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Abstract—This paper proposes a meet-in-the-middle approach
for the modeling and simulation of heterogeneous systems. The
starting point is a set of heterogeneous models, developed by
adopting the designer’s favorite design language and formalism.
The methodology exploits automatic translation, abstraction and
integration flows to generate a single homogeneous system-level
description, that allows fast system simulation. The approach
is supported by two novel design domain/abstraction level tax-
onomies, that generalize a state-of the art taxonomy [1] to identify
what characteristics would allow efficient system-level simulation,
together with the transformations that must be applied to the
starting model to achieve them. The advantage of the approach
on system design and prototyping is particularly evident onany
kind of highly heterogeneous systems, such as smart systems.
The overall automatic flow has been implemented and applied
to an open-source case study to measure the performance of
each identified abstraction level, and the impact of the proposed
methodology.

I. I NTRODUCTION

Microelectronics and systems design have been pushed
by the Moore’s Law for the last decades, impacting not
only general purpose computing, but also embedded devices.
This intensive improvement of computational capabilitiesled
designers to move functionality from HW to SW, in order
to decrease costs and design time. Thus, a major trend for
embedded platforms was to create general-purpose miniatur-
ized architectures, running the SW implementation of a given
functionality. At the same time, systems and circuits research
in Electronic Design Automation (EDA) was mainly focused
on Very Large Scale Integration (VLSI) and single Integrated
Circuit (IC), to stay on Moore’s Law track, thus repeatedly
doubling the density of transistors into a single IC, and the
number of chips in a single board [2].

The recent years saw a shift in research, that moved its focus
from devices to systems. Thus, we entered in the so-called
“More than Moore” era, where communication, sensing and
actuation have been integrated alongside computation within
the same system. Emerging technologies embed more and
more intelligence into everyday life, thus pushing toward a
“chimera” defined asSmart Planet. The idea was first proposed
by IBM in 2008 [3], and it consists in leveraging the use of
new technologies for a smarter management of the physical
environment, ranging from energy management to traffic.

Figure 1 depicts the ideal structure of the smart planet. To
realize such a system, it must be possible to:
• perform distributed sensing of the environment, to gather

data about the involved physical processes;

Figure 1: Main idea behind the concept of “Smart Planet”.

• analyzing sensed data to correctly understand and predict
the evolution of physical processes;

• take decisions on how the system should react to the
current state of the physical environment;

• control the environment through actuation mechanisms;

• perform communication between different parts of the
system, given the distributed nature of the problem.

As such, the design of a smarter planet can be seen as the
solution of an enormous distributed control problem, where
the “plant” to control is the physical environment we are
living in. Thus, the environment itself must be instrumented
with miniaturized components capable of performingsensing,
actuation, computation and communication, while meeting
strong extra-functional requirements (e.g., thermal properties,
power consumption, and reliability). Such components are the
Smart Devicesor Smart Systems. Thus, we might say that
Smart Systems are the building blocks of the Smart Planet.

The tight interaction with the physical environment makes
Smart Systems extremely heterogeneous objects [4], relying
on countless different technologies and consequently requiring
heterogeneous expertise and tools for their design. Previous
work [1] showed how system simulation may benefit from
reducing heterogeneity to homogeneous models, while raising
abstraction in order to work at System-level. This paper goes
further, by proposing a concrete automatic design flow for
smart systems, that unifies heterogeneous descriptions into
homogeneous models, that can be the starting point for well-
established System-Level Design (SLD) flows. The proposed
flow allows the designer to model each component with the
most suitable language or tool, while producing highly effi-
cient executable virtual platforms for smart system simulation.978-1-5090-4270-8/16/$31.00c©2016 IEEE



Table I: State-of-the-art taxonomy of the main tools used for smart system design [1].

