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Abstract: A weak version of the joint hazard rate order, useful to stochastically compare not independent
random variables, has been recently de�ned and studied in [4]. In the present paper, further results on this
order are proved and discussed. In particular, some statements dealing with the relationships between the
jointweak hazard rate order and other stochastic orders are generalized to the case of non symmetric copulas,
and its relationswith somemultivariate aging notions (studied in [2]) are presented. For this purpose, the new
notions of Generalized Supermigrative and Generalized Submigrative copulas are de�ned. Other new results,
examples and discussions are provided as well.
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1 Introduction and useful notions
In the last decades, stochastic comparisons between univariate random variables have been de�ned and
applied in a variety of contexts (see, e.g., the monographs [16, 20] and [3] for detailed descriptions and prop-
erties of the main univariate stochastic orders). It is a remarkable fact that most of the univariate stochastic
orders considered in the literature are based on comparisons between the marginal distributions of the in-
volved variables, without taking care of their mutual dependence. In fact, in many applied problems one can
avoid to consider dependence among alternatives. However, in some cases one has to take it into account,
and for this reason a set of alternative bivariate versions of the most well-known stochastic orders have been
provided by di�erent authors, like, e.g., in [4, 11, 22]. These versions, which allows to take into account the ef-
fects of dependence between the variables to be compared, gave rise to a new class of stochastic comparisons,
commonly called joint stochastic orders.

A discussion on one of these stochastic comparisons, i.e., the joint weak hazard rate order, recently in-
troduced and applied in [4], and in particular on its relationships with the standard hazard rate order, will be
presented along this paper. Marginally, the stochastic precedence order, which is another well-known com-
parison that takes into account the mutual dependence among alternatives (see, e.g., [6, 17] and references
therein), will be considered and discussed as well.

The following is the formal de�nition of all the stochastic comparisons discussed in the present paper.
Here, the notation [X|A]means the variablewhose distribution is the distribution of X given the event A. Also,
given the bivariate random vector (X1, X2), F denotes its joint survival function (i.e., F(t, s) = P[X1 > t, X2 >
s]), F i denotes the survival function of Xi, while fi and ri = fi/F i denote the density and the hazard rate of Xi,
whenever it is absolutely continuous.
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De�nition 1.1. Given the random pair (X1, X2), we say that X1 is greater than X2 in:
(a) the usual stochastic order (denoted by X1 ≥st X2) if E[ϕ(X1)] ≥ E[ϕ(X2)] for all non-decreasing functions

ϕ : R→ R such that the expectations exists, or, equivalently, if F1(t) ≥ F2(t) for all t ∈ R;
(b) the stochastic precedence order (denoted by X1 ≥sp X2) if P[X1 ≥ X2] ≥ 1/2;
(c) the hazard rate order (denoted by X1 ≥hr X2) if [X1− t|X1 > t] ≥st [X2− t|X2 > t] for all t ∈ R or, equivalently,

if the ratio F1(t)/F2(t) is non-decreasing in t ∈ R;
(d) the joint weak hazard rate order (denoted by X1 ≥hr:wj X2) if [X1− t|X1 > t, X2 > t] ≥st [X2− t|X1 > t, X2 > t]

for all t ∈ R or, equivalently, if F(s, t) ≤ F(t, s) for all t ≥ s, such that F(s, s) > 0, with s ∈ R.

Observe that, even if the term stochastic order is used here, the stochastic precedence order and the joint
weak hazard rate order are not proper orderings, since they do not satisfy the transitive property. For what it
concerns the stochastic precedence order, a discussion and examples showing that it is not transitive may be
found, for example, in [7], while a counterexample showing that the joint weak hazard rate order does not
satisfy transitivity is given here.

Example 1.1. Let (X1, X2, X3) be a random vector taking values (2, 1, 0) and (1, 2, 2) respectively with prob-
ability 2/3 and 1/3. It is easy to verify that both X1 ≥hr:wj X2 and X2 ≥hr:wj X3 hold. However, the stochastic
inequality X1 ≥hr:wj X3 does not hold, being, for example, P[X1 > 1/2, X3 > 3/2] = 1/3 ≥ P[X1 > 3/2, X3 >
1/2] = 0. �

Also, it should be remarked that when X1 and X2 are stochastically independent, then the usual stochas-
tic order implies the precedence order, while, in the case of dependence, it can happens that X1 ≥st X2 holds
even if X1 ≥sp X2 fails (see [6]). Concerning the hazard rate order and the joint weak hazard rate order, they
are equivalent each otherwhen X1 and X2 are stochastically independent. However, even if other caseswhere
these two orders are equivalent each other can be provided (see Remark 2.1), in general in case of dependence
the hazard rate order and the joint weak hazard rate order are not equivalent (see, e.g., the introductory ex-
ample presented in [4]).

For this reason, conditions for thehazard rate order to imply the jointweakhazard rate order, or viceversa,
are shown in [4]. To describe these conditions, the de�nitions of some useful notions are recalled. First of all
we address the reader e.g. to [18] or [15] for the formal de�nition of thewell-known concept of bivariate copula.
See also [10] for a recent survey. We denote by C the class of all bivariate copulas.

De�nition 1.2. Let (X1, X2) be a random pair with joint distribution function F andmarginal distribution func-
tions F1 and F2. The copula C : [0, 1]2 → [0, 1] such that, for all (x1, x2) ∈ R2,

F(x1, x2) = C(F1(x1), F2(x2))

is said to be the connecting copula of (X1, X2). In this case, it also holds

C(u, v) = F(F−11 (u), F−12 (v)),

for all u, v ∈ [0, 1].

In a similar way is de�ned the survival copula of a bivariate random vector (X1, X2).

