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SPARSEHASH:
EMBEDDING JACCARD COEFFICIENT BETWEEN SUPPORTS OF SIGNALS

D. Valsesia, S. M. Fosson, C. Ravazzi, T. Bianchi, E. Magli

Politecnico di Torino - DET, Italy
{name.surname}@polito.it

ABSTRACT

Embeddings provide compact representations of signals to be
used to perform inference in a wide variety of tasks. Random
projections have been extensively used to preserve Euclidean
distances or inner products of high dimensional signals into
low dimensional representations. Different techniques based
on hashing have been used in the past to embed set similarity
metrics such as the Jaccard coefficient. In this paper we show
that a class of random projections based on sparse matrices
can be used to preserve the Jaccard coefficient between the
supports of sparse signals. Our proposed construction can be
therefore used in a variety of tasks in machine learning and
multimedia signal processing where the overlap between sig-
nal supports is a relevant similarity metric. We also present
an application in retrieval of similar text documents where
SparseHash improves over MinHash.

Index Terms— Embedding, Jaccard coefficient, random
projections, sparse matrices, MinHash

1. INTRODUCTION

Recent trends in signal processing are increasingly pushing
researchers to investigate compact signal representations that
build on signal sparsity. Such compact representations can
be naturally used for signal acquisition and recovery, as it
has been extensively studied in the compressed sensing lit-
erature [1–3]. However, similar representations are also very
useful when one is not interested in signal recovery, but only
in performing some signal classification tasks that are based
on signal properties preserved by the compact representation.

In this second case, these representations are usually re-
ferred to as embeddings. Formally, an embedding is a trans-
formation that maps a set of signals in a high dimensional
space to a lower dimensional space, in such a way that the
geometry of the set is approximately preserved. An important
class of signal embeddings are those preserving the distances
among pair of signals. The most famous embedding is proba-
bly the one proposed by Johnson and Lindenstrauss [4], which
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preserves Euclidean distances using random projections. Sev-
eral extensions have been later proposed, allowing one to em-
bed the angle between signals [5, 6], or controlling the maxi-
mum distance that is embedded [7].

The concept of embedding has been successfully used
also in the more general context of information retrieval [8],
where it is usually called “hashing”. For example, it is a fun-
damental ingredient of efficient indexing techniques known as
locality sensitive hashing [9]. In several information retrieval
problems “bag-of-features” representations [10, 11] are used
to describe complex objects (e.g. images or text documents)
by counting if and how many times a particular feature from
a dictionary is present in the objects. In such problems, like
the search of near-duplicate documents, or similar images, the
usual metric is not the Euclidean distance but a similarity in-
dex between sets, where the elements in the sets are the vo-
cabulary elements present in the objects under examination.
One of the most used techniques for measuring set similar-
ity is min-wise hashing (also known as MinHash) [12–14],
which approximately preserves the Jaccard similarity coeffi-
cient between pairs of sets and is used in a wide range of
applications [15].

In this paper, we introduce an alternative embedding for
the Jaccard coefficient which is based on the concepts of ran-
dom projections and signal sparsity. The proposed embed-
ding builds on recent results showing that measurements ac-
quired using a sparse random matrix can be used to estimate
the number of nonzero components, i.e., the size of the sup-
port, of the acquired signal [16, 17]. Based on this result,
we show that, given a pair of signals, their measurements can
be efficiently used for estimating the size of both the union
and the intersection of the signal supports. Hence, random
projections obtained from a sparse random matrix provide an
embedding of the Jaccard coefficient of the signal supports.
Moreover, since these projections can be quantized using a
single bit, they represent an efficient alternative to widely
used MinHash.

This paper is organized as follows. In Sec.2 we provide
some background on random projections and hashing tech-
niques for set similarity, namely MinHash. Sec.3 discusses
the proposed method to use random projections as an embed-
ding of the Jaccard coefficient between signal supports, also



providing some theoretical results. Sec.4 validates the pro-
posed technique with synthetic and real datasets. Finally, we
draw some conclusions and explore future lines of work in
Sec.5.