Abstraction
Levels

MEMS
Sensors &
Actuators

Power
Sources

Discrete and
power devices

Analog
and RF

Digital
Hardware

Embedded
Software

Transactional SystemVue SystemVue SystemVue SystemVue
SystemVue SystemVue

SimulationSystemC-TLM QEMU
Functional C++ C++ C++ C++ C++ QEMU

Structural
ADS, Matlab,
AMS HDLs,

MEMS+

Matlab, Simulink
AMS HDLs ADS

AMS HDLs,
Matlab, ADS,

SPICE
RTL HDLs

Cycle
Accurate
QEMU

Co-
Simulation

Device
AMS HDL,

Matlab,
MEMS+

FEM models,
SPICE

EMPro,
Momentum

Spectre

AMS HDLs,
Matlab, ADS,

SPICE

AMS HDLs,
Matlab, ADS,

SPICE
-

Physical
FEM models,

Matlab,
MEMS+

FEM models,
SPICE

EMPro,
Momentum

Spectre

AMS HDLs
Matlab, ADS,

SPICE

AMS HDLs,
SPICE -

II. STATE OF THE ART ON MODELING AND SIMULATION OF

HETEROGENEOUS SYSTEMS AND CONTRIBUTION

The approaches proposed in the literature to handle het-
erogeneity in modern devices can be divided into two main
categories:top-downandbottom-updesign flows [5].

Top-down flows are mostly based on the concept of Model-
based Design (MBD). MBD relies on high-level models spec-
ified by the designer, that are then step-by-step refined to
achieve a final implementation through a set of correct-by-
construction transformations [6]. MBD frameworks, including
Simulink [7] and Ptolemy [8], are extensively used in the
practice by system engineers since they enable to model
systems employing different Models of Computation (MoCs),
and to put them in communication to integrate complex
models. However, they do not easily permit component reuse:
integrating already designed components requires a manual
re-modeling, that may lead to errors and inconsistencies [5].

Reuse of components is well supported by bottom-up flows.
In particular,Component-basedapproaches reduce complexity
by assembling strongly encapsulated design entities (i.e., com-
ponents) equipped with concise and rigorous interface speci-
fications. As such, the first challenge is to provide interface
specifications that are rich enough to cover all phases of the
design cycle. The IP-XACT standard [9] has been defined
to allow specification of interfaces for digital IPs. However,
an IP-XACT-based automatic tool-chain did not emerge at
the state of the practice. Consequently, component-based ap-
proaches must still rely on complex co-simulation environ-
ments to simulate an entire heterogeneous system [10]. Such
environments are usually based on a multitude of simulation
tools, each of them specialized on a specific design domain.
Thus, they are computationally burdened by synchronization
and interprocess communication overheads. Furthermore, due
to the lack of specification languages support, the integration
of the components is still performed by hand in a time-
consuming and error-prone process.

Recently, some solutions are emerging to mitigate the
limitations of the two aforementioned approaches. Virtual
Platforms, such as Imperas’ OVP [11] or Cadence’s Virtual
System Platform [12], allow to define the computational
architecture of a system by employing a high-level instruction
set simulator of the underlying CPU to develop SW running on

the platform. Then, system peripherals may be easily plugged
into the simulation by using their Hardware Description Lan-
guage (HDL) specifications, thus enhancing integration of
components for component-based approaches. However, these
tools are mostly focused on HW/SW co-simulation and they
do not support continuous-time models. As a result, they do
not permit to simulate analog-mixed signals peripherals and
physical processes.

The recently proposed Functional Mock-up Interface (FMI)
standard [13] facilitates to plug third-party simulators to MBD
frameworks. This allows to co-simulate already designed com-
ponents of the system, thus improving reuse. However, some
limitations are still unsolved [14] and systematic reuse isstill
not possible to realize in MBD approaches.

Platform-Based Design (PBD) emerged as the prominent ap-
proach to the design of complex heterogeneous systems [15].
PBD is a meet-in-the-middle approach that merges the ad-
vantages of both top-down and bottom-up approaches. It
provides a rigorous framework to reason about both verti-
cal and horizontal integration between components that are
heterogeneous in terms of design-domain or abstraction-level.
However, automation for PBD is not available at the state-of-
the-art. This paper aims at introducing an automatic design
flow based on PBD for heterogeneous smart devices.