De�nition 1.3. Let (X1, X2) be a random pair with joint survival function F and marginal survival functions F1
and F2. The function Ĉ : [0, 1]2 → [0, 1] such that, for all (x1, x2) ∈ R2,

F(x1, x2) = Ĉ(F1(x1), F2(x2))

is said to be the survival copula of (X1, X2). In this case, it also holds

Ĉ(u, v) = F(F−11 (u), F−12 (v)),
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192 | Franco Pellerey and Fabio Spizzichino

for all u, v ∈ [0, 1].

We observe that from a mathematical viewpoint, survival copulas and connecting copulas turn out in any
case to be copulas, and that they both describe the dependence structure of (X1, X2). Also, it is well known
that if the marginal distributions are continuous then the connecting copula C and the survival copula Ĉ
are unique. For this reason, we will assume here, and everywhere throughout the paper, continuity of the
marginal distributions for the vector (X1, X2).Weaddress the readers to themonograph [18] for further details.

The following property of bivariate copulas was �rstly introduced by [2], and further studied and applied
in dependence analysis in [8, 9], where it has been called supermigrativity.

De�nition 1.4. A bivariate copula C : [0, 1]2 −→ [0, 1] is called supermigrative if it is symmetric, i.e. C(u, v) =
C(v, u) for every (u, v) ∈ [0, 1]2, and if it satis�es

C(γu, v) ≥ C(u, γv) (1.1)

for all u ≥ v and γ ∈ (0, 1). Viceversa, we say that C is submigrative if the inequality in (1.1) is satis�ed in the
opposite direction. In the similar way are de�ned the supermigrativity and submigrativity properties for survival
copulas.

Thus, given any u2 ≤ u1 ≤ v1, ≤ v2 such that u1v1 = u2v2, the supermigrativity of a copula C is satis�ed
if C(u1, v1) ≥ C(u2, v2), i.e., whenever it assumes higher values in correspondence to points (u, v) which
are near to the diagonal v = u. This means that it has its probability mass mainly concentrated close to the
diagonal, and this property can be though of as a positive dependence notion. In fact, as shown in [9], the
supermigrativity property satis�es almost all thenecessary conditions tobe consideredapositivedependence
notion. For example, any vector (X1, X2) having a supermigrative copula (or survival copula) satis�es the
Positive Quadrant Dependence property (PQD), i.e., it satis�es

P[X1 > x1, X2 > x2] ≥ P[X1 > x1]P[X2 > x2] for all (x1, x2) ∈ R2.

Viceversa, submigrativity can be seen as a negative dependence notion.
Concerning the general meaning of stochastic dependence for a pair of random variables X1 and X2 we

remind, in particular, that [12]axiomatically de�ned the set of conditions that X1 and X2 should satisfy in or-
der to be positively dependent, i.e, the property that large (respectively, small) values of X1 tend to go together
with large (respectively, small) values of X2 (and the opposite for negative dependence). In any case, notions
of positive dependence are typically de�ned by appropriate inequalities. Corresponding notions of negative
dependence can be de�ned by requiring that such inequalities are reverted. Thus the analysis of both posi-
tive and negative dependence is conceptually simple in the case n = 2, which this paper is con�ned to. The
panorama about negative dependence is less clear in the case of n variables, with n > 2. Anyway, interesting
de�nitions and related results have been given in the literature; see, in particular, the basic paper [5].

The following statement has been proved in [4].

Theorem 1.1. Let (X1, X2) be any couple of lifetimes, and let Ĉ denote its survival copula.
(a) If X1 and X2 satisfy X1 ≥hr X2 and Ĉ is supermigrative, then X1 ≥hr:wj X2;
(b) If X1 ≥hr:wj X2 holds, and if Ĉ is submigrative, then X1 ≥hr X2.

Roughly speaking, recalling that supermigrative property can be though of as a positive dependence notion,
the last statement asserts that standard univariate hazard rate order and positive dependence imply the joint
weak hazard rate order, while, viceversa, joint weak hazard rate order with negative dependence imply the
standard hazard rate order. An example where Theorem 1.1(a) applies is the following (while examples where
Theorem 1.1(b) applies may be found in [4]).

Example 1.2. (Conditional independence) Let Θ ∼ Γ(α, β), and let (X1, X2) be a vector of exponentially
distributed random lifetimes conditionally independent on Θ, such that, for x1, x2 ≥ 0,

P[X1 > x1, X2 > x2|Θ = θ] = e−θ(10x1+x2).
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Observe that, for all t, s ≥ 0,

F1(t) = P[X1 > t] =
βα
Γ (α)

∞∫
0

e−10θtθα−1e−βθdθ =
(

β
β + 10t

)α
and

P[X1 > t + s|X1 > t] =
P[X1 > t + s]
P[X1 > t]

=
(

β + 10t
β + 10t + 10s

)α
.

Similarly,

F2(t) =
(

β
β + t

)α
and P[X2 > t + s|X2 > t] =

(
β + t

β + t + s

)α
,

thus
P[X1 > t + s|X1 > t] ≤ P[X2 > t + s|X2 > t] (1.2)

for all t, s ≥ 0, i.e., X2 ≥hr X1.

Moreover, it holds

P[X1 > t + s|X1 > t, X2 > t] = P[X1 > t + s, X2 > t]
P[X1 > t, X2 > t]

=
βα
Γ(α)

∫∞
0 e−10θte−10θse−θtθα−1e−βθdθ
βα
Γ(α)

∫∞
0 e−10θte−θtθα−1e−βθdθ

=
(

β + 10t + t
β + 10t + 10s + t

)α
=

(
β + 11t

β + 11t + 10s

)α
,

and, similarly,

P[X2 > t + s|X1 > t, X2 > t] =
(

β + 11t
β + 11t + s

)α
.

