
19 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Design and implementation of a robot management framework and modular gnc for robotic space exploration / Biggio,
Andrea; Ianni, Carmine; Torelli, Sandro; Sperindé, Alessandro; Simetti, Enrico; Salvioli, Federico; Vercellino, Luca; Bona,
Basilio. - (2015). (Intervento presentato al convegno 13th Symposium on Advanced Space Technologies in Robotics
and Automation (ASTRA 2015) tenutosi a Noordwijk (NL)).

Original

Design and implementation of a robot management framework and modular gnc for robotic space
exploration

Publisher:

Published
DOI:

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2652666 since: 2016-10-11T11:59:24Z

DESIGN AND IMPLEMENTATION OF A ROBOT MANAGEMENT FRAMEWORK AND

MODULAR GNC FOR ROBOTIC SPACE EXPLORATION

Andrea Biggio
 (1)

, Carmine Ianni
 (1)

, Sandro Torelli
 (2)

, Alessandro Sperindé
 (2)

, Enrico Simetti
(2)

, Federico Salvioli
 (3)

,

Luca Vercellino
 (3)

, Basilio Bona
 (3)

(1)
Thales Alenia Space Italia; Strada Antica di Collegno 253, 10146 Torino (TO), Italy;

Email: andrea.biggio@thalesaleniaspace.com, carmine.ianni-somministrato@thalesaleniaspace.com
(2)

DIBRIS, Università degli Studi di Genova, Via all’Opera Pia 13, 16145 Genova (GE), Italy;

Email: sandro.torelli@dibris.unige.it, alessandro.sperinde@dibris.unige.it, simetti@dibris.unige.it
(3)

DAUIN – Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (TO), Italy;

Email: federico.salvioli@polito.it, luca.vercellino@polito.it, basilio.bona@polito.it

ABSTRACT

In the last decade, the robotics field experienced

overwhelming increase of robots complexity and spread

of robotic applications in consumer, industrial and

scientific domains. Software components reuse became

a key factor to increase quality of robotic assets and to

reduce production time and costs. Thus, the robotics

community endeavoured to develop modular robot

software architectures, aiming to support the

development and integration of robot software modules.

Those scattered efforts resulted in a number of products

with different features, but a comprehensive product for

space applications is yet far to be available.

This paper presents the new TAS-I Robot Management

Framework and robot modular architecture, including

software modules and algorithms implementing the

capabilities for continuous traverse, sample canister

acquisition and return and to demonstrate them in

outdoor environment. Finally, the future works,

including porting to flight-representative hardware,

modules optimization and customization for specific

tasks, projects and future missions will be discussed.

1. NEED FOR A ROBOT MANAGEMENT

FRAMEWORK

Space exploration is one of the humanity greatest

endeavours, where robotic technologies are playing a

key role in enabling the achievement of more and more

demanding mission requirements and ambitious science

objectives. While robotic exploration is a pioneering

field open to innovative technologies and solutions, the

need of common solid foundations to manage the

increased complexity of robotic systems is arising,

similarly to what happened in the industrial and

academic domains. Therefore, great efforts have been

spent in the development of modular robot software

architectures (aka robot control operative systems,

software frameworks, robotic middleware and so on),

with peculiar objectives and features [1, 2, 3]. Even in

this wide solutions portfolio plenty of de-facto standards

like Robot Operative System (ROS), it is impossible to

find a comprehensive product (or a combination of

them) which may comply with space domain

requirements in terms of reliability, availability,

maintainability and safety (RAMS).

From these assumptions and the previous experience on

robotic frameworks [4, 5, 6] TAS-I pursued the

development of its own Robot Management Framework

trying to overcome the limitations of the existing

approaches.

2. TAS-I ROBOT MANAGEMENT FRAMEWORK

OVERVIEW

TAS-I Robot Management Framework stands on the

following four pillars:

- Abstraction: to provide abstraction from

underlying Hardware and Operating System (OS) to

ease portability on different robotic platforms;

- Foundation: to provide a set of common reliable

building blocks which can be reused across various

applications;

- Openness: to provide open interfaces to ease

software modules integration;

- Focus: to provide high-level Application

Programming Interface (API) to ease robot software

modules implementation.

