does not exist
6 if in1 ≠ nil then
7 n1←V [in1]
8 if n1 = nil then
9 n1← new node labeled with in1 and add it to N

10 V [in1]←n1
11 end

12 end
13 if n2 ≠ nil then
14 n2←V [in2]
15 if n2 = nil then
16 n2← new node labeled with in2 and add it to N
17 V [in2]←n2
18 end

19 end
20 if i is a copy to tuple then
21 n0←V [out]
22 if n0 = nil then
23 n0← new node labeled with out and add it to N
24 end

25 else
26 n0←nil
27 end
28 n←O[{ t, n0, n1, n2 }]
29 if n = nil then
30 n← new node with the type of i
31 if i is a copy to tuple then
32 set n0, n1 and n2 as children of n
33 V [out]←nil

34 else
35 set out as the label of n and n1, n2 as children of n
36 V [out]←n
37 end
38 O[{ t, n0, n1, n2 }]←n and add it to N

39 else
40 add out to the labels of n
41 end

42 end
43 return N

Algorithm 6.4: DAG analysis algorithm.
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algorithm ComputeChain(a DAG node n) return the biggest operator chain rooted in n

1 C←∅
2 N ← (n )
3 t1← instruction type of n or nil if it is a constant or variable
4 while N ≠ ∅ do
5 n←N[0]
6 t2← instruction type of n or nil if it is a constant or variable
7 C←C ∪{n}
8 N ←N ∖N[0]
9 if t2 ≠ nil and t2 is compatible with t1 then

10 N ← the children of n∪N
11 end

12 end
13 return C

Algorithm 6.5: Operator chain analysis algorithm.

� the DAG-based optimizations make use of the graph representation explained in Section 6.1.3.

6.2.1 Constant folding

The constant folding is a simple peephole optimization whose goal is to replace an operation with
its result, if its input operands are constants known at compile time. Figure 6.6 shows a code
snippet before and after constant folding.

1 x <- (1, 2, 3) << 2
2 y <- 3 * 0
3 z <- 2 * y

(a) Original code.

1 x <- (3, 0, 0)
2 y <- 0
3 z <- 2 * y

(b) Transformed code.

Figure 6.6: Constant folding example.

Traditional end-compilers can perform constant folding, but this trivial optimization is impor-
tant in CryptoGen because it can bring out several opportunities that can be exploited by other
code transformation techniques not available to the end-compiler.

This code-improving technique is enabled when the :constantFolding annotation is specified.

6.2.2 Algebraic simplification

A relatively easy but effective optimization technique is the code simplification by means of some
algebraic identities. This method reduces several instructions to a faster version even if some of
its inputs are not known at compile time, as shown in Figure 6.7.

CryptoGen, can perform the simplification of integers and booleans, as most of the end-
compilers, but can also take into account the relative’s ranged values and several mathematical
properties of the functions, specified via annotations. The function annotations that directly affect
this transformation pass are:

� the :hasIdentityElement(e) annotation, which indicates that e is an identity element for a
custom binary operator;
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1 x <- (0, 0, 0) << y
2 z <- w * 0
3 u <- v >> 1

(a) Original code.

1 x <- (0, 0, 0)
2 z <- 0
3 u <- v >> 1

(b) Transformed code.

Figure 6.7: Algebraic simplification example.

� the :hasAbsorbingElement(a) annotation, which specifies that a is an absorbing element for a
custom binary operator;

� the :hasSpecialCase1(x, y) annotation, which states that if the first input parameter of a
custom binary operator is x, then the result of the instruction is y;

� the :hasSpecialCase2(x, y) annotation, which, similarly, indicates that if the second input
parameter of a custom binary operator is x, then the result of the instruction is y.

Table 6.1 lists the simplification rules that the end-compiler cannot perform, but that Crypto-
Gen can do.

original code constraints transformed code

x <- y /= z y, z are relative and max(y) < min(z) x <- true
x <- y /= z y, z are relative and max(y) > min(z) x <- true
x <- y < z y, z are relative and max(y) < min(z) x <- true
x <- y < z y, z are relative and min(y) ≥ max(z) x <- false
x <- y <= z y, z are relative and max(y) ≤ min(z) x <- true
x <- y <= z y, z are relative and min(y) > max(z) x <- false
x <- y > z y, z are relative and max(y) > min(z) x <- true
x <- y > z y, z are relative and min(y) ≤ max(z) x <- false
x <- y >= z y, z are relative and max(y) ≥ min(z) x <- true
x <- y >= z y, z are relative and min(y) < max(z) x <- false
push x, push y, push z, call f :hasIdentityElement(y) holds for f x <- z
push x, push y, push z, call f :hasIdentityElement(z) holds for f x <- y
push x, push y, push z, call f :hasAbsorbingElement(y) holds for f x <- a
push x, push y, push z, call f :hasAbsorbingElement(z) holds for f x <- a
push x, push y, push z, call f :hasSpecialCase1(y, w) holds for f x <- w
push x, push y, push z, call f :hasSpecialCase2(z, w) holds for f x <- w

Table 6.1: CryptoGen algebraic simplification rules.

By means of this optimization technique, for instance, some identities that CryptoGen can
exploit are:

� if x ∈ F2n , then x + 0 = 0 + x = x, x ⋅ 0 = 0 ⋅ x = 0 and x ⋅ 1 = 1 ⋅ x = x;

� if P ∈ E , then P + P∞ = P∞ + P = P , 0 ⋅ P∞ = P∞ and n ⋅ P∞ = P∞.

The annotation :algebraicSimplification is used to enable this optimization pass.
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6.2.3 Copy propagation

The copy propagation is the process of replacing the variables used in an instruction with their
latest known value, that can be a constant or another variable name. Figure 6.8 shows the effects
of the copy propagation on a simple code fragment.

1 x <- (1, 2, 3)
2 y <- x << 1
3 x <- z
4 w <- x

(a) Original code.

1 x <- (1, 2, 3)
2 y <- (1, 2, 3) << 1
3 x <- z
4 w <- z

(b) Transformed code.

Figure 6.8: Copy propagation example.

The copy propagation does not affect the performance of a program, but it is a preliminary
code transformation that can unveil new opportunities for further optimizations. For instance, in
Figure 6.8, the Line 2 can be further simplified via constant folding.

Performing a copy propagation in a basic block is simple due to its linear nature. This can
be accomplished by keeping a map that store the last definition of a variable. The Algorithm 6.6
implements this peephole approach.

algorithm PropagateCopies(a basic block B) return the transformed basic block B

1 V [⋅]←∅
2 foreach instruction i ∈ B do
3 out← the output operand of i or nil if does not exist
4 in1← the first input operand of i or nil if does not exist
5 in2← the second input operand of i or nil if does not exist
6 if in1 is a variable and V [in1] ≠ nil then
7 replace in1 with V [in1] in i
8 end
9 if in2 is a variable and V [in2] ≠ nil then

10 replace in2 with V [in2] in i
11 end
12 if i is a copy then
13 V [out]← in1
14 end

15 end
16 return B

Algorithm 6.6: Copy propagation algorithm.

In literature there exists a number of other techniques that can execute a global copy propa-
gation spanning across the basic block boundaries using a much more complex algorithm [111].

In CryptoGen the :copyPropagation annotation is used to enable this code transformation and
also the control flow graph analysis, if needed.

6.2.4 Dead code elimination

An instruction is considered dead if its execution is meaningless for the program. The exact
definition of what is useful depends from the context. In the case of CryptoGen, an instruction is
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considered useless if it is not directly or indirectly used to compute a function output value or a
global value.

In literature there exists several algorithms to eliminate the dead code on a whole function
[109, 111]. CryptoGen implements a simplified version that works on each basic block.

The core idea is to recursively eliminate all the DAG root nodes with no live variables attached.
The Algorithm 6.7 implements this concept.

algorithm EliminateDeadCode(a basic block B) return the transformed basic block B

1 D←ComputeDAG(B)
2 ( { in[B] }B∈B ,{out[B] }B∈B )←ComputeLiveliness(the function containing B)
3 foreach root node n ∈D do
4 remove all the variables not in out[B] attached to n
5 if n has no variable attached then
6 D←D∖ (n )
7 end

8 end
9 B← reassemble D

10 return B

Algorithm 6.7: Dead code elimination algorithm.

Note that once the DAG has been modified, the basic block must be reassembled accordingly.
This operation is trivial and can be done with a bottom-up visit of the DAG in order to keep the
right instruction order. For instance, Figure 6.9 shows the effects of a dead code elimination pass
over a small code fragment.

1 y <- x + 1
2 b <- y < 10
3 z <- true and w // z is dead.
4 w <- z // w is dead.
5 if b goto l1

(a) Original code.

1 y <- x + 1
2 b <- y < 10
3 if b goto l1

(b) Transformed code.

Figure 6.9: Dead code elimination example.

This optimization can be efficiently performed also by the end-compilers, but it has the inter-
esting side effect that can reduce the set of the live variables on exit of a basic block. This in turn
can decrease several constraints that other optimizations must adhere to, thus allowing CryptoGen
to perform a better code improvement job.

This pass is enabled by means of the :deadCodeElimination annotation and enables the DAG and
live variable analysis, if needed.

6.2.5 Strength reduction

The strength reduction is an optimization that replaces some instructions with some other one
that run faster. For instance, a classic C strength reduction is to replace x = 2 * y; with x = y + y;
since the hardware multiplier is usually much slower than the adder.

Apart the usual strength reductions on integers, that can be easily performed by the end-
compilers, CryptoGen leverages the :hasSpecialization(f) annotation to improve the code speed.

71



6 – Optimizations

This annotation indicates that when a custom binary operator is called with the same input
operands it can be reduced to the unary operator f. By means of this indications, for example,
CryptoGen can simplify a field multiplication into a much faster squaring or a point addition into
a point doubling.

Implementing this technique analyzing each instruction independently from the others can lead
to miss several code-improving opportunities. For instance, Figure 6.10 shows a code that contains
two ‘hidden’ strength reductions relative to the expression v = d ⋅ (d ⋅ ((a + b) ⋅ c) ⋅ c). By strictly
following the order imposed by the parenthesis it is impossible to simplify this equation.

1 x <- a + b
2 y <- x * c
3 z <- d * y
4 w <- z * c
5 v <- d * w

(a) Source code in HRL.

* ⟨v⟩

* ⟨w⟩

* ⟨z⟩

* ⟨y⟩

+ ⟨x⟩

d

c

v ⟨*⟩

* ⟨w⟩

* ⟨z⟩

* ⟨y⟩

x ⟨+⟩

a b

d

c

(b) DAG.

Figure 6.10: Example of hidden strength reduction possibilities.