Clearly,
P[X1 > t + s|X1 > t, X2 > t] ≤ P[X2 > t + s|X1 > t, X2 > t], (1.3)

for every t, s > 0, i.e., X2 ≥hr:wj X1.
In fact, the vector (X1, X2) has a Clayton survival copula, de�ned as

Ĉ(u, v) =
(
u−

1
α + v−

1
α − 1

)−α , u, v ∈ [0, 1],
which satis�es the supermigrative property, thus the last inequality is also proved by inequality (1.2) and Theo-
rem 1.1 (a). �

In general, one can thus observe that the existence of positive dependence strengthens the transition from
standard hazard rate order to the corresponding joint one. As a main purpose of this article, in the next
section we will treat the case of non-symmetric copulas, providing a generalization of Theorem 1.1 to non–
exchangeable cases. Also, coming back to the case of exchangeable survival copulas, in Section 3 we will
point out some basic relations between the joint weak hazard rate order and concepts of bivariate ageing for
exchangeable lifetimes, that had been presented in [2].
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2 Relationships among stochastic orders
In this sectionwe aim to analyze some aspects of the jointweakhazard rate order for pairs of lifetimes (X1, X2)
whose survival copula Ĉ is generally non-symmetric. On this purpose, the following notation will be useful.
Let us denote by S the class of ordered pairs (X1, X2) such that X1 ≥hr X2, and with S(Ĉ) the subclass of S of
the pairs having survival copula Ĉ. We furthermore denote byM the class of ordered pairs (X1, X2) such that
X1 ≥hr:wj X2, and withM(Ĉ) the subclass ofM of the pairs having survival copula Ĉ. By using this notation in
the case of a symmetric copula, for instance, implication (a) of Theorem 1.1 reads

Ĉ supermigrative ⇒ S(Ĉ) ⊆M(Ĉ).

As already noticed in Section 1, we have that, when X1, X2 are independent, namely when Ĉ is the product
copula, then S(Ĉ) = M(Ĉ). We shall in particular see that there exist other copulas Ĉ for which the same
identity holds (see subsequent Remark 2.1). Further properties of the classM(Ĉ)will be demonstrated below.

We start by observing that, trivially, the following equivalence holds. In the following statement, and
everywhere along the paper, the notation =st means equality in law.

Theorem 2.1. Let X1 =st X2. Then (X1, X2) ∈M(Ĉ) i� Ĉ(u, v) ≥ Ĉ(v, u) for all 0 ≤ u ≤ v ≤ 1.

Proof. For �xed t ∈ R and s ∈ R+, let u = F1(t + s) = F2(t + s) and v = F1(t) = F2(t). Then

P[X1 > t + s, X2 > t] = Ĉ(u, v)
≥ Ĉ(v, u)
= P[X1 > t, X2 > t + s],

i.e., X1 ≥hr:wj X2.
Viceversa, �x u, v ∈ [0, 1] such that u ≤ v. Recalling the assumption of continuity of the marginal distri-

butions (needed to guarantee unicity of connecting and survival copulas, see Section 1), we can assert there
exist t, s ≥ 0 such that u = F1(t + s) = F2(t + s) and v = F1(t) = F2(t). Thus

Ĉ(u, v) = P[X1 > t + s, X2 > t]
≥ P[X1 > t, X2 > t + s]
= Ĉ(v, u).

Examples of survival copulas Ĉ satisfying the assumption of Theorem 2.1 will be provided later (see, e.g.,
Example 2.2 and Example 2.3).

The main reason of interest in Theorem 2.1 is in the property required on the survival copula, i.e., the
inequality Ĉ(u, v) ≥ Ĉ(v, u) for all 0 ≤ u ≤ v ≤ 1. As shown later, this property will play a fundamental role
in the analysis of relationships between joint weak hazard rate order and other stochastic orders in case of
non-symmetric copulas. A �rst example in this direction is given by the following statement, dealing with
relationship with the stochastic precedence order.

Theorem 2.2. Let (X1, X2) be such that X1 =st X2. Then X1 ≥hr:wj X2 implies X1 ≥sp X2.

Proof. To simplify the notation we give here the proof assuming that the survival copula Ĉ connecting the
pair (X1, X2) admits a density ĉ. The proof can be easily generalized to not absolutely continuous survival
copulas.
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Let X1 =st X2. Then, by Theorem 2.1,

X1 ≥hr:wj X2 ⇔ Ĉ(u, v) ≤ Ĉ(v, u) ∀ 1 ≥ u ≥ v ≥ 0

⇒ lim
u→v+

Ĉ(u, v) − Ĉ(v, v)
u − v ≤ lim

u→v+
Ĉ(v, u) − Ĉ(v, v)

u − v ∀ 1 ≥ v ≥ 0

⇔
v∫

0

ĉ(v, z)dz ≤
v∫

0

ĉ(z, v)dz ∀ 1 ≥ v ≥ 0

⇒
1∫

0

 v∫
0

ĉ(v, z)dz

 dv ≤ 1∫
0

 v∫
0

ĉ(z, v)dz

 dv
⇔

∫
{(u,v)∈[0,1]2:u≤v}

dĈ(u, v) ≥ 1/2

⇔ X1 ≥sp X2,

where the last equivalence, which holds true whenever X1 =st X2, follows from Theorem 5 in [6].

It should be remarked here that implication X1 ≥hr:wj X2 ⇒ X1 ≥sp X2 holds even in case X1 and X2 have
di�erent distributions, as one can prove by using a proof similar to the one above, just replacing the survival
copula Ĉ with the joint survival function F.

