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ABSTRACT 

In the last decade, the robotics field experienced 

overwhelming increase of robots complexity and spread 

of robotic applications in consumer, industrial and 

scientific domains. Software components reuse became 

a key factor to increase quality of robotic assets and to 

reduce production time and costs. Thus, the robotics 

community endeavoured to develop modular robot 

software architectures, aiming to support the 

development and integration of robot software modules. 

Those scattered efforts resulted in a number of products 

with different features, but a comprehensive product for 

space applications is yet far to be available. 

This paper presents the new TAS-I Robot Management 

Framework and robot modular architecture, including 

software modules and algorithms implementing the 

capabilities for continuous traverse, sample canister 

acquisition and return and to demonstrate them in 

outdoor environment. Finally, the future works, 

including porting to flight-representative hardware, 

modules optimization and customization for specific 

tasks, projects and future missions will be discussed. 

 

1. NEED FOR A ROBOT MANAGEMENT 

FRAMEWORK 

Space exploration is one of the humanity greatest 

endeavours, where robotic technologies are playing a 

key role in enabling the achievement of more and more 

demanding mission requirements and ambitious science 

objectives. While robotic exploration is a pioneering 

field open to innovative technologies and solutions, the 

need of common solid foundations to manage the 

increased complexity of robotic systems is arising, 

similarly to what happened in the industrial and 

academic domains. Therefore, great efforts have been 

spent in the development of modular robot software 

architectures (aka robot control operative systems, 

software frameworks, robotic middleware and so on), 

with peculiar objectives and features [1, 2, 3]. Even in 

this wide solutions portfolio plenty of de-facto standards 

like Robot Operative System (ROS), it is impossible to 

find a comprehensive product (or a combination of 

them) which may comply with space domain 

requirements in terms of reliability, availability, 

maintainability and safety (RAMS).  

From these assumptions and the previous experience on 

robotic frameworks [4, 5, 6] TAS-I pursued the 

development of its own Robot Management Framework 

trying to overcome the limitations of the existing 

approaches. 

 

2. TAS-I ROBOT MANAGEMENT FRAMEWORK 

OVERVIEW  

TAS-I Robot Management Framework stands on the 

following four pillars: 

- Abstraction: to provide abstraction from 

underlying Hardware and Operating System (OS) to 

ease portability on different robotic platforms; 

- Foundation: to provide a set of common reliable 

building blocks which can be reused across various 

applications; 

- Openness: to provide open interfaces to ease 

software modules integration; 

- Focus: to provide high-level Application 

Programming Interface (API) to ease robot software 

modules implementation. 

 

To achieve these objectives TAS-I designed the Robot 

Management Framework architecture depicted in Fig. 1. 

 

3. ROBOT LAYER 

The Robot Layer consists in the physical robotic 

platform, including hardware and software components 

such as sensors, actuators, on-board-computer(s), 

interfaces, drivers and the operating system where the 

architecture is deployed. The architecture has been 

designed to be independent from the robotic platform, 

enabling reuse in different projects.  

 

4. WORKFRAME LAYER 

The WorkFrame Layer is the core of the Robot 
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Management Framework, implementing all the common 

reliable building blocks that may be reused across. It is 

based on the work presented in [5] and includes 

additional functionalities: 

- KAL: Kernel Abstraction Layer  

- HAL: Hardware Abstraction Layer 

- WFCore: WorkFrame Core Functionalities 

- NET: Network Communication 

- BBS: BlackBoard System 

- CMAT: Mathematical Library 

 

This layer exposes a set of high-level APIs to manage 

the different functions that are not available as open 

source to ensure the reliability of the system. 

 

4.1. Kernel Abstraction Layer 

This layer is the only one directly interfacing with the 

underlying OS. The goals of this layer are: 

- to encapsulate the OS resources APIs in easier to 

use classes; 

- to provide objects to access I/O devices; 

- to handle the creation of tasks; 

- to deal with the scheduling of the system; 

- to guarantee to portability of the higher levels. 

 

This last objective affects all of the above ones, as in 

order to guarantee the portability, all the classes have to 

provide unique interfaces independently of the 

underlying operating system. Even if [5] supports many 

OS, current TAS-I robot management framework 

implementation supports Linux, Linux/RTAI and 

RTEMS. As the OS system calls cannot always be 

mapped one another, the KAL abstracts only the 

common features. Direct use of OS-specific calls is not 

forbidden but the porting of such software pieces has to 

be done manually. 