To achieve these objectives TAS-I designed the Robot

Management Framework architecture depicted in Fig. 1.

3. ROBOT LAYER

The Robot Layer consists in the physical robotic

platform, including hardware and software components

such as sensors, actuators, on-board-computer(s),

interfaces, drivers and the operating system where the

architecture is deployed. The architecture has been

designed to be independent from the robotic platform,

enabling reuse in different projects.

4. WORKFRAME LAYER

The WorkFrame Layer is the core of the Robot

mailto:andrea.biggio@thalesaleniaspace.com
mailto:carmine.ianni-somministrato@thalesaleniaspace.com
mailto:sandro.torelli@dibris.unige.it
mailto:alessandro.sperinde@dibris.unige.it
mailto:simetti@dibris.unige.it
mailto:federico.salvioli@polito.it
mailto:luca.vercellino@polito.it
mailto:basilio.bona@polito.it

Management Framework, implementing all the common

reliable building blocks that may be reused across. It is

based on the work presented in [5] and includes

additional functionalities:

- KAL: Kernel Abstraction Layer

- HAL: Hardware Abstraction Layer

- WFCore: WorkFrame Core Functionalities

- NET: Network Communication

- BBS: BlackBoard System

- CMAT: Mathematical Library

This layer exposes a set of high-level APIs to manage

the different functions that are not available as open

source to ensure the reliability of the system.

4.1. Kernel Abstraction Layer

This layer is the only one directly interfacing with the

underlying OS. The goals of this layer are:

- to encapsulate the OS resources APIs in easier to

use classes;

- to provide objects to access I/O devices;

- to handle the creation of tasks;

- to deal with the scheduling of the system;

- to guarantee to portability of the higher levels.

This last objective affects all of the above ones, as in

order to guarantee the portability, all the classes have to

provide unique interfaces independently of the

underlying operating system. Even if [5] supports many

OS, current TAS-I robot management framework

implementation supports Linux, Linux/RTAI and

RTEMS. As the OS system calls cannot always be

mapped one another, the KAL abstracts only the

common features. Direct use of OS-specific calls is not

forbidden but the porting of such software pieces has to

be done manually.

4.2. Hardware Abstraction Layer

This layer provides a general way to interact with the

robot sensors and actuators. Thanks to this layer the user

tasks are device independent. When the hardware

changes, just the portion of HAL relevant to that

particular component(s) has to be re-coded according to

the defined software interface, leaving the higher layers

unchanged.

Similarly it is possible to implement HAL drivers to

perform dry-run tests without hardware in the loop (e.g.

by communicating with a simulator or providing

dummy data).

4.3. WorkFrame Core

This library contains the core functionalities of system

management, which includes the handling of the system

state, the proper scheduling of all tasks and control over

the deadlines, the creation and request of resources and

the general task functioning.

In order to offer all the services, a set of system tasks is

included in the WorkFrame Core library:

- System Manager, which controls the evolution of

the system state, and the unique handler of all the

requests for resources or tasks;

- Scheduler, to execute and monitor the scheduling

of user tasks and modules;

- Debug Console, managing framework and user

tasks debug messages.

- WorkFrame Console, to control basic

functionalities (e.g. start and stop the WorkFrame)

- Watchdog, to monitor the state of WorkFrame and

user tasks state.

4.4. Network Communication

The Network Communication library contains all the

Figure 1. Robot Management Framework Architecture

classes and functions needed to perform remote

communications.

The Client/Server paradigm is implemented by

dedicated classes, easing the communication with

remote modules and external systems. In the same way,

it is planned to implement the Publish/Subscribe

paradigm.

At the moment the Ethernet and Bluetooth medium are

supported, while CANbus is under testing.

The NET library does not preclude the possibility of

communicating with other Robotic Middleware; indeed

it is possible to use other communication libraries and

connect the modules to e.g. a ROS node.