To bring out the optimization potentials, CryptoGen first identifies the operator chains (Sec-
tion 6.1.4). Then, if the binary operator has been annotated with the :isCommutativeAndAssociative
annotation, CryptoGen is authorized to reorder its parameters (since, for the operator, both the
commutative and associative properties hold). Care must be taken, however, since reordering the
parameters can affect the values of the intermediate variables (w, z and y in the example). As a
rule of thumb, the content of a variable cannot be altered if it is still used later in the basic block
or in another basic block. The Algorithm 6.8 reorders the variables and simplifying the binary
operators whenever possible.

After the rewriting, the DAG in Figure 6.10 becomes as depicted in Figure 6.11. It represents
the equivalent equation v = c2 ⋅ (d2 ⋅ (a + b)).

1 x <- a + b
2 push z
3 push d
4 call square
5 y <- z * x
6 push w
7 push c
8 call square
9 v <- w * y

(a) Source code in HRL.

v ⟨*⟩

square ⟨w⟩ * ⟨y⟩

c
square ⟨z⟩ + ⟨x⟩

d a b

(b) DAG.

Figure 6.11: Strength reduction example.

This pass is activated by means of the :strengthReduction annotation. It automatically enable
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algorithm ReduceStrengths(a basic block B) return the transformed basic block B

1 D←ComputeDAG(B)
2 ( { in[B] }B∈B ,{out[B] }B∈B )←ComputeLiveliness(the function containing B)
3 foreach root node n ∈D do
4 N ← (n )
5 while N ≠ ∅ do
6 n←N[0]
7 N ←N ∖N[0]
8 N ←the children of n∪N
9 if n is related to a binary operator that is commutative and associative then

10 C←ComputeChain(n)
11 remove all the non-frontier nodes from C
12 remove all the nodes with more than 1 parent from C
13 remove all the nodes with at least one variable in out[B] from C
14 repeat
15 pick two nodes n1 ≠ n2 with a common children c
16 if n1 is a successor of n2 then
17 d← the children of n2 different from c
18 set d as the child of n2 equal to c
19 set c as the child of n2 equal to d

20 else
21 d← the children of n1 different from c
22 set c as the child of n1 equal to d
23 set d as the child of n1 equal to c

24 end

25 until any change in C occurs

26 end

27 end

28 end
29 foreach node n ∈D do
30 if n has the same two children and its type has a specialization G then
31 change the type of n to G and remove one of its children
32 end

33 end
34 B← reassemble D
35 return B

Algorithm 6.8: Strength reduction algorithm.

the DAG, operator chain and live variable analysis.

6.2.6 Common sub-expression elimination

When translating from a high level language to a lower level one (e.g. from aXiom to HRL or from
C to assembler), the developer can involuntarily create several common sub-expressions, that are
expressions that evaluate the same value twice or more. By applying the common sub-expression
elimination optimization, a compiler tries to reduce these redundant computations, usually by
replacing them with simpler and faster copy instructions.
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CryptoGen performs the common sub-expression elimination for each basic block by analyzing
its DAG representation. Note that the algorithm presented in Section 6.1.3 is already able to iden-
tify the simplest common sub-expressions by merging together similar nodes. Once the graph has
been built, CryptoGen analyzes it in order to discover some hidden sub-expressions by exploiting
the functions’ mathematical properties specified via annotations.

If a binary operator has been labeled with the :isCommutativeAndAssociative annotation, then
CryptoGen will perform a deeper search ignoring the order of parameters of the operator chains.
The Algorithm 6.9 implements this idea.

algorithm EliminateCS(a basic block B) return the transformed basic block B

1 D←ComputeDAG(B)
2 C[⋅]←∅
3 foreach node n ∈D do
4 C[n]←ComputeChain(n)
5 end
6 foreach node n ∈D do
7 if the type of n is associative and commutative then
8 C1←C[n]
9 foreach chain C2 ∈ C[⋅] such that C1 ≠ C2 and ∣C1∣ = ∣C2∣ do

10 if C1 and C2 have the same type and the same leaf nodes in any order then
11 merge n and the root of C2

12 end

13 end

14 end

15 end
16 B← reassemble D
17 return B

Algorithm 6.9: Common sub-expression elimination algorithm.

Figure 6.12 shows an example containing a common sub-expression. The algorithm infers that
the value y = a + b + c is the same as w = a + c + b.

1 a + b
2 x + c
3 c + b
4 a + z

(a) Source code in HRL.

+ ⟨w⟩

+ ⟨z⟩

a b

c

+ ⟨y⟩

+ ⟨x⟩

a b

c

+ ⟨y⟩

+ ⟨x⟩ c

a b

+ ⟨z⟩

+ ⟨w⟩

(b) DAG.

Figure 6.12: Common sub-expression elimination example.

This pass is activated by specifying the :commonSubexpressionElimination annotation. It auto-
matically enables the DAG and operator chain analysis, if needed.
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6.3 Translation algorithms

This section introduces the optimization techniques that are used during the translation process
of HR into the final C code.

6.3.1 Bit vector packing

A theoretical simple but powerful optimization performed during the C code generation is the bit
vector packing. In the C programming language, the most naive way to implement a bit vector
(or a bit matrix in general) is to use an array of integers where each element hosts one bit. By
activating the bit vector packing, CryptoGen will implement the bit vectors by making use of all
the bits in an array of machine words. For instance, a vector x containing 79 bits will be translated
as uint8_t x[79] is no optimization is active, while it will be implemented as uint8_t x[10] is the
bit vector packing is active (on a 8 bit processor).

Apart from reducing the memory consumption, the major benefit of this optimization is that
the speed of the operations can be greatly improved by leveraging the ALU ability to work on an
entire machine word at a time. This boost is particularly evident for the smaller bit vectors (that
can be stored on very few words).

For instance, the Figure 6.13 shows two code regions performing the left shift of one position
on a vector containing 79 bits without and with the bit vector packing. The unoptimized code
contains a loop with 79 iterations, while the improved version has a loop with 10 iterations, being
approximatively about 7.9 times faster than its counterpart. As a rule of thumb, if the machine
word size is w bits, this technique allows to achieve a speed gain of about w times (if instruction
and memory caching is not taken into account).

1 uint8_t x[79];
2 uint8_t y[79];
3 int i;
4

5 for (i = 78; i > 0; --i)
6 x[i] = y[i - 1];
7 x[0] = 0;

(a) Code without bit vector packing.

1 uint8_t x[10];
2 uint8_t y[10];
3 int i;
4

5 for (i = 9; i > 0; --i)
6 x[i] = (y[i] << 1) ˆ
7 (y[i - 1] >> 7);
8 x[0] = y[0] << 1;

(b) Code with bit vector packing.

Figure 6.13: Bit vector packing example.

This optimization cannot be performed by the end-compiler because it cannot distinguish an
array uint8_t x[79] used to store 79 8 bit integers from one used to represent a sequence of 79 bits.

This translation technique is enabled via the :bitVectorPacking annotation.

6.3.2 Loop unrolling

The loop unrolling, also known as loop unwinding, is a simple optimization by which a loop with
n iterations is replaced by a loop with n/m iterations. If m = n the loop is completely removed
by generating for n times its body. This technique offers several advantages since the branch
penalties are minimized and it can bring out several opportunities for other optimization passes.
The disadvantages are an increased program size and, if performed too aggressively, an execution
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time slow down due to an increased register spilling and filling1.
When the end-compiler optimizes the code it has to choose ‘how’ and ‘when’ performs the loop

unrolling. Several compilers follow a quite conservative approach, by performing the unwinding
only on very small and simple loops. However a more aggressive loop unrolling can potentially
improve the code performance.

The loop unrolling works particularly well if the loop has few iterations and contains several
parallelizable instructions. A number of the HR instruction needs to work on arrays and follows
the aforementioned pattern (e.g. the exclusive or instruction xor on bit vectors). CryptoGen can
enable the loop unwinding of these instructions to produce a completely loop-free C translation of
an instruction.

For instance, the Figure 6.14 shows the effect of the loop unrolling when translating the and
between two bit vectors.

1 uint8_t x[5];
2 uint8_t y[5];
3 uint8_t z[5];
4 int i;
5

6 for (i = 0; i < 5; ++i)
7 x[i] = y[i] & z[i];

(a) Code without loop unrolling.

1 uint8_t x[5];
2 uint8_t y[5];
3 uint8_t z[5];
4 int i;
5

6 i = 0;
7 x[i] = y[i] & z[i];
8 ++i;
9 x[i] = y[i] & z[i];

10 ++i;
11 x[i] = y[i] & z[i];
12 ++i;
13 x[i] = y[i] & z[i];
14 ++i;
15 x[i] = y[i] & z[i];
16 ++i;

(b) Code with loop unrolling.

Figure 6.14: Loop unrolling example.

The effects of this optimization is usually very beneficial on high-end multi-scalar platforms,
where multiple instructions can be executed in parallel or partially overlapped through the pro-
cessor pipeline.

This pass is enabled via the :loopUnrolling annotation.

6.3.3 Use of target idioms

Several compilers and platforms allow the use of ad-hoc instructions to perform some specific
computation completely in hardware. By using these custom instructions instead of the standard
C constructs, CryptoGen can increase the performance of the code, sacrificing its portability.

Currently CryptoGen supports only two built-ins for the GCC compiler: the __builtin_clzl()
and the __builtin_ia32_pclmulqdq128() functions.

The __builtin_clzl() is used to compute the number of leading zero bits in a long variable.
This instruction is automatically used when translating the findlastset HR construct. GCC can

1The register spilling is the operation of moving a variable from a register to the memory. The opposite procedure
is known as register filling.
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implement this built-in differently w.r.t. the hardware platform, for instance:

� on the AMD64 family it uses the bsr (bit scan reverse) assembler instruction, which imple-
ments the find last set on a word;

� on the ARMv7 family it uses the clz (count leading zeros) assembler instruction, which counts
the leading zeros in a word.

The __builtin_ia32_pclmulqdq128() is available only on the AMD64 processors and it implements
the pclmulqdq assembler instruction [112]. This construct was introduced in 2010 with the Intel
Westmere micro-architecture and it allows to compute the carry-less multiplication of two 64 bit
words. In other words, it computes the binary field reduction-less multiplication between two words,
that is ⋅∶F264 × F264 → F2128 . In order to be effectively used by CryptoGen, a function computing
the field multiplication must be annotated with the :carryLessMultiplication annotation. When
performing the translation of the annotated function, CryptoGen will replace its body with a call
to the __builtin_ia32_pclmulqdq128() built-in if its parameters are respectively a 128 and two 64 bit
vectors. In all the other cases, CryptoGen will perform the usual function translation. A similar
annotation, :carryLessSquaring, is available for the field squaring function.

This optimization is enabled when the :targetIdiomUsage annotation is present.