The following example shows that the opposite implication can fail. In particular, this conclusion can
be achieved by showing that there exist survival copulas satisfying

∫
A dĈ(u, v) ≥ 1/2 but not necessarily

Ĉ(u, v) ≥ Ĉ(v, u) for all 0 ≤ u ≤ v ≤ 1.

Example 2.1. Let (X1, X2) has survival copula Ĉ admitting the density ĉ shown in Figure 1, where e ∈ [0, 1/12),
and where ĉ(u, v) = 0 in the white region, ĉ(u, v) = 4/3 in the grey region, and ĉ(u, v) = 4 in the black region.

It is easy to observe that, for e = 0, it holds
∫
A dĈ(u, v) = 7/12 and Ĉ(u, v) ≥ Ĉ(v, u) for all 1 ≥ u ≥ v ≥ 0,

thus both X1 ≥hr:wj X2 and X1 ≥sp X2 are satis�ed when X1 =st X2.
Let now 0 < e < 1/12. It is easy to observe that in this case∫

A

dĈ(u, v) ≥ 7
12 − e >

7
12 −

1
12 = 1

2 ,

thus X1 ≥sp X2 holds for X1 =st X2. However, �xing u′ = 3/4 − e and v′ = u′ + d, with d ∈ (0, 1/4), it holds

Ĉ(v′, u′) = Ĉ(u′, u′) + d,

Ĉ(u′, v′) = Ĉ(u′, u′) + 4
3

(
3
4 − e

)
d = Ĉ(u′, u′) + d − 3

4 ed.

Thus, the inequality Ĉ(u, v) ≥ Ĉ(v, u) is no more satis�ed for all 1 ≥ u ≥ v ≥ 0, and inequality X1 ≥hr:wj X2 does
not hold.

�

We now drop the assumption X1 =st X2, and look for conditions for X1 ≥hr:wj X2, without necessarily requir-
ing that Ĉ is symmetric. For this purpose we provide the following de�nitions, which extend the notions of
supermigrativity and submigrativity to non-symmetric copulas and survival copulas .

De�nition 2.1. A bivariate copula C : [0, 1]2 −→ [0, 1] is said to be generalized supermigrative if it satis�es
a) C(u, v) ≤ C(v, u) for all u ≥ v;
b) C(γu, v) ≥ C(u, γv) for all u ≥ γu ≥ v ≥ γv.

Viceversa, we say that C is generalized submigrative if inequality (b) is satis�ed in the opposite direction.
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Figure 1: Density of the copula Ĉ considered in Example 2.1.

Obviously, symmetric supermigrative (submigrative) copulas are also generalized supermigrative (submigra-
tive) copulas. Examples of non-symmetric generalized supermigrative or generalized submigrative copulas
(or survival copulas) will be given later (see Example 2.2 and Example 2.3).

Theorem 1.1 can be now generalized to non-symmetric copulas. More precisely, we have the following
statement (which includes Theorem 1.1 as special case).

Theorem 2.3. Let (X1, X2) be any couple of lifetimes, and let Ĉ denote its survival copula.
(a) If Ĉ is generalized supermigrative then S(Ĉ) ⊆M(Ĉ);
(b) If Ĉ is generalized submigrative thenM(Ĉ) ⊆ S(Ĉ).

Proof. Wegive here only the proof of statement (a), the other being similar. Thus, let us assume that X1 ≥hr X2.
Let F i denotes the survival function of Xi, for i = 1, 2. From X1 ≥hr X2 it follows X1 ≥st X2, thus also, for s ≤ t,

F2(t) ≤ F2(s) ≤ F1(t) ≤ F1(s) (2.1)

or
F2(t) ≤ F1(t) < F2(s) ≤ F1(s). (2.2)

Moreover, from X1 ≥hr X2 also follows, for s ≤ t,

F2(s)F1(t) ≥ F2(t)F1(s). (2.3)

Assume that (2.1) holds. Then, for s ≤ t,

F(t, s) = Ĉ(F1(t), F2(s))

= Ĉ
(
F1(t), F2(t)

F2(s)
F2(t)

)
.

Let us denote
v = F2(t)

F2(s)
F2(t)

, u = F1(t)
F2(s)
F2(t)

, γ = F2(t)
F2(s)

.
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Then

F(t, s) = Ĉ(γu, v)
≥ Ĉ(u, γv)

= Ĉ
(
F1(t)

F2(s)
F2(t)

, F2(t)
)

≥ Ĉ
(
F1(s), F2(t)

)
= F(s, t),

where the �rst inequality follows from generalized supermigrativity of Ĉ and by (2.1), while the second one
from (2.3).

Assume now that (2.2) holds. Then, for s ≤ t,

F(t, s) = Ĉ(F1(t), F2(s))
≥ Ĉ(F2(s), F1(t))

by inequality (a) in De�nition 2.1. Denote now

v = F1(t), u = F1(s), γ = F2(s)
F1(s)

.

Then

F(t, s) ≥ Ĉ
(
F1(s)

F2(s)
F1(s)

, F1(t)
)

= Ĉ(γu, v)
≥ Ĉ(u, γv)

= Ĉ
(
F1(s),

F2(s)
F1(s)

F1(t)
)

≥ Ĉ
(
F1(s), F2(t)

)
= F(s, t),

where the second inequality follows from from generalized supermigrativity of Ĉ and inequality (2.2), while
the third from (2.3).

In both cases we have F(t, s) ≥ F(s, t) for all s ≤ t, thus X1 ≥hr:wj X2.

We nowprovide some examples of non-symmetric survival copulas satisfying the generalized supermigrative
property. A �rst example is given by non-symmetric Marshall-Olkin copulas, described below.

