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Abstract: In this work, a novel signal processing method is proposed to assist the Receiver
Autonomous Integrity Monitoring (RAIM) module used in a receiver of Global Navigation Satellite
Systems (GNSS) to improve the integrity of the estimated position. The proposed technique
represents an evolution of the Multipath Distance Detector (MPDD), thanks to the introduction
of a Signal Quality Index (SQI), which is both a metric able to evaluate the goodness of the signal,
and a parameter used to improve the performance of the RAIM modules. Simulation results show
the effectiveness of the proposed method.

Keywords: Global Navigation Satellite System (GNSS); signal processing; Receiver Autonomous
Integrity Monitoring (RAIM); integrity

1. Introduction

Global Navigation Satellite Systems (GNSS), like Global Positioning System (GPS) or Galileo,
are getting more and more pervasive in many fields, including aviation, railway, maritime, and road.
In order to satisfy the integrity requirements, becoming crucial for many applications, these systems
do not only need to be precise and accurate, but they have to guarantee solutions with a certain level
of reliability. In the last years, GNSS integrity increased its relevance in all the transportation sectors,
especially for Safety of Life (SoL) services and liability critical applications, such as, for instance, road
tolling applications, pay-as-you drive insurance, and other commercial services. However, the integrity
algorithms for land applications are relatively new and not completely assessed, due to the fact that
the number of new services continues to rapidly grow.

Nowadays, the technology of the integrity systems in aviation is mature and many algorithms
have been developed for this specific application. However, the absence of obstacles, the distance
between the airborne and possible interference sources from the Earth, a reduced occurrence of
multipath (MP) and the good visibility of the satellites make the techniques for aviation not directly
applicable to other applications. In fact in sectors, such as road, railway, rural, and maritime, the
environmental conditions around the receiver are in general worse than in aviation, and this implies
that the integrity algorithms for aviation have to be modified. An example of integrity concepts applied
to a urban environment can be found in [1].

A well assessed integrity technique is the so-called Receiver Autonomous Integrity Monitoring
(RAIM) [2], which can be implemented by adopting different algorithms, such as range comparison [3],
Pseudorange (PR) residual or Residual Based (RB) [4], and parity method [5]. They provide snapshot
schemes and yield identical results under the assumption of equal alarm rate, as shown in [6], where a
detailed comparison of these methods is given. Another well known RAIM scheme is the Solution
Separation that works on the position domain [7]. A basic assumption of all these schemes is that only
one fault at a time is possible. However, these schemes can be extended to the case of multiple faults,
as described in the recent work [8].
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The RAIM algorithms use PR and position data to implement the Fault Detection and Exclusion
(FDE) module, which leads to the exclusion of faulty satellites in the position computation.
However the identification of faulty satellites can be done also at the tracking stage of the receiver,
by adopting adequate signal processing techniques, as shown, for example, in the recent paper [9].
Today, these methods cannot be implemented in a current commercial GNSS receiver, but a new
generation of receivers can be devised with new blocks working in the correlation domain, and able to
assist the FDE module of RAIM.

The work presented in this paper analyses the feasibility of this concept of assisted-RAIM.
In particular it is focused on the effects of environmental impairments, as MP, and how to assist RAIM
to protect the receiver from this type of errors. MP occurs in the presence of objects, close to the
receiver, which can reflect the signals coming from the satellites. The working principle of a GNSS
receiver is based on the measurements of the delay between the time instant when a signal leaves the
satellite and the time instant when the signal is received. Therefore, if reflected signals are received
together with the useful signals, an error on the estimation of the delay of the GNSS signals may
occur. The Delay Lock Loop (DLL) is the block devoted to the delay estimation. However a DLL
error not always impairs the PR measurements. This fact has to be taken into account in the design of
assistance methods based on correlation points estimated by a DLL. More details on this aspect are
given in Section 3.

In the literature, many MP mitigation techniques are proposed (e.g., [10,11], just to cite a couple of
examples). However, when the goal is to satisfy some integrity requirements, the general approach is to
identify the presence of errors in the delay estimation without mitigating its effect, but rather excluding
the satellite affected by impairments from the solution. We propose here to adopt a technique of MP
detection, which derives from the MP Distance Detector (MPDD) described in [12], and based on
the identification of a Linear Adaptive Filter (LAF) able to model the MP effects, as shown in [13,14].
The new version of MPDD described in this paper introduces a Signal Quality Index (SQI), which
is both a metric able to evaluate the goodness of the signal, and a parameter used to improve the
performance of the FDE module of RAIM. Note that methods of Signal Quality Monitoring (SQM)
are already proposed in literature in the framework of integrity systems. For example in [15,16] SQM
algorithms are proposed to detect anomalous signal distortions by using extra correlators, which are
not used to maintain the receiver locked to the incoming signal. The difference here is that the signal
quality is used to create an index (SQI), which becomes an integral part of the assisted RAIM.

The paper is organised as follows: in Section 2 a brief introduction of the considered GNSS
receiver architecture and its working principles is given. In Section 3 the methods of PR calculation
are reviewed and the MP impact on DLL outputs and PR measurements is analysed. In Section 4
an overview of the LAF theory used in [12] is given. Section 5 is devoted to the description of the MP
detector. Section 6 introduces the concept of SQI. In Section 7 some RAIM and FDE concepts are given
and the RB RAIM algorithm is briefly explained. In Section 8 a possible interaction between SQI and
RAIM is described and simulation results are given. Section 9 concludes the paper.

