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Abstract: This paper focuses on the orbit and formation control for the Next Generation
Gravity Mission (NGGM), under study at the European Space Agency. In our past study, an
innovative integrated orbit/formation model (IFC) has been designed, introducing a novel set
of Hill-type equations. The aim of this study is the refinement and the enhancement of the IFC
architecture. The proposed solution is based on a modified state predictor plus an extended
hierarchical and multi-rate structure of the control law, with respect to the preliminary design.
Care was taken in the control design to reduce as much as possible the demanded extra-thrust
effort. This improved control strategy has been shown to be far less sensitive to the initial
formation perturbations as well as capable of keeping the formation variables stable within the
required band, all over the 10-year mission, through a low-thrust authority in the order of few
milli-newtons.

Keywords: Spacecraft Formation Flying, Orbit Control, Formation Control, Low-Earth
Formation, Gravimetry

1. INTRODUCTION

Post ESA’s GOCE (Gravity Field and Steady-State Ocean
Circulation Explorer), space Earth gravimetry missions
will rely on a formation of satellites, flying in loose forma-
tion in a low Earth orbit, acting as proof masses immersed
in the Earth gravity field and on the measurement of their
distance fluctuations, encoding the gravity anomalies. In-
deed, the performance level of gravity missions can be sub-
stantially increased by adding a formation control to long-
distance distributed space systems as in GRACE (Gravity
Recovery And Climate Experiment), in the order of 100
km distance, but at a lower altitude (300 to 400 km). Such
a mission configuration requires that each satellite is drag-
free and completed by an accurate distance measurement
system. As a result, the Next Generation Gravity Mission
(NGGM), under study at the European Space Agency, will
consist in a two-satellite long-distance formation, placed
in a low near-polar orbit. Each satellite will be controlled
to be drag-free, while laser interferometry will ensure the
satellite-to-satellite tracking.

This paper focuses on the orbit and formation control for
the NGGM mission, whose aim is the orbit and formation
long-term stability (> 10 years). One of the most relevant
contribution of this paper is the refinement and the en-

? Part of this research was carried out within the study Next
Generation Gravity Mission (NGGM): AOCS Solutions and Tech-
nologies study and within the ESA Networking Partner Initiative
(NPI) PhD project Laser Metrology Spacecraft Formation (Ref.
4000109653/13/NL/MH) funded by the European Space Agency;
Thales Alenia Space Italy (Turin) being the prime contractor.

hancement of the integrated orbit and formation control
(IFC) architecture described by Canuto et al. (2014a), so
to overcome possible drift and stability issues due to a
large envelope of the formation initial perturbations. As in
Canuto et al. (2014a), the orbit and formation dynamics is
formulated as a special kind of Clohessy-Wiltshire (CW)
equations [Wiltshire and Clohessy (1960)]. Such formu-
lation is based on the definition of a peculiar formation
reference frame (the formation local orbital frame, FLOF)
and the formation triangle.

There are many possible ways to define the dynamics
of a satellite formation and to control it. Three main
approaches may be found in literature [Ren and Beard
(2004)]: leader-follower, behavioural, and virtual structure.
The stability and the accurate formation dynamics free
response has also been largely investigated. For small
formations, the effects of the non-linear terms are neg-
ligible, but the effects of the gravitational perturbations
and the reference orbit eccentricity are often significant
[Alfriend et al. (2000), Schaub and Alfriend (2000)]. Hence,
attention has been paid to include in the model generic
gravity potential terms as in Guibout and Scheeres (2012)
or to extend relative orbit motion to eccentric orbits as
in Yamanaka and Ankersen (2002). There have also been
analyses to develop formations that are insensitive to
differential J2 disturbances, based on non-linear dynamic
models [Schaub and Alfriend (2000)]. At this proposal,
Schaub and Alfriend (2000) suggest that by specifying the
relative orbit geometry in mean elements the true relative
spacecraft motion does not deviate from the prescribed
relative orbit geometry. However this method has been