4.5. BlackBoard System

The BlackBoard system implements the data sharing

mechanism between tasks, providing high-level APIs to

exchange data in a thread-safe way using the

BlackBoard a shared memory segment containing both

the data and a header part used internally by the classes

of the BlackBoard System. Three dedicated tasks are

assigned to the management of the BlackBoard system:

- the BlackBoard Manager, which creates the

BlackBoard, handles the declaration of all data and

creates the resources to implement mutual exclusive

access;

- the Execution Manager, which manages the access

to the resources by the user tasks;

- the Connection Manager, which takes care of

interface with all the remote tasks exploiting the

services of the NET library.

4.6. Mathematical Library

This library implements a minimal set of classes to

handle matrices and vectors, with particular methods,

very often used in robotics, for operation like Singular

Value Decomposition, to transform Roll-Pitch-Yaw

vectors to their corresponding Rotational matrices and

vice-versa, and so on.

5. INTERFACE LAYER

The Interface Layer implements standardized means

enabling communications between modules and to the

system. It gives the needed openness to the framework

in order to allow collaborative design, development,

integration and testing of software modules. In

particular it provides the following features:

- Data Interface, to ensure data types consistency;

- Messages Passing System, to ease messages

exchange between modules.

5.1. Data Interface

The Data Interface provides a uniform access to the

BlackBoard that contains the data exchanged by all the

modules. The APIs take care about the concurrent

access to the memory and embedded serialization

ensures the data consistency among different systems.

Alongside to the provided APIs, the users can easily

define and maintain the data structures that will be

exchanged on the BBS and over the network.

5.2. Messages Passing System

The Robot Management Framework architecture is

based on the exchange of standardized messages. The

messages are used to give specific commands to the

modules and receiving acknowledgments. A timestamp

is automatically attached to each new message that is

generated.

The architecture defines three different messages queues

- An Emergency Queue, which is used by the for

high priority messages;

- A Debug Queue, which is used to transmit

commands that should be only executed in a debug

context;

- A Nominal Queue, which is the nominal

communication channel.

The MPS APIs ease messages generation and

processing, moreover it automates messages handling,

including the verification status acknowledgements. It

implements also a message relay function, enabling the

passing of a message to a recipient passing through one

or more relay modules.

6. MODULES LAYER

The Modules Layer is built on top of the architecture,

which defines only the base module class. From the

base module class is it possible to derive customized

subclasses implementing the modules functionalities.

To ease the modules development, the modules layer

exploits the underlying APIs and a series of high-level

APIs specifically for:

- Finite State Machine Definition, to implement

modules FSM and relevant functions;

- Modules Scheduling, to implement periodic and

aperiodic modules;

- Modules Commands, to automate commands

parsing and related functions;

- Modules Configuration, to ease and standardize

modules configuration;

- Modules Modes, to implement different behaviour

according to the operational contexts;

- Remote Modules Implementation, to distribute

modules while still natively communicating with

the framework core.

6.1. Finite State Machine Definition

The Module class provides a set of APIs to build and

manage its own FSM. Each defined state binds a

function that is executed as “state function” at each

module cycle.

The architecture defines also the concept of meta-state:

a pointer to a given state which can be changed at

runtime. This way it is possible to associate different

state functions to the same state name at runtime,

changing the module behaviour. This concept allows all

the other modules to be unaware of how many different

possibilities exists for each meta-states, since they will

refer just to them and not the specific implementation

alternatives. Furthermore, this increases the flexibility

during execution, since without restarting the robot

different alternatives can be quickly selected.

6.2. Modules Commands

Each Module can bind a command string to a specific

function which implements the command. This way the

code results more modular, as each command function

(as-well-as state/meta-state functions) are separate and

easy to be maintained. If an unknown command is

received, the error is reported to the module which

issued the command. Other errors can be defined by the

user and have to be handled according to the desired

Failure Detection Isolation and Recovery

implementation.

6.3. Modules Scheduling

Each Module can be configured either as a periodic or

as an aperiodic module. In the periodic mode, the

module will run at fixed time intervals, executing its

state function once per cycle. In the aperiodic

configuration, the module will poll the messages queues

to execute the commands issued by other modules.

6.4. Modules Configuration

Each module has its own configuration file, containing

at least the set of parameters needed by the framework

(e.g. periodic task sample time, default operative

context, commands list). Moreover, the configuration

file can host module-dependant parameters (e.g.

algorithm parameters).