2. Receiver Architecture

It is known that a GNSS signal in space (SIS) is transmitted by using a Code Division Multiple
Access (CDMA) format and the received signal of the GPS L1 C/A code can be written as a combination
of the SISs of all the satellites in view, each one expressed by

ym(nTs) =
√

2PmCm(nTs − τm)dm(nTs − τm) cos(2π( f IF + fd,m)nTs + ϕm) + w(nTs) (1)

where m is the index of a specific satellite, Pm is the received power, Cm(·) is the Pseudo Random Noise
(PRN), dm(·) is the navigation data, f IF is the intermediate frequency of the front-end, fd is Doppler
frequency, ϕm is a phase term, τm is the code delay and Ts is the sampling interval. The second term of
the sum is a noise component w(nTs), that is a discrete-time random process obtained by sampling
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the noise at the front-end output. Since the input noise may be assumed to be White Gaussian Noise
(WGN) with power spectral density S( f ) = N0/2 at the front-end output, w(nTs) becomes a Gaussian
discrete-time random process with zero mean and variance σ2 = N0BIF, where BIF is the front-end
bandwidth. Therefore Equation (1) represents a so called Additive White Gaussian noise (AWGN)
channel. Thanks to the code orthogonality, the receiver can discriminate different signals coming
from different satellites. Therefore the analysis of the receiver can be done considering only a single
signal ym(nTs).

In our experiments we used the receiver architecture described in [17], and in particular we
implemented a distortion-detector working at the tracking stage. The detector structure is strictly
related to the working principle of the DLL and to the mechanism of PR measurements which are
described in Sections 2 and 3.1.

DLL

The main purposes of the DLL is to maintain a local code Cloc,m[n] of the receiver locked to the
incoming PRN code Cm[n]. To do this, DLL estimates the relative delay between two codes by using
a correlation operation. However, the typical implementation of the DLL is not based on the estimation
of a delay, rather, on the estimation of a code frequency fc. To maintain locked Cloc,m[n] and Cm[n],
every integration time Tint (i.e., 1 ms), the output of the DLL’s discriminator is used to correct fc and
this mechanism yields to have a variable number of samples every Tint. The presence of filters in
the loop introduces a delay in the receiver chain or better, a transient with a duration dependent
on the filter bandwidth: narrow band means less noise but long transient and vice versa. To align
the incoming PRN code with a locally generated code, a DLL must include integrators, a code loop
discriminator, and code loop filters. In our scheme the signal Equation (1) is first demodulated by
multiplying it by two local carrier waves at frequency f IF, one for each branch of the receiver (I and Q).
The resulting signal is multiplied by three local codes (called early, prompt, late), generally shifted
by −1/2, 0 and +1/2 chip time, and the outputs are integrated and dumped to implement the
correlator.

The model chosen for the discrimination function is a non-coherent scheme, independent of the
phase of the local carrier, and with the expression

(I2
e + Q2

e )− (I2
l + Q2

l )

(I2
e + Q2

e ) + (I2
l + Q2

l )

called Normalised Early minus Late power, where Ie = ARx(τ − d/2) cos(φe),
Qe = −ARx(τ − d/2) sin(φe), Il = ARx(τ + d/2) cos(φe), Ql = −ARx(τ + d/2) sin(φe), and
Rx(·) is the correlation function between the local and incoming code, A is an amplitude factor,
τ is the code delay of the signal, φe is the estimated carrier phase error and d is the correlator spacing
between early and late.

We are interested in investigating what happens on the DLL parameters, when a disturbance, e.g.,
an MP, affects the received signal.

3. PR Calculation in a GNSS Receiver

From the theory, we know that a typical GNSS receiver computes the user’s position from the
estimated PR ρi (distance between the i-th satellite and the receiver). Considering that both satellites
and receiver’s clocks are affected by independent errors, we call system time the reference time frame
where satellites and the receiver’s clocks are referred. Before introducing the equation, we define
some notations [17]:

• Tt is the system time at which the signal left the satellite
• TRX is the system time at which the signal reached the user receiver
• δt is the offset of the satellite clock from system time (written in the navigation message)
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• tRX is the offset of the receiver clock from system time
• Tt + δt is the satellite clock reading at the time that the signal left the satellite
• TRX + tRX is the user receiver clock reading at the time the signal reached the user receiver
• c is the speed of light

A generic ρ for a single satellite is given by taking into account all the clock errors

ρ = c (TRX + tRX)− c (Tt + δt)

= c (TRX − Tt) + c (tRX − δt)

= r + c (tRX − δt)

(2)

where r is the geometric range and the second term c (tRX − δt) is the residual distance due to the not
perfect synchronisation between satellite and receiver clocks. To calculate this, the time of flight of
the signals is measured and the clock corrections will be made after data demodulation and Position,
Velocity and Time (PVT) computation.

3.1. How the GNSS Receiver Implements the PR Computation

In order to process tracked signals independently, GNSS receivers assign each one a dedicated
channel. As said, to obtain ρ it is necessary to know the transmitted time Tt for each satellite and to
correct all the misalignments of the receiver and the satellite clock with respect to the system time.
Two possible implementations of this measurement are Common transmission time and Common
reception time [18,19]. The former one is based on the satellites’ transmission time. Obviously the
channels are not synchronised each other at the receiver side, so on each channel the same bit of a
subframe (and relative time of arrival of it) have to be identified. The receiver selects a reference channel
by using the first arriving bit, and calculates the relative delay ∆i with respect to the bit of i-th satellite,
∆i = TRX,i − TRX,1. This allows to write the range ri of the i-th satellite as ri = ρ1 + c δti + c ∆b + c ∆i,
where ρ1 is the PR of the reference channel or in other words, the satellite closest to the user, ∆b is the
unknown bias for the not perfect synchronisation between clock on board the i-th satellite and the
clock of the receiver. Finally, δti is the correction of the offset of the i-th satellite clock from system time.

In the second implementation (Common reception time) the receiver calculates ∆i = Tu − TRX,i,
where, in this case, ∆i is the time interval between the instant of reception of the subframe for the i-th
channel TRX,i and Tu, that is the common receiving time when the receiver decides to measure the PR
over all channels. All the PRs are derived with respect to the reference channel, which is the one with
the minimum travel time. Once ∆i are computed for all the channels, ri = ρ1 + c ∆b + c (∆1 − ∆i) + δti.