6.4 Optimization example

The strength of the optimization algorithms is bring out when they are chained together to form
a complete code-improving toolbox. In the following paragraphs, a full example is given on an
elliptic curve algorithm.

The equations shown in Table 2.1 are correct, but their naive implementation can be greatly
improved by the optimization algorithms listed in Section 6.2. For instance, the expressions for
computing the point doubling within the López-Dahab coordinate system are:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a = a6z4P
zR = z2Px2P
xR = x4P + a
b = y2P + a2zR + a
yR = bxR + zRa.

A possible three-address code translation over F213 when zP = 1 is given in Algorithm 6.10.
Note that the code was poorly written on purpose, with no squarings and with a bad order of the
products. The implementation costs 14M + 0S.

After some rounds of constant folding, algebraic simplifications and copy propagations, some
dead code can be eliminated, leading to the Algorithm 6.11. Its cost drops to 8M + 0S.

The strength reduction and common sub-expression elimination passes further decreases the
code cost to 4M + 2S, as shown in Algorithm 6.12.

Finally, another round of copy propagation, strength reduction and dead code elimination leads
to the final code in Algorithm 6.13 with a cost of 3M+3S. This is the same optimal formula known
in literature [113].
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1 t0← (0,0,0,0,0,0,0,0,0,0,0,0,1 ) ⋅ a6
2 t1← t0 ⋅ (0,0,0,0,0,0,0,0,0,0,0,0,1 )
3 t2← t1 ⋅ (0,0,0,0,0,0,0,0,0,0,0,0,1 )
4 a← t2 ⋅ (0,0,0,0,0,0,0,0,0,0,0,0,1 )
5 t3← (0,0,0,0,0,0,0,0,0,0,0,0,1 ) ⋅ (0,0,0,0,0,0,0,0,0,0,0,0,1 )
6 t4← t3 ⋅ xP
7 zR← t4 ⋅ xP
8 t5←xP ⋅ xP
9 t6← t5 ⋅ xP

10 t7← t6 ⋅ xP
11 xR← t7 + a
12 t8← yP ⋅ yP
13 t9←a2 ⋅ zR
14 t10← t8 + t9
15 b← t10 + a
16 t11← b ⋅ xR
17 t12← zR ⋅ a
18 yR← t11 + t12

Algorithm 6.10: Naive implementation of the point doubling with zR = 1.

1 zR←xP ⋅ xP
2 t5←xP ⋅ xP
3 t6← t5 ⋅ xP
4 t7← t6 ⋅ xP
5 xR← t7 + a6
6 t8← yP ⋅ yP
7 t9←a2 ⋅ zR
8 t10← t8 + t9
9 b← t10 + a6

10 t11← b ⋅ xR
11 t12← zR ⋅ a6
12 yR← t11 + t12

Algorithm 6.11: Point doubling code after some initial simplifications.

1 zR←x2P
2 t5← zR
3 t6← zR
4 t7← t6 ⋅ t5
5 xR← t7 + a6
6 t8← y2P
7 t9←a2 ⋅ zR
8 t10← t8 + t9
9 b← t10 + a6

10 t11← b ⋅ xR
11 t12← zR ⋅ a6
12 yR← t11 + t12

Algorithm 6.12: Point doubling code after some DAG-based optimizations.
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1 zR←x2P
2 t7← z2R
3 xR← t7 + a6
4 t8← y2P
5 t9←a2 ⋅ zR
6 t10← t8 + t9
7 b← t10 + a6
8 t11← b ⋅ xR
9 t12← zR ⋅ a6

10 yR← t11 + t12
Algorithm 6.13: Optimal point doubling code.
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Chapter 7

Experimental results

If your experiment needs statistics, you
ought to have done a better experiment.

Ernest Rutherford

In this chapter the implementation results are presented and discussed. The data gathered
in the following sections represent the performance obtained by compiling and optimizing the
algorithms and equations1 described in Section 2.2.

This dissertation’s framework was implemented in Java 8 as a set of plug-ins for the Eclipse
Mars IDE (http://www.eclipse.org). The following tools were also used during the development:

� Xtend (http://www.eclipse.org/xtend/), a high level programming language offering addi-
tional features w.r.t. Java as type inferencing, operator overloading and extension methods;

� Xcore (https://wiki.eclipse.org/Xcore), a tool for describing and developing EMF2 models
and data types;

� Xtext (https://eclipse.org/Xtext/), a powerful framework for developing DSLs, their parsers
and their graphical editors.

In addition, Mathematica (https://www.wolfram.com/mathematica/) was also used to automat-
ically generate the binary field and elliptic curve test cases.

The complete toolbox consists of 30 plug-ins, containing 564 files (292 hand-written and 272
automatically generated), for a total of 212 648 lines of code (38 640 hand-written and 174 008
automatically generated).

Table 7.1 shows the specifications of the platforms where the optimized code was compiled,
executed and measured. It consists of a traditional laptop processor (an Intel i7) and a mobile
device CPU (an ARMv7).

All the tests were focused on the five binary fields and the corresponding B elliptic curves listed
in the standard FIPS PUB 186-4 – Digital Signature Standard (DSS) [13]. All the curves are
described by the equation y2 + xy = x3 + x2 + a′6 and their parameters are reported in Table 7.2.

1Recall that the formulas displayed in Section 2.2 are not in an optimal form (e.g. they include several common
sub-expressions that can be removed).

2EMF (http://www.eclipse.org/emf/) is a framework for creating models in the context of the MVC paradigm.
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manufacturer Apple Samsung
model MacBook Pro S5

word size 64 bit 32 bit
CPU Intel i7-4980HQ ARMv7 rev 3 (v7l)

CPU base frequency 2.8 GHz 600 MHz
RAM 16 GiB 1.4 GiB

OS Debian Linux 4.3.5 Android 4.4.2
compiler GCC 5.3.1 GCC 4.9

optimization flags -O3 -mpclmul -O3

Table 7.1: Specifications of the tested hardware platforms.

curve name field a′6

B-163 t163 + t7 + t6 + t3 + 1 20a601907b8c953ca1481eb10512f78744a3205fd16
B-233 t233 + t74 + 1 066647ede6c332c7f8c0923bb58213b333b20e9ce4281fe115f

7d8f90ad16
B-283 t283 + t12 + t7 + t5 + 1 27b680ac8b8596da5a4af8a19a0303fca97fd7645309fa2a5

81485af6263e313b79a2f516
B-409 t409 + t87 + 1 021a5c2c8ee9feb5c4b9a753b7b476b7fd6422ef1f3dd67476

1fa99d6ac27c8a9a197b272822f6cd57a55aa4f50ae317b13
545f16

B-571 t571 + t10 + t5 + t2 + 1 2f40e7e2221f295de297117b7f3d62f5c6a97ffcb8ceff1cd
6ba8ce4a9a18ad84ffabbd8efa59332be7ad6756a66e2939ba
ca0c7ffeff7f2955727a16

Table 7.2: Specifications of the tested elliptic curves and fields.

All the measurements were computed using the Algorithm 4.1 with 1000 populations of 100
samples each (so that each test was executed 100 000 times) with a sensitivity of 5 %.

This chapter reports only the most interesting data. Additional results are available in Ap-
pendix D.

7.1 Impact of optimizations

This section experimentally investigates the effects that the optimizations have on the produced
code. In order to simplify the discussion, the following tests concern the scalar multiplication of
only one curve: the B-233, one of the most used ones.

Table 7.3 shows the data gathered on the i7 processor for the aforementioned curve.
The column ‘optimizations’ lists the code-improving techniques that were enabled, that is:

� ‘none’ indicates that no optimization is active;

� ‘+ bit vector packing’ denotes that only the bit vector packing (Section 6.3.1) is active;

� ‘+ target idiom usage’ specifies that the target idiom usage (Section 6.3.3) is active in addition
to the previous optimizations;

� ‘+ loop unrolling’ indicates that the loop unrolling (Section 6.3.2) is active in addition to the
previous optimizations;
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optimizations
time code size

value [ns] ratio value [B] ratio

none 448 520 206 – 64 301 –
+ bit vector packing 4 570 143 98.1 46 015 0.7
+ target idiom usage 2 053 109 2.2 37 099 0.8
+ loop unrolling 59 481 34.5 11 345 0.3
+ middle-end optimizations 40 036 1.5 11 280 1.0

Table 7.3: Effects of the optimizations on the B-233 curve’s scalar multiplication code.

� ‘+ middle-end optimizations‘ denotes that all the middle-end stage optimizations (Sec-
tion 6.2) are active in addition to the previous optimizations (that is a full optimization).

The ‘time’ and ‘code size’ columns respectively indicate the time to execute a single multipli-
cation and the static size of the generated code. The two ‘ratio’ columns contain the ratio between
the previous time/code size value and the current one.

The bit vector packing, as expected, decreases both the time and the code size of the scalar
multiplication. Naively, on a 64 bit CPU such as the i7, this option allows to perform the bit vector
operations about 64 times faster. In practice, the achieved gain is much greater since the bit vector
size is also reduced, promoting a faster caching of the intermediate results, further boosting the
speed-up.

Enabling the target idiom usage optimization allows the use of some special GCC built-ins
(such as the __builtin_ia32_pclmulqdq128() function). This allows the code to better leverage the
underlying hardware and also to decrease the code size since some algorithm parts are replaced by
faster and fewer instructions3.

The aggressive loop unrolling further boosts the speed since it removes branches and simplifies
the control flow graph, reducing the number of basic blocks, allowing GCC to better exploit the
instruction parallelism. Oddly enough, this optimization is also beneficial for the code size. Global
optimizations between basic blocks are notoriously harder than the intra-basic block ones, however
by reducing the number of branches in the control flow, GCC can identify better the common
sub-expressions and the dead code, thus producing a smaller binary.

When all the middle-end optimizations are enabled, the performance gains an additional 50 %
of speed. This is mainly due to the fact that the equations shown in Table 2.1 are factorized in a
better way, removing unnecessary sub-expression and function calls.

7.2 Performance

The following paragraphs report the performance of the generated code on the Intel i7 and ARMv7
processors. All the algorithms were chosen in order to maximize the speed of the scalar multipli-
cation.

Table 7.4 shows the symbols and abbreviations used in this section.

3In this case the low level 64 bit × 64 bit WindowMultiply function implements the Comb algorithm with
a window width of 4 bit if the target idiom usage is not enabled, otherwise it is translated as a single
__builtin_ia32_pclmulqdq128() function call.
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symbol operation symbol algorithm/space

a mod b field modular reduction R Reduce
a + b field addition A Add

a ⋅ b field multiplication

Cn Comb with width n
Kn Karatsuba+Comb, window on n bit
M WindowMultiply, window on 64 bit

a2 field squaring
Pn PrecomputeSquare, window on n bit
S WindowSquare, window on 64 bit

a−1 field multiplicative inversion
B BEA
D DCEA

P +Q point addition
LD López-Dahab space2P point doubling

−P point negation
n ⋅ P scalar multiplication Wn NAFwMultiply, NAFw on n bit

Table 7.4: Legend of the symbols.