found to be too weak in some particular orbit conditions by
Schaub et al. (2000), which study methods to reestablish
these J2 invariant relative orbits by feedback. Another way
to address the description of proximity relative motion for
formation or rendezvous mission is to develop the state
transition matrix, even for eccentric orbits, both in depen-
dence of time [Melton (2000)] or true anomaly [Inalhan
et al. (2002), Yamanaka and Ankersen (2002)]. On the
other hand, care must be taken in employing CW pertur-
bation equations for control design in the case of a long-
distance formation baseline, since significant non-linear
gravity terms are neglected. For instance, Alfriend et al.
(2000) used state-transition matrices to account the orbit
eccentricity and the gravity perturbations. The approach
adopted in this paper is based on the Embedded Model
Control (EMC) design [Canuto et al. (2014c), Canuto
et al. (2014b)], which calls for a hierarchical and multi-
rate control unit around the real-time internal model of the
satellite formation controllable dynamics. The embedded
model control technique fully solves this sort of problems
through a simple but effective disturbance estimation dy-
namics. Hence, the main advantages, inter alia, consist in
both being free to adopt a simplified internal model and
directly rejecting the perturbations from the LTI model,
reducing the required thrust level and fuel consumption.

This paper starts with some concepts about the NGGM
mission requirements and the architecture of the control
design. After this brief outline, the paper describes the
formation triangle dynamics model, introducing the FLOF
frame. The discrete-time (DT) final equations of the for-
mation internal model are provided. As a consequence,
leveraging the EMC design, the state predictor and the
control law are built on and interfaced to the internal
model. Finally, some preliminary simulated results proving
control performances are provided.

2. NGGM MISSION REQUIREMENTS AND
CONTROL ARCHITECTURE

The NGGM mission fundamental observable is the dis-
tance variation between the two CoMs. However, within
the total distance variation, only the small fraction due
to the gravity acceleration (i.e. the Earth gravity field
anomalies effect) is of interest. Consequently, the NGGM
mission concept leverages a two-satellite formation, ideally
drag-free and flying as test masses in the Earth gravity
field. Such a pair of distant drag-free satellites acts as a
sort of gradiometer, with a very long baseline (≈ 200 km).

From the orbit and formation control perspective, such a
drag-free formation implies that no stringent requirements
apply to the formation control. Indeed, in principle the two
satellites, while acting as proof-masses, must be left free to
move under the action of the Earth gravity field. However,
an ideal drag-free control is not possible, mainly due to
the accelerometer errors (e.g. bias, drift). Hence, an orbit
and formation control is needed.

The Table 1 lists the main requirements driving the control
design in the science mode of the NGGM mission. Note
that the formation requirements have been split into
distance, radial and lateral variations with respect to a
nominal circular orbit; expressed as a percentage of the
nominal inter-satellite distance. Concerning the attitude

Table 1. NGGM mission science control mode:
main performance requirements for the AOCS.

Performance variable Bound Unit

Drag-free control

CoM acceleration (PSD in MBW) 0.01 µm/s2/
√
Hz

CoM acceleration 1 µm/s2

Orbit and formation control
Formation distance variation 5 % (distance)
Formation lateral variation 1 % (distance)
Formation radial variation 2 % (distance)

and orbit control system (AOCS) design, the main design
principles are:

Embedded Model Control AOCS is designed around
a simplified, discrete-time model of the spacecraft and
formation dynamics to be embedded in the control
unit. This embedded model consists of the controllable
dynamics and of the disturbance dynamics. The dis-
turbance dynamics is in charge of estimating a wide
range of unknown model errors as drag-free residuals,
parametric uncertainties, cross couplings and neglected
non-linearities.

Integrated orbit and formation control The orbit
and formation control design is driven by an innovative
approach to multi-satellite formation and orbit control.
Such innovative approach is based on the integration of
orbit and formation dynamics and control through the
formation triangle concept and leads to new Hill-type
equations (see Canuto et al. (2014a) and Section 3).

Multi-hierarchical control Control tasks are carried
out via a multi-hierarchical control design, as described
later in this section.

Frequency coordination The drag-free control and the
formation control are actuated at different frequency
bands. This is deemed necessary in order to prevent any
possible interference among inner/outer loops control
functions and to coordinate properly the several tasks
of the control design.