To measure the time interval ∆i, the receiver continuously counts the samples processed per each
channel and maintains a monotone counter in 20 ms increments derived from receiver’s reference
oscillator [17]. The mechanism of counting partially protects the PR measurements from correlation
distortions. In next section this is proved by simulation since a theoretical explanation would require
a deep analysis of both DLL and counting operations.

The Common reception time is the method usually employed in commercial GNSS receivers.

3.2. Simulation Experiments

In this section we investigate which is the effect of the correlation distortions on the PR
measurements. In fact it is known that the PRs are measured in scheduled time epochs with a typical
rate of 1 Hz (or few Hz), while a DLL computes correlations with a much greater rate (e.g., 50 Hz).
Therefore, we expect that a distortion in the correlation may have a different impact if it occurs during
the local code update performed by the DLL, or at the epochs of PR measurements. To analyse these
different effects we have performed some simulation tests. The simulation scenarios were created by
using the signal generator described in [20]. The analyzed datasets represent a static position with
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four satellites in view all affected by one-reflected ray of MP. The received signal is GPS L1 C/A, it
lasts 60 s with different values of Carrier-to-Noise ratio (C/N0), but constant for the whole duration.

The dimension of the time windows of the MP events are different, so as to test the impact of
the duration on the accuracy reached by the receiver on the PVT stage. The MP model used in the
simulation is

s(t) = A0D(t− τ0)C(t− τ0) cos(2π( f IF + fd(t))t + φ(t))

+
N

∑
i=1

AiD(t− τi)C(t− τi) cos(2π( f IF + fdi
(t))t + φi(t))

where A0 is the signal amplitude of the Line-of-Sight (LOS) and Ai is the amplitude of the reflected
rays. The Doppler frequency, fd(t), is variable in time but, to simplify the simulations, all the Doppler
frequencies of the MPs are equal to the Doppler of the LOS ( fdi

(t) = fd(t)). The values of the initial
phase and delay of the reflected ray are randomly chosen. All the satellites in view are affected by
a simulated single ray MP during the time windows indicated in Table 1. The Multipath-to-Signal
Ratio (MSR) is the parameter used to assign the MP amplitude. It is defined as the ratio between the
power of the MP signal and the power of signal itself. MSR is constant and equal to −6 dB (about half
amplitude of the signal) for all the time windows.

Table 1. Time windows when MP is present.

Multipath Instants Duration (s)

10.900–11.300 0.400
27.900–28.100 0.200
42.350–42.650 0.300
50.750–50.900 0.150
53.475–53.525 0.050

3.3. Preliminary Results

Since the purpose of the simulation experiments is to compare the effect of MP on the measured
PR, two versions of the simulated signal are created:

(a) the signal sc(t), which represents the clean scenario, containing only noise;
(b) the signal sm(t) obtained by adding MP to sc(t) in the time windows given in Table 1.

Figure 1 shows the time evolution of the code frequency corrections ∆ fc[n] = fc[n + 1]− fn where
fn is the nominal value of the code frequency (1.023 MHz in GPS L1 C/A), and the relative value in
time calculated as ∆Tchip[n] = Tchip − 1/ fc[n + 1] in the DLL. The red line is the average value for the
corrections. Let’s start by analysing this figure in the time windows specified in Table 1. What we want
to observe is the behaviour of the PR computation just before and during a MP occurrence. The MP
effect is clearly observed in the first time window shown in Figure 2, where a change of the code
frequency appears during the disturbed time window. Then after a transient, the estimate of the code
frequency returns to be stable. Figure 3 shows similar results in time windows affected by MPs with
different durations.

To make some comparisons with simulated data, we calculated PR ρclean in a scenario with
only noise and PR ρMP in a scenario with noise and MP in the time windows given in Table 1.
Then, we computed the difference ρclean − ρMP in order to see the impact of tracking errors at PR level.
These operations are repeated for different values of the output rate Tρ of the PR measurements.
The persistent distortions could introduce errors on the estimate of fc and consequently in PR
computation based on samples counting (as we explained in Section 3.1).

We observe that, if we use short Tρ, affected by MPs limited in time, the probability that next PR
calculated is wrong is higher than if we use longer Tρ. It is possible to observe this effect in Figures 4–6,
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where on the top left graph there is the difference ρclean − ρMP, on the top right the evolution of the
ρMP in time, at bottom left the graph shows if the PR is measured in presence of MP and at bottom
right the MP profile. For example there are respectively 3, 2 and 1 PRs measured during MP event in
Figures 4–6. Errors in code frequency fc estimation may alternate the PR computation. These errors can
be recovered by the DLL if the duration of the distortion is limited in time and, once the disturbance is
finished, there is enough time before next PR measurement for the DLL to recover the error.

Figure 1. ∆Tchip[n] in time (a) and corrections of code frequency ∆ fc[n] for PRN 31 (b).

Figure 2. Zoom of the ∆Tchip[n] (a) and ∆ fc[n] (b) for PRN 31 in the first time window of Table 1.
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Figure 3. Zoom of the ∆Tchip[n] (a) and ∆ fc[n] (b) for PRN 31 in the last time window of Table 1.

In Figure 7 a zoom of the Figure 4 is depicted, where the circle points indicate that a MP is present
in a time instant of PR computation. As expected the quantity ρclean − ρMP is different from zero where
circle points are present.

Figure 4. Behaviour of PR for PRN 31, with output every ∆Tρ = 500 ms. PR error (ρclean − ρMP) (a);
ρMP trend in time (b); MP presence during a PR computation (c) and MP profile (d) are shown.
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Figure 5. Behaviour of PR for PRN 31, with output every ∆Tρ = 1000 ms. PR error (ρclean − ρMP) (a);
ρMP trend in time (b); MP presence during a PR computation (c) and MP profile (d) are shown.