 

4.2. Hardware Abstraction Layer 

This layer provides a general way to interact with the 

robot sensors and actuators. Thanks to this layer the user 

tasks are device independent. When the hardware 

changes, just the portion of HAL relevant to that 

particular component(s) has to be re-coded according to 

the defined software interface, leaving the higher layers 

unchanged. 

Similarly it is possible to implement HAL drivers to 

perform dry-run tests without hardware in the loop (e.g. 

by communicating with a simulator or providing 

dummy data).  

 

4.3. WorkFrame Core 

This library contains the core functionalities of system 

management, which includes the handling of the system 

state, the proper scheduling of all tasks and control over 

the deadlines, the creation and request of resources and 

the general task functioning.  

In order to offer all the services, a set of system tasks is 

included in the WorkFrame Core library: 

- System Manager, which controls the evolution of 

the system state, and the unique handler of all the 

requests for resources or tasks; 

- Scheduler, to execute and monitor the scheduling 

of user tasks and modules; 

- Debug Console, managing framework and user 

tasks debug messages. 

- WorkFrame Console, to control basic 

functionalities (e.g. start and stop the WorkFrame) 

- Watchdog, to monitor the state of WorkFrame and 

user tasks state. 

 

4.4. Network Communication 

The Network Communication library contains all the 

Figure 1. Robot Management Framework Architecture 



 

classes and functions needed to perform remote 

communications.  

The Client/Server paradigm is implemented by 

dedicated classes, easing the communication with 

remote modules and external systems. In the same way, 

it is planned to implement the Publish/Subscribe 

paradigm. 

At the moment the Ethernet and Bluetooth medium are 

supported, while CANbus is under testing. 

The NET library does not preclude the possibility of 

communicating with other Robotic Middleware; indeed 

it is possible to use other communication libraries and 

connect the modules to e.g. a ROS node. 

 

4.5. BlackBoard System 

The BlackBoard system implements the data sharing 

mechanism between tasks, providing high-level APIs to 

exchange data in a thread-safe way using the 

BlackBoard a shared memory segment containing both 

the data and a header part used internally by the classes 

of the BlackBoard System. Three dedicated tasks are 

assigned to the management of the BlackBoard system: 

- the BlackBoard Manager, which creates the 

BlackBoard, handles the declaration of all data and 

creates the resources to implement mutual exclusive 

access; 

- the Execution Manager, which manages the access 

to the resources by the user tasks; 

- the Connection Manager, which takes care of 

interface with all the remote tasks exploiting the 

services of the NET library. 

  

4.6. Mathematical Library 

This library implements a minimal set of classes to 

handle matrices and vectors, with particular methods, 

very often used in robotics, for operation like Singular 

Value Decomposition, to transform Roll-Pitch-Yaw 

vectors to their corresponding Rotational matrices and 

vice-versa, and so on. 

 

5. INTERFACE LAYER 

The Interface Layer implements standardized means 

enabling communications between modules and to the 

system. It gives the needed openness to the framework 

in order to allow collaborative design, development, 

integration and testing of software modules. In 

particular it provides the following features: 

- Data Interface, to ensure data types consistency; 

- Messages Passing System, to ease messages 

exchange between modules. 

 

5.1. Data Interface 

The Data Interface provides a uniform access to the 

BlackBoard that contains the data exchanged by all the 

modules. The APIs take care about the concurrent 

access to the memory and embedded serialization 

ensures the data consistency among different systems. 

Alongside to the provided APIs, the users can easily 

define and maintain the data structures that will be 

exchanged on the BBS and over the network.  

 

5.2. Messages Passing System 

The Robot Management Framework architecture is 

based on the exchange of standardized messages. The 

messages are used to give specific commands to the 

modules and receiving acknowledgments. A timestamp 

is automatically attached to each new message that is 

generated. 

The architecture defines three different messages queues 

- An Emergency Queue, which is used by the for 

high priority messages; 

- A Debug Queue, which is used to transmit 

commands that should be only executed in a debug 

context; 

- A Nominal Queue, which is the nominal 

communication channel. 

 

The MPS APIs ease messages generation and 

processing, moreover it automates messages handling, 

including the verification status acknowledgements. It 

implements also a message relay function, enabling the 

passing of a message to a recipient passing through one 

or more relay modules. 

 

6. MODULES LAYER 

The Modules Layer is built on top of the architecture, 

which defines only the base module class. From the 

base module class is it possible to derive customized 

subclasses implementing the modules functionalities. 

