Heterostructured ceramic materials based on PZTN-CFO compounds

Original

Availability:
This version is available at: 11583/2651379 since: 2016-09-29T17:24:22Z

Publisher:

Published
DOI:

Terms of use:
openAccess
This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright

(Article begins on next page)
Heterostructured ceramic materials based on PZTN-CFO compounds

Pietro GALIZIA, Claudio CAPIANI, Carmen GALASSI
CNR-ISTEC, Istituto di Scienza e Tecnologia dei Materiali Ceramici, Via Gramsci 64, I-48018 Faenza, ITALY

pietro.galizia@istec.cnr.it

Abstract

Multiferroic composites are currently one of the hot research topics [1]. A great research effort is in progress to improve the fabrication of PZT-CoFe$_2$O$_4$ (PZT-CFO) composites due to the excellent piezoelectric properties showed by the PZT material class and the large magnetostrictive coefficient of the CFO. Unfortunately unwanted reactions occur during densification of PZT-CFO materials at 1100-1200 °C. They are promoted by initial PbO loss that is calculated through XRD analysis, considering the amount of ZrO$_2$ and variation of perovskite’s tetragonality. The resulting titania reacts with CFO to form cobalt titanate [2].

The microstructure of the composites at 26-81 mol% CFO content was thoroughly investigated; the CFO grain size distribution can be mono- or bi-modal and overgrowth [3] occurs. By setting a quite-fast sintering full densification and prevention of unwanted reactions was achieved for the PZT:CFO 74:26 composites.

Experimental

CONVENTIONAL SINTERING
- Heating rate < 300 °C/h
- Sintering temperature = 70% T_m
- Soaking time > 0.5 h
- Natural cooling

QUITE-FAST SINTERING [2]
- Heating rate > 300 °C/h
- Sintering temperature < 70% T_m
- Soaking time < 0.5 h
- Cooling rate > 30 °C/min

Results

![Reaction Products](image1)

- Relative density = 82%
- PbO loss: 11%
- Bi-modal CoFe$_2$O$_4$ grain size distribution
- CoFe$_2$O$_4$ overgrowth by multiple parallel twinning [3]
- Coercivity: 239 Oe
- Reduced remnant magnetisation $M_r/M_s = 0.17$

![Euhedral CoFe$_2$O$_4$ Grains](image2)

- Relative density = 99%
- PbO loss < 0.2%
- Mono-modal CoFe$_2$O$_4$ grain size dist.
- Euhedral CoFe$_2$O$_4$ grains = 250 nm
- Coercivity: 789 Oe
- Reduced remnant magnetisation $M_r/M_s = 0.38$

Discussion

Reactions due to the PbO loss at the PZT/CFO interfaces [2]

1^o) $\text{Pb}(\text{Zr}_{0.52}\text{Ti}_{0.48})_3\text{O}_9 \rightarrow f\text{PbO} + (1 - f)\text{Pb}(\text{Zr}_{0.52}\cdot\text{Ti}_{0.48})_3\text{O}_9 + 0.52(1 - y + fy)\text{ZrO}_2 + 0.48(1 - z + fz)\text{TiO}_2$

2^o) Displacement reaction [2, 4]:

$\text{TiO}_2 + \text{CoFe}_2\text{O}_4 \rightarrow \text{CoTiO}_3 + \text{Fe}_2\text{O}_3$

It has been demonstrated that twin boundaries on CFO (111) planes act as the effective pinning centers for the hindrance of domain wall movement [2, 3].

![Globus model extension](image3)

In the Globus model the linear correlation between the initial susceptibility (χ_i) and the mean grain diameter (D_m) is expressed as:

$$\chi_i = 2\pi M_s^2 D_m / K$$

where M_s is the saturation magnetization, and K is the global anisotropy. But, where the domain walls are pinned at twinning boundaries, D_m should be interpreted as the distance between the twinning boundaries, i.e. the span of the domain wall [3].

Acknowledgements

RITMARE flagship project is gratefully acknowledged

References

It has been demonstrated that twin boundaries on CFO (111) planes act as the effective pinning centers for the hindrance of domain wall movement [2, 3].