Figure 6. Behaviour of PR for PRN 31, with output every ∆Tρ = 2000 ms. PR error (ρclean − ρMP) (a);
ρMP trend in time (b); MP presence during a PR computation (c) and MP profile (d) are shown.
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Figure 7. Zoom around 10 s of ρclean − ρMP in the case ∆Tρ = 500 ms in blue and MP profile in red.

4. Overview of Linear Adaptive Filter Techniques

The MP detector presented in this paper derives from the technique described in [12], based on
the Linear Adaptive Filter (LAF) theory. A brief description of the LAF methods is given here, to
motivate the new version of the MP detector described in this paper.

A complete overview of adaptive algorithms is available in [21], where adaptive techniques are
presented for channel equalisation. In particular LAF methods are described in [22,23]. In the LAF
theory, a generic measured signal is modeled as d[n] = y[n] + n0[n], where n0[n] is a noise sequence
and y[n] is

y[n] =
M−1

∑
k=0

w∗k u[n− k]

where u[n] is a reference signal, and w∗k are the coefficients of a Finite Impulse Response (FIR) filter,
which provides an approximated version y[n] of the input signal d[n]. The length of the filter
M represents the number of delayed components that decompose the incoming signal. The LAF
coefficients w∗k are estimated by minimising the cost function

ε =
i2

∑
n=i1

| e[n] |2 (3)

that is the error energy, where e[n] = y[n]− d[n] is the residual error, and i1 and i2 are the limits of the
sum. The values assigned to the limits depend on which kind of data windowing is chosen. In [12] we
use the so-called covariance method, where i1 = M and i2 = N, and no assumption is made on the
data outside the interval [1, N]. With this approach the minimisation problem can be solved in matrix
form, after introducing the quantities
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UH =


u(M) u(M + 1) · · · u(N)

u(M− 1) u(M) · · · u(N − 1)
...

...
. . .

...
u(1) u(2) · · · u(N −M + 1)

 (4)

Φ = UHU

and
z = UHD

where D = [d[M], d[M + 1], · · · , d[N]]T . It is possible to prove that the vector of estimated coefficients
ŵ = [w0, · · · , wM−1]

T can be written as
ŵ = Φ−1z (5)

In this way, the problem of estimating ŵ turns in an inversion matrix problem, by assuming Φ is
nonsingular, therefore invertible.

Another approach to window the data is to define the matrix U as

UH =


u(1) u(2) · · · u(N) u(N) · · · u(N)

u(1) u(1) · · · u(N − 1) u(N) · · · u(N)
...

...
. . .

...
u(1) u(1) · · · u(N −M + 1) u(N −M) · · · u(N)

 (6)

where some a priori assumptions are made, simply replicating the value u(1) before i1 = 1 and
replicating the value u(N) after i2 = N, as in Equation (6). In this paper we describe a method based
on this approach, whose advantages are explained in Section 5. The output provided by the LAF
method is then used to define a test statistic for distortions detection. Therefore the ‘adaptation’ of the
coefficients at each new measurement allows us to continuously update the value of the test statistic.

5. MPDD Algorithm

The MP detector described in this paper works in parallel with the tracking stage, because it uses
the raw data after demodulation and the correction terms calculated by the DLL. The detector does
not influence the normal operations of the receiver, but raises an alert when MP or, more in general,
distortions affect the signal.

In principle the structure of the multicorrelator used in the detector can be different from the one
used in the DLL. However MPDD will have an impact on the computational complexity of blocks
working at the tracking layer, since it requires a number of additional correlation points with respect to
a single DLL. The applicability of this scheme to specific GNSS receivers will be considered in future
work, since this paper is only focused on a feasibility study. In particular we are planning to work
on the possibility to distribute the evaluation of the correlation points in different epochs, so as to
make the method feasible also for consumer grade GNSS receivers (of course reduced performance
is expected).

The detector is composed of four elements:

1. Multicorrelator, which computes Npoints of the correlation between the received GNSS code, and
a local code

2. Moving average filter, which smoothes the noise effect on the points generated by the multicorrelator
3. Linear adaptive filter, which estimates the MP contribution in the measured correlation
4. Decision metric, which decides if the measured correlation is either distorted or clean.

The number of points Npoints computed by the multicorrelator impacts on the computational
load and on the resolution achieved in the estimation of the delay created by a MP. Therefore the
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choice of Npoint will be a result of a trade-off between complexity and resolution. Another critical
point is the effect of noise, which degrades the quality of the measured correlation. To mitigate the
effect of noise a moving average filter is used to smooth the input of the LAF block. Two possible
implementations of this filter are continuous moving average or block moving average. The first one is
a moving average filter with overlap between slices of the signal, while the second one evaluates the
average of independent slices, without overlapping. To reduce the computational load we decided to
adopt the block moving average [12]. The LAF module decomposes the input correlation in a weighted
sum of triangles (ideal correlation of GPS L1 C/A) and estimates the vector ŵ of the filter taps. The last
step analyses ŵ and declares if some distortion is present. The results presented in [12], based on the
covariance method exploit the information provided only in the right side of the peak of the correlation.
Therefore, the technique handles positive delays with respect to the LOS and limits the number of
used taps being U in Equation (4) dependent on M. The LAF-based method presented here uses the
data windowing in Equation (6), containing additional points to avoid loosing data points.

Least Squares and Constrained Least Squares

In [12], the Least Squares (LS) problem was simply the minimisation of the error ε in
Equation (3). To reduce false alarms caused by noise, an updated version has been developed
corresponding to the problem:

min ε

subject to wi > 0, i = 1, . . . , M.
(7)

This is a Constrained Least Squares (CLS) minimisation of Equation (3) with the constraint that
the coefficients of the filter are all positive. This means that only positive ideal correlations are used
to model the measured correlation. We can adopt this model even if we know that components in
counter-phase introduce negative correlations. The negative data will be erroneously modelled, since
the method is constrained to assign positive weights to each correlation replica. If the replica is negative
the algorithm will construct multiple weights in an effort to minimise the minimum Mean Square
Error (MSE). This does not allow the correct identification of the negative replica, but the multiple
weights indicate that a replica exists, and this is sufficient for detecting the presence of anomalies.