To ease the modules development, the modules layer 

exploits the underlying APIs and a series of high-level 

APIs specifically for: 

- Finite State Machine Definition, to implement 

modules FSM and relevant functions; 

- Modules Scheduling, to implement periodic and 

aperiodic modules;  

- Modules Commands, to automate commands 

parsing and related functions; 

- Modules Configuration, to ease and standardize 

modules configuration;  

- Modules Modes, to implement different behaviour 

according to the operational contexts;  

- Remote Modules Implementation, to distribute 

modules while still natively communicating with 

the framework core.  

 

6.1. Finite State Machine Definition 

The Module class provides a set of APIs to build and 

manage its own FSM. Each defined state binds a 

function that is executed as “state function” at each 

module cycle.  

The architecture defines also the concept of meta-state: 



 

a pointer to a given state which can be changed at 

runtime. This way it is possible to associate different 

state functions to the same state name at runtime, 

changing the module behaviour. This concept allows all 

the other modules to be unaware of how many different 

possibilities exists for each meta-states, since they will 

refer just to them and not the specific implementation 

alternatives. Furthermore, this increases the flexibility 

during execution, since without restarting the robot 

different alternatives can be quickly selected. 

 

6.2. Modules Commands 

Each Module can bind a command string to a specific 

function which implements the command. This way the 

code results more modular, as each command function 

(as-well-as state/meta-state functions) are separate and 

easy to be maintained. If an unknown command is 

received, the error is reported to the module which 

issued the command. Other errors can be defined by the 

user and have to be handled according to the desired 

Failure Detection Isolation and Recovery 

implementation. 

 

6.3. Modules Scheduling 

Each Module can be configured either as a periodic or 

as an aperiodic module. In the periodic mode, the 

module will run at fixed time intervals, executing its 

state function once per cycle. In the aperiodic 

configuration, the module will poll the messages queues 

to execute the commands issued by other modules.  

 

6.4. Modules Configuration 

Each module has its own configuration file, containing 

at least the set of parameters needed by the framework 

(e.g. periodic task sample time, default operative 

context, commands list). Moreover, the configuration 

file can host module-dependant parameters (e.g. 

algorithm parameters). 

Configuration files are read at start-up and can be 

managed in user-defined module states (e.g. a config 

state where a user can change configuration parameters 

and save a new configuration file) providing on-the-fly 

modules configurability. 

 

6.5. Modules Execution Context 

The architecture defines two parameters that can be set 

for each module to run in a different execution context.  

The first parameter sets if the module runs in a Dry-

Run or Operative context. The Dry-Run context is 

intended to allow the user testing the module in specific 

conditions (e.g. a sensor module that generates data 

according to the sensor model). The Operative context 

is the nominal case, where the user want to run the 

module as-is (e.g. a sensor module that acquires data 

from a real sensor). 

The second parameter sets if the module runs in a 

Debug or Mission context. The Debug context is 

intended to let the user define specific debug execution 

procedures, separated from the nominal Mission 

context. In the Debug operative context the Debug 

Commands Queue is active and so the modules accept 

debug commands which can be used to trigger specific 

behaviours (e.g. inject a failure). 

As the two parameters are handled separately, the 

Execution Context can be selected among the following: 

- Operative – Mission: which is the nominal 

context. 

- Dry-Run – Mission, where the modules can 

perform their nominal work in dry-run mode;  

- Operative – Debug, where the modules can be 

debugged in their operative conditions; 

- Dry-Run – Debug, where the modules can be 

debugged while running in Dry-Run mode.  

 

Those configuration parameters can be either changed at 

runtime, if the behaviour is implemented by the user 

(e.g. in a configuration state of the module FSM). 

The user who desires to exploit these features has to 

implement the different behaviours inside the Module 

FSM, exploiting the APIs enabling this design 

paradigm. 

 

6.6. Remote Modules 

To distribute the computational effort on multiple 

machines, it is possible to implement Remote Modules 

which run on different hosts that the one which runs the 

Robot Management Framework.  

Those remote machines needs to be compatible with the 

Robot Management Framework, so that the Remote 

Modules running on them can link the needed 

framework libraries. Apart from this effort, setting a 

module as remote is matter of changing its initialization 

parameters, including network IP address and port of 

the machine where the core system is running.  

Other function, such as the data exchange to the 

BlackBoard system are managed through the same 

APIs, so the rest of module code remains unchanged. 