7.2.1 Results on the i7 processor

Table 7.5 shows the performance achieved on the Intel i7 processor.

operation
time [ns]

B-163 B-233 B-283 B-409 B-571

a mod b R8 R6 R8 R7 R17
a + b A1 A1 A1 A2 A3
a ⋅ b M7 M11 M14 M35 M217
a2 S5 S7 S9 S25 S190
a−1 B1254 B2206 B3005 B6001 B11 507

P +Q LD238 LD256 LD354 LD601 LD3301
2P LD177 LD180 LD243 LD410 LD2261
−P LD6 LD8 LD10 LD14 LD19
n ⋅ P W327 522 W340 036 W365 832 W3163 318 W41 240 570

Table 7.5: Performances on the i7 processor.

With a proper hardware support of the carry-less multiplication through the pclmulqdq assembler
instruction, the field multiplication and squaring achieve an impressive speed-up, such that their
temporal cost tend to become negligible with respect to the other functions. The only non-negligible
field operation is the multiplicative inversion, and hence the division.

In this case, the coordinate system of choice for maximizing the performance of the elliptic curve
scalar multiplication is the López-Dahab one. Selecting the proper coordinate system for achieving
the fastest scalar multiplication can be (theoretically) performed in advance by means of some cost
computations. For instance, the cost estimation for the add-and-double method (Algorithm 2.11)
is l

2
A + lD. Let’s look at B-233, so that l = 233, I/M ≈ 200.5 and M/S ≈ 1.6. By using the
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formulas listed in Table 2.2, the following costs can be estimated4:

� in affine space, A = D = 325S so that the add-and-double cost is 113587.5S;

� in projective space, A = 23.4S and D = 14.2S so that the add-and-double cost is 6034.7S;

� in Jacobian space, A = 27.4S and D = 11.4S so that the scalar multiplication cost is 5848.3S;

� in López-Dahab space, A = 24.8S and D = 9.8S so that the add-and-double cost is 5172.6S.

An analogous approach can be used for the other scalar multiplication techniques.

7.2.2 Results on the ARMv7 processor

Table 7.6 reports the results on the ARMv7 CPU.

operation
time [ns]

B-163 B-233 B-283 B-409 B-571

a mod b R104 R120 R281 R246 R565
a + b A45 A69 A88 A153 A239
a ⋅ b K43743 K47266 K412 714 K525 094 K577 572
a2 P81621 P83282 P85520 P89280 P1019 431
a−1 D29 484 B56 426 B78 188 B166 485 B314 153

P +Q LD58 365 LD112 388 LD157 315 LD426 454 LD1 155 117
2P LD27 795 LD53 370 LD83 751 LD206 658 LD428 432
−P LD5744 LD7756 LD10 601 LD28 083 LD80 703
n ⋅ P W24 649 553 W212 443 090 W221 601 999 W394 854 413 W5287 818 708

Table 7.6: Performances on the ARMv7 processor.

The ARMv7 belongs to a 32 bit family of processors, widely diffused in the mobile world.
For these reason, the performance of the field and curve operations are much slower than their
counterpart on the i7 processor.

These CPU families have no support for a carry-less multiplication in hardware, so that the
comb (Algorithm 2.3) and Karatsuba-Ofman algorithms (Algorithm 2.4) must be used instead.

An interesting result pertains the multiplicative inversion. In this context, the DCEA algorithm
is the fastest one in the smallest field (F2163), while in the other ones the BEA is the optimal choice.
This is consistent with the literature results [18] where the DCEA offers superior performance on
smaller fields on the ARM architectures.

Also in this case, the point arithmetic is faster if the López-Dahab coordinate system is chosen.

7.3 Comparison against standard libraries

There exist a number of cryptographic libraries written in various programming languages and
several of them contain some elliptic curve related algorithms and primitives. Most of them, how-
ever, implements only elliptic curves on prime fields, most likely due to the fact that the arithmetic

4These values are lower bounds, since they do not take into account several kind of overheads such as the time
spent to perform a function call, the register spilling/filling, etcetera.
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on prime fields is often (but not always) faster than its binary counterpart (see Section 7.4 for a
discussion about this subject).

In this context, two widely used and open-source cryptographic libraries that support binary
elliptic curves are:

� OpenSSL 1.0.2 (https://www.openssl.org), a C library that is the de facto standard imple-
mentation for the SSL and TLS protocols in the open-source world;

� Crypto++ 5.6.1 (http://www.cryptopp.com), a C++ library extensively used in academic
and open-source projects, well known for its multitude of cryptographic primitives and, un-
fortunately, the lack of high speed algorithms.

Table 7.7 lists the performance of the scalar multiplications on the i7 processor, comparing
together the code produced by CryptoGen, the OpenSSL and the Crypto++ libraries. The ‘ratio’
row contains the ratio between the CryptoGen time and the OpenSSL/Crypto++ one, while the
circle values emphasize the fastest results.

B-163 B-233 B-283 B-409 B-571

CryptoGen time [ns] 27 522 40 036 65 832 163 318 1 240 570

OpenSSL
time [ns] 180 007 232 475 466 992 735 405 1 848 002

ratio 6.5 5.8 7.1 4.5 1.5

Crypto++
time [ns] 15 732 963 36 693 675 62 668 174 183 510 370 565 496 848

ratio 571.7 916.5 952.0 1123.6 455.8

Table 7.7: Scalar multiplication performance on different implementations.

The Figure 7.1 graphically depicts the performance of the scalar multiplications to better
visualize the speed gain. Note that the all the Crypto++ bars are cropped in order to make the
CryptoGen/OpenSSL comparison more readable.
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Figure 7.1: Comparison of various scalar multiplication implementations.
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The CryptoGen code always outperforms the other libraries. With respect to the OpenSSL, it
is from 1.5 to 7.1 times faster, while with respect to the Crypto++ the speed gain ranges from
455.8 to 1123.6.

7.4 Comparison against other curves

Several ECC implementations eschew binary field arithmetic, relying only on elliptic curves defined
over prime fields for two main reasons, one practical and one legal. The first reason is related
to the performance. An efficient implementation of the scalar multiplication needs a fast field
multiplication. In the case of prime fields this can be easily achieved by making use of the hardware
integer multiplier, while in the binary field realm the situation is much more complex. Unless the
underlying processor supports some special hardware facility (such as the Intel pclmulqdq assembler
instruction), the binary field multiplication is significantly slower than its prime counterpart. The
second reason is due to the fact that, starting from the nineties, several companies, mainly the
Certicom and the NSA, began to register several patents on a number of elliptic curve techniques,
with several focuses on binary fields and curves5. This significantly slowed down the adoption of
the ECC and in particular the use of binary curves.

If some good hardware support is available and the right algorithms are selected, a binary curve
can be as fast as a prime one, or better. This is showed in Tables 7.8 and 7.9, which list the results
of the comparisons for the NIST curves B-233 and B-283, chosen since they are the most diffused
ones.

CryptoGen OpenSSL

B-233 B-233 K-233 P-224 secp224k1

time [ns] 40 036 232 475 222 004 67 475 246 176
ratio – 5.8 5.5 1.7 6.1

Table 7.8: Comparison of the B-233 curve performance against similar curves.

CryptoGen OpenSSL

B-283 B-283 K-283 P-256 secp256k1

time [ns] 65 832 466 992 389 727 62 603 276 614
ratio – 1.1 5.9 1.0 4.2

Table 7.9: Comparison of the B-283 curve performance against similar curves.

These tables report the scalar multiplication performance on the i7 processor against several
curves with a similar security level [13]. The curves B-233, B-283, K-233 and B-283 are binary
curves suggested in the standard FIPS PUB 186-4 – Digital Signature Standard (DSS). On the
other hand, the curves P-224, P-256, secp224k1 and secp256k1 are prime curves and the first two
are recommended in the FIPS PUB 186-4 – Digital Signature Standard (DSS), while the other two
in the SEC 2: Recommended Elliptic Curve Domain Parameters. The ‘ratio’ row indicates the

5See https://www.certicom.com/pdfs/FAQ-TheNSAECCLicenseAgreement.pdf.
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ratio between a specific scalar multiplication time on a curve and the CryptoGen one. As usual
the circled values highlight the fastest timings.

Figure 7.2 graphically depicts the performance of the curves.
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(a) Comparison of the B-233 curve.
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(b) Comparison of the B-283 curve.

Figure 7.2: Comparison of the B-233 and B-283 curve performance against similar curves.

The CryptoGen generated code is always the fastest one except in the B-283 vs P-256 compar-
ison, where it is nearly as fast as its prime counterpart.
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Chapter 8

Conclusions and future work

There is no real ending. It’s just the place
where you stop the story.

Frank Herbert

In this dissertation a system for automatically producing high speed elliptic curve cryptogra-
phy code was presented. It consists of an optimization framework coupled with a number of ECC
algorithms written in a high level and hardware independent language. The framework is able to
automatically optimize and specialize the cryptographic algorithms into high speed C code and
select the fastest implementations for a cryptographic primitive (if more than one implementation
is available). Even if the system itself is flexible enough to handle a wide array of number theory
algorithms, this thesis focused only on implementing a set of state-of-the-art cryptographic primi-
tives for executing operations on binary fields and binary elliptic curves. These algorithms include
also the DCEA, a novel method for computing the multiplicative inversion in binary fields [18, 19].

Two DSLs (HRL and aXiom) for describing cryptographic algorithms in a natural way, close
to the traditional mathematical language were described (Chapter 5). These languages natively
support various high level data types such as the bit vector, often encountered in number theory
implementations. In addition, they permit to specify via annotations several mathematical prop-
erties of the functions, increasing the semantic of the code. This allows the compiler to perform a
better optimization job by leveraging various algebraic simplifications and identities.

The DCEA (Chapter 3) method, a new algorithm for performing the multiplicative inversion
(or division) in binary fields was presented. Based on ideas inspired by λ-calculus, its performance
is on par or superior to other state-of-the-art inversion primitives, as experimentally proved.

Finally, a full optimizing compiler (Chapters 4 and 6) was described. It is able to translate
and perform a number of hardware independent and dependent optimizations to produce high
speed C code with no assistance from the user. These optimization techniques are inspired by
the compiler theory field and are able to leverage several mathematical properties of the code and
other information that are not available to the traditional C compilers such as GCC.

