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Abstract—In this paper, a novel simplified statistical approach

to evaluate the error performance bound of Ordered Statistics

Decoding (OSD) of Linear Block Codes (LBC) is investigated.

First, we propose a novel statistic which depicts the number

of errors contained in the ordered received noisy codeword.

Then, simplified expressions for the probability mass function

and cumulative distribution function are derived exploiting the

implicit statistical independence property of the samples of

the received noisy codeword before reordering. Second, we

incorporate the properties of this new statistic to derive the

simplified error performance bound of the OSD algorithm for

all order�I reprocessing. Finally, with the proposed approach,

we obtain computationally simpler error performance bounds of

the OSD than those proposed in literature for all length LBCs.

I. INTRODUCTION

Channel coding is an important technique which attempts
to minimize data loss as a result of errors introduced in
transmission due to imperfect channels, by adding redundancy
to the information before transmission. For a Linear Block
Code (LBC) C(n, k, dmin): codeword length n, information
word length k and minimum hamming distance dmin between
any two codewords, the brute-force approach to Maximum
Likelihood (ML) decoding is generally impossible for non-
trivial codes.

Low complexity decoding of LBCs has long been investi-
gated by many coding theorists: a detailed bibliography of the
contributions in this area can be found in [1]. Many universal
decoding algorithms have been proposed including the highly
efficient Viterbi decoding [2], [3]. Although all the LBCs
possess the trellis structure which is the backbone of Viterbi
decoding, the number of states (min{2k, 2n�k}) becomes too
large to practically implement for long length codes. Thus, for
long length codes, sub-optimal iterative decoding algorithms
became a very good option but in order to obtain a good perfor-
mance, the code must have some peculiar properties, e.g., Low
Density Parity Check Codes (LDPC) [5] (sparse parity check
matrix) or Turbo Codes [4] (efficient decomposition into easy-
to-decode component codes). Iterative decoding of powerful
classical codes such as Bose, Chaudhuri, and Hocquenghem
(BCH) code [6] and Reed-Solomon codes [7] is quite sub-
optimal with respect to ideal Maximum-Likelihood Decoding
(MLD), due to their structures. As a consequence, sub-optimal
(near optimal) soft decision decoding based on the ordered
statistic of the received noisy codeword has been proposed [8]–

[12] proving to be efficient with considerable complexity for
LBCs.

Since Fossorier and Lin, in their original contribution [11]
presented a novel Ordered Statistics Decoding (OSD) scheme
for soft decision decoding of LBCs based on ordered statistics
of the received noisy samples (although an algorithm belong-
ing to this set was first proposed by Dorsch [8] and also used
by [9] and [10]), OSD is widely being studied in the litera-
ture [11]–[15]. Over the years, various new methods [16]–[22]
based on reliability information and many modifications [14],
[15] on original OSD have been proposed in the literature to
minimize the performance-complexity trade-offs. In addition
to wide spread application of ordered Statistic in decoding
of LBCs, the contributions in [23]–[25], [28] show its use
also in decoding of LDPC and convolution codes. In all these
optimum and sub-optimum decoding algorithms, a reliability
measure of the received symbols has been used to reduce the
search space and find the most likely codewords.

The original concept of OSD [11] is basically implemented
in two stages, a) determining the Most Reliable Independent
(MRI) bits from the Most Reliable Basis (MRB) of the code
and b) Order�I reprocessing on MRI using most likely Test
Error Patterns (TEPs). Out of these two stages, order�I
reprocessing is designed to improve the hard decision decoded
codeword progressively until either practically optimum or a
desired error performance is achieved. The approach of ML
resource test based on the cost function calculated from the
soft valued samples of the permuted received sequence is
introduced as a stopping criterion after each stage j, 0  j  I
of order�I reprocessing which indeed proved excellent in
reducing the average number of computations. Furthermore,
an upper bound on the error performance for order�I repro-
cessing OSD has been derived based on the noise statistics
after reordering in [11], [26].

However, there are two major drawbacks of the performance
bound derived in [11]. The first drawback is its complexity
of evaluation (requiring (I + 1) dimensional integral for
any order�I reprocessing). The second is the tightness of
the bound, since this bound has been derived based on the
assumption that the events associated with the reordered vector
components are statistically independent, although, this does
not hold true in practical scenarios. These issues related to
computationally complex error performance bound has been
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revisited in [13], where a computationally simpler and com-
paratively tighter upper-bound on the error performance has
been derived based on the statistical approach proposed by
Agrawal & Vardy in [27]. It has been shown that, compared
to (I + 1) dimensional integral computation in [11], the
expression derived in [13] requires only a 2�dimensional
integral for any order�I reprocessing. Although, the reduction
of integral dimension from (I+1) to 2 seems quite impressive,
computing 2�dimensional integral (n�k�1) times as referred
to [13] is still computationally complex.