2. BACKGROUND

In this section we provide some background material on
known embeddings of common distance measures such as
Euclidean distance, angular distance and Jaccard distance for
set similarity.

2.1. Similarity search and embeddings

Let X = {xi}Ni=1, xi ∈ Rn be a collection of data points
and dX be a metric defined on X . Given a query item ξ, the
problem of proximity search is to find the items Q that are
within the distance τ from ξ: Q = {x ∈ X : dX (x, ξ) ≤ τ}.
It should be noticed that the computation generally requires
O(Nn) operations, which can be prohibitive for large N and
n. An embedding is a function f : X 7→ Y ⊆ Rm, which
maps vectors in the high dimensional space into a lower di-
mensional one (m << n) equipped with the distance metric
dY , preserving the geometry of the set with a low distortion.
Then, distances can be computed in the low dimensional em-
beddings, rather than the original space, implying a cost re-
duction in the computation from O(Nn) to O(Nm) opera-
tions. In the following paragraphs we review two popular ap-
proaches of transforming the data to a low dimensional repre-
sentation: random projections and MinHash.

2.2. Random projections

Random projections have been used as embeddings in order to
reduce the dimensionality of points. Johnson-Lindenstrauss
lemma [4] states that random linear mappings f(x) = Ax
withA ∈ Rm×n, if properly designed, preserve the Euclidean
distances of points within a small tolerance with high proba-
bility. More precisely, given ε ∈ (0, 1), β > 0, andN,m ∈ N
such that

m ≥ 24 + 12β

3ε2 − 2ε3
logN,

then there exists a distribution over Rm×n from which the
matrix A is drawn such that for all u, v ∈ X

(1− ε)‖u− v‖22 ≤ ‖Au−Av‖22 ≤ (1 + ε)‖u− v‖22

with probability exceeding 1−N−β (the interested reader can
refer to [18] for the proof).

The most common choice for the distribution of the en-
tries of the matrix A is i.i.d. Gaussian N (0, 1/m). In [8]
other distributions are proposed in order to speed up the com-

putation using sparse random projections of the form

Aij =


√

s
m w.p. 1

2s

0 w.p. 1− 1
s

−
√

s
m w.p. 1

2s

where only 1/s of the data need to be processed. In [19]
it is shown that, under suitable conditions, one can use s =
n/ log(n) to significantly speed up the computation.

Finally, another popular embedding is constituted by Sign
Random Projections [5] for angle-based distance formed by
any two vectors u, v ∈ X

θ(u, v) =
1

π
arccos

(
u>v

‖u‖2‖v‖2

)
.

The hash function is formulated as f(x) = sign(Au), where
A ∈ Rm×n with i.i.d. Gaussian entries. It can be shown
that P(f(u) 6= f(v)) = θ(u, v). Then the vectors can be
compared in the reduced space using Hamming distances for
which efficient algorithms are available in the literature [20].
Compared to regular random projections, for each data point,
Sign Random Projections need to store just one bit per pro-
jection.

In this paper, we show that sparse random matrices, if
properly designed, can embed the Jaccard coefficient between
the supports of sparse signals.

2.3. MinHash

The Jaccard coefficient is a similarity measure between two
sets S1, S2 ⊆ Ω = {1, . . . , n} and is defined as

J(S1, S2) =
|S1 ∩ S2|
|S1 ∪ S2|

.

The related distance is 1− J(S1, S2).
The most popular technique to estimate the Jaccard coeffi-

cient is represented by MinHash, which works as follows. Let
S ⊆ Ω = {1, . . . , n}, π be a uniformly chosen permutation
on Ω, then the hash function h : Ω→ Ω is

h(S) = min
a∈S

π(a).

It can be easily shown that

P[(h(S1) = h(S2)] = J(S1, S2).