Concerning simulation tools and frameworks for smart
systems, a first effort to categorize them has been performedin
the context of the SMAC European Project [16]. A preliminary
outcome of this project [1] was the taxonomy reported in
Table I. The taxonomy identifies the abstraction levels (rows)
and the design domains (column) of the most widespread tools
and languages. Starting from this taxonomy, [1] proposes a
code generation methodology that generates high-level models
of the components by relying on a single MoC (UNIVERCM
[17]). Experimental results showed that resulting simulation
outperforms co-simulation due to synchronization overhead,
and that simulation can be performed only at the higher
abstraction levels, while the lower co-simulation framework
are unavoidable.

A. Contribution

Some limitations are identifiable in [1]. The taxonomy
(Table I) does not properly organize the design domains (e.g.,
it does not cover the network and communication domain).
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Table II: Taxonomy of the main modeling and simulation toolsused for smart system design.

Abstraction
Levels

MEMS
Sensors &
Actuators

Power
Sources

Analog and
Physical

Network
and

Communication

Digital
Hardware

Embedded
Software

Transactional SystemVue SystemVue SystemVue SystemVue SystemVue SystemVue

SimulationFunctional C++ C++ C++ C++ C++ C++
Homogeneous
Structural

SystemC
(AMS)

SystemC
(AMS)

SystemC
(AMS)

SystemC
(SCNSL)

SystemC
(RTL, TLM)

SystemC
(TLM)

Structural
ADS, Matlab,
AMS HDLs,

MEMS+

Simulink
AMS HDLs

AMS HDLs,
Matlab, ADS,

SPICE

NS3, OPNET,
SystemC
(SCNSL)

RTL HDLs
Cycle

Accurate
QEMU

Co-
Simulation

Device
AMS HDL,

Matlab,
MEMS+

FEM models,
SPICE

EMPro,
Momentum

Spectre

AMS HDLs ,
Matlab, ADS,

SPICE

AMS HDLs ,
Matlab, ADS,

SPICE
-

Physical
FEM models,

Matlab,
MEMS+

FEM models,
SPICE

EMPro,
Momentum

Spectre

AMS HDLs,
Matlab, ADS,

SPICE

AMS HDLs,
SPICE -

At the same time, the organization of the abstraction levels
does not allow to strictly define simulation and co-simulation,
i.e. due to the use of QEMU at the two topmost levels.
Furthermore, [1] does not provide full automation of the high-
level models code generation process. Indeed, not all the
design domains are supported for automatic translation into
UNIVERCM [18], thus enforcing a manual modeling effort.

This paper aims at overcoming such limitations. It proposes
a rationalization of the taxonomy in Table I to better define at
which levels to employ co-simulation and simulation frame-
works. Then, the a MoC-based generalization of the taxonomy
is proposed, to identify the ideal abstraction level for system-
level simulation. Finally, a fully automatic translation and
abstraction flow is defined. This allows to automatically move
models up in the taxonomy, in order to produce system-level
models for smart design simulation at the identified level of
abstraction.

III. TAXONOMY OF THE SMART SYSTEM DESIGN SPACE

This section reasons about the abstraction-levels and do-
mains involved in smart system design, to introduce the target
of the proposed design flow.

A. Taxonomy of the main tools used for smart system design

The analysis of the limitations of [1] lead to a reconsider-
ation of Table I, and to the definition of a new taxonomy,
depicted in Table II. With respect to Table I, the Analog
HW domain is now generalized by the introduction of a new
domain:Analog and Physical, that includes models expressing
analog electronics or physical processes. This domain does
not include MEMS designs, that usually rely on domain-
specific modeling tools and techniques (and thus have a
dedicated domain,i.e., MEMS Sensors & Actuators). The
novel definition of the Analog and Physical domain allows
to absorb also the Power and Discrete Devices domain of
Table I, as these devices usually rely on the same modeling
and simulation technologies used for analog devices.

Secondly, Table I grouped RF models together with ana-
log models, in a single design domain (Analog and RF).
RF models can be considered within the novel Analog and
Physical domain whenever they are employed in sensing and

actuation tasks. Whenever RF models are instead considered
as communication media, it does not seem correct to consider
them as part of this domain. A new design domain,Network
and Communication, has thus been inserted to consider such
components and their network models.

The last modification involves one of the rows of Table I.
The Structural abstraction level has been split into two vari-
ations: Structural and Homogeneous Structural. The former
allows to connect simultaneously different tools, specificof
the involved design domains. On the contrary, the enforces
the adoption of a single simulation framework to represent
within a single environment all the involved domains. This
is the case,e.g., of SystemC and its extension, that allows to
cover multiple domains with a single framework, even if each
component may adopt different synchronization mechanisms.