Configuration files are read at start-up and can be

managed in user-defined module states (e.g. a config

state where a user can change configuration parameters

and save a new configuration file) providing on-the-fly

modules configurability.

6.5. Modules Execution Context

The architecture defines two parameters that can be set

for each module to run in a different execution context.

The first parameter sets if the module runs in a Dry-

Run or Operative context. The Dry-Run context is

intended to allow the user testing the module in specific

conditions (e.g. a sensor module that generates data

according to the sensor model). The Operative context

is the nominal case, where the user want to run the

module as-is (e.g. a sensor module that acquires data

from a real sensor).

The second parameter sets if the module runs in a

Debug or Mission context. The Debug context is

intended to let the user define specific debug execution

procedures, separated from the nominal Mission

context. In the Debug operative context the Debug

Commands Queue is active and so the modules accept

debug commands which can be used to trigger specific

behaviours (e.g. inject a failure).

As the two parameters are handled separately, the

Execution Context can be selected among the following:

- Operative – Mission: which is the nominal

context.

- Dry-Run – Mission, where the modules can

perform their nominal work in dry-run mode;

- Operative – Debug, where the modules can be

debugged in their operative conditions;

- Dry-Run – Debug, where the modules can be

debugged while running in Dry-Run mode.

Those configuration parameters can be either changed at

runtime, if the behaviour is implemented by the user

(e.g. in a configuration state of the module FSM).

The user who desires to exploit these features has to

implement the different behaviours inside the Module

FSM, exploiting the APIs enabling this design

paradigm.

6.6. Remote Modules

To distribute the computational effort on multiple

machines, it is possible to implement Remote Modules

which run on different hosts that the one which runs the

Robot Management Framework.

Those remote machines needs to be compatible with the

Robot Management Framework, so that the Remote

Modules running on them can link the needed

framework libraries. Apart from this effort, setting a

module as remote is matter of changing its initialization

parameters, including network IP address and port of

the machine where the core system is running.

Other function, such as the data exchange to the

BlackBoard system are managed through the same

APIs, so the rest of module code remains unchanged.

7. MODULAR ROBOT CONTROL SOFTWARE

ARCHITECTURE

Over the Robot Management Framework, a Modular

Robot Control Software (RCS) architecture has been

designed. As described in the previous chapters, the

basic building block is the Module, which can be

specialized and replicated to design and implement a

generic RCS (e.g. rover GNC).

Five module types have been defined:

- Sensor, to interface with robot sensors;

- Actuator, to interface with robot actuators;

- Resource, these modules implement the RCS

functions and algorithms, process Sensors Modules

data, provide input to the Actuator Modules;

- Coordination, in charge of coordinating a set of

Resource Modules to implement complex tasks;

- External, implementing non-core functions of the

RCS like Logging and Debugging.

Alongside the module types, which can be used to

define the RCS structure, an overall FSM concept has

been defined to provide a baseline implementation of

the behaviour of such modules (Fig. 2):

- Startup, in this state the Robotic Framework tasks

are started and all the local and remote modules

register to the system;

- Config, this state allows the configuration of the

modules, it is possible e.g. to load/save

configuration files, change module dependent

parameters and set the module meta-states. In this

state it is possible to select each module execution

context;

- Standby, this state is a transition state where the

system waits for a system command to start the

execution (so switching to the hold state) or to shut

down (so switching to the Shutdown state). In this

state the sensors and actuators can be switched on

and off;

- Hold, this state is and execution state where the

module is idle and the sensors and actuators are

switched on;

- Run, this is the module execution state;

- Shutdown, in this state the shutdown procedure is

executed;

- Safe, this state is an off-nominal state where a

module enters in case of failure. From this state it is

possible to analyse the module errors and decide

upon switching back to standby and perform a

module re-configuration, to restore the execution or

shutdown the system;

Figure 2. Finite State Machine

Obviously this FSM provides a concept of module

states, but state/meta-state functions bond to each state

has to be implemented by the user according to the

desired behaviour. Other Robot management

Framework users may define their own FSM as well.