The experimental results were conducted on five different elliptic curves, on two processors (an
i7 and an ARMv7 CPUs) and w.r.t. to two cryptographic libraries (OpenSSL and Crypto++) and
various other curves with similar security levels. The speed of the automatically generated code
always outperform the tested libraries in all the cases. With respect to the OpenSSL and Crypto++
libraries, the custom scalar multiplication implementation is respectively up to 7.1 times faster and
up to 1123.6 times faster. The DCEA algorithm offers superior performance w.r.t. all the other
state-of-the-art inversion algorithms on the smallest curve on the ARMv7 processor. In addition,
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with respect to prime elliptic curves with a similar security level, the generated implementations
are faster or have nearly the same performance.

In spite of achieving excellent results in comparison w.r.t. other cryptographic libraries and
curves, there is still room for improvements. As a future work, I am planning to expand the
current code-improving algorithms for performing inter-basic block and inter-procedural optimiza-
tions [109, 111]. Also the support for a particular form of three-address code known as SSA [114]
is foreseen. Its use should boost the code-improving capabilities and simplify several type of opti-
mizations. Furthermore, the support for more annotations specifying new and better mathematical
properties (e.g. the distributivity) is also a scheduled addition. Another future work is to better
leverage the instruction parallelism at low and high levels. For the low level parallelism, the idea
is to exploit the SIMD capabilities of some processors (e.g. the SSE instruction set for the AMD64
family) in order to further decrease the bit vector processing time. For the high level parallelism,
it is foreseen the support for a multi-threaded programming library (e.g. the OpenMP library1),
allowing to perform multiple point operations at the same time on concurrent threads. Finally,
another idea that will be investigated in the future is to have a special back-end able to produce C
code without branches that depend on some secret values (e.g. a key or a nonce). This will make
timing attacks much harder to do by sacrificing some computational speed.

This PhD thesis has (hopefully) proved that automatically generating highly optimized cryp-
tographic code is feasible, thus guaranteeing not only less programming errors and development
times w.r.t. to a completely manual approach, but also superior performance.

1See http://openmp.org/.
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Appendix A

Proof rules

This appendix lists all the proof rules for the logic families introduced in Chapter 3.
In the following sections, these notations are used:

� the meta-variables denoted with a lower Latin letter (e.g. x and y) range over simple variables;

� the meta-variables consisting of an upper Latin letter (e.g. X and Y ) range over formulas;

� the meta-variables denoted with an upper Greek letter (e.g. Γ and ∆) range over list of
formulas;

� the symbol τ represent a basic type in a logic system;

� the function fv(Γ) retrieves the set of free variables1 in Γ;

� the notation X[x/y] represents the clash free substitution, where each free occurrence of y in
X is replaced by x;

� a sequent in the form Γ∣∆⊢X ∶ T means that if the variables in Γ are linear (they appear
only once) and the variables in ∆ are non-linear, then it can be implied that X ∶ T .

A.1 CL rules

The proof rules for the Classical Logic (CL) are:

axiom
X ⊢X

Γ⊢X,∆ Γ′,X ⊢∆′

cut
Γ′,Γ⊢∆′,∆

Γ⊢∆
weakeningl

Γ,X ⊢∆

Γ⊢X,∆
weakeningr

Γ⊢∆

1In λ-calculus, a variable is free in a λ-term when it does not appear as an input parameter in a λ-abstraction.
For instance, in λx.(x + y) the variable x is not free (it is bound), while y is free.
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Γ,X,X ⊢∆
contractionl

Γ,X ⊢∆

Γ⊢X,X,∆
contractionr

Γ⊢X,∆

Γ,X ⊢∆ ∧L1Γ,X ∧Y ⊢∆

Γ, Y ⊢∆ ∧L2Γ,X ∧Y ⊢∆

Γ⊢X,∆ Γ′ ⊢Y,∆′

∧r
Γ,Γ′ ⊢X ∧Y,∆,∆′

Γ,X ⊢∆ Γ′, Y ⊢∆′

∨l
Γ,Γ′,X ∨Y ⊢∆,∆′

Γ⊢X,∆ ∨R1Γ⊢X ∨Y,∆
Γ⊢Y,∆ ∨R2Γ⊢X ∨Y,∆

Γ⊢X,∆ Γ′, Y ⊢∆′

⇒l
Γ,Γ′,X⇒Y ⊢∆,∆′

Γ,X ⊢Y,∆ ⇒r
Γ⊢X⇒Y,∆

Γ,1⊢∆
1l

Γ⊢∆
1r⊢1

0l
0⊢

Γ⊢∆
0r.

Γ⊢0,∆

A.2 IL rules

The proof rules for the Intuitionistic Logic (IL) are:

axiom
X1, . . . ,Xn ⊢Xq

Γ⊢X Γ⊢Y ∧i
Γ⊢X ∧Y

Γ⊢X ∧Y ∧e1Γ⊢X
Γ⊢X ∧Y ∧e2Γ⊢Y

Γ⊢X ∨i1Γ⊢X ∨Y
Γ⊢Y ∨i2Γ⊢X ∨Y

Γ⊢X ∨Y Γ,X ⊢X Γ, Y ⊢X ∨e
Γ⊢X

Γ,X ⊢Y ⇒i
Γ⊢X⇒Y

Γ⊢X⇒Y Γ⊢X ⇒e.
Γ⊢Y

1i
Γ⊢1

Γ⊢0
0e.

Γ⊢X

A.3 LL rules

The proof rules for the Linear Logic (LL) are:

axiom
X ⊢X

Γ⊢X,∆ Γ′,X ⊢∆′

cut
Γ′,Γ⊢∆′,∆

Γ⊢∆
weakeningl

Γ, !X ⊢∆

Γ⊢∆
weakeningr

Γ⊢ ?X,∆
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Γ, !X, !X ⊢∆
contractionl

Γ, !X ⊢∆

Γ⊢ ?X, ?X,∆
contractionr

Γ⊢ ?X,∆

Γ,X,Y ⊢∆ ⊗l
Γ,X ⊗Y ⊢∆

Γ⊢X,∆ Γ′ ⊢Y,∆′

⊗r
Γ,Γ′ ⊢X ⊗Y,∆,∆′

Γ,X ⊢∆ Γ′, Y ⊢∆′ `l
Γ,Γ′,X`Y ⊢∆,∆′

Γ⊢X,Y,∆ `r
Γ⊢X`Y,∆

Γ,X ⊢∆
&l1Γ,X&Y ⊢∆

Γ, Y ⊢∆
&l2Γ,X&Y ⊢∆

Γ⊢X,∆ Γ⊢Y,∆
&r

Γ⊢X&Y,∆

Γ,X ⊢∆ Γ, Y ⊢∆ ⊕l
Γ,X ⊕Y ⊢∆

Γ⊢X,∆ ⊕r1Γ⊢X ⊕Y,∆
Γ⊢Y,∆ ⊕r2Γ⊢X ⊕Y,∆

Γ⊢X,∆ Γ′, Y ⊢∆′

⊸l
Γ,Γ′,X⊸Y ⊢∆,∆′

Γ,X ⊢Y,∆ ⊸r
Γ⊢X⊸Y,∆

Γ,X ⊢∆
!l

Γ, !X ⊢∆

! Γ⊢X, ? ∆
!r

! Γ⊢ !X, ? ∆

? Γ,X ⊢ ? ∆
?l

! Γ, ?X ⊢ ? ∆

Γ⊢X,∆
?r.

Γ⊢ ?X,∆

Γ⊢∆ ⊺l
Γ,⊺⊢∆

⊺r⊢⊺

�l⊢�
Γ⊢X �r

Γ⊢�,∆

1r
Γ⊢1,∆

0l.
Γ,0⊢∆

A.4 DLAL rules

The proof rules for the Dual Light Affine Logic (DLAL) are:

axiom∣x ∶ T ⊢x ∶ T

Γ∣∆, x ∶ T1 ⊢ y ∶ T2 ⊸i
Γ∣∆⊢λx.y ∶ T1⊸T2

Γ∣∆⊢x ∶ T1⊸T2 Γ′∣∆′ ⊢ y ∶ T1 ⊸e
Γ,Γ′∣∆,∆′ ⊢xy ∶ T2

Γ, x ∶ T1∣∆⊢ y ∶ T2 ⇒i
Γ∣∆⊢λx.y ∶ T1⇒T2

Γ∣∆⊢x ∶ T1⇒T2 ∣y ∶ T3 ⊢ z ∶ T1 ⇒e
Γ, y ∶ T3∣∆⊢xz ∶ T2

Γ∣∆⊢x ∶ T1 weakening
Γ,Γ′∣∆,∆′ ⊢x ∶ T1

x ∶ T1, y ∶ T1,Γ∣∆⊢Z ∶ T2 contraction
x ∶ T1,Γ∣∆⊢Z[w/x,w/y] ∶ T2
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∣Γ,∆⊢x ∶ T
§iΓ∣ §∆⊢x ∶ §T

Γ∣∆⊢x ∶ §T1 Γ′∣y ∶ §T1,Γ′ ⊢ z ∶ T2 §eΓ,Γ′∣∆,∆′ ⊢ z[x/y] ∶ T2

Γ∣∆⊢x ∶ T ∀i
Γ∣∆⊢x ∶ ∀τ.T

Γ∣∆⊢x ∶ ∀τ.T1 ∀e.
Γ∣∆⊢x ∶ T1[T2/τ]

A.5 TFA rules

The proof rules for the Typeable Functional Assembly (TFA) are:

axiom∣x ∶ T ⊢x ∶ T

Γ∣∆, x ∶ T1 ⊢ y ∶ T2 ⊸i
Γ∣∆⊢λx.y ∶ T1⊸T2

Γ∣∆⊢x ∶ T1⊸T2 Γ′∣∆′ ⊢ y ∶ T1 ⊸e
Γ,Γ′∣∆,∆′ ⊢xy ∶ T2

Γ, x ∶ T1∣∆⊢ y ∶ T2 ⇒i
Γ∣∆⊢λx.y ∶ T1⇒T2

Γ∣∆⊢x ∶ T1⇒T2 ∣∆′ ⊢ y ∶ T1 ∣∆′∣ ≤ 1 ⇒e
∆,∆′∣Γ⊢xy ∶ T2

Γ∣∆⊢x ∶ T1 weakening
Γ,Γ′∣∆,∆′ ⊢x ∶ T1

x ∶ T1, y ∶ T1,Γ∣∆⊢Z ∶ T2 contraction
x ∶ T1,Γ∣∆⊢Z[w/x,w/y] ∶ T2

∣Γ,∆⊢x ∶ T
§iΓ∣ §∆⊢x ∶ §T

Γ∣∆⊢x ∶ §T1 Γ′∣y ∶ §T1,Γ′ ⊢ z ∶ T2 §eΓ,Γ′∣∆,∆′ ⊢ z[x/y] ∶ T2

Γ∣∆⊢x ∶ T τ /∈ fv(∆,Γ) ∀i
Γ∣∆⊢x ∶ ∀τ.T

Γ∣∆⊢x ∶ ∀τ.T1 ∀e.
Γ∣∆⊢x ∶ T1[T2/τ]
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Grammars

This section lists the grammars of the programming languages described in this thesis. The syntax
is expressed by using a set of BNF rules where:

� a production rule has the form x ::= y;

� non-terminals are written unquoted as in x ;

� terminals are written quoted as in “x”;

� the syntax x y indicates the concatenation between x and y;

� the syntax x | y indicates the alternation between x and y;

� the syntax x∗ indicates the repetition of x zero or more times (the Kleene closure);

� the syntax x+ indicates the repetition of x one or more times (the positive closure).