Then, given m hash values of two sets (all permutations are
generated independently), the Jaccard coefficient is estimated
as

1

m

m∑
i=1

1({hi(S1) = hi(S2)})

where 1 be the indicator function. In [15] the authors propose
to use only the least significant b-bits of the MinHash value,



instead of using 64 bits or 40 bits as in [21] and [12], respec-
tively. The most common solution adopted in practice is to
keep a single bit, thus estimating the Jaccard coefficient from
the Hamming distance between hash vectors as

1− 2

m

m∑
i=1

1 ({[hi(S1) mod 2] 6= [hi(S2) mod 2]})

3. PROPOSED METHOD

We propose sparse random projections as a tool to estimate
the Jaccard coefficient between supports of signals in high
dimensional space. We define the support of a signal u ∈ Rn
as the set of nonzero elements of u:

supp(u) = {i ∈ {1, . . . , n} : ui 6= 0}.

Given u, v ∈ Rn we are interested in estimating the Jaccard
coefficient J(Su, Sv) of the two sets Su = supp(u) and Sv =
supp(v). To simplify the notation from now on we denote
J(Su, Sv) with J(u, v).

The hash function we consider is f(x) = 1({Ax = 0})
whereA ∈ Rm×n withm < n is a γ-sparsified matrix, whose
entries are i.i.d. according to

Aij ∼

{
N (0, 1γ ) w.p. γ,
δ0 w.p. 1− γ

(1)

where δ0 denotes a Dirac delta centered at zero. Also in this
case, as in Sign Random Projections, each data point needs to
store just one bit per projection.

Let now y, z ∈ Rm and define

I1(y, z) =
1

m

m∑
i=1

1({yi = 0, zi = 0}),

I2(y, z) =

∑m
i=1 1({yi = 0})

∑m
j=1 1({zj = 0})

m
∑m
i=1 1({yi = 0, zi = 0})

,

then the signals can be compared in the reduced space using
the following similarity index:

I(y, z) =
log(I2(y, z))

log(I1(y, z))
. (2)

In the following proposition, we state that the proposed
similarity index concentrates around the Jaccard coefficient
between the supports of the original signals. Due to space
contraints, we delay the proof to a future article.

Proposition 1. Let u, v be a pair of arbitrary vectors. Fix
ε > 0, then there exists q = q(ε) ∈ (0, 1) such that

P[|I(Au,Av)− J(u, v)| > ε] ≤ qm. (3)
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Fig. 1. Jaccard coefficient estimation with m = 50.

In this work, the choice of distribution N (0, 1γ ) for the
nonzero entries of A is arbitrary and can be replaced with
any continuous distribution with zero mean and variance 1/γ.
However, different choices of distribution can change the er-
ror tail bound.

4. EXPERIMENTAL RESULTS

In this section we perform some experiments with the pro-
posed embedding technique. First, we experimentally show
that the embedding metric we introduced in Eq. (2) indeed
concentrates around the Jaccard coefficient as stated in Eq.
(3). Then, we address a classification problem using a real
dataset of text data.

4.1. Embedding validation

We perform some experiments to validate the theoretical re-
sult that the similarity metric I(Au,Av) between the random
projections of two signals of interest concentrates around the
Jaccard coefficient between their original supports. In order to
show this result, we generate a large number of signals at ran-
dom with varying amount of support overlap and computed
their random projections. The signals used in this experi-
ment have n = 1000 and the cardinality of the support is
k = 230. The dimension of the reduced space has been fixed
to m = 50. The mean and variance of the similarity index I
are evaluated over 500 iterations. The γ parameter controlling
the sparsity of the sensing matrix is set as the value that max-
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Fig. 2. Precision and recall, threshold 0.5.
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Fig. 3. Precision and recall, threshold 0.6.

imizes the entropy of the binary measurements, i.e. generates
zero or nonzero measurements with equal probability. Since

P(fi(u) = 0) = (1− γ)k,

then we set

γ = 1− 2−
1
k ≈ 3 · 10−3.