The higher-level block-diagram of the AOCS architec-
ture, in science phase, is sketched in Fig. 1. From the
control architecture perspective, formation and drag-free
control are designed in a hierarchical way. Indeed, the
integrated orbit and formation control is an outer loop
which provides the long-term reference accelerations to
be tracked by drag-free control. As a result, in Fig. 1,
loops 3, 4, and 5 pertain to the enhanced integrated or-
bit/formation control plus the linear drag-free. The loops
4 and 5, addressing the control of the formation position
(loop 4) and the formation rate (loop 5), are actuated
at different and appropriate frequency bands. Indeed, the
low-frequency formation position control (loop 4) employs
orbital-averaged measurements in order to filter out any
component of gravitational nature and the command is
actuated at the orbit frequency (close to 0.2 mHz). Fur-
ther, a damping control function (loop 5) has been added
in the present enhanced IFC configuration. Such damping
control, concerning the formation linear rate variables, is
actuated at an higher frequency and it has been proved
to be necessary to ensure the orbit and formation BIBO
stability. This sub-hierarchical structure within the orbit
and formation control is the main novelty with respect to



Fig. 1. Higher-level block diagram of the AOCS architec-
ture for the NGGM science mode.

what was presented in Canuto et al. (2014a), leading to
the enhanced IFC architecture which has been proved to
improve substantially the control performance level as well
as the stability of the formation triangle.

3. INTEGRATED ORBIT AND FORMATION
DYNAMICS

In this section, the main focus will be on the enhanced
integrated orbit and formation dynamics, focusing on
the inline formation type, in which the satellites follow
the same orbital path, with different true anomalies.
Due to the drag-free control action, the orbit/formation
model has been designed by assuming that the gravity
periodic components are the only source of acceleration.
The rationale behind our novel set of Hill-type equations
is the integration into a unique model of the orbit and
formation dynamics and control, through the formation
triangle concept (Fig. 2 and (Canuto et al., 2014a)). This
integrated model is based on the the formation local
orbital frame (FLOF), depicted in Fig. 2. The FLOF is
materialized by the GNSS range measurements, as soon
as the GNSS receivers become operational, and its three
axes are defined as follows:

o1 =
∆r

d
, o2 =

r
r × o1

| rr × o1|
, o3 = o1 × o2 (1)

where r = (r1 +r2)/2 is the mean formation radius, ∆r =
(r1 − r2) is the satellite relative position, d = |∆r| is the
inter-satellite distance. Following the FLOF definition, the
formation triangle, whose edges join the two satellite CoMs
and the Earth CoM, is another paramount element for
the integrated orbit and formation modelling (as derived
in Canuto et al. (2014a)). Satellite-to-satellite distance
variations are measured along the satellite-to-satellite line
(SSL in Fig. 2). Given a proper attitude and pointing
control, intended to keep aligned the satellites optical axis,
the SSL is defined as the line connecting the CoM of
the satellites; aligned with the first FLOF axis. Figure 2
provides also a sketched visualization of the orbit pertur-
bations adopted in the orbit/formation modelling as well
as the formation triangle DoFs. Indeed, orbit/formation
dynamics is expressed through a combination of Cartesian
and angular perturbations (triangle angular rotations),
defined through the FLOF frame. Given a reference orbit
(i.e. a reference sphere) with nominal radius rnom and the
nominal inter-satellite distance dnom, the three adopted
Cartesian perturbations are: (i) the distance variation δd,

(ii) the formation mean radius deviation (along the SSL)
δrx, (iii) the mean altitude variation δrz, viz.

∆r =(dnom + δd)

r = rzo3 + rxo1 =(rnom + δrz)o3 + δrxo1.
(2)

In addition, the formation triangle has three further DoFs
consisting in the three components of the FLOF angular
rate vector with the relative angular perturbations. Hence,
the integrated orbit and formation dynamics is based
on the differential equations of these six perturbations.
Such equations were built by combining the kinematics
equations involving the six selected perturbations with the
formation triangle dynamics (as explained in Canuto et al.
(2014a)). The final perturbation equations were used for
the control design after having been linearised around the
equilibrium point. It is worth to underline that gravity
and gravity gradient terms have been expressed in series
expansion at the first order (i.e. spherical gravity). Indeed,
all the higher order terms, from J2 on, have been treated as
disturbances belonging to the external acceleration term
affecting the formation dynamics. Such a model lineari-
sation perfectly fits with the Embedded Model Control
technique. Indeed, EMC allows one to recover and reject
in the control law all the non-explicitly modelled effects,
like the J2 and higher order terms, through a stochastic
and parameter-free disturbance dynamics, driven by the
model error. As a result, formation/orbit dynamics can
be expressed in terms of the perturbations of a nominal
formation affected by the spherical gravity, having zero-
eccentricity orbit, and defined by nominal inter-satellite
distance, radius, and angular rate.
Define the state vector as x = [rt w]T = [ρx ρz δd
dnomδθ wx wz wd wy]T , where ρx = αδrx and ρz =
αδrz. The linearised state equations are the following:[