 

7. MODULAR ROBOT CONTROL SOFTWARE 

ARCHITECTURE 

Over the Robot Management Framework, a Modular 

Robot Control Software (RCS) architecture has been 

designed. As described in the previous chapters, the 

basic building block is the Module, which can be 

specialized and replicated to design and implement a 

generic RCS (e.g. rover GNC). 

Five module types have been defined: 

- Sensor, to interface with robot sensors; 

- Actuator, to interface with robot actuators;  

- Resource, these modules implement the RCS 

functions and algorithms, process Sensors Modules 

data, provide input to the Actuator Modules; 

- Coordination, in charge of coordinating a set of 



 

Resource Modules to implement complex tasks;  

- External, implementing non-core functions of the 

RCS like Logging and Debugging.  

 

Alongside the module types, which can be used to 

define the RCS structure, an overall FSM concept has 

been defined to provide a baseline implementation of 

the behaviour of such modules (Fig. 2):  

- Startup, in this state the Robotic Framework tasks 

are started and all the local and remote modules 

register to the system; 

- Config, this state allows the configuration of the 

modules, it is possible e.g. to load/save 

configuration files, change module dependent 

parameters and set the module meta-states. In this 

state it is possible to select each module execution 

context;  

- Standby, this state is a transition state where the 

system waits for a system command to start the 

execution (so switching to the hold state) or to shut 

down (so switching to the Shutdown state). In this 

state the sensors and actuators can be switched on 

and off; 

- Hold, this state is and execution state where the 

module is idle and the sensors and actuators are 

switched on;  

- Run, this is the module execution state; 

- Shutdown, in this state the shutdown procedure is 

executed; 

- Safe, this state is an off-nominal state where a 

module enters in case of failure. From this state it is 

possible to analyse the module errors and decide 

upon switching back to standby and perform a 

module re-configuration, to restore the execution or 

shutdown the system; 

 

 
Figure 2. Finite State Machine 

 

Obviously this FSM provides a concept of module 

states, but state/meta-state functions bond to each state 

has to be implemented by the user according to the 

desired behaviour. Other Robot management 

Framework users may define their own FSM as well. 

 

8. MODULAR GNC IMPLEMENTATION 

The modular RCS architecture has been tailored for 

TAS-I research rovers, implementing the capabilities of 

a sample canister acquisition mission to be 

demonstrated in outdoor TAS-I ROvers eXploration 

facilitY [7]. The baseline mission scenario is divided in 

three phases: 

- Sample Canister Identification, by looking at the 

rover Tracking Camera pictures, the sample 

container is identified and manually selected by a 

human operator; 

- Rover Traverse, a tracking algorithm estimates the 

selected sample container position and provide it as 

goal to the rover GNC. Then the rover 

automatically approaches the target; 

- Sample Canister Acquisition, Once in the 

neighbourhoods of the sample canister, the robotic 

manipulator is commanded to acquire the sample 

canister, using the visual feedback to approach the 

canister interface. 

 

The tailored Robot Control Software hierarchy is 

depicted in Fig. 3.  

The Autonomy module is the intelligence of the robotic 

system and the one that implements the highest level of 

FDIR. It is in charge of decomposing the plan submitted 

from ground into commands sequences to be executed 

by the lower level modules. 

The Coordinator Navigator module coordinates the 

resource modules and other Coordinator modules to 

implement stop-and-go and continuous GNC chains. 

The Coordinator Manipulation module is in charge of 

managing the coordination between the Manipulator and 

the Target Racking modules to implement vision-based 

object manipulation. 

The Coordinator VisualTracking module implements 

the needed coordination between the Target Tracking 

modules and the PTU module to chase the selected 

target. 

The PerceptionDataFusion module is in charge of 

merging the local DEMs generated by the Perception 

modules with the global DEM, building a consistent 

map of the explored area. It coordinates also the PTUs 

actuation to perform the needed scans with perception 

sensors. 

The LocalizationDataFusion module is in charge of 

merging Localization modules output to provide the 6D 

pose estimation of the robot. 

The LocalizationVisual/Mechanical/Inertial modules 

implement algorithms to calculate robot pose estimation 

based on vision/encoder/inertial sensors. 

The PerceptionToF module implements algorithms to 

generate local DEMs based on ToF camera sensor input. 

A PerceptionVisual module generating local DEMs 

based on Head Camera stereo bench is available but not 

included in the present architecture. 