In this paper, we propose a novel statistic of the ordered
vector components which highlights and makes evidence to
OSD property. Furthermore, the proposed statics can be ap-
plied to derive a further simplified error performance bound.
More importantly, simplified expressions for the Probability
Density Function (pdf) and Cumulative Distribution Function
(cdf) of the proposed statistic are derived. Subsequently, we in-
corporate the properties of this statistic to derive the simplified
error performance bound for OSD with order�I reprocessing.
The computational complexity of the corresponding bound is
found to be even simpler (requiring single dimensional integral
evaluation) to that of the bounds derived in [11] and [13].
Furthermore, the error performance bound derived in this
paper is as tight as the one proposed in [13] and is also derived
without any assumption.

The rest of the paper is organized as follows: A basic
overview of OSD with order�I reprocessing and the problem
definition are presented in Section II. A novel statistic based on
the error properties of the ordered noisy vector is proposed and
its pdf & cdf are derived in Section III. Based on the statistical
properties of the new statistic presented in Section III, a
proposed upper bound on the error performance of order�I
OSD is derived in Section IV. Simulation results for some
well known LBCs are given in Section V and some concluding
remarks are provided in Section VI.

II. OVERVIEW OF OSD AND CONVENTIONAL
REPROCESSING

Given an LBC C(n, k), with a systematic generator matrix
G, at the transmitter side, a k�bit information vector, v =
(v1, v2, . . . , vk), vi 2 GF (2) is mapped into a codeword c =
v · G = (c1, c2, . . . , cn) where GF(2) stands for Galois field
of order-2.

Under Binary Phase Shift Keying (BPSK), the codeword is
mapped into a real-valued vector as

s = (s1, s2, . . . , sn) si 2 {�1,+1} ✓ R, (1)

where ci = 0 ! si = �1 and ci = 1 ! si = +1.
The vector s is transmitted over an Additive White gaussian

Noise (AWGN) channel. At the receiver side, we observe the
received vector,

r = (r1, r2, . . . , rn) ri 2 R, (2)

where ri = si+wi, wi is a white Gaussian noise sample with
mean zero and variance �2.

Given r, we want to perform a soft-decision decoding. As
already stated in section I, for small-medium block codes (with
k upto some hundreds of bits), an effective solution is provided
by Ordered Statistics Decoding (OSD) algorithms, like the
Most reliable Basis (MRB) algorithm [11]. This algorithm
starts by reordering the received vector in the descending
order of the absolute values. In this way, the first symbols are
characterized with a high reliability, i.e., a large probability of
being correct.

Given r, by reordering its components in decreasing mag-
nitude �i = |ri|, we obtain a vector,

r
⇤ = (r⇤1 , r

⇤
2 , . . . , r

⇤
n
) r⇤

i
2 R, (3)

such that |r⇤
i
| > |r⇤

i+1| for 1  i  n. Let us define ⇢1 as the
permutation rule applied on r to obtain r

⇤.
The generator matrix G is also permuted using the same

permutation rule ⇢1, to give a new permuted generating matrix

G
⇤ = ⇢1(G). (4)

The matrix G
⇤ in (4) is then processed using elementary

row operations to obtain a systematic form G
0. As well

known in the OSD literature [11], [13], it may happen that
the first k columns of G

⇤ may not be linearly independent,
i.e., the k most reliable components do not correspond to an
information set. In this case, it is necessary to slightly change
the permutation ⇢1 until an information set is obtained. This
introduces a second permutation defined as ⇢2 which needs to
be applied both on r

⇤ and G
⇤ to obtain r

0 and G
0 respectively.

Thus, the final permutation relations can be written as,

r0 = ⇢2(r
⇤) , ⇢2(⇢1(r)),G

0 = ⇢2(G
⇤) , ⇢2(⇢1(G)), (5)

with |r01| � |r02| � . . . � |r0
k
| and |r0

k+1| � |r0
k+2| � . . . �

|r0
n
|.