The decision metric is the same of the original algorithm, so we compute the square distances
between ŵ and a dictionary of sample vectors V. By observing these distances we are able to decide if
the correlation function presents distortions. The dictionary V takes into account different scenarios,
including LOS condition with no extra signals (wLOS) and multipath with multiple rays (wk).

ELOS = ‖ŵ−wLOS‖2

and
Ek = ‖ŵ−wk‖2 k = 1, 2, ...Nv − 1

where Nv is the number of vectors in the dictionary V. The anomalies are present if

Ek < ELOS k = 1, 2, ...Nv − 1

or
min

k=1,2,...Nv−1
(Ek, ELOS) 6= ELOS

The advantage of CLS is the reduction of the possible entries of the dictionary in the decision phase.
The CLS minimization adopted here is based on the Non-Negative Least Squares, method

described in [24]. In the presence of noise the traditional LS estimates the input noise as a weighted
sum of delayed replicas of the input signal, which is a suitable model for the MP channel but does
not fit well to the WGN channel. As a consequence, the system adds a high number of positive and
negative wi coefficients in order to model the WGN contribution. The result is a highly noisy solution.
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A constraint is then put here on the possible values of the wi coefficients. In particular, they can be
only positive. As already said, this constraint appears not suitable to estimate a MP channel where
LOS and MP components have different phase sign. In such cases, in order to properly estimate the
signal components, negative wi coefficients would be needed. However, it has to be noted that the
goal of the algorithm is not to properly estimate the signal as a weighted sum of components, but to
detect if anomalies are present in the signal, discriminating between the only-LOS case and all the
other unwanted cases. If a counter-phase component is present, then the CLS estimates non-null wi
coefficients with shorter delay with respect to the LOS. Such an anomalous behaviour detects the
presence of counter-phase MP.

In case of only LOS presence without noise, the LS and CLS solutions are equivalent. In general,
the CLS algorithm will give less non-null coefficients than LS.

6. SQI

The output provided by the detector is a hard detection (Yes/No) about the presence of correlation
anomalies. However it could be interesting to introduce a sort of soft decision to better assist the RAIM.

The idea has been to continuously monitor the quality of the received signal during the
computation of navigation solution. To achieve this goal we introduced an index SQI(tn) that describes
the quality of the navigation solution, where tn are the time instants of the PVT computation.

This quality index takes into consideration the MPDD output and other information data such
as the C/N0 and the distance between the weight vector ŵ and the theoretical LOS vector wLOS. It is
defined as

SQI(tn) =
1
λ

N

∑
k=1

m(tn−1 + kTa)s(tn−1 + kTa)d(tn−1 + kTa) f
[

C
N0

(tn−1 + kTa)

]
where:

• Ta is the duration of the moving average time window.
• N is the number of the moving average time windows between two time instants (tn and tn−1).

For example, between two PVT computations with a rate of 1 Hz and a moving average of
Ta = 100 ms, N = 10.

• m(·) represents the MPDD output,

m(kTa) =

{
−1, if Emin = min Ep = ELOS, p = 1, 2, ...NV

1, if Emin = min Ep 6= ELOS, p = 1, 2, ...NV

meaning that −1 indicates a correlation function with at most noise presence, instead 1 the
presence of distortions.

• The function s(·) takes into account the temporal distance between the occurrence of the distorting
event and the epoch when the PVT is computed. In fact the PVT module of any GNSS receiver uses
the estimated PRs at some given epochs, and, as explained in Section 3.3, correlation distortion
between two epochs could have an impact on the PR estimation. The meaning of the function
s(·) is to give a different importance to the MPDD output measurements depending on how far
they are from the next PR computation. s(·) is a Gaussian function normalised and shifted by 1 in
order to have a range of the values from 1 to 2. The shape of s(·) is shown in Figure 8.

• The function d(·) measures the ratio Emin/ELOS, and it is defined as

d(kTa) =

{
Emin/ELOS, if Emin 6= ELOS

1, if Emin = ELOS
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d(·) is a ratio between distances, so it gives a relative measure of how far is ŵ with respect to
the LOS.

• f (·) takes into account the C/N0 value, and is defined as:

f
[

C
N0

(kTa)

]
=

1 + 2
π arctan

[
C
N0

(kTa)− a
]

2

The C/N0 gives a measure of the reliability of the output of the MPDD. As a matter of fact,
if C/N0 is high, it means that the decision about the presence of distortions is more reliable
than with a C/N0 closer to a. The variable a is the minimum operative C/N0 considered by the
algorithm. We chose an arcotangent function as shown in Figure 9 to take into account a saturation
mechanism in case of very high or very low C/N0.

Figure 8. Trend of s(t) within two instants of the PVT computation.

Figure 9. Example of trend of f function with a = 42 dBHz.
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It is important to choose a C/N0 estimator that suits our problem. In [25] a comparison between
five well-known methods to estimate the C/N0 is made. We chose to use an estimator with low
computational complexity, the Signal-to-Noise Variance (SNV), that is based on the first absolute
moment and the second moment of the signal samples [25].

• λ is a normalization factor to obtain SQI(tn) ∈ (0, 1]. The parameter λ is set as the sum of the
maximum values that can be obtained at each discrete time k for the functions m(·), s(·), d(·)
and f (·).