Based on this taxonomy it is possibly to correctly differen-
tiate the use of co-simulation and simulation according to the
two dimensions. In particular, in this work we define:

• simulationas the imitation of system behavior over time
performed entirely within a single environment.

• co-simulationas the imitation of system behavior over time
performed by the collaboration of different simulations.

What suddenly emerges analyzing the proposed taxonomy is
that models at the lowest abstraction levels are implemented
with different design languages, that require their own simu-
lator. This forces to build co-simulation environments. Atthe
state of the practice, simulation can be performed only at the
highest levels of abstraction, where there is a convergencein
terms of languages and tools.

When the goal is achieving fast execution for smart virtual
platforms, raising the abstraction level leads thus to two
main advantages. On one hand, a more abstract model needs
to simulate a lower level of detail, thus providing a first
speed-up. On the other hand, it makes possible to move
from co-simulation to simulation, thus removing the overhead
introduced by the synchronization of multiple tools. Note that
automating model abstraction would give a further advantage.
Executable virtual platforms can indeed be created in a manner
that is seamless to designers specialized in different design
domains and technologies: designers can model components

3



Table III: Taxonomy of the main MoCs used for smart system design.

Abstraction
Levels

MEMS
Sensors &
Actuators

Power
Sources

Analog and
Physical

Network
and

Communication

Digital
Hardware

Embedded
Software

Synchronization
& Concurrency

Behavioral Discrete Events

Transactional
Continuous

Time
Continuous Time or

Discrete Events
Continuous

Time
Discrete
Events

Discrete
Events

Discrete
Events

Synchronous
Data Flow

Functional
Continuous

Time
Continuous Time or

Discrete Events
Continuous

Time
Discrete
Events

Discrete
Events

Discrete
Events Discrete

EventsHomogeneous
Structural Continuous Time Discrete

Events
Discrete
Events

Discrete
Events

Structural Continuous Time Discrete
Events

Discrete
Events

Discrete
Events

Device Continuous Time - Continuous
TimePhysical Continuous Time -

with languages and formalisms they are used to, and get at the
same time the benefits of a higher level of abstraction through
the adoption of automatic flows.

By looking at the taxonomy in Table II, it is quite straight-
forward to see that the tools and frameworks supported are
only a small subset of the ones available for smart system
design. The scope of the taxonomy is indeed restricted to tools
and frameworks used in the context of the SMAC project.
This makes the taxonomy non-exhaustive when dealing with
a generic smart system.

B. Taxonomy of the main MoCs used for smart system design

The second taxonomy proposed in this paper aims at being
more complete, by moving the focus from tools to the underly-
ing execution mechanism they implement,i.e., the MoC. This
allows to generalize the taxonomy, as a given MoC is adopted
by a number of tools. At the same time, the implemented
MoC is the element that, despite of the syntactic constructs,
better characterizes a tool or a framework, and that facilitate
to understand whether the tool matches a certain domain or
not.

The resulting taxonomy is depicted in Table III, that iden-
tifies the abstraction levels (rows) and the domains (columns)
of the most widespread MoCs. The lowest abstraction levels
feature the continuous time MoC, that adheres more to the
natural evolution of physical processes (levelsPhysical and
Device). As the level of abstraction raises, other MoCs come
into play, including the discrete event MoC, that matches well
domains like digital HW and embedded SW. Note that, once
again, the taxonomy in Table III reports only a subset of the
possible MoCs, as it focuses on the ones derived for the tools
in Table II.

So far, the taxonomies focused on single components.
However, when dealing with MoCs, it is necessary to specify
not only the definition of a component(i.e., what is an
actor, and how actors evolve), but also theconcurrencyand
communication mechanisms(i.e., how actors act together and
exchange information) [8]. For this reason, Table III adds a
further dimension to the analysis: theSynchronization & Con-
currency column reports the MoC governing the interaction
between components at any abstraction level. The adopted
MoC varies across the different abstraction levels: continuous

time, adopted by the lowest levels of abstraction, is replaced
by discrete event atStructural, Homogeneous structuraland
Functional. Finally, theTransactionallevel bases communica-
tion on the synchronous dataflow MoC.