Example 2.2. Let the survival copula Ĉ be a Marshall-Olkin copula, i.e., be de�ned as

Ĉ(u, v) =
{
u1−αv uα ≥ vβ

uv1−β uα < vβ

with 1 > β > α > 0. Observe that Ĉ is not absolutely continuous, having a singularity on the curve v = uα/β.
Let us �rst prove that Ĉ(u, v) ≤ Ĉ(v, u) holds for all u ≥ v (i.e., for all points (u, v) below the diagonal of the

unit square, thus also below the singularity). For it, we should consider two cases.
i) Assume that (v, u) is such that uβ > vα, i.e., that (v, u) is above the singularity. Then Ĉ(v, u) = vu1−β and
Ĉ(u, v) = u1−αv, and the inequality is satis�ed by β ≥ α.
ii) Assume that (v, u) is such that uβ ≤ uα, i.e., that (v, u) is below the singularity. Then Ĉ(v, u) = v1−αu and
Ĉ(u, v) = u1−αv, and the inequality is satis�ed by u ≥ v.

Let us now prove that Ĉ(γu, v) ≥ Ĉ(u, γv) holds for all 1 ≥ u ≥ γu ≥ v ≥ γv ≥ 0. For it, observe that both
(γu, v) and (u, γv) belong to the region below the diagonal, i.e., below the singularity, thus Ĉ(γu, v) = γ1−αu1−αv
and the inequality follows from γ ≤ 1. �
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Remark 2.1. Consider a vector (X1, X2) de�ned by

X1 = min(Y , Y1), X2 = min(Y , Y2),

where Y ∼ Exp(λ), Y1 ∼ Exp(λ1) and Y2 ∼ Exp(λ2) are three independent and exponentially distributed
random variables. Whenever λ1 ≤ λ2, we have X1 ≥hr X2, because the hazard rates of X1 and X2 are λ1 + λ and
λ2 + λ, respectively. Since vector (X1, X2) has the Marshall-Olkin copula described in Example 2.2 (see, [18], pp.
52-53), relation X1 ≥hr:wj X2 follows from Theorem 2.3(a).

Actually, this assertion can be also directly proved and strengthen just observing that, for this vector
(X1, X2), it holds

P[Xi > t + s|X1 > t, X2 > t] = P[Xi > t + s|Xi > t] = P[Xi > s] (2.4)

for all s, t ≥ 0 (see [14]). Thus the inequalities X1 ≥st X2, X1 ≥hr X2 and X1 ≥hr:wj X2 become equivalent, even if
X1 and X2 are not independent. In other words, this example shows that the standard hazard rate order and the
jointweak hazard order can both hold true even for survival copulas Ĉ di�erent than the copula of independence.

�

Remark 2.2. Example 2.2 can be restated assuming the variables Y, Y1 and Y2 to be any independent ran-
dom lifetimes, not necessarily exponentially distributed, thus letting the survival copula Ĉ be the Generalized
Marshall-Olkin copula described in [13], Equation (2.3). In this case one has

P[Xi > t + s|X1 > t, X2 > t] = P[Xi > t + s|Xi > t], (2.5)

for all s, t ≥ 0 (see [13] for details). Even in this case the inequalities

P[X1 > t + s|X1 > t] ≥ P[X2 > t + s|X2 > t]

and
P[X1 > t + s|X1 > t, X2 > t] ≥ P[X2 > t + s|X1 > t, X2 > t],

i.e., X1 ≥hr X2 and X1 ≥hr:wj X2, become equivalent. Thus, in this case it holds S(Ĉ) = M(Ĉ) even if X1 and X2
are not independent. However, now the equivalence between the standard hazard rate, the joint weak hazard
rate and the usual stochastic (≥st) orders no longer applies, since the two conditional probabilities in (2.5) are
no more equal to P[Xi > s], as it is in (2.4). �

The following is a further example of copula satisfying generalized supermigrativity.

Example 2.3. Let the survival copula Ĉ be a member of the the copulas de�ned in [19], i.e., let Ĉ be a general-
ization of the FGM copula de�ned as

Ĉ(u, v) = uv + ρuβ1vβ2 (1 − u)α1 (1 − v)α2 (2.6)

with βi , αi ≥ 1, i = 1, 2, and 0 ≤ ρ ≤ 1. In case β1 ≤ β2 and α1 ≥ α2 then generalized supermigrativity holds.
In fact, for inequality (a) in De�nition 2.1 it is easy to observe that Ĉ(u, v) ≤ Ĉ(v, u) is satis�ed i� uβ1−β2 (1 −

u)α1−α2 ≤ vβ1−β2 (1 − v)α1−α2 , i.e., i� u ≥ v, while inequality (b) follows from the fact that

Ĉ(γu, v) ≥ Ĉ(u, γv) ⇔ ρuβ1vβ2
[
γβ1 (1 − γu)α1 (1 − v)α2 − γβ2 (1 − u)α1 (1 − γv)α2

]
≥ 0

⇔ γβ1−β2
[
(1 − γu)
(1 − u)

]α1
≥
[
(1 − γv)
(1 − v)

]α2
,

and the latter follows from
γβ1−β2 ≥ 1 and (1 − γu)

(1 − u) ≥
(1 − γv)
(1 − v) ,

which are satis�ed when γ ≤ 1 and u ≥ v. �
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An example of application of Theorem 2.3 is now given.