ṙt
ẇ

]
(t) =

[
0 Iωnom

A21 A22

] [
rt
w

]
(t)+

[
0
B2

]
u(t),

[
rt
w

]
(0) =

[
rt0
w0

]
y(t) =

[
I 0
] [rt

w

]
(t)

A21 = 3ωnom

 1 0 0 0
0 1 0 0
0 1 0 0
−1 0 0 0

 , A22 = 2ωnom

0 −1 1 0
1 0 0 1
0 0 0 1
0 0 −1 0


B2 =

α 0 0 1
0 α 0 0
0 0 1 0
0 0 0 −1

ωnom

(3)

where ωnom is the nominal orbital angular rate, α =
dnom/rnom is an adimensional scale factor, dnomδθ is the
longitudinal perturbation, x represents the formation per-
turbations while w is the normalized formation rate per-
turbations sub-vector. The preliminary version of the IFC
design was based on the model described by equation (3).
Notwithstanding extensive simulations have been showing
the effectiveness of the model in (3) for the control design,
the preliminary IFC seems to show some criticality in some
conditions. Indeed, given the very low thrust level con-
straining the NGGM control design, stability and drift is-
sues seem to affect some formation variable in case of a set
of initial conditions non optimal for starting the NGGM
mission science phase. Specifically, issues of this kind can
arise after: (i) poor/missing formation and orbit acquisi-
tion, (i) pre-science control modes transition. Hence, the
rationale behind the enhanced IFC pursues an increased
control robustness, when the formation starts the scien-
tific control mode outside a given envelope around the
equilibrium point. Therefore, the preliminary IFC model



Fig. 2. The formation triangle and the Formation Local
Orbital Frame (FLOF).

has been studied and then transformed in order to: (i)
improve its capability of managing the satellite orbit initial
perturbations, (ii) supporting the control law in ensuring
BIBO stability of the formation variables. The transforma-
tion of the perturbed formation state equations was driven
by the analysis of the free response of the original model
in (3), given a certain set of initial conditions. Indeed, the
free response, similar to the Hill’s case, includes a pair
of diverging components affecting the distance variation
δd and the longitudinal orbital perturbation dnomδθ. In
addition, the free response presents constant terms (biases)
affecting two other state variables (ρx and ρz). The idea
is to cancel the free response divergence by controlling to
zero the factors of the two drifting terms. Such drifting
factors are linked to the initial conditions of the linear
combinations of some state variables of (3). Hence, the
state of the original model in (3) was transformed by
combining linearly some of its state variables (see dw and
θw in (4)) to be controlled to zero. Then, leveraging two
further linear combinations of the state variables in (3),
also the biased term of the free response can be forced to
zero (introducing the two further combined states ρxw and
ρzw in (4)), thus making the free response zero-mean and
bounded. As a consequence, transforming the model in (3)
according to the new combined state variables, a new set
of state equations is obtained.
The state vector of the transformed model reads:

xtr =

[
rw
w

]
= [ρxw ρzw dw θw wx wz wd wy]

T
,

(4)
where ρxw = ρx + (wd − wz)/2, ρzw = ρz + (wy + wx)/2,
dw = δd + 3ρz + 2wy and θw = dnomδθ − 3ρx − 2wd. It
is worth to notice that the formation rate sub-vector does
not change after the transformation. As a further step, the
final transformed LTI continuous system is made discrete
time to be implemented within a digital control unit.

At this point, according to the EMC design, the embedded
model to be coded directly into the control unit can be
built. The embedded model encompasses the controllable
model (i.e. the ZOH DT version of transformed (3)) com-
pleted by a purely stochastic and parameter-free distur-
bance dynamics, to describe the secular components (bias
and drift) of the unknown disturbances. The integrated
orbit/formation embedded model with a first-order dis-
turbance dynamics is reported in (5). To build the con-
trollable dynamics part, all the uncontrollable variables as
the longitudinal perturbation and the formation rates have

Fig. 3. The IFC design: sensors to actuators chain.