It is now possible to define the target abstraction level for
System-level simulation of heterogeneous smart systems. The
target abstracted model of the system must bethe simplest
model that preserves the details to consider(Occam’s razor),
but not simpler[8]. In the case of System-level simulation, this
level must be able to preserve all the input/output events of
the system that are considered “of interest” by the designer. At
the same time, the abstraction must be able to remove all other
details, not to burden simulation with unnecessary details.
At such level, the entire system can be seen as a sequence
of discrete events in the logic time. For this reason, the
taxonomy in Table III adds theBehavioral abstraction-level,
defined as the level where every component and as well the
synchronization between components is modeled according to
the discrete-eventMoC.

The conclusion that can be reached analyzing the two
taxonomies is that the target environment:

• must rely ona single tool or language, to remove syn-
chronization and communication overhead;

• must be based on thediscrete-event MoC, in order to
preserve only details “of interest”.

IV. I NTEGRATION FLOW

Figure 2 gives an overview of the proposed methodology for
enhancing smart system design. The flow consciously recalls
the classical schema of PBD [15]. In fact, the proposed flow
considers theHigh-Level Specificationof the functionality
as theApplication Space, while the Architectural Spaceis
given by theLibrary of Reusable Components. Thus, the pair
composed by the specification and the library is the starting
point of the proposed design flow, that exploits both top-
down and bottom-up steps to reduce all the heterogeneous
descriptions into homogeneous models, and to obtain a final
implementation of the overall system.

The final objective is to create a virtual prototype of
the system under design, expressed at the behavioral level
of abstraction. The overall process is fully automated by
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Figure 2: Overview of the proposed design flow.

using the intermediate representation and model manipulation
functionalities provided by HIFSuite [19].

A. Models Definition and Integration

Requirements and high-level specifications go through the
top-down flow(i.e., Step 1© in Figure 2): they are concretized
with a precise semantics provided by the HIFSuite representa-
tion, and then integrated with any other model composing the
intermediate representation of the system functionality.The
framework supports different specification mechanisms:

• Modeling languages, such as UML and SysML, can be
used to specify the desired functionality and tasks [20].

• IP-XACTpermits to specify how the subcomponents of the
system must interact in order to implement the function-
ality. A recent extension to extra-functional information
permits to analyze and develop the functional behavior of
the system keeping an eye on extra-functional properties
of the system, that may be crucial when dealing with smart
systems design [21].

• Formal specifications and extra-functional parametersare
currently supported in terms of mathematical based-
formalisms,e.g.Temporal Logic properties, Mixed-Integer
Linear problems, and Assume-Guarantees Contracts. This
allows designers to specify in mathematical terms system
parameters,e.g., properties orthogonal to functionality, like
timing, reliability, and costs.

To support this flow, the HIFSuite front-end mechanisms
and semantics are extended to manage UML/SysML models,
Assume/Guarantees Contracts and IP-XACT specification for
both functional and extra-functional specifications.

B. Models Conversion and Abstraction

Models within the library of reusable components are al-
ready specified in a number of languages and frameworks. It is
thus necessary to remove their language-specific details, and to
convert them into the intermediate representation of HIFSuite
through thebottom-uppath of the methodology (i.e., Step 2©
in Figure 2). These automatic translations correctly map the
semantics of the different formalisms and languages involved

into the intermediate format syntax and semantics [17], [19]–
[23].

In order to provide automation, it was necessary to extend
the front-end functionalities provided by HIFSuite, originally
intended only for the Digital HW domain. In particular:

• Analog HW and MEMSdesign domains have been sup-
ported by proposing a novel translation methodology [23],
that reproduces the entire set of equations expressed by the
original analog model of the system in the homogeneous
intermediate representation.

• Embedded SWhas been supported by implementing a
front-end tool for UML/SysML state diagrams annotated
with C++ instructions [20].

• The possibility to import theIP-XACT model of the
components has been implemented to improve the reuse
of System-level models and IPs.