For the sake of simplicity, the non-terminals for declaring strings (String), identifiers (Id),
integers (Int) and comments are omitted since they follow the common rules used in most of the
C-like programming languages such as C++ and Java.

All the following languages are defined by purely left-to-right leftmost derivation grammars,
that is they can be efficiently parsed without backtracking.

B.1 HRL grammar

The syntax of the HRL language (Section 5.1.1) is:

Unit ::= “unit” Annotation∗ GlobalSymbol∗;

Annotation ::= “:” Id |
“:” Id “(” (Id | String | Int)+ “)”

GlobalSymbol ::= LocalSymbol |
“function” Id Function

LocalSymbol ::= Id “in” Variable

ParameterSymbol ::= Id “in” Parameter
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Variable ::= (“wo” | “rw”) DataType |
(“wo” | “rw” | “ro”) DataType “<-” Constant

Parameter ::= (“wo” | “rw” | “ro”) DataType;

DataType ::= “logical” |
“[” Int “,” Int “]” |
Int “of” DataType

Constant ::= Boolean |
Int |
“(” Constant+ “)”

Function ::= Annotation∗ ParameterSymbol∗

“{” (LocalSymbol | Instruction | LabelSymbol Instruction)∗ “}”

Instruction ::= Id “<-” (Id | Constant) |
Id “<-” (Id | Constant) ((InOperator (Id | Constant)) | (“[” (Id | Constant) “]”)) |
Id “<-” PreOperator (Id | Constant) |
Id “[” (Id | Constant) “]” “<-” (Id | Constant) |
“if” (Id | Constant) “goto” Id |
(“goto” | “call”) Id |
“push” (Id | Constant) |
“nop”

LabelSymbol ::= Id “:”

PreOperator ::= “not” | “-” | “reduce” | “extend” | “relative” | “findlastset”

InOperator ::= “+” | “-” | “*” | “/” | “\” |
“=” | “/=” | “<” | “<=” | “>” | “>=” |
“<<” | “>>” | “and” | “or” | “xor” | “mod”

Boolean ::= “true” | “false”

B.2 aXiom

The syntax of the aXiom language (Section 5.1.2) is:

Unit ::= (Symbol∗ | “unit” Symbol | Annotation∗ “unit” Symbol)∗;

Annotation ::= “:” Id |
“:” Id “(” (Id | String | Int)+ “)”

Symbol ::= Variable |
Function

Constant ::= LogicalConstant |
RelativeConstant |
TupleConstant
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LogicalConstant ::= Boolean

RelativeConstant ::= Int |
“wordsize”

TupleConstant ::= “(” Constant (“,” Constant)∗ “)”

Variable ::= Id “in” (“rw” | “wo”) Type |
Id “in” (“rw” | “wo” | “ro”) Type “<-” Expression |
“static” Id “in” “ro” Type “<-” Expression

Parameter ::= Id “in” (“rw” | “wo” | “ro”) Type

Type ::= Logical |
Relative |
Tuple

Logical ::= “logical”

Relative ::= “[” Expression “,” Expression ,“]” |
“int8” | “uint8” | “int16” | “uint16” | “int32” | “uint32” | “int64” | “uint64” |
“int” | “uint” | “bit”

Tuple ::= Expression “of” Type

Function ::= Annotation∗ “function” Id “(” “)”,
“{” (Variable | Instruction)∗ “}” |
Annotation∗ “function” Id “(” (Parameter | Parameter (“,” Parameter)∗) “)”
“{” (Variable | Instruction)∗ “}”

Instruction ::= Copy |
If |
While |
DoWhile |
For |
Call

Copy ::= PrimaryVariable “<-” Expression

If ::= “if” Expression Block |
“if” Expression Block “else” Block |
“static” “if” Expression Block |
“static” “if” Expression Block “else” Block

While ::= “while” Expression Block

DoWhile ::= “do” Block “while” Expression

For ::= (“static” “for” | “for”) Expression Block |
(“static” “for” | “for”) Id “in” Expression Block |
(“static” “for” | “for”) Id “in” “[” Expression “,” Expression “]” Block
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Call ::= Id “(” “)” |
Id “(” (Expression | Expression (“,” Expression)∗) “)”

Expression ::= Or

Or ::= Xor (“or” Xor)∗

Xor ::= And (“xor” And)∗

And ::= NotEqualTo (“and” NotEqualTo)∗

NotEqualTo ::= EqualTo (“/=” EqualTo)∗

EqualTo ::= GreaterThanOrEqualTo (“=” GreaterThanOrEqualTo)∗

GreaterThanOrEqualTo ::= GreaterThan (“>=” GreaterThan)∗

GreaterThan ::= LessThanOrEqualTo (“>” LessThanOrEqualTo)∗

LessThanOrEqualTo ::= LessThan (“<=” LessThan)∗

LessThan ::= RightShift (“<” RightShift)∗

RightShift ::= LeftShift (“>>” LeftShift)∗

LeftShift ::= Subtraction (“<<” Subtraction)∗

Subtraction ::= Addition (“-” Addition)∗

Addition ::= ModuloReduction (“+” ModuloReduction)∗

ModuloReduction ::= Division (“mod” Division)∗

Division ::= CeilingDivision (“/” CeilingDivision)∗

CeilingDivision ::= Multiplication (“\” Multiplication)∗

Multiplication ::= PrimaryOrUnary (“*” PrimaryOrUnary)∗

PrimaryOrUnary ::= Not | Plus | Minus | RelativeExpression | SizeExpression |
TupleMacro | MinMax | FindLastSet | VariadicExpression | TupleExpression |
Primary

Not ::= “not” PrimaryOrUnary

Plus ::= “+” PrimaryOrUnary

Minus ::= “-” PrimaryOrUnary

RelativeExpression ::= “relative” “(” Expression “)”

SizeExpression ::= “size” “(” Expression “)”
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TupleMacro ::= (“zeros” | “ones” | “one”) “(” Expression “)” |
(“tuple” | “lowones” | “highones”) “(” Expression “,” Expression “)”

MinMax ::= (“min” | “max”) “(” Expression “,” Expression “)”

FindLastSet ::= “findlastset” “(” Expression “)”;

VariadicExpression ::= “do” VariadicOperator PrimaryOrUnary

TupleExpression ::= “(” Expression (“,” Expression)+ “)”

Primary ::= Constant |
TupleComprehension |
PrimaryVariable |
“(” Expression “)”

PrimaryVariable ::= Id |
Id “[” Expression “]” |
Id “[” Expression “,” Expression “]”

TupleComprehension ::= “(” Expression “|” Id “in” “[” Expression “,” Expression “]” “)”

Block ::= “{” (Variable | Instruction)∗ “}” |
Instruction

Boolean ::= “true” | “false”

VariadicOperator ::= “or” | “xor” | “and” | “-” | “+” | “/” | “*” | “min” | “max”
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Annotations

This section contains all the supported annotations shared by HRL (Section 5.1.1) and aXiom
(Section 5.1.2).

Table C.1 lists the default unit annotations available with all the middle-ends and back-ends.
Tables C.2 and C.3 respectively contain the unit annotations enabled by the aXiom front-end and
the C back-end. Finally, Table C.4 reports all the supported function annotations.

synopsis description

:algebraicSimplification performs an algebraic simplification pass
:commonSubExpressionElimination performs a common sub-expression elimination pass
:constantFolding performs a constant folding pass
:controlFlowGraphAnalysis performs a control flow graph analysis pass
:copyPropagation performs a copy propagation pass
:dagAnalysis performs a DAG analysis pass
:deadCodeElimination performs a dead code elimination pass
:dumpAll creates an HRL file after each transformation pass
:import(x) imports the exported functions contained in the file x
:labelsPrefix(x) sets to x the prefix of the automatically generated labels’

names during the middle-end stage
:labelsSuffix(x) sets to x the suffix of the automatically generated labels’ names

during the middle-end stage
:liveVariableAnalysis performs a live variable analysis pass
:operatorChainAnalysis performs an operator chain analysis pass
:optimization performs all the optimization passes until no code change is

possible
:strengthReduction performs a strength reduction pass
:symbolUsageAnalysis performs a symbol usage analysis pass
:variablesPrefix(x) sets to x the prefix of the automatically generated variables’

names during the middle-end stage
:variablesSuffix(x) sets to x the suffix of the automatically generated variables’

names during the middle-end stage

Table C.1: Standard unit annotations.
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synopsis description

:dumpHRL creates a file containing the aXiom translation into HRL

Table C.2: Unit annotations offered by the aXiom front-end.

synopsis description

:bitVectorPacking enables the bit vector packing
:cLabelsPrefix(x) sets to x the prefix of the automatically generated labels’ names during

the C back-end stage
:cLabelsSuffix(x) sets to x the suffix of the automatically generated labels’ names during

the C back-end stage
:cVariablesPrefix(x) sets to x the prefix of the automatically generated variables’ names dur-

ing the C back-end stage
:cVariablesSuffix(x) sets to x the suffix of the automatically generated variables’ names during

the C back-end stage
:findLastSetWindow(x) sets the findlastset window to x bit
:loopUnrolling enables the loop unrolling
:targetIdiomUsage enables the target idiom usage

Table C.3: Unit annotations offered by the C back-end.

synopsis description

:carryLessMultiplication indicates that the function implements a carry-less multiplication
:carryLessSquaring indicates that the function implements a carry-less squaring
:export exports the function, making it callable from the outside of the

compilation unit
:hasAbsorbingElement(x) indicates that x is an absorbing element for the function
:hasIdentityElement(x) indicates that x is an identity element for the function
:hasSpecialCase1(x, y) indicates that if the first input parameter of the function is x,

then the result is y
:hasSpecialCase2(x, y) indicates that if the second input parameter of the function is x,

then the result is y
:hasSpecialization(x) indicates that x is a specialized function of the current one, when

its input parameters are the same
:isCommutativeAndAssociative indicates that the function is commutative and associative
:test(x) if x is success indicates that the function is a test case expected to

succeed, while if x is failure the function is a test case expected
to fail

Table C.4: Standard function annotations.
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Additional results

This appendix lists all the results obtained by executing the framework described in this document.
The specifications of the hardware platforms are available in Table 7.1.
All the tests were executed via the Algorithm 4.1 with 1000 populations of 100 samples and

with a sensitivity of 5 %.
The circled values in the tables indicates the best result for a specific operation group and the

list of notations is shown in Table 7.4.
If an algorithm name is followed by a slash and a number, this last value indicate the algorithm’s

window size. For instance, Comb/4 indicates the Comb algorithm with a window of 4 bit.
All the following tests are performed on the fields and elliptic curves specified in the NIST

publication FIPS PUB 186-4 – Digital Signature Standard (DSS) [13].