Example 2.4. Consider two components having dependent lifetimes X1 and X2, respectively, and assume iden-
tical exponential distribution with rate λ for both. Assume that a task should be performed by both components
up to a �xed time T, and then continued by just one of them. Having the same hazard rate, i.e., being

P[X1 − T > s|X1 > T] = P[X2 − T > s|X2 > T] ∀T, s ≥ 0, (2.7)

a designer can assume that, when the two components age together, there is no di�erence in choosing the com-
ponent that will conclude the task after the �xed time T, if both components have survived up to T, whatever T
is. Unfortunately, this assertion can be wrong, since equality (2.7) does not imply

P[X1 − T > s|X1 > T, X2 > T] = P[X2 − T > s|X2 > T, X2 > T] ∀T, s ≥ 0, (2.8)

that is, the residual lifetimes of the components at T, given that both components work at T, can be di�erent.
Moreover, in case the inequality in (2.8) is not satis�ed, nothing can be asserted in general on the direction of
the corresponding inequality. Assume for example, that the survival copula Ĉ of (X1, X2) is the copula de�ned
in (2.6), with ρ = 1, β1 = α1 = 2 and β2 = α2 = 1 (so that condition β1 ≤ β2 and α1 ≥ α2 fail). Then, as it can
be veri�ed with a direct computation (see Figure 2), the inequality in both directions can holds, depending on
0 ≤ s ≤ T. However, in case β1 ≤ β2 and α1 ≥ α2 then Ĉ is generalized supermigrate, thus by Theorem 2.3(a) it
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Figure 2: Plot of the di�erence P[X1 −T > s|X1 > T, X2 > T]−P[X2 −T > s|X2 > T, X2 > T] for T = 1000 when the vector (X1 , X2)
has exponentially distributed margins, with E[Xi] = 1000, and survival copula de�ned as in (2.6), with ρ = 1, β1 = α1 = 2 and
β2 = α2 = 1.

holds [X1 − T|X1 > T, X2 > T] ≥st [X2 − T|X1 > T, X2 > T], and the designer can choose the �rst component to
conclude the task after time T. �

Similar examples can be provided in other applicative contexts, like in insurance, letting X1 and X2 be two
dependent risks, and having to compare truncated random claims (where T is the truncation level), or in
medicine, letting X1 and X2 be two competing risks.

Concerning Theorem 1.1, it is then rather interesting to understand why positive dependence plays in
favor of S(Ĉ) ⊆M(Ĉ), i.e., in favor of the implication between inequality X1 ≥hr X2 and inequality X1 ≥hr:wj X2
(or the viceversa in case of negative dependence). The heuristic interpretation of this fact is given here.

Recalling the de�nitions of hazard rate order and joint weak hazard rate order, and the intuitive mean-
ing of positive dependence, one can try to write a chain of stochastic inequalities showing the assertion, as
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follows. Let t ∈ R, then

[X1 − t| X1 > t, X2 > t] ≥st [X1 − t| X1 > t]
≥st [X2 − t| X2 > t]
≤st [X2 − t| X1 > t, X2 > t],

where the �rst inequality follows by the positive dependence existing between X1 and X2 (informally, because
large values of X1 tend to go together with large values of X2), the second one by assumption X1 ≥hr X2, and
the third one again by positive dependence. This chain of inequalities can not be used to prove the assertion
that X1 ≤hr:wj X2, since the last one is in the wrong direction. However, by comparing the inequalities

[X1 − t| X1 > t] ≤st [X1 − t| X1 > t, X2 > t]

and
[X2 − t| X2 > t] ≤st [X2 − t| X1 > t, X2 > t],

one can argue that under some suitable conditions of positive dependence the �rst one is in some sense
stronger than the second one, being the additional conditional event {X2 > t} stronger, in some stochastic
sense, than {X1 > t}, since X1 ≥hr X2. This is actually the case if the structure of dependence among X1 and
X2, i.e., the survival copula Ĉ, satisfy the generalized supermigrativity property: under this assumption, the
last inequality is counterbalanced by the �rst one.

Because of Theorem 2.3, and its heuristic interpretation, one can conjecture that there exist conditions
of positive dependence strong enough to let the inequality X1 ≥hr:wj X2 be satis�ed under conditions weaker
than X1 ≥hr X2. In the following two examples, we in particular present special models of dependence for
which the relation X1 ≥hr:wj X2 is equivalent to X1 ≥st X2, and where X1 ≥hr X2 can fails. In the �rst example
we analyze the case of maximal positive dependence (i.e. comonotonicity).

Example 2.5. Let X2 = ϕ(X1), being ϕ any bijective and di�erentiable increasing function. Then X1 ≥hr:wj X2
i�

F(t, s) = P[X1 > max(t, h(s))] ≥ P[X1 > max(h(t), s)] = F(s, t), ∀s ≤ t,

where h = ϕ−1 is the inverse of ϕ.
Let ϕ(t) ≤ t for every t ≥ 0 (thus also X1 ≥st X2). Under this conditions we have t ≤ h(t) and s ≤ h(s) ≤ h(t)

for all 0 ≤ s ≤ t, thus alsomax(t, h(s)) ≤ h(t) = max(h(t), s). It follows

F(t, s) = P[X1 > max(t, h(s))] ≥ P[X1 > h(t)] = P[X1 > max(h(t), s)] = F(s, t), ∀s ≤ t,

i.e., X1 ≥hr:wj X2.
On the other hand, still assuming X2 = ϕ(X1) for an increasing ϕ, stronger conditions on ϕ are required

for the inequality X1 ≥hr X2. Denoted with ri the hazard rate of Xi, it holds r2(t) = r1(h(t))h′(t), where h is the
inverse ϕ−1. Thus, X1 ≥hr X2 i� r1(t) ≤ r1(h(t))h′(t) for all t ≥ 0. Now, if X1 is exponentially distributed with rate
λ, such inequality is satis�ed only for h′(t) ≥ 1, i.e., for ϕ′(t) ≤ 1 for all t. This is actually possible, but it is a
stronger condition than ϕ(t) ≤ t, which is the one required for X1 ≥st X2 and X1 ≥hr:wj X2. Thus, under maximal
positive dependence both X1 ≥hr:wj X2 and X1 ≥hr X2 can hold true, but, in some cases, it can be satis�ed only
the inequality X1 ≥hr:wj X2. �

We present next a further example where the relation X1 ≥st X2 is equivalent to X1 ≥hr:wj X2. It is interesting
to remark in this respect that we do not hinge here on conditions of positive dependence.