8. MODULAR GNC IMPLEMENTATION

The modular RCS architecture has been tailored for

TAS-I research rovers, implementing the capabilities of

a sample canister acquisition mission to be

demonstrated in outdoor TAS-I ROvers eXploration

facilitY [7]. The baseline mission scenario is divided in

three phases:

- Sample Canister Identification, by looking at the

rover Tracking Camera pictures, the sample

container is identified and manually selected by a

human operator;

- Rover Traverse, a tracking algorithm estimates the

selected sample container position and provide it as

goal to the rover GNC. Then the rover

automatically approaches the target;

- Sample Canister Acquisition, Once in the

neighbourhoods of the sample canister, the robotic

manipulator is commanded to acquire the sample

canister, using the visual feedback to approach the

canister interface.

The tailored Robot Control Software hierarchy is

depicted in Fig. 3.

The Autonomy module is the intelligence of the robotic

system and the one that implements the highest level of

FDIR. It is in charge of decomposing the plan submitted

from ground into commands sequences to be executed

by the lower level modules.

The Coordinator Navigator module coordinates the

resource modules and other Coordinator modules to

implement stop-and-go and continuous GNC chains.

The Coordinator Manipulation module is in charge of

managing the coordination between the Manipulator and

the Target Racking modules to implement vision-based

object manipulation.

The Coordinator VisualTracking module implements

the needed coordination between the Target Tracking

modules and the PTU module to chase the selected

target.

The PerceptionDataFusion module is in charge of

merging the local DEMs generated by the Perception

modules with the global DEM, building a consistent

map of the explored area. It coordinates also the PTUs

actuation to perform the needed scans with perception

sensors.

The LocalizationDataFusion module is in charge of

merging Localization modules output to provide the 6D

pose estimation of the robot.

The LocalizationVisual/Mechanical/Inertial modules

implement algorithms to calculate robot pose estimation

based on vision/encoder/inertial sensors.

The PerceptionToF module implements algorithms to

generate local DEMs based on ToF camera sensor input.

A PerceptionVisual module generating local DEMs

based on Head Camera stereo bench is available but not

included in the present architecture.

The Traversability module implements the algorithms

that generate the Navigation Map (NavMap) starting

from the global DEM and the trafficability parameters

(e.g. maximum traversable slope, maximum traversable

step, maximum steering angle) of the robotic platform.

The Path Planning module implements algorithms to

generate a safe and optimal trajectory on the NavMap,

given a navigation goal.

The Locomotion module implements the locomotion

equations which translate the trajectory into speed and

jog values to the LocomotionActuator module.

The TrackingTarget module implements an algorithm

to estimate the 3D position of a selected Region of

Interest (ROI) in an image.

The TrackingMarker module implements an algorithm

to estimate the 6DoF pose of one or more marker tables

(a-priori known set of markers).

The ManipulatorControl module implements the

commands sequences to control a manipulation system

(e.g. a robotic arm).

The Logger external module is in charge of monitoring,

logging (e.g. to file) and distributing (e.g. to a Ground

Control Station) modules parameters (e.g. module

status, exchanged data) at a configurable frequency.

The Debugger module is in charge of injecting specific

debug commands to trigger particular behaviours while

debug mode is active.

As many of the enlisted modules functions have been

developed in the frame of [4] and related projects, only

the new modules and the ones with relevant upgrades

will be presented in the next paragraphs.

8.1. Vision-Based Guidance

The modular GNC system features visually assisted

navigation capabilities that allow to automatically

approach objects or areas of interest (later addressed as

targets) in the visible surroundings of the robot. A

graphical user interface lets the operator to see the on-

board stereo camera video feed and select a rectangular

ROI bounding the target.

The Visual Target Tracking module implements an

algorithm which processes the stereo images pairs and

provides the ROI position in the three dimensional

space to the rest of the GNC.

The module processes incoming data in two main steps:

a tracking step followed by a target localization step.

The tracking step relies on the OpenTLD

implementation of the Track Learn Detect algorithm

and allows to track a desired target in a single camera

image (one of the stereo camera eyes). The target

localization step makes use of the stereo image pair to

build the disparity map and consequently a point cloud

of the perceived surroundings. The points inside the

tracked area are clustered using k-means in background

and foreground points whose centroid is used as a

position estimation of the target.

The Visual Tracking module has been implemented as a

remote module of the architecture to provide it

dedicated computational resources.