7. RAIM

Traditional RAIM techniques provide integrity information, by making use of the available
measurements [2]. The basic assumption for RAIM is the presence of only one fault at the same time.
This is a strong assumption, but the process may be iterated so including de facto the case of multiple
faults. In literature three main RAIM algorithms are proposed: range comparison, least-squares
residuals and parity method. All the methods are able to determine the presence of a satellite failure
by using the redundancy of the measurements of the over-determined system of linearised equations

∆ρ = H∆x + ε

where ∆x is a vector containing the incremental deviations of the user position from the linearisation
point, H is the geometry matrix, where the generic row j is the unit vector pointing from the
linearisation point to the considered j-th satellite, and ε is the vector of PR errors. To detect position
errors, RAIM requires at least five satellites in view, while the exclusion of the faulty measurements
requires at least six satellites. The snapshot approach means that the system takes decision about
the presence of failure by using only current considered observations.

In this paper, we propose a method of assisted RAIM, based on the idea to detect satellite failures
at tracking stage level, since errors like MP are much more visible in the correlation rather than at
the PR level.

7.1. Global and Local Test

The structure of a RAIM algorithm comes from the statistical detection theory [2]. Two hypothesis
tests are posed: Global and Local Test. The first one tests if a failure exists and the second one
identifies which is the failed satellite, under the assumption to have at most one failure at a time. In the
residual method, the first step is to compute the residual between predicted and measured PRs [26],
r̂ = H∆x̂−∆ρ, given by

r̂ = H(HTΣ−1H)−1HTΣ−1∆ρ − ∆ρ = −R∆ρ

For the Weighted Least Squares (WLS) solution, if the PR errors are normally distributed with
covariance matrix Σ, then the residuals are distributed as r̂ ∼ N(0, RΣRT) [27]. The first test
performed is the global test, which checks if a failure exists by calculating the value for the test statistic
T = r̂TΣ−1 r̂. If the error is a Gaussian variable with zero-mean, T follows a Chi-square distribution
with n− p degree of freedom (DOF), where n is the number of measurements and p the number
of parameters to be estimated. In other words, n − p is the number of redundant measurements.
Therefore, once we get T, we need to compare it against a threshold value. To do this, we have to
establish a certain level of false alarm probability (α) and missed detection (β). If the current calculated
T fails the test, the local test is performed to identify which is the faulty satellite. The elements of the
residual vector r̂ are normalised by the diagonal elements of the covariance matrix of the residual and
finally, we get ŵ ∼ N(0, 1). The fault exclusion is performed with the null and alternative hypotheses
test with H0: |wk| ≤ n1−(α0/2), where α0 is the false alarm probability of the local test. The values of
the parameters α, β and α0 are linked together and, once two of them are fixed the third is obtained.
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The β parameter is involved for both global and local test (through the non-centrality parameter [28]).
The complete sequence of the tests is shown in Figure 10.

Figure 10. Block diagram of the FDE algorithm.

7.2. Covariance Matrix Uncertainty

In the simulations, the model for the PR error variance is σ2
k = a + b× 10−0.1(C/N0), where k is the

satellite index. The model is discussed in [29] and used in many other works [27], where the values
a and b are constant and take into account the degradation caused by the environment. In [28] the
authors suggest a = 10 m2 and b = 22, 500 m2 Hz for lightly degraded signal conditions. The implicit
assumptions is that the covariance matrix Σ is diagonal with entries σ2

1 . . . σ2
k , but this in general is not

true and the measurements are correlated, then the matrix entries out of the diagonal are different
from zero [30]. In a non-aviation context, like road or railway, the covariance matrix is not generally
diagonal [31,32]. In [33] there is an example on how to deal with the uncertain covariance. In this
paper we used a diagonal matrix, since the correct definition of a non diagonal matrix is out of the
scope of this work.

8. SQI and RAIM Interaction

The SQI introduced in the previous section has to be integrated within the algorithms of PVT
and RAIM in order to improve the accuracy of the estimated position. The simplest integration
method could be to set a threshold SQIthres, and to exclude the satellites with SQI < SQIthres from
the PVT computation. However, in the case of a low number of satellites in view, the problem of the
satellite-user geometry has an impact on the accuracy, and this should be considered in the mechanism
of SQI/RAIM/PVT integration. This means that a trade-off has to be found, considering also the effect
of the Geometric Dilution Of Precision (GDOP) (or simply Dilution Of Precision (DOP)) [17] , on the
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estimated position. In fact in some cases the error introduced by the worst DOP (due to a satellite
exclusion) could be bigger than the error due to the effect of MPs in some of the satellites in view
included in the PVT computation.

In the case of a bad geometry and of strong distortions, instead of removing degraded satellite
signals from the PVT, another possible approach is to penalise satellites with a poor signal quality in
the WLS solution of the navigation equations, by changing the diagonal noise covariance matrix Σ, as

Σk,k(t) = σ2
k (t) + σ2

k (t)γ(1− SQI(t))

where γ is a penalty weight. The diagonal entry k can assume values from σ2
k (t), when SQI = 1

(corresponding to a signal in good conditions), to (γ + 1)σ2
k (t) when SQI = 0 (corresponding to

a strong distortion). In this way, we can reduce the effects of the errors in the PRs projected in the
position domain. This method is denoted as P-WLS in the following (where P stands for penalty).

8.1. Simulation Results without Using GDOP Data

The purpose of the Section 3 simulations is to show the effects of some MP distortions in the GNSS
receiver. In order to validate this method we chose scenarios in which the MP phenomenon had longer
durations than those ones from Section 3. We show simulation results obtained by processing these
new scenarios, with different numbers of satellites in view, and with MP events that affect specific
satellites in the time windows indicated in Table 2. The purpose is to analyze the effects of satellite
exclusion and P-WLS, without considering GDOP data. For the PVT computation, the WLS solution is
used. The RAIM algorithm used in simulation has a false alarm probability α = 5× 10−5 and missed
detection probability β = 5× 10−5. The two simulation scenarios represent the same static position
and they have different durations and are presented in Table 2:

• Scenario 1 of duration of 50 s
• Scenario 2 of duration of 90 s

Both scenarios globally have 10 satellites in view.