The Traversability module implements the algorithms 



 

that generate the Navigation Map (NavMap) starting 

from the global DEM and the trafficability parameters 

(e.g. maximum traversable slope, maximum traversable 

step, maximum steering angle) of the robotic platform. 

The Path Planning module implements algorithms to 

generate a safe and optimal trajectory on the NavMap, 

given a navigation goal. 

The Locomotion module implements the locomotion 

equations which translate the trajectory into speed and 

jog values to the LocomotionActuator module. 

The TrackingTarget module implements an algorithm 

to estimate the 3D position of a selected Region of 

Interest (ROI) in an image. 

The TrackingMarker module implements an algorithm 

to estimate the 6DoF pose of one or more marker tables 

(a-priori known set of markers). 

The ManipulatorControl module implements the 

commands sequences to control a manipulation system 

(e.g. a robotic arm). 

The Logger external module is in charge of monitoring, 

logging (e.g. to file) and distributing (e.g. to a Ground 

Control Station) modules parameters (e.g. module 

status, exchanged data) at a configurable frequency. 

The Debugger module is in charge of injecting specific 

debug commands to trigger particular behaviours while 

debug mode is active. 

As many of the enlisted modules functions have been 

developed in the frame of [4] and related projects, only 

the new modules and the ones with relevant upgrades 

will be presented in the next paragraphs.    

 

8.1. Vision-Based Guidance 

The modular GNC system features visually assisted 

navigation capabilities that allow to automatically 

approach objects or areas of interest (later addressed as 

targets) in the visible surroundings of the robot. A 

graphical user interface lets the operator to see the on-

board stereo camera video feed and select a rectangular 

ROI bounding the target.  

The Visual Target Tracking module implements an 

algorithm which processes the stereo images pairs and 

provides the ROI position in the three dimensional 

space to the rest of the GNC. 

The module processes incoming data in two main steps: 

a tracking step followed by a target localization step. 

The tracking step relies on the OpenTLD 

implementation of the Track Learn Detect algorithm 

and allows to track a desired target in a single camera 

image (one of the stereo camera eyes). The target 

localization step makes use of the stereo image pair to 

build the disparity map and consequently a point cloud 

of the perceived surroundings. The points inside the 

tracked area are clustered using k-means in background 

and foreground points whose centroid is used as a 

position estimation of the target.  

The Visual Tracking module has been implemented as a 

remote module of the architecture to provide it 

dedicated computational resources. 

The higher level GNC modules exploit the Visual 

Target Tracking module functionalities through four 

commands with different level of autonomy: 

- Point and locate: this command allows the 

operator to select a target, make the camera to point 

towards it and know where the target is located with 

respect to the robot. 

- Point, locate and approach: this command is 

behaving as the previous except that it forwards the 

target’s location information to the rest of the GNC 

to make the robot approach the target within a user 

specified boundary. 

- Point, locate, approach and track: this command 

loops the last procedure until the robot is inside a 

user specified maximum distance from the target 

keeping the target tracked and pointed. This is 

useful when following a moving object or when far 

away target are to be approached so an iterative 

refinement of the first uncertain estimation is 

required. 

 

8.2. Digital Elevation Map Generation and Fusion 

To serve the purpose of continuous traverse, the DEM 

generation is based on Time-of-Flight (ToF) camera 

environment perception. The use of ToF cameras, which 

native output is the 3D Point Cloud of the perceived 

Figure 3. Modular GNC Hierarchy 



 

surroundings, avoid the need of performing stereo 

processing resulting in an order of magnitude speed-up 

of 3D perception [4].  

Commercially available ToF cameras Horizontal Field 

of View is too narrow to perceive enough terrain in 

front of the rover. Therefore a double ToF sensor 

assembly has been integrated on the rovers, providing a 

larger field of view while keeping the PTU pointing in 

the rover motion direction at a constant tilt angle during 

traverse. 

DEM generation sequence is triggered by the Navigator 

module, which is in charge of orchestrating the resource 

modules devoted to the traverse execution.  

ToF cameras raw data are merged and filtered by the 

perception modules to obtain the local DEM, which is 

then used to update the global DEM by the perception 

data fusion module.  

Depending on the robot size and configuration, a blind 

area is projected around the rover. To mitigate issues 

both while merging DEMs and while generating 

Navigation Maps, a filling algorithm has been 

implemented. This algorithm analyses the blind area 

edge and interpolates the values to generate a smooth 

surface that completes the DEM. 