In the following, we consider ⇢2 as an identity permutation
function such that ⇢2(x) = x where x is a arbitrary vector.
Thus, we suppose r0 has exact reliability ordering. We perform
a symbol-by-symbol hard decision on r

0 to obtain the binary
vector,

y
0 = (y01, y

0
2, . . . , y

0
n
) y0

i
2 GF (2), (6)

where r0
i
< 0 ! y0

i
= 0 and r0

i
� 0 ! y0

i
= 1.

Next, we take its first k bits of y
0 to form the candidate

information vector,

v
0 = (v01, v

0
2, . . . , v

0
k
) v0

i
2 GF (2). (7)

Due to reordering, with high probability, v
0 contains a few er-

rors because its bits have high reliability. One of the objectives
of this paper is to provide computationally efficient expression
for the number of errors contained in v

0.
Exploiting this reliability property, OSD algorithm considers

a set of patterns,

S = {p = (p1, . . . , pi, . . . , pk) pi 2 GF (2)}, (8)

with Hamming weight of the TEP wH(p), 0  wH(p)  I ,
where I is called the order of the algorithm. Each pattern is
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added to the candidate information vector given by (7), which
is then encoded by the matrix G

0 to obtain a reprocessing
codeword c

⇤ in the following way,

8p 2 S : v
0 ! v

⇤ = v
0 + p ! c

⇤ = v
⇤ · G

0. (9)

When all patterns are considered, the codeword c
⇤ in (9)

at minimum Euclidean distance from the permuted received
vector r

0 can be chosen as the received codeword. Obviously,
if we set I = K and we test all the corresponding 2k patterns,
we can surely find the maximum-likelihood codeword, but
the algorithm becomes equivalent to an exhaustive decoding,
which is impossible for non-trivial codes [11]. Then, a key
issue for these algorithms is the choice of the order I and
the set S to optimize the complexity-performance trade-off. It
has been shown analytically that, for small/medium size codes
(e.g., n  150, code rate k/n > 0.5), an order I ⇡ dmin/4
is able to provide nearly-optimal decoding performance, i.e,
very close to that of ideal maximum-likelihood decoding [11].

An approximation of the closed form expression for the
upper-bound on the error performance of the order�I repro-
cessing has been first derived in [11] which requires the com-
putation of an (I+1)-dimensional integral for any reprocessing
order-I . Later, a relatively simple (requiring 2�dimensional
integral evaluation) and relatively accurate (without any as-
sumption) upper bound on the error performance of OSD
for each stage reprocessing is derived in [13] based on the
statistics introduced in [27]. In the following section, we
present a new statistic on error properties of the permuted
binary received vector y

0 which can be applied to evaluate a
simplified expression of the OSD error performance bound.

III. PROPOSED NEW STATISTIC OF ORDERED VECTOR
COMPONENTS

Given an LBC C(n, k), without loss of generality,
let us consider an all-zero transmitted codeword, c =
(0, . . . , 0, . . . , 0), which after BPSK mapping, corresponds to
the transmitted vector, s = (�1, . . . ,�1, . . . ,�1). At the
output of the AWGN channel, we observe the received vector
r = (r1, . . . , ri, . . . , rn), with:

ri = �1 + wi, (10)

where wi is a Gaussian random variable with zero mean and
variance �2. All wi noise components are considered to be
statistically independent.

Each component ri in (10) has a pdf given by,

fr(x) =
1p
2⇡�2

e�
(x+1)

2

2�2 . (11)

If we consider the magnitude of the components of r written
as �i = |ri|, the pdf of �i is given by,

f�i(x) =

8
<

:
0 if x < 0,

e
� (x+1)

2

2�2

p
2⇡�2

+ e
� (x�1)

2

2�2

p
2⇡�2

if x � 0,
(12)

while its cdf is given by,

F�i(x) =

(
0 if x < 0,

1�Q
�
x+1
�

�
�Q

�
x�1
�

�
if x � 0,

(13)

where Q(x) ,
R1
x

1/
p
2⇡exp(�y2/2)dy is the standard

normal tail function.

Now, let us focus on the reordered vector r
0. A first study to

estimate the behavior of the components of r
0 was done in [11],

where the pdf of the reordered noise samples conditioned upon
the transmitted symbol has been presented.

Given the vector r observed by transmitting the all-zero
codeword over an AWGN channel with BPSK modulation and
the ordered vector r

0 obtained by ordering r in decreasing
magnitude, we can obtain the pdf of the components of r

0,
and the pdf of the magnitude of the components of r

0 by using
arguments from ordered statistics [26] as follows. The pdf of
the i-th component r0

i
of r

0 is given by,

8x : fr0i(x) =
n!