Table 2. Time windows when MP is present for the scenario 1 and 2.

Scenario MP Windows (s) PRN

1 8–16 27
21–25 11, 22
30–35 16
40–45 1, 4, 21, 27

2 20–80 1, 4, 21, 27

When in the scenarios we consider only 5 chosen satellites in view, obviously FDE cannot be
used for exclusion, but the anomalies on PRs can be detected. An example of the position errors
in East-North-Up (ENU) coordinates in scenario 1 with 5 satellites, without using RAIM and signal
processing assistance, is shown in Figure 11. In Figure 12 the output of the detector, the SQI and the
C/N0 trend related to PRN 11 in scenario 1 is shown. The Tables 3 and 4 show the position errors in
East-North-Up (ENU) coordinates in scenario 1 and 2 with several values of the penalty weight in
the P-WLS method. The performance is also evaluated in terms of MSE over the whole duration of
the scenarios. It is possible to observe that especially in scenario 2, where the environment is more
degraded than in the scenario 1, the penalty on pseudorange variances can have a strong impact
in terms of accuracy expressed in MSE. In scenario 1 the MP affects several PRN in different time
windows but with shorter duration, so the penalty weight is between 0 and 1 except for the case
with 5 satellites. In fact, in both scenarios another parameter that influences the choice of the penalty
weight is the satellites geometry. If most of the satellite signals that we have are not affected by any
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impairment and also we have a good geometry, penalising the variances may be useless. Finally, the
accuracy takes benefit from the penalty weight in a harsh environments.

Figure 11. WLS solution of the scenario 1. In (a) the position error is shown. The East-North coordinates
(b) and the skyplot (c).

Figure 12. Example related to PRN 11 in scenario 1: the MPDD output (a); the SQI (b) and
the C/N0 trend (c).
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The results summarised in Tables 5 and 6 show the effects of the exclusion performed by applying
a threshold on SQI. The results have been obtained with SQIthres = 0.7. As it can be seen in the first
row of Table 5 relative to the case of 5 satellites, if we exclude one satellite with low SQI, we could
get a worse solution due to the bad geometry. This is true with a low number of satellites, but the
exclusion leads to an improved solution with a high number of satellites. In summary these results
prove that the effect of GDOP has to be considered in the set up of the exclusion algorithms, when the
number of satellites in view is very low.

Table 3. Results for the scenario 1 with increasing penalty weight and different number of satellites.

Number of Satellites γ E (m) N (m) U (m) MSE (m)

5

0 17.5363 8.36942 37.5979 24.0336
1 17.5299 8.36801 37.4598 24.0374
5 17.5148 8.39186 37.1987 23.987

10 17.5049 8.42931 37.0731 23.9496

8

0 11.6558 9.08143 31.5525 22.7982
1 11.8193 9.07103 32.3279 22.8998
5 12.1992 9.09621 34.1857 23.3293

10 12.4388 9.15166 35.3221 23.6366

10

0 5.82226 8.88567 12.4009 12.7028
1 5.78051 8.91175 12.2429 12.4587
5 5.83003 9.15222 12.3956 12.4954

10 5.94344 9.3618 12.8177 12.7211

Table 4. Results for the scenario 2 with increasing penalty weight and different number of satellites.

Number of Satellites γ E (m) N (m) U (m) MSE (m)

5

0 3.04783 9.27226 57.8219 51.5876
1 1.77521 6.44012 45.965 41.311
5 1.98589 11.7037 31.2759 30.1326

10 2.51859 14.378 26.4405 27.2389

8

0 8.28045 10.9965 41.898 38.7889
1 4.54109 14.0635 36.4797 34.4765
5 2.30562 16.053 31.0838 30.0961

10 3.10298 15.8458 29.9185 28.7643

10

0 7.028 13.9999 37.057 35.5515
1 3.60098 16.0674 29.853 30.284
5 1.77159 15.8387 20.8092 23.409

10 2.20445 14.2902 17.4283 20.2332

Table 5. Results for the scenario 1 with SQIthres = 0.7 and no penalty weight.

Number of Satellites E (m) N (m) U (m) MSE (m) PRN Tracked RAIM SQI Exclusion

5 12.6207 16.6765 56.8226 36.0848 16, 21, 22, 4, 11 NO NO
15.1164 16.3122 67.2206 43.4145 NO YES

6.32411 15.6211 20.869 20.8185 6, 16, 21, 22, 4, 11 NO NO
6 6.019 32.2079 17.1807 21.8183 YES NO

6.14697 32.2475 16.1726 21.4553 YES YES

6.47547 14.783 13.7957 17.4422 6, 16, 21, 22, 4, 18, 11 NO NO
7 4.52599 14.696 14.0377 15.9173 YES NO

4.62159 14.6788 13.575 15.9742 YES YES

5.82226 8.88567 12.4009 12.7028 6, 16, 21, 22, 4, 18, 11, 1, 19, 27 NO NO
10 3.06137 8.44777 8.70849 10.4545 YES NO

3.05162 8.10319 8.40837 10.4058 YES YES
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Table 6. Results for the scenario 2 with SQIthres = 0.7 and no penalty weight.