D.1 CryptoGen code performance

Table D.1 shows the performance of the binary field and elliptic curve generated code on the
i7 processor. Note that the point addition, doubling and negation operations make use of the
Reduce, Add, WindowMultiply/64, WindowSquare/64 and BEA algorithms since they
are the fastest ones on the underlying fields. The scalar multiplication algorithms work in López-
Dahab space since it offers superior performance.

Analogously, the Table D.2 reports the performance on the ARMv7 processor. The algorithms
WindowMultiply and WindowSquare are not available since these processors lack a carry-less
multiplication assembler instruction. The point addition, doubling and negation operations make
use of the Comb method with a window width of 3 bit for the two smallest fields and a width of
4 bit for the other ones. In addition, the DCEA algorithm is used for F2163 and the BEA elsewhere.
The scalar multiplication instead exploits the López-Dahab coordinates to achieve greater speeds.

D.2 Library code performance

Tables D.3 and D.4 list the performance of the OpenSSL 1.0.2 and Crypto++ 5.6.1 libraries on
the NIST binary fields and elliptic curves.
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operation method
time [ns]

B-163 B-233 B-283 B-409 B-571

a mod b Reduce 8 6 8 7 17

a + b Add 1 1 1 2 3

Comb/3 198 352 484 1139 5763
Comb/4 155 270 364 849 3640
Comb/5 177 272 365 834 1650
Karatsuba+Comb/3 183 324 472 916 1541
Karatsuba+Comb/4 179 286 424 723 1135
Karatsuba+Comb/5 206 317 451 778 1182

a ⋅ b

WindowMultiply/64 7 11 14 35 217

PrecomputeSquare/8 14 59 82 159 303
PrecomputeSquare/9 28 51 76 144 278
PrecomputeSquare/10 30 47 69 129 258a2

WindowSquare/64 5 7 9 25 190

BEA 1254 2206 3005 6001 11 507
DCEA 1255 2232 3133 6266 13 172a−1

EEA 1985 4081 6235 11 199 19 454

in affine space 1255 2202 3218 6153 12 261
in projective space 238 256 354 601 3301
in Jacobian space 327 330 463 803 4585

P +Q
in López-Dahab space 297 311 431 747 4018

in affine space 1236 2176 3209 6103 12 122
in projective space 177 180 243 410 2261
in Jacobian space 159 160 224 374 2112

2P

in López-Dahab space 155 159 223 372 2036

in affine space 6 8 10 14 19
in projective space 6 8 10 14 19
in Jacobian space 23 24 35 57 255

−P
in López-Dahab space 23 24 35 57 255

AddAndDouble 45 817 68 229 112 402 286 026 2 189 789
NAFMultiply 40 200 59 766 97 893 249 658 1 865 688
NAFwMultiply/2 28 002 40 898 66 052 164 016 1 256 348
NAFwMultiply/3 27 522 40 036 65 832 163 318 1 245 761
NAFwMultiply/4 27 869 40 351 66 116 167 218 1 240 570

n ⋅ P

NAFwMultiply/5 29 277 41 651 68 745 172 167 1 265 471

Table D.1: Performance on the i7 processor.
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operation method
time [ns]

B-163 B-233 B-283 B-409 B-571

a mod b Reduce 104 120 281 246 565

a + b Add 45 69 88 153 239

Comb/3 6546 23 038 46 169 80 894 117 895
Comb/4 4869 14 383 26 327 61 855 113 862
Comb/5 5207 13 876 24 903 56 404 108 160
Karatsuba+Comb/3 4140 8643 15 724 49 130 113 895
Karatsuba+Comb/4 3743 7266 12 714 26 703 82 382
Karatsuba+Comb/5 4188 7620 13 078 25 094 77 572

a ⋅ b

WindowMultiply/32 – – – – –

PrecomputeSquare/8 1621 3282 5520 9280 27 605
PrecomputeSquare/9 1745 3675 6080 10 006 23 211
PrecomputeSquare/10 1865 7620 6742 11 154 19 431a2

WindowSquare/32 – – – – –

BEA 32 023 56 426 78 188 166 485 314 153
DCEA 29 484 57 680 80 239 172 531 321 796a−1

EEA 35 071 72 281 100 648 204 165 334 727

in affine space 50 937 70 045 94 203 217 097 429 549
in projective space 51 920 101 003 139 214 371 128 1 070 419
in Jacobian space 64 079 123 237 168 047 489 756 1 269 222

P +Q
in López-Dahab space 58 365 112 388 157 315 426 454 1 155 117

in affine space 36 107 60 348 96 861 223 527 519 679
in projective space 43 599 69 167 173 192 238 174 621 439
in Jacobian space 41 867 56 372 88 528 215 989 523 914

2P

in López-Dahab space 27 795 53 370 83 751 206 658 428 432

in affine space 262 312 333 468 625
in projective space 262 312 333 468 625
in Jacobian space 4139 7774 10 586 28 419 80 566

−P
in López-Dahab space 5744 7756 10 601 28 083 80 703

AddAndDouble 9 441 774 25 564 965 43 932 628 181 316 012 367 270 712
NAFMultiply 7 978 762 21 457 574 37 329 096 154 057 350 326 848 597
NAFwMultiply/2 4 649 553 12 443 090 21 601 999 95 485 598 326 393 165
NAFwMultiply/3 4 720 973 12 597 703 21 892 988 94 969 061 300 427 337
NAFwMultiply/4 4 892 246 13 090 895 22 358 341 94 854 413 293 493 367

n ⋅ P

NAFwMultiply/5 5 244 866 13 591 353 23 256 801 97 503 772 287 818 708

Table D.2: Performance on the ARMv7 processor.
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operation
times [ns]

B-163 B-233 B-283 B-409 B-571

a mod b 16 194 186 217 252
a + b 18 19 19 20 22
a ⋅ b 255 280 303 375 501
a2 241 275 272 329 343
a−1 1955 3354 4768 9927 17 657

P +Q 2588 3974 5899 10 486 18 524
2P 2543 3892 6043 10 307 18 308
−P 25 27 39 27 26
n ⋅ P 180 007 232 475 466 992 735 405 1 848 002

Table D.3: Performance of the OpenSSL library on the i7 processor.

operation
times [ns]

B-163 B-233 B-283 B-409 B-571

a mod b 1105 1698 2240 3713 6127
a + b 97 98 100 99 102
a ⋅ b 1552 3434 3567 6759 12 922
a2 130 291 181 229 282
a−1 10 530 14 142 20 724 25 520 46 914

P +Q 22 185 30 985 47 295 63 869 131 279
2P 21 353 30 274 45 535 63 351 124 767
−P 103 103 110 106 112
n ⋅ P 15 732 963 36 693 675 62 668 174 183 510 370 565 496 848

Table D.4: Performance of the Crypto++ library on the i7 processor.
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Notations

The following table lists all the mathematical notations used in this dissertation.

x∗ Kleene closure of x
x+ positive closure of x
○∶x × y → z binary operator ○ that maps x × y to z
○∶x→ y unary operator ○ that maps x to y
x↦ y x is mapped to y
Im(f) image of the function f
x← y y is copied into x
X[y] access of the y-th element in the tuple X
X[y →] access from the y-th element to the z-th element in the tuple X
x⊕ y exclusive or between x and y
X≫ y right shift of X by y positions
X≪ y left shift of X by y positions
fls(X) find last set of X
x↔ y content exchange between the variables x and y
{x, y, z } unordered set of the items x, y and z
X ∖Y set difference between X and Y
X ∪Y set union of X and Y
[x, y] integer range from x (inclusive) and y (inclusive)
(x, y, z ) ordered tuple of the items x, y and z
(x, y, z )2 bit vector containing the bits x, y and z
(x, y, z )NAF NAF containing the values x, y and z
(x, y, z )NAFw

NAFw containing the values x, y and z
x16 x in hexadecimal form
(X, ○) the group X with the group operator ○
G generic group
∣X ∣ cardinality of the set X
(X, ○, ◽) the field X with the field operators ○ and ◽
F generic field
Fx field with order x
char(X) characteristic of the field X
ψ field homomorphism
X/Y extension field X over Y
deg(X) degree of the field X
F2x binary field with degree x
F2x[y]/z binary field with degree x in y with modulus z
E elliptic curve
E/X elliptic curve E defined over the field X
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E(X) set of points of the elliptic curve E defined over the field X
P∞ point at infinity
(x, y) point in affine space with coordinates x and y
(x ∶ y ∶ z) point in projective space with coordinates x, y and z
(x, y, z) point in Jacobian space with coordinates x, y and z
(x; y; z) point in López-Dahab space with coordinates x, y and z
X ⊢Y sequent with antecedent X and consequent Y
x∧ y logical and between x and y
x∨ y logical r between x and y
x⇒ y logical implication between x and y
¬x logical not of x
x` y multiplicative disjunction between x and y
x⊗ y multiplicative conjunction between x and y
x⊕ y additive disjunction between x and y
x& y additive conjunction between x and y
x⊸ y linear implication between x and y
!x of course x
?x why not x
§x neutral x
x ∶ y typed context of x with type y
⟨x, y, z⟩ threaded words x, y and z
fv(X) set of the free variables in X
X[y] clash-free substitution of y in X
x∣y ⊢ z ∶ w DLAL sequent with antecedent x∣y and consequent z ∶ w
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Acronyms

AES Advanced Encryption Standard 13

AGM Arithmetic Geometric Mean 17

ALU Arithmetic Logic Unit 75

ANSI American National Standards Institute 8, 9

API Application Programming Interface 47, 51

ARPANET Advanced Research Projects Agency NETwork 1

BEA Binary Euclidean Algorithm iv, vi, ix, 24, 25, 32, 33, 38, 39, 41–43, 84

BNF Backus-Naur Form 34–36, 38, 52, 94

BSD Berkeley Software Distribution 49

CACE Computer Aided Cryptography Engineering xii, 6

CAO C And Occam xii, 6, 52

CL Cryptography Language 6

CL Classical Logic iii, v, 34, 35, 90

CPU Central Processing Unit 22, 23, 49, 80–82, 84, 88

DAG Direct Acyclic Graph iv, vi, ix, 65–68, 70, 72, 74, 75, 79, 99

DCEA DLAL Certified Euclidean Algorithm iv, vi, ix, xii, xiii, 19, 24–26, 32, 33, 38, 43, 44, 84,
88