The higher level GNC modules exploit the Visual

Target Tracking module functionalities through four

commands with different level of autonomy:

- Point and locate: this command allows the

operator to select a target, make the camera to point

towards it and know where the target is located with

respect to the robot.

- Point, locate and approach: this command is

behaving as the previous except that it forwards the

target’s location information to the rest of the GNC

to make the robot approach the target within a user

specified boundary.

- Point, locate, approach and track: this command

loops the last procedure until the robot is inside a

user specified maximum distance from the target

keeping the target tracked and pointed. This is

useful when following a moving object or when far

away target are to be approached so an iterative

refinement of the first uncertain estimation is

required.

8.2. Digital Elevation Map Generation and Fusion

To serve the purpose of continuous traverse, the DEM

generation is based on Time-of-Flight (ToF) camera

environment perception. The use of ToF cameras, which

native output is the 3D Point Cloud of the perceived

Figure 3. Modular GNC Hierarchy

surroundings, avoid the need of performing stereo

processing resulting in an order of magnitude speed-up

of 3D perception [4].

Commercially available ToF cameras Horizontal Field

of View is too narrow to perceive enough terrain in

front of the rover. Therefore a double ToF sensor

assembly has been integrated on the rovers, providing a

larger field of view while keeping the PTU pointing in

the rover motion direction at a constant tilt angle during

traverse.

DEM generation sequence is triggered by the Navigator

module, which is in charge of orchestrating the resource

modules devoted to the traverse execution.

ToF cameras raw data are merged and filtered by the

perception modules to obtain the local DEM, which is

then used to update the global DEM by the perception

data fusion module.

Depending on the robot size and configuration, a blind

area is projected around the rover. To mitigate issues

both while merging DEMs and while generating

Navigation Maps, a filling algorithm has been

implemented. This algorithm analyses the blind area

edge and interpolates the values to generate a smooth

surface that completes the DEM.

8.3. Visual Odometry

The Visual Odometry module is in charge of the robot

6D pose estimation. Its implementation is based on the

open source Libviso2 library [8, 9]. Libviso2 is a visual

odometry library that allow to estimates the movements

of the robot from images just using a single CPU and at

a rate suitable for robot localization.

The Visual Odometry module has been implemented as

a remote module of the architecture to provide it

dedicated computational resources.

The module acquires stereo image pairs from the

localization camera, rectifies them and computes the

motion estimation between two temporally consecutives

image pairs. Once the visual odometry module has

computed an estimate, it sends it to the task visual

localization module using the network layer. This

secondary module receives estimates and periodically

sends them, always using the network layer, to the

remote robot framework in a coherent format.

Since the visual odometry system is executed on a

secondary computer and the other sensors acquisitions

and the localization data fusion is made on the primary

one, that is the computer where the robot framework is,

a way to synchronize computers is required. In practice,

the correlation between remote measurements and the

local ones exploits a common pulse generated by a

Differential GPS system (which is used only as ground

truth for robot trajectory data analysis). Both the

computers are physically connected to the DGPS system

and at each image acquisition the visual odometry

module stores the related timestamp to be later sent with

the corresponding estimate. This way when the robot

framework receives estimates it is able to temporally

trace and merge them with the other sensors

measurements, compensating possible computational

and network delays between the time when the stereo

pairs are acquired and the received estimate by the

framework.

The module offers a graphical user interface too,

allowing the users to quickly see the current robot

position and orientation, the trajectory followed and to

easily change some parameters such as the image

acquisition source, camera parameters and visual

odometry related parameters.

8.4. Manipulation System with Visual Servoing

The acquisition and storage of the sample canister is

performed by means of a 6DoF robotic arm with an

integrated clamping end effector. The robotic arm is

controlled by the Manipulator Control module, which

exploits the direct and inverse kinematics control

provided by an external control library developed by the

authors. The sample canister mock-up is a simple box

with an aluminium handle, where a black and white

marker pattern has been applied to estimate the 6DoF

pose of the handle and close the visual servoing loop.

The visual pose estimation algorithm makes use of the

Aruco open source library, based on OpenCV. The

library provides a handily API to build, detect and track

marker patterns.