Example 2.6. Load-sharing models with time-homogeneous failure parameters
In the case of absolute continuity, the joint probability law of n non-negative random variables X1, . . . , Xn

can be described by means of the family of its Multivariate Conditional Hazard Rates (MCHR) functions. Such
a description is alternative but mathematically equivalent to the one expressed in terms of fX1 ,...,Xn , the joint
density function of (X1, . . . , Xn). See, e.g., the recent review paper [21] and references cited therein.
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In a sense, theMCHR functions arise asdirect extensions of the univariate concept of hazard rate function for
a single non-negative random variable X. For our purposes, we can limit ourselves to formulating the de�nition
of MCHR functions for the case of n = 2 non-negative variables X1, X2. In this case the family of the MCHR
functions is L = {λ(0)1 (t), λ(0)2 (t), λ(1)1 (t, x), λ(1)2 (t, x)}, where

λ(0)1 (t) := lim
∆t→0+

P[X1 > t + ∆t|X1 > t, X2 > t]
∆t ,

λ(0)2 (t) := lim
∆t→0+

P[X2 > t + ∆t|X1 > t, X2 > t]
∆t ,

and, for 0 < x < t,
λ(1)1 (t, x) := lim

∆t→0+
P[X1 > t + ∆t|X1 > t, X2 = x]

∆t

λ(1)2 (t, x) := lim
∆t→0+

P[X2 > t + ∆t|X2 > t, X1 = x]
∆t .

The assumption of absolute continuity of the joint distribution is essential since it simultaneously guarantees
the meaningfulness of the conditional probabilities appearing above and the needed condition of no-tie:

P[X1 ≠ X2] = 1.

The functions λ(0)1 (t), λ(0)2 (t), λ(1)1 (t, x) and λ(1)2 (t, x) belonging to L can be obtained in terms of the joint density
function fX1 ,X2 of (X1, X2). One can also check that, viceversa, fX1 ,X2 can be recovered from the knowledge of the
family L. The description of a joint distribution in terms of L turns out, furthermore, to be very e�cient in the
analysis of some problems of applied probability and in de�ning appropriate models of dependence. In partic-
ular, special models arise from the condition that λ(1)1 (t, x) and λ(1)2 (t, x) do not depend on x. The corresponding
models can be called models of Load-Sharing. See, e.g., [24] or the monograph [23] and references cited therein
for more details and further remarks. In particular we can consider the time-homogeneous case de�ned by the
constants

λ(0)1 (t) = λ(0)1 , λ(0)2 (t) = λ(0)2 , λ(1)1 (t, x) = λ(1)1 , λ(1)2 (t, x) = λ(1)2

In this case we have, for all t, s ≥ 0,

P[X1 > t + s|X1 > t, X2 > t] = P[X1 > s],

and
P[X2 > t + s|X1 > t, X2 > t] = P[X2 > s].

Thus, the stochastic order X1 ≥st X2, which is satis�ed when λ(0)2 ≥ λ(0)1 and λ(1)2 ≥ λ(1)1 , is maintained under the
conditioning {X1 > t, X2 > t}, so that X1 ≥st X2 ⇔ X1 ≥hr:wj X2. Moreover, observe that conditions

λ(0)1 ≤ λ(1)1 , λ(0)2 ≤ λ(1)2

give raise to a positive dependence, while the conditions

λ(0)1 ≥ λ(1)1 , λ(0)2 ≥ λ(1)2

give raise to a negative dependence.
Note that if the inequalities λ(1)1 ≤ λ(1)2 ≤ λ(0)1 ≤ λ(0)2 hold, recalling that X1 ≥hr X2 ⇒ X1 ≥st X2, then one has

a case where X1 ≥hr X2 ⇒ X1 ≥hr:wj X2 holds true for negatively dependent random variables. �
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3 Relationships with multivariate aging notions
The notion of supermigrative copula had originated from the analysis of some questions concerning the con-
cept of aging for a pair of exchangeable lifetimes. In the previous section we saw that the extension of super-
migrativity to non-exchangeable copulas can be relevant in the analysis of the ≥hr:wj property. In this vein, we
point out in this section some relations between ≥hr:wj and the Bivariate Increasing Hazard Rate property that
will be recalled below.

First, we recall the de�nition of IHR property, which is a well-known notion used in the description of
the reliability of engineering systems (see, e.g., [1] for details and examples of application).

De�nition 3.1. A non-negative random variable X is said to have Increasing Hazard Rate, shortly IHR, if it
satis�es

[X − t|X > t] ≥st [X − s|X > s] ∀ 0 ≤ t ≤ s, (3.1)

or, equivalently, if F(t + s)/F(t) is non-increasing in t ≥ 0 for all s ≥ 0, where F denotes its survival function.

It is useful to observe that, as shown in Theorem 1.B.38(iii) in [20], the following relation holds between IHR
notion and hazard rate order: a random lifetime X has IHR if, and only if, X + s ≥hr X + t whenever t ≤ s.

A corresponding bivariate notion, recalled here, has been de�ned in [2].