been dropped, since we are only interested in the control
of the formation triangle position variables.[

rw
xd

]
(i+ 1) =

[
Aw I
0 I

] [
rw
xd

]
(i)+

[
Bw

0

]
u(i) +

[
wr

wd

]
,[

rw
xd

]
(0) =

[
rw0

xd0

]
y(i) =

[
I 0
] [rw

xd

]
(i) + em(i)

Aw =

[
1 0 0
0 1 0
−12π 0 1

]
, Bw =

[
0 −α/2 1/2 0
α/2 0 0 0
0 3πα −3π −2

]
T0

ωnom

(5)

In (5), rw is the controllable state vector (comprising
the three states relatively to the distance variations, the
mean altitude and formation mean radius deviation), xd

is the disturbance state (expressing bias and drift of
the accelerometer), while wr and wd components play
the role of arbitrary, but bounded signals, to be kept
as unpredictable and zero-mean. The vector em is the
model error which encompasses measurement errors and
the effect of neglected dynamics. Finally, the loop is closed
by adding to the embedded model a static noise estimator
(described by (6)), as in standard state observers. Each
gain matrix Li is diagonal, because the state equation is
decoupled and the disturbance stochastic model further
favors decoupling in presence of hidden coupling due to
neglected non-linearities. In this way a complete state
predictor is build.

w = Lem, L =

[
Lx 0
0 Lz

]
(6)

As last step, the scalar gains on the diagonal of matrix L
were tuned by fixing three pairs of closed-loop eigenvalues
with a BW close to the orbital frequency, in order to
allow a fast disturbance prediction. The Fig. 3 provides
a simplified representation of the chain from sensors to
actuators including the state predictor, encompassing em-
bedded model and noise estimator, and its interface with
the formation control law (to be described in Section 4)
and the plant. In Fig. 3 is also clarified the structure of
the embedded model.

4. ORBIT AND FORMATION CONTROL

The preliminary version of the integrated formation and
orbit control (Canuto et al. (2014a)) was designed for
stabilizing only the low-frequency components of the orbit
and formation position variables: the mean altitude, the
formation mean radius deviation and the inter-satellite
distance. However, as above mentioned, some simulated



Fig. 4. Higher-level block diagram of the enhanced IFC
architecture.

scenarios showed that such preliminary control strategy
presented a drawback. In practice, the formation rate vari-
ables become uncontrollable by the low-frequency control
of the DT IFC in (5) when closing the loops in some orbital
conditions and affect the controllable variables stability.
Therefore, orbit and formation stabilization, through the
designed low-frequency (orbital) formation position feed-
back, has been proven to be guaranteed only for a certain
envelope of formation initial perturbations.

The proposed solution is based on an extended hierar-
chical and multi-rate structure of the control law, pro-
viding the enhanced IFC architecture. Differently from
the preliminary IFC, a further feedback loop has been
added, involving the formation rate variables and aiming
at ensuring their stability. This further feedback, a sort
of rate damping control, operates at the time unit of
the navigation data and damps suitably the formation
rates components which have been found to affect the
formation stability. In our implementation, in principle,
the final enhanced IFC control architecture is in line with
the typical servo positioning control architecture, leverag-
ing an inner and fast rate damping loop. This enhanced
IFC has been proved to ensures to a great extent the
stability of the formation triangle variables of the inline
formation within the required band, through a very low-
thrust authority. On the other hand, in a solution of this
kind the rate feedback must be carefully designed and
optimised. Indeed, since this damping control loop is fully
deployed from the very first moments of the mission science
mode, our enhanced architecture may demand for a thrust
authority larger than allowed. Figure 4 shows the higher-
level block diagram of the enhanced IFC architecture. It is
possible to notice the multi-loop structure of the formation
control law block. As a design result, the enhanced IFC is
a combination of two different control strategies actuating
at very different time units.
First of all, the high-frequency rate damping control loop
is directly fed by formation rates measurements, obtained
from the navigation data, without any state predictor.
Thus, the rate damping feedback command, helping in
stabilising the systems, can be expressed as:

uw = −B−1
2 Kwyw,

where Kw = ωnomdiag{ζx, ζz, ζd, ζw},
ζd << 1, ζx = ζz = ζw = 0.