(i� 1)!(n� i)!
(1� F�(|x|))i�1

· (F�(|x|))n�ifr(x). (14)

In the similar manner, using the pdf of �i, the pdf of the
magnitude of i-th component �0

i
= |r0

i
| of r

0 is given by,

8x : f�0
i
(x) =

n!

(i� 1)!(n� i)!
(1� F�(x))

i�1

· (F�(x))
n�if�(x). (15)

In the following, we define a new random variable EL

which represents the number of errors contained in the first
L positions of the permuted received vector r

0. Furthermore,
we present a computationally efficient expression for the pdf
of EL. Normally, under identity permutation rule ⇢2, order�I
OSD does not include the chances of having more than I errors
in MRPs of the permuted received vector which constitutes
the maximum probability of missing the true codeword by an
order�I OSD under ML performance. In this relation, the
complementary cdf of EL at EL = I actually provides a
simplified expression to evaluate the maximum probability of
missing a true codeword by an order�I OSD, thus justifying
the importance of EL in evaluating the performance bound of
the order�I OSD. Further details are discussed in Section IV.
The following theorem provides an exact expression for the
pmf of the random variable EL.

Theorem 1. Given a random variable EL which represents
the number of errors we expect on the first L, 1  L  n,
positions of the permuted received vector r

0, its pmf is given
by,

pEL(EL = j) =

Z +1

0

✓
l

j

◆
p(x)j(1� p(x))l�jf�0

l+1
(x)dx,

(16)
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Fig. 1. Probability density function of ri: Eb/N0 = 3.5 dB.

where,

p(x) =
Q
�
x+1
�

�

1 +Q
�
x+1
�

�
�Q

��x+1
�

� , (17)

with f�0
l+1

(x) given by (15) and its cdf is given by,

FEL(EL = j) =
jX

i=0

pEL(EL = i). (18)

Proof. Fix a value x, and suppose the magnitude of the (l+1)-
th component of the reordered vector r

0 is �0
l+1 = x. Then,

the vector r contains exactly l components with |ri| � x. As
can be observed in Fig. 1 (the shaded region corresponds to
|ri| � x), for each of these components, the probability of
having an error is,

p(x) = P (ri > 0||ri|�x)

=
Q
�
x+1
�

�

1 +Q
�
x+1
�

�
�Q

��x+1
�

� . (19)

Since we are working with the components of r we can use
their implicit statistically independent property, which instead
does not hold if we try to work with the components of r

0.
As a result, the probability of having j errors among these k
components is given by,

P (EL = j|{�0
l+1 = x, L = l}) =

✓
l

j

◆
p(x)j(1� p(x))l�j .

(20)
The above result is obtained under the condition �0

l+1 = x.
By integrating over all x values by using f�0

l+1
(x), we obtain

the final pmf of EL as in (16) while its cdf at some value EL =
j is obtained as in (18) simply by summing the normalized
pmf of EL for all EL : 0  EL  j.

IV. OSD ERROR PERFORMANCE BASED ON DISTRIBUTION
OF E

In this section, a different look at the error performance
of order�I OSD is presented based on the distribution of
E detailed in Section III. Let PeOSD�I denote the code
error performance of the order�I OSD and Pe(I) denote
the probability that the correct codeword is not among the

candidate codewords supported by the order�I OSD. The
upper bound on the order�I OSD performance can be written
as an inequality as

PeOSD�I  PeML + Pe(I)

 PeML + P

✓
More than I errors occur

in 1stk positions of r
0

◆
,(21)

where PeML is the MLD code error rate.
In (21), the probability of having more than I errors in

the first k ordered received symbols in r
0 given a identity

permutation function ⇢2 can be simply evaluated from the cdf
of EL as,

Pe(I)|⇢2(x)=x = 1� FEL(I), (22)

where L in this case is equal to k.
In a real scenario, the permutation function ⇢2 may or may

not be identity. In fact, the second permutation ⇢2 directly
relates with the number of column permutation required to
obtain first k columns of G⇤ to be linearly independent. Let
us consider d is the number of dependent columns before kth

independent one and P (d) be the probability associated with
d. It has been shown in [11] that the maximum number of
dependent columns that can be found before kth independent
one for a given generator matrix is given by,

dmax = n� k � dmin
H

� 1, (23)

where dmin
H

is the minimum Hamming distance of the consid-
ered code.