To enable the interaction of the rover with multiple

objects in view of more complex operations (e.g.

inspection, maintenance, localization with a fixed object

or another robot), an object data-base has been

developed, while the Tracking Marker module

implements the capability of tracking multiple marker

patterns at once.

9. CONCLUSIONS

TAS-I Robot Management Framework has been

developed and validated. Functional modules are ready

to be ported on the new architecture after algorithms

testing and characterization.

The mission scenario is going to be demonstrated as

part of the STEPS2 project test phase, where a

characterization of the major building blocks and

algorithms is on-going [7].

10. FUTURE WORKS

The Robot Management Framework is a living project

of TAS-I which pursues the TRL rising in the next

years. It is planned to upgrade the framework with:

- the integration of CANbus and DTN support in

NET library;

- the integration of manipulator control library within

the Framework Layer;

- the upgrade of RTEMS KAL and testing on flight

representative avionics;

- the consolidation of the overall framework

architecture implementation and documentation

according to the ECSS standards.

From the GNC standpoint, lessons learned from

STEPS2 project testing phase (still to be completed)

will be implemented. The integration of a science

autonomy algorithm to automatically locate the sample

canister can be pursued too in the next future.

The interaction with the environment based on marker

detection and tracking is going to be further improved to

enable more complex operations, such as rover ranging

and rover localization with respect to a fixed object (e.g.

a lander mock-up).

Finally, TAS-I Robot Management Framework has

already been selected by ESA for the Eurobot Ground

Prototype [10] restructuring and modularization, to

increase the robot reliability and reusability in view of

planned METERON (Multi-Purpose End-To-End

Robotic Operation Network) experiments and future

human-collaborative robotics research activities.

TAS-I is pursuing the use of Robot Management

Framework in post-exomars Mars exploration missions

(e.g. Mars Sample Return Sample Fetching Rover) and

Lunar exploration rovers (e.g. Lunar Volatiles

Prospector).

11. ACKNOWLEDGMENTS

The activities subject of this paper have been performed

in the frame of STEPS program - Systems and

Technologies for Space Exploration - a research project

co-financed by Regione Piemonte (Piedmont Region)

within the Phase 2 of P.O.R. - F.E.S.R. 2007-2013 EC

program.

12. REFERENCES

1. Elkady A., Sobh T. (2012), Robotics Middleware: A

Comprehensive Literature Survey and Attribute-

Based Bibliography. Journal of Robotics, Volume

2012.

2. Calisi D., Censi A., Iocchi L., Nardi D. (2008),

OpenRDK: a modular framework for robotic

software development. The 2008 IEEE/RSJ

International Conference on Intelligent Robots and

Systems.

3. Joyeux S., Schwendner J. (2014), Modular Software

for an Autonomous Space Rover. i-SAIRAS 2014.

4. Biggio A., Merlo A., Tramutola A. (2012), Test

Bench for Robotics and Autonomy: Advancements

in Navigation for Space Exploration. i-SAIRAS

2012.

5. Simetti E. et al (2011), A new software architecture

for developing and testing algorithms for space

exploration missions. Intelligent Service Robotics

volume 4(2), Springer-Verlag, pp135-146.

6. Simetti E. et al (2010), A Portable Object Oriented

SW Framework for Real-Time Control of Robot

and Multi-Robot Systems. In Control Themes in

Hyperflexible Robotic Workcells (Eds. F.Basile,

P.Chiacchio), CUES, pp129-143.

7. Biggio A. et Al. (2015), Validation and Verification

of Modular GNC by means of TAS-I Robot

Management Framework in outdoor ROvers

eXploration facilitY. ASTRA 2015.

8. Kitt B., Geiger A., Lategahn H. (2010), Visual

odometry based on stereo image sequences with

ransac-based outlier rejection scheme. Intelligent

Vehicles Symposium 2010.

9. Geiger A., Ziegler J., Stiller C. (2011), StereoScan:

Dense 3D Reconstruction in Real-time. Intelligent

Vehicles Symposium 2011.

10. Medina A., Pradalier C., Paar G., Merlo A., Ferraris

S. (2011), A servicing rover for planetary outpost

assembly. ASTRA 2011.