Number of Satellites E (m) N (m) U (m) MSE (m) PRN Tracked RAIM SQI Exclusion

5 44.6156 99.3248 170.2897 170.1806 1 , 4 , 21, 27, 19 NO NO
159.4347 136.0268 395.6745 323.4530 NO YES

44.6886 90.4397 146.9450 150.3777 1 , 4 , 21, 27, 19, 6 NO NO
6 30.9765 65.6038 109.0453 110.9221 YES NO

213.7446 444.4343 242.8570 379.8618 YES YES

1.51801 14.7719 8.40841 15.7991 6, 19, 27, 16, 18, 4, 11 NO NO
7 1.51801 14.7719 8.40841 15.7991 YES NO

4.04489 24.2859 12.5928 21.7989 YES YES

6.9509 13.8449 36.6576 34.9215 6, 19, 27, 16, 18, 4, 11, 22, 21, 1 NO NO
10 2.4263 6.2989 26.6406 24.4607 YES NO

2.6643 10.0206 8.5329 11.8656 YES YES

Note that the focus of this paper is to show that fault detection via signal processing techniques
is possible and useful especially for land applications where the environment has important effects on
the degradation of the signals. For this reason methods for a proper selection of the threshold have not
been considered, and will the objective of a future study activity.

8.2. GDOP Control

The simulation results just presented motivate the adoption of an exclusion method able to
implement a trade-off between the weights of errors removed by signal quality index and weights of
the potential errors introduced by the geometry.

A possible approach is to calibrate the dictionary on specific error cases, in order to detect
and remove satellites affected by these specific problems. A second approach is to consider that,
in a future with a high number of satellites, the risk to degrade the DOP will be lower, but in any case,
an additional block of DOP control is convenient for these kinds of algorithms.

We propose here a control, based on a GDOP budget, which tries to remove satellites starting
from the ones with lowest SQI and SQI < SQIthres in order to eliminate the distorted signals which
could not be detected by the RAIM. Then a GDOP test can be performed, for example by observing
if the GDOP after removal exceeds k times the GDOP with all the tracked channels. The idea is to
combine several effects: calibration of the dictionary depending on the considered environment, and
choice of the parameter k. In this heuristic way, we can have a kind of control even on the geometry
effects, avoiding to introduce wide errors due to the weak geometry. For example, we set k = 0.1,
so it means that the new GDOP after a possible exclusion cannot exceed 10% of the previous GDOP.
By taking in consideration the situation in Table 6 with 6 or 7 satellites, with GDOP control we do
not perform an erroneous exclusion and we will get in this way the same results as in not assisted
RAIM case (as reported in Table 7). Conversely, with 10 satellites, GDOP control simply permits the
additional exclusion performed by SQI.

Table 7. Results for the scenario 2 with SQIthres = 0.7, no penalty weight and GDOP control enabled
with k = 0.1 in case of 6 and 7 satellites in view.

Number of Satellites E (m) N (m) U (m) MSE (m) PRN Tracked RAIM SQI Exclusion

44.6886 90.4397 146.9450 150.3777 1 , 4 , 21, 27, 19, 6 NO NO
6 30.9765 65.6038 109.0453 110.9221 YES NO

30.9765 65.6038 109.0453 110.9221 YES YES

1.51801 14.7719 8.40841 15.7991 6, 19, 27, 16, 18, 4, 11 NO NO
7 1.51801 14.7719 8.40841 15.7991 YES NO

1.51801 14.7719 8.40841 15.7991 YES YES

Another possible approach to avoid problems in case of a poor geometry is to leave the decision
on the exclusion to RAIM algorithms but using SQI to identify unreliable navigation solutions. It is
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possible to declare a navigation solution unreliable when the global test fails but the local test is passed
for all the normalised PR residuals (see Figure 10). It means that a faulty situation is detected, but
it is impossible to identify which is the faulty satellite and consequently RAIM cannot perform the
exclusion. In this situation the RAIM algorithm is not able to provide information related to Vertical or
Horizontal Protection Level (VPL and HPL).

Figure 13. Example of global (a) and local (b) test on scenario 1 with two unreliable solutions.

Figure 14. Example of global (a) and local (b) test assisted by SQI information on scenario 1 without
unreliable solutions.
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Figure 13 shows test results regarding scenario 1 with 9 satellites in view, without using SQI,
with a false alarm probability α = 3.33× 10−5 and missed detection probability β = 1× 10−2. The
graph on top is the evolution in time of the global test statistic compared to the global threshold.
Then, the local test is performed on the points above the global threshold. In the graph on bottom,
the evolution in time of the local test statistic shows that there are only two points under the local
threshold (circle points). These values under the local threshold are the navigation solutions which
fail the global test, but pass the local one. By using SQI, we want to identify the possible biased PR and
exclude it to make reliable the navigation solution. To do this, after the global test failure and when
local test is valid, instead of declaring an unreliable solution, we can check the SQI values for each
satellite and decide to exclude the satellite with the lowest SQI and repeat again the global and local
test (if needed). In Figure 14 the results of the assistance are shown. We observe that there are not
points under the threshold in the local test graph, since after the exclusion, the global test is repeated
and no more biases are detected and so the local test is not repeated.

9. Conclusions

This paper presents a technique to detect the presence of distortions at the tracking stage level of
a GNSS receiver. In particular the method has been tailored to MP detection, but can be applied also to
other impairments. The specific goal is to assist the modules of integrity monitoring of RAIM. In the
near future, the presence of a multi-constellation of satellites like GPS, Galileo, GLONASS, Beidou and
of receivers able to demodulate all these signals, will provide an increasing number of satellites in view.
This will foster the development of signal processing techniques of FDE, since they perform better
with a high number of satellites. In general, this kind of exclusion approach is sensitive to the DOP
variation, and the effects of the satellite geometry could be greater than a simple MP phenomenon in
terms of accuracy. For this reason a method to combine GDOP control and FDE is also proposed in
this paper.

Another way to integrate SQI into RAIM suggested in this work is the exclusion of satellites with
lowest SQI in case when RAIM declares a navigation solution as unreliable.

In this work, we have not taken into consideration a possible use of a carrier-smoothing techniques,
that might be useful to protect against sporadic MP distortions, because usually they are used in the
case of good visibility of the satellites in view.

The proposed technique could be also employed for other kinds of distortion, like spoofing
attacks that can bypass RAIM tests. Work is in progress on some modifications of the algorithm,
for application of spoofing detection.
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