De�nition 3.2. A couple of exchangeable non-negative random variables (X1, X2) is said to have Bivariate
Increasing Hazard Rate, shortly B–IHR, if it satis�es

[X1 − t|X1 > t, X2 > s] ≥st [X2 − s| X1 > t, X2 > s] ∀ 0 ≤ t ≤ s, (3.2)

or, equivalently, if their joint survival function F is Schur-concave.

The following statement provides a relation between B-IHR and joint weak hazard rate order.

Theorem 3.1. Given the couple (X1, X2) of exchangeable lifetimes, if X1 + s ≥hr:wj X2 for every s ≥ 0, then it
satis�es the B-IHR property.

Proof. Fix any t1, t2 such that 0 ≤ t1 ≤ t2. By letting δ = t2 − t1 it holds:

[X1 − t1| X1 > t1, X2 > t2] =st [X1 − (t2 − δ)| X1 + δ > t2, X2 > t2]
=st [X1 + δ − t2| X1 + δ > t2, X2 > t2]
≥st [X2 − t2| X1 + δ > t2, X2 > t2]
=st [X2 − t2| X1 > t1, X2 > t2], ,

where the inequality follows by assumption X1 + s ≥hr:wj X2 for all s ≥ 0.

Relations between univariate aging, bivariate aging and dependence properties have been extensively
studied in [2]. Among other results, the following relationship between IHR, B-IHR notions and supermigra-
tivity property follows from Theorem 5.2(1) in [2]. Concerning the language and notation used in that paper,
we observe that supermigrativity is denoted as P3

+ in there and that P-positive 2-aging reduces to Bivariate
IHR when one refers to the dependence property of supermigrativity.

Theorem 3.2. Let (X1, X2) be a couple of exchangeable lifetimes, and let Ĉ denote its survival copula. If the
margins X1 and X2 satisfy the IHR univariate aging notion and Ĉ is supermigrative, then (X1, X2) satis�es the
bivariate ageing notion B-IHR.
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As a consequence of the Theorem 3.1, we immediately obtain that Theorem 3.2 above follows as a corol-
lary of Theorem 2.3. In fact, assume that (X1, X2) has identically distributed and IHR margins, and that the
corresponding survival copula Ĉ is supermigrative. Then, from the IHR property of X1 and Theorem 1.B.38(iii)
in [20] one has

X1 + s ≥hr X1 ∀ s ≥ 0,

which in turn implies
X1 + s ≥hr X2 ∀ s ≥ 0,

by exchangeability of X1 and X2. Now, by supermigrativity (thus also generalized supermigrativity) of Ĉ, and
applying Theorem 2.3, it follows

X1 + s ≥hr:wj X2 ∀ s ≥ 0,

i.e., that (X1, X2) satisfy the B-IHR property by Theorem 3.1.

A statement describing relations between the B-IHR property and the joint weak hazard rate order, in the
opposite direction with respect to what stated in Theorem 2.3, is now given. Observe that the assumption on
the function ϕ considered here is satis�ed, for example, by any di�erentiable increasing concave function ϕ
such that ϕ′(0) ≤ 1.

Theorem 3.3. Given the couple (X1, X2) of exchangeable lifetimes, if it satis�es the B-IHR property then
X1 ≥hr:wj ϕ(X2) for any non negative increasing function ϕ which is subadditive and such that ϕ(t) ≤ t for all
t ≥ 0.

Proof. Let H denotes the survival function of ϕ(X2), i.e., let H(t) = G(ϕ−1(t)), where G is the survival function
of the margins of Xi. Since ϕ(t) ≤ t and X1 =st X2, it clearly holds X1 ≥st ϕ(X2). From subadditivity of ϕ
follows the superadditivity of ϕ−1(t) = G−1(H(t)), which, in turns, implies, for all t, w ≥ 0,

G−1(H(t)) + w ≤ G−1(H(t)) + G−1(H(w))
≤ G−1(H(t + w)), (3.3)

where the �rst inequality follows from w ≤ G−1(H(w)) for all w (i.e., X1 ≥st ϕ(X2)), while the second one
follows from superadditivity of ϕ−1(t).

Observe now that the B − IHR property of (X1, X2) is equivalent to

P[X1 > t + w | X1 > t, X2 > t′] ≥ P[X2 > t′ + w | X1 > t, X2 > t′],

for all w ≥ 0 and t′ ≥ t ≥ 0, which, in turns, is equivalent to

P[X1 > t + w | X1 > t, ϕ(X2) > ϕ(t′)] ≥ P[ϕ(X2) > ϕ(t′ + w) | X1 > t, ϕ(X2) > ϕ(t′)]. (3.4)

Let now t = ϕ(t′) = H−1(G(t′)) ≤ t′. By (3.4) and (3.3) (i.e., by ϕ−1(t) + w ≤ ϕ−1(t + w)) we get

P[X1 > t + w | X1 > t, ϕ(X2) > t] ≥ P[ϕ(X2) > ϕ(ϕ−1(t) + w) | X1 > t, ϕ(X2) > t]
≥ P[ϕ(X2) > t + w | X1 > t, ϕ(X2) > t],

for all t, w ≥ 0, i.e., X1 ≥hr:wj ϕ(X2).

As an immediate example of application of Theorem 3.3, consider an exchangeable vector (X1, X2) whose
marginal distributions are IHR, and assume its survival copula is of Archimedean type, having log-convex
generator. As shown in [2], in this case (X1, X2) satis�es the B-IHR bivariate aging property, thus, by previous
statement, one has X1 ≥hr:wj ϕ(X2) for any di�erentiable increasing concave function ϕ such that ϕ′(0) ≤ 1.
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