Thus, Pe(I) can be expressed under all cases of ⇢2 as,

Pe(I) =
dmaxX

d=0

P

✓
More than I errors occur

in 1stk + d positions of r
0

◆
· P (d)

=
dmaxX

d=0

P (d)
�
1� FEk+d(I)

�
. (24)

where FEk+d is the cdf of EL at L = k + d. The probability
P (d) can be evaluated either from simulation or from the
approximated distribution proposed in [11].

As stated earlier, the random variable E denotes the num-
ber of errors, thus, can only take integer values. Also the
reprocessing order�I is always fairly small (I = d

min

H
4  5)

for linear block codes with practical dmin
H

. Thus, (24) can be
written in terms of pdf of EL as,

Pe(I) =
dmaxX

d=0

P (d)

"
1�

IX

i=0

fEk+d(Ek+d = i)

#
. (25)

where fEk+d(Ek+d = i) can be evaluated by a single integral
given by (16).

The above discussion shows that, for all permissible values
of order-I , the theoretical upper bound can be evaluated. It
is quite clear that the computational complexity of this new
upper bound requires a single dimensional integral for any
order-I compared to (I + 1) and 2 dimensional integral for
the one presented in [11] and [13] respectively. Furthermore,
this bound is as tight as the one proposed in [13] (see Fig. 3
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Fig. 2. Probability density function of E: Eb/N0 = 3.5 dB, L = k.

to 5) and is also derived without any assumption.

V. NUMERICAL RESULTS

For the purpose of comparison and performance evaluation,
we adapt the same scenario of BPSK transmissions over an
AWGN channel as described in Section II and Section III. In
order to accommodate the code rates of different LBCs, we
adopt the ratio of the energy per bit to noise power spectral
density ratio Eb/N0 with Eb/N0 = Es

N0

· k

n
, where Es is the

signal energy and N0 is the noise power spectral density.

A. Pmf of EL

Figs. 2 plots the pmf of random variable EL for different
combinations of n and k. For each (n, k) combinations,
the simulation results are plotted and compared with the
theoretical result obtained from (16). We observe a perfect
matching for all permissible values of EL which justifies the
validity of the expression presented in (16).

B. Error Performance
It is worthwhile to mention clearly that the evaluation

of (21) involves the prior evaluation of the MLD code error
rate for the code under consideration. Thus, for our simulation
purpose, we use the simplest upper bound, i.e., the union
bound [29],

PeML(c) 
nX

d=d
min
H

AdQ

 p
d

�

!
. (26)

In (26), d : d � dmin

H
represents the Hamming weight of

the codeword and Ad is the multiplicity (number of codeword
with hamming weight equal to d) of the code. Q(·) is the
pair-wise error probability with,

Q(x) =

Z +1

x

1p
2⇡

e�
z2

2 dz.

For simplicity, we consider at most the first four components
of the summation which provide a good approximation for
medium dimension codes at considerable Eb/N0. For higher
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Fig. 3. Code Error Rate of OSD with order�I reprocessing for (64,42,8)
Reed Muller code
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Fig. 4. Code Error Rate of OSD with order�I reprocessing for (128,99,10)
extended BCH code

dimensional codes, the total union bound or other tight up-
per bound alternatives represent more accurate performance
measure [29].

Figs. 3 to 5 depict the error performances of the (64, 42, 8)
Reed Muller code, the (128, 99, 10) extended BCH (eBCH)
code and the (128, 64, 22) eBCH code, respectively. Each plot
includes the simulation results and the corresponding upper
bounds computed from (21). We observe that for all values of
reprocessing order-I , the theoretical upper bounds are tight.
The bounds are as tight as those derived in [11] and [13].
However, while the error performance bound of order�I
reprocessing OSD based on [11] requires the computation of
(I + 1)�dimensional integral and [13] requires the compu-
tation of a two-dimensional integral, the new upper bounds
require the computation of a single dimensional integral for
any reprocessing order-I .

VI. CONCLUSION

In this paper, a simplified but effective error performance
bound of OSD with order�I reprocessing has been derived
without altering the tightness of the bound. In order to
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achieve this, a new statistical random variable representing an
important error performance property of the ordered received
noisy codeword has been proposed. The pmf and cdf of the
proposed random variable has also been derived. The example
of the derived error performance bound has been applied for
different codes.

As an extension to this work, the application of this new
statistical approach can be applied to derive further simplified
error performance bounds of other ordered statistics based
algorithms for LBCs like Chase-type, Generalized GMD and
Chase-type decoding.
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