(7)

In (7), yw are the formation rate variable measurements,
Kw is the feedback gain matrix, B−1

d is the pseudo-inverse
of the command matrix, ζi are the rate feedback gains,
to be tuned to a value that guarantees formation stability

and minimal thrust effort.
Secondly, the low-frequency state feedback operates at
the orbital frequency and stabilizes the long-term per-
turbed dynamics of the formation triangle. Such control
loop includes the low-frequency state predictor described
in (5), in Section 3. Therefore, the low-frequency position
feedback, at the orbital sampling step, reads:

ur = −B−1
w (Krrw + xd),

where Kr =

[
γx 0 0
0 γz 0
−12π 0 γd

]
.

(8)

In (8), xd is the disturbance state prediction of (5) to
be rejected, rw is the vector of the predicted combined
formation variables, Kr is the feedback gain matrix, B−1

r
is the pseudo inverse of the command matrix as in (5). The
reference part of the command is not explicitly reported
in (8) because the state variables are regulated to zero,
being defined as perturbations with respect to the nominal
value.

As further design step, a preliminary closed loop tuning of
the gains in (7) and (8), ensuring long-term stability as well
as keeping at a minimum value the thrust authority, was
pursued via pole-placement procedure. The selected gains
were refined via simulation, while an accurate stability
analysis of the closed-loop system will be performed as
a further step of the work, to refine and evaluate the
control unit performances. As a result, it appears that
only few formation rate variables must be fed back in the
rate damping control, to keep at a minimum the extra
thrust authority required with respect to the only-low-
frequency control strategy. A preliminary choice of the
variables to be damped has been made by considering the
most representative and typical inline long-run scenarios as
provided by the preliminary mission studies. Specifically,
only the ζd gain, damping the velocity of the distance, has
been set different from zero (ζd = 2.8e−7). Afterwards, the
low-frequency control eigenvalues were tuned directly on
the low-frequency state equations (5), which are derived
by assuming zero damping. Eigenvalues not larger than
0.1 (time constant equal to ten times the orbit period)
have been shown to be unaffected by inner rate damping
feedback.

5. PRELIMINARY SIMULATED RESULTS

In this section will be shown some relevant simulated
results obtained through a high-fidelity mission simula-
tor. The science-phase AOCS includes linear and angular
drag-free, attitude and pointing control and force/torque
dispatching to an eight-thruster assembly. From the envi-
ronment perspective, the first 32 harmonics of the Earth
gravity field spherical expansion have been simulated to-
gether with an Oersted geomagnetic field model (order 18)
and mean solar activity conditions. Finally, all the sensor
and actuator noises are active. The reference inter-satellite
distance has been fixed to 200 km.
Figure 5 shows the unilateral spectral density of the linear
acceleration residuals versus the performance requirement.
Such PSD has been computed on the whole residual pro-
file including transient, which explains the low-frequency
overshoot. Figure 6 shows the simulated total linear com-
mand, which includes linear drag-free command, orbit and



Fig. 5. Simulated PSD of the non-gravitational residuals.

Fig. 6. Simulated total linear command.

Fig. 7. Simulated time profile of the formation variable
perturbations (formation mean tracking errors).

formation command. The total longitudinal component
(x, in red) includes the longitudinal drag compensation
that becomes the largest component when formation tran-
sient vanishes. After a transient of about two weeks, the
command peak is below 3 mN, a value which is deemed
compatible with expected thruster technology level. The
transient behavior is linked to the linear residuals, and
the control gains; as shown from the simulated results.
We have confidence that an optimal combined tuning of
the control gains may reduce both the duration and the
peak of the transient phase. However, trying to reduce
this peak value as well as the transient time constant
was beyond the scope of this study and will represent a
natural prosecution of this work. Finally, Fig. 7 depicts the
formation triangle position variables time history (distance
δd, mean altitude rz and formation mean radius deviation
rx) with respect to their reference values. All the variables
stay considerably within the bound that corresponds to
the fractional requirement in Table 1.

6. CONCLUSION

In summary, we have presented an enhanced version of
the integrated formation control design (Canuto et al.
(2014a)) which has been conceived to meet the formation
and drag-free requirements of the Next Generation Gravity

Missions, under study by ESA. This design is based on the
innovative concepts of formation triangle and formation
local orbital frame (FLOF). This enhanced multi-rate and
multi-hierarchical control architecture has been studied to
overcome the possible weakness concerning the formation
stability in some orbital conditions, experienced in the
previous study. Extensive high-fidelity simulation runs
proved the control architecture validity and showed that
the enhanced control strategy is capable of keeping the
formation variables stable within the required band, all
over the 10-year mission, through a low-thrust authority
in the order of few milli-newtons.
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