Fig. 1 shows that the mean value of I(Au,Av) (solid blue
curve) computed between every pair of random projections is
close to J(u, v) (dashed yellow line). The shaded area rep-
resents an interval of width equal to one standard deviation
above and below the mean value.

Since the proposed SparseHash method only requires to
store 1 bit per measurement, we compared it to the binary
version of MinHash applied to the same signals. It can be no-
ticed that SparseHash and MinHash show a similar behaviour
with a slight reduction in variance for SparseHash.

4.2. Classification with real dataset

The goal of this section is to test the performance of Sparse-
Hash on a classification experiment with a real dataset. Find-
ing near-duplicate or similar documents in an archive of text

data has been an important problem for a long time and sev-
eral works [12,21,22] from the early days of the Web to more
recent times have addressed the issue. Documents can be
represented with bag of words or bag of shingles (groups of
consecutive words) models, where what we called “signal”
is the count of how many times a particular word or shingle
appears. Such models are typically very sparse signals be-
cause the number of different words/shingles appearing in a
particular document is typically small compared to the size
of the vocabulary. Since our goal is to ascertain the quality
of the embedding provided by SparseHash, we perform an
experiment similar to the one reported in [15], where the au-
thors compared how various quantization rates affected the
performance of MinHash. We use the standard and publicly
available UCI dataset of New York Times articles [23]. This
dataset is composed of about 300000 news articles, with a bag
of words representation given for each article. In terms of the
signal parameters that we used in this paper, n = 102660.
The mean sparsity (i.e. the number of different words used in
each article) is k = 232. As in Sec.4.1, γ is set as the value
that maximizes the entropy. Since the sparsity degree varies,
we approximate it with the mean value k, so that γ = 1−2−

1
k .

We compare the performance of SparseHash and 1-bit
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Fig. 4. Precision vs recall, with ground truth threshold 0.5 (left) and 0.6 (right)

MinHash, in terms of precision and recall. Specifically we de-
fine as similar the documents with Jaccard coefficient larger
than a certain threshold, and we try to retrieve them. If Q
is the set of similar documents and Q̂ its estimate, the preci-
sion is defined as |Q∩Q̂|

|Q̂|
, while the recall is |Q∩Q̂||Q| . In figures

2 and 3, we set the thresholds 0.5 and 0.6, respectively, and
we show precision and recall as function of the sample size.
Concerning the precision, we notice that SparseHash outper-
forms 1-bit MinHash, in particular for sample sizes smaller
than 100. For larger small sizes, both methods are efficient,
with precision very close to 1. On the other hand, the recall is
very close to one for both methods, for all the tested sample
sizes.

In Figure 4, we depict the behavior of the precision as a
function of the recall. In this experiment, the goal is to recover
all the documents with Jaccard coefficient larger than 0.5 (left
graph) and 0.6 (right graph). We consider sample sizes in
{48, 96}. In all these settings, SparseHash outperforms 1-bit
MinHash, i.e., at same recall the precision of SparseHash is
higher. The gain is more evident for smaller sample size.

The best performance of SparseHash with respect to 1-bit
MinHash is consistent with the results in Figure 1, in which
we noticed a smaller variance for SparseHash in a numerical
setting close to that of the dataset here considered.

5. CONCLUSIONS AND FUTURE WORK

This paper introduced SparseHash, an embedding technique
that reduces the dimensionality of signals while preserving
the Jaccard coefficient between their supports. Contrary to
other techniques present in literature for embedding set simi-
larity, such as MinHash, we derived the method starting from
the literature on random projections and compressed sensing.
We showed that the method is an interesting alternative to bi-
nary MinHash, improving over it by providing lower variance
for the same number of bits required by the hash. Moreover,
we also tested SparseHash on a classification experiment with
a real dataset of news articles. This test confirmed the su-

perior performance of the proposed method with respect to
MinHash. Future work will focus on providing more detailed
theoretical results, as well as a fast technique to compute the
measurements that does not require the matrix-vector product.
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