 

8.3. Visual Odometry 

The Visual Odometry module is in charge of the robot 

6D pose estimation. Its implementation is based on the 

open source Libviso2 library [8, 9]. Libviso2 is a visual 

odometry library that allow to estimates the movements 

of the robot from images just using a single CPU and at 

a rate suitable for robot localization. 

The Visual Odometry module has been implemented as 

a remote module of the architecture to provide it 

dedicated computational resources.  

The module acquires stereo image pairs from the 

localization camera, rectifies them and computes the 

motion estimation between two temporally consecutives 

image pairs. Once the visual odometry module has 

computed an estimate, it sends it to the task visual 

localization module using the network layer. This 

secondary module receives estimates and periodically 

sends them, always using the network layer, to the 

remote robot framework in a coherent format. 

Since the visual odometry system is executed on a 

secondary computer and the other sensors acquisitions 

and the localization data fusion is made on the primary 

one, that is the computer where the robot framework is, 

a way to synchronize computers is required. In practice, 

the correlation between remote measurements and the 

local ones exploits a common pulse generated by a 

Differential GPS system (which is used only as ground 

truth for robot trajectory data analysis). Both the 

computers are physically connected to the DGPS system 

and at each image acquisition the visual odometry 

module stores the related timestamp to be later sent with 

the corresponding estimate. This way when the robot 

framework receives estimates it is able to temporally 

trace and merge them with the other sensors 

measurements, compensating possible computational 

and network delays between the time when the stereo 

pairs are acquired and the received estimate by the 

framework. 

The module offers a graphical user interface too, 

allowing the users to quickly see the current robot 

position and orientation, the trajectory followed and to 

easily change some parameters such as the image 

acquisition source, camera parameters and visual 

odometry related parameters. 

 

8.4. Manipulation System with Visual Servoing 

The acquisition and storage of the sample canister is 

performed by means of a 6DoF robotic arm with an 

integrated clamping end effector. The robotic arm is 

controlled by the Manipulator Control module, which 

exploits the direct and inverse kinematics control 

provided by an external control library developed by the 

authors. The sample canister mock-up is a simple box 

with an aluminium handle, where a black and white 

marker pattern has been applied to estimate the 6DoF 

pose of the handle and close the visual servoing loop.  

The visual pose estimation algorithm makes use of the 

Aruco open source library, based on OpenCV. The 

library provides a handily API to build, detect and track 

marker patterns.  

To enable the interaction of the rover with multiple 

objects in view of more complex operations (e.g. 

inspection, maintenance, localization with a fixed object 

or another robot), an object data-base has been 

developed, while the Tracking Marker module 

implements the capability of tracking multiple marker 

patterns at once. 

 

9. CONCLUSIONS  

TAS-I Robot Management Framework has been 

developed and validated. Functional modules are ready 

to be ported on the new architecture after algorithms 

testing and characterization. 

The mission scenario is going to be demonstrated as 

part of the STEPS2 project test phase, where a 

characterization of the major building blocks and 

algorithms is on-going [7]. 

 

10. FUTURE WORKS 

The Robot Management Framework is a living project 

of TAS-I which pursues the TRL rising in the next 

years. It is planned to upgrade the framework with: 

- the integration of CANbus and DTN support in 

NET library; 

- the integration of manipulator control library within 

the Framework Layer; 

- the upgrade of RTEMS KAL and testing on flight 

representative avionics; 



 

- the consolidation of the overall framework 

architecture implementation and documentation 

according to the ECSS standards. 

 

From the GNC standpoint, lessons learned from 

STEPS2 project testing phase (still to be completed) 

will be implemented. The integration of a science 

autonomy algorithm to automatically locate the sample 

canister can be pursued too in the next future. 

The interaction with the environment based on marker 

detection and tracking is going to be further improved to 

enable more complex operations, such as rover ranging 

and rover localization with respect to a fixed object (e.g. 

a lander mock-up). 

Finally, TAS-I Robot Management Framework has 

already been selected by ESA for the Eurobot Ground 

Prototype [10] restructuring and modularization, to 

increase the robot reliability and reusability in view of 

planned METERON (Multi-Purpose End-To-End 

Robotic Operation Network) experiments and future 

human-collaborative robotics research activities. 

TAS-I is pursuing the use of Robot Management 

Framework in post-exomars Mars exploration missions 

(e.g. Mars Sample Return Sample Fetching Rover) and 

Lunar exploration rovers (e.g. Lunar Volatiles 

Prospector). 
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