DH Diffie-Hellman xi, 8, 17–19

DLAL Dual Light Affine Logic iii, v, 33, 34, 38, 43, 92, 106, 108

DLP Discrete Logarithm Problem xi, 17

DNS Domain Name System vi, 1, 2, 108

DNSSEC DNS SECurity extensions 1, 2

DS Delegation Signer resource record 2
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Acronyms

DSA Digital Signature Algorithm 8, 9, 17

DSL Domain Specific Language iii, xii, xiii, 6, 7, 52, 53, 80, 88

DSP Digital Signal Processor 50

DSS Digital Signature Standard 8

ECC Elliptic Curve Cryptography viii, xi–xiii, 3, 6–11, 21, 23, 25, 28, 33, 38, 45, 86, 88

ECDDHP Elliptic Curve Decision Diffie-Hellman Problem 19

ECDH Elliptic Curve Diffie-Hellman iii, vi, xi, 8, 9, 11, 17–19, 31

ECDHP Elliptic Curve Diffie-Hellman Problem 8, 18, 19

ECDLP Elliptic Curve Discrete Logarithm Problem xi, 8, 9, 17–19, 33

ECDSA Elliptic Curve Digital Signature Algorithm 8–10, 17

ECMQV Elliptic Curve Menezes-Qu-Vanstone 8, 9

EEA Extended Euclidean Algorithm ix, 25, 27, 32

EMF Eclipse Modeling Framework 80

ETSI European Telecommunications Standards Institute 5

FP7 7th Framework Programme xii, 6

FPGA Field Programmable Gate Array 9

GCC GNU Compiler Collection 53, 61, 77, 81, 82, 88

GNU GNU’s Not UNIX 109

GSM Global System for Mobile communications 4–6

HR High level intermediate Representation iv, vi, 46–48, 52, 53, 57–60, 62, 63, 65, 75–77, 109

HRL HR Language iv, vi, viii, xiii, 6, 20, 36, 52–56, 58, 59, 63, 65, 66, 72–75, 88, 94, 99, 100

HTTP HyperText Transfer Protocol 3, 109

HTTPS HTTP over SSL or TLS 3

I/O Input/Output 37

ICC Implicit Computational Complexity iii, xiv, 33–44

IDE Integrated Development Environment 80

IEEE Institute of Electrical and Electronics Engineers 8

IETF Internet Engineering Task Force 2

IFP Integer Factorization Problem xi
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Acronyms

IL Intuitionistic Logic iii, v, 34, 35, 37, 91

IP Internet Protocol 1, 110

IPsec IP SECurity xi, 9, 18

ISP Internet Service Provider 2

LL Linear Logic iii, v, 35, 38, 91

LSB Least Significant Bit 39, 42

MANET Mobile Ad-hoc NETwork 9

ML MetaLanguage 7

MSB Most Significant Bit 39, 42

MTS Mobile Telephone Service 4

MVC Model-View-Controller 51, 80

NAF Non-Adjacent Form ix, 29, 30, 105, 110, 112

NAFw width-w NAF ix, 30, 31, 83, 105, 112

NIST National Institute for Standards and Technology 8, 9, 86, 101

NSA National Security Agency 7, 8, 86

OS Operating System 81

PC Personal Computer 5, 50

POSIX Portable Operating System interface for UnIX 49

RAM Random Access Memory 81

RSA Rivest-Shamir-Adleman xi, 2, 8–10

SIDH Supersingular Isogeny Diffie-Hellman xii, 8

SIM Subscriber Identity Module 4, 5

SIMD Single Instruction, Multiple Data 89, 110

SSA Static Single Assignment 89

SSE Streaming SIMD Extensions 89

SSH Secure SHell xi, 9, 18

SSL Secure Socket Layer 85, 109

STLC Simply Typed λ-Calculus 36

STS Station-To-Station 19
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Acronyms

SUPERCOP System for Unified Performance Evaluation Related to Cryptographic Operations
and Primitives 50

TDC Tele Danmark 2

TFA Typeable Functional Assembly iii–v, 38, 41–43, 93

TLS Transport Layer Security viii, xi, 3, 4, 9, 18, 85, 109

UI User Interface iv, 50, 51

UML Unified Modeling Language vi, 59, 60

URL Uniform Resource Locator 3

VANET Vehicular Ad-hoc NETwork 9

VHDL VHSIC Hardware Description Language 6, 7

VHSIC Very High Speed Integrated Circuit 111

WSN Wireless Sensor Network 9

XML eXtensible Markup Language 50

111



Index

λ-abstractions, 36
λ-applications, 36
λ-calculus, 36
λ-term, 36
2G, 4

A5/1, 4
A5/2, 4
A5/3, 4
Abelian group, 12
add-and-double, 27
additive conjunction, 35
additive disjunction, 35
admissible change of variables, 16
affine coordinate system, 25
algebraic simplification, 68
alternation, 94
analysis algorithm, 62
analysis pass, 47
annotation, 52, 99
antecedent, 34
associativity of a group, 12
aXiom, 55, 95

back-end
stage, 48

basic block, 62
BEA, 24, 41
binary Euclidean algorithm, 24, 41
binary field, 12, 13
bit vector packing, 75
bound variable, 90
Brouwer-Heyting-Kolmogorov functional

interpretation, 34

CAO, 6
characteristic of a field, 12, 13
Church boolean, 38
Church word, 38

CL, 6, 34
clash free substitution, 90
classical logic, 34
closure of a group, 12
code compilation, 46
comb, 21
comba, 21
common sub-expression, 73
common sub-expression elimination, 73
commutative group, 12
COMP128, 4
concatenation, 94
consequent, 34
constant folding, 68
context, 34
control flow graph, 62
control flow graph analysis, 62
copy propagation, 70
cPLC, 7
Crypto++, 84
CryptoGen, 46
cryptography developer, 45
Cryptol, 7
CryptoStudio, 45
Curve25519, 8

DAG, 64
DAG analysis, 64
data instance, 59
DCEA, 24, 43
dead code, 70
dead code elimination, 70
dead variable, 63
defined variable, 63
degree of a field, 12, 13
digital signature standard, 9
discrete logarithm, 16
distributivity of a field, 12
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INDEX

DLAL, 38
DLAL certified Euclidean algorithm, 24, 43
DNS, 1
DNS cache poisoning attack, 1
DNS spoofing attack, 1
DNScurve, 1
DNSSEC, 1
DSS, 9
dual light affine logic, 38

ECC, x, 7, 11
ECC challenge, 8
ECDDHP, 19
ECDH, 9, 18, 31
ECDHP, 18
ECDLP, 16
ECDSA, 9
ECMQV, 9
EEA, 25
elliptic curve, 13, 14
elliptic curve cryptography, x, 11
elliptic curve decision Diffie-Hellman

problem, 19
elliptic curve Diffie-Hellman, 9, 18, 31
elliptic curve Diffie-Hellman problem, 18
elliptic curve digital signature algorithm, 9
elliptic curve discrete logarithm problem, 16
elliptic curve DSA, 9
elliptic curve Menezes-Qu-Vanstone, 9
elliptic curve MQV, 9
end-compiler, 61
end-user, 45
extended Euclidean algorithm, 25
extension field, 12, 13

field, 12
field addition, 20
Field degree, 13
field division, 24
field homomorphism, 12, 13
field inversion, 24
field modular reduction, 20
field modulus, 13
field multiplication, 21
field multiplicative inversion, 24
field operation, 12
field order, 12
field squaring, 23
field subtraction, 20
finite field, 13

finite group, 12
FIPS PUB 186-4, 9
framework developer, 45
free variable, 90
front-end stage, 47
function, 59

Google, 3
Google Search, 3
group, 11, 12
group operation, 12
group order, 12
GSM, 4

head of a tuple, 39
hidden field equations, 10
high speed cryptography, x, 1
HR, 59
HRL, 52, 94
hyperelliptic curve cryptography, 10

ICC, 33
IL, 34
implicit computational complexity, 33
instance, 59
intuitionistic logic, 34
IPsec, 9

Jacobian coordinate system, 25

Karatsuba, 22
Karatsuba-Ofman, 22
KASUMI, 4
Kleene closure, 94

López-Dahab coordinate system, 25
label, 59
leader instruction, 62
library builder, 50
linear implication, 35
linear logic, 35
linear variable, 90
live variable, 63
live variable analysis, 63
LL, 35
logical, 52
loop unrolling, 75
loop unwinding, 75

MANET, 9
maq, 6
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INDEX

McEliece crypto-system, 10
middle-end stage, 47
minimal logic, 36
MISTY1, 4
mobile ad-hoc network, 9
modulus, 12
mote, 9
multiplicative conjunction, 35
multiplicative disjunction, 35

NAF, 29
NAFw, 30
non-supersingular elliptic curve, 16
non-terminal symbol, 94

of cource, 35
one-way function, 16
OpenSSL, 84
operator chain, 66
operator chain analysis, 66
operator overloading, 55
optimization, 61
order of a field, 12
order of a group, 12

pass, 47
performance evaluator, 48
point addition, 14, 25
point at infinity, 14
point doubling, 25
point multiplication, 15, 27
point negation, 25
point subtraction, 15
positive closure, 94
preprocessing, 55
projective coordinate system, 25

qhasm, 6

rational point, 13
register filling, 75
register spilling, 75
relative, 52
repetition, 94

scalar multiplication, 15, 27
school-book method, 21
SEC 2, 9
sequent, 34
set of points on an elliptic curve, 14

side effect, 36
SIDH, 8
signed-binary digit representation, 29
signed-digit representation, 28
SNOW 3G, 4
SSH, 9
static constant, 55
static for, 55
static if, 55
station-to-station, 19
strength reduction, 71
STS, 19
succedent, 34
supersingular elliptic curve, 16
symbol, 59

tail of a tuple, 39
target idiom usage, 76
terminal symbol, 94
test case, 59
TFA, 38
threaded word, 38
three-address code, 52
TLS, 9
trace zero varieties, 10
transformation algorithm, 66
transformation pass, 47
tuple comprehension, 55
tuple slicing, 55
typeable functional assembly, 38
typed λ-calculus, 36

UI, 50
unit, 59
untyped λ-calculus, 36
used variable, 63

VANET, 9
variadic operator, 55
vehicular ad-hoc network, 9

Weierstraß equation, 14
why not, 35
wireless sensor network, 9
WSN, 9

X9.62, 8

ZKCrypt, 7
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