After applying the top-down specification and bottom-up
reuse, all the components of the system are represented in a
homogeneous representation. Thus, they can be manipulated
within a single framework.

C. Homogeneous Model Manipulation

After Steps 1© and 2©, components are still disconnected
from each other and fully detailed. Step3© of Figure 2
performs different manipulations on top of the homogeneous
model, in order to correctly integrate components and to
manipulate their levels of abstraction.

HIFSuite already provided abstraction and optimization
functionalities for digital HW models [19], [22]. However
some additions have been implemented to support heteroge-
neous smart devices. In particular, the methodology presented
in [24] to automatically abstract Analog HW and MEMS
models has been implemented on top of HIFSuite in a tool
called OCCAM. The abstraction procedure starts from an
analog model expressed in the HIFSuite format and a set of
physical quantities (i.e., “values of interest”) of the system
specified by the designer. Usually, values of interest are
those quantities that carry behavioral information to the other
components of the system (e.g., input or output nodes of an
electrical analog device). The abstraction procedure ensures
the preservation of the values of interest, and it exploits static
algebraic symbolic resolution to simplify the system. After
the abstraction, the model of the component preserves only
the events on the values of interest.

Integration of components is then performed by matching
components interfaces (automatically extracted from the HIF-
Suite models) with the information given by the designer about
interfaces and communication between components (e.g., high-
level system specifications provided as IP-XACT descriptions).
Once components are integrated into the homogeneous model,
the processes involved in the system are synchronized. The
synchronization is delegated to a scheduling generation proce-
dure [22], extended to support events generated by continuous-
time components.

After abstraction and integration, the system is completely
specified by a single homogeneous model, entirely based on
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Figure 3: HIFSuite-based flow for integration and abstraction
of smart device models into SystemC and C++ representations.

the discrete-event model of computation and thus specified at
the behavioral abstraction-level.

D. Homogeneous Code Generation

One of the main characteristics of the desired simulation en-
vironment is that it relies on a single language, to remove any
synchronization overhead. This is achieved by automatically
generating code from the homogeneous intermediate model,
expressed in the HIFSuite format.

Figure 3 recaps how components are integrated and ab-
stracted to generate the virtual prototype of a given system.
At this point, the starting descriptions have been converted to
the HIFSuite intermediate format through front-ends (leftmost
arrows). The homogeneous format is then handled by con-
sidering functionality and interfaces separately. Interfaces are
matched with the high-level architecture specification, origi-
nally modeled through IP-XACT descriptions. This permits to
determine the structure of the system, in terms of SystemC
modules and connections. The functionality is then used to
populate the modules, after the application of optimization
steps, like [25]. This information enables HIFSuite back-end
tools to generate ahomogeneous structuralimplementation of
the system in SystemC.

In order to improve performance, it is possible to raise the
level of abstraction tobehavioral level. To this extent, the
model undergoes the abstraction procedure implemented by
the framework. The final model of the system is automatically
implemented in C++ by the HIFSuite back-end tools, thus
constituting an efficient virtual prototype of the system.

V. CASE STUDY: THE OPEN-SOURCE

SMART SYSTEM TEST-CASE

The Open-Source Smart-System Test Case (OS3TC) rep-
resents an example Smart System, developed in the context
of the SMAC European Project [16]. The OS3TC supports
all the typical domains of smart systems, and thus clearly
highlights the degree of heterogeneity and the typical issues
that arise at design time. The OS3TC is available as open-
source demonstrator for HIFSuite1.

Figure 4 depicts the structure of the OS3TC, where differ-
ent colors expose the involved domains:Digital HW (blue),

1http://download.hifsuite.com/

Figure 4: Overview of the OS3TC structure. Colors highlight
the different design domains involved.

Analog HW (red), Networkperipherals (grey),embedded SW
(yellow), and finally, system-level interconnections(orange,
implemented as digital HW components). The OS3TC com-
ponents are:

• MLite-CPU: digital HW microprocessor compatible with
the MIPS instruction set. The IP is originally provided as
VHDL description, within the Plasma project of Open-
Cores;

• Memory: digital HW component implementing a 256KB
SRAM memory, used to store the SW application as well
as the data sensed and computed by the device and to han-
dle Memory Mapped Input-Output communication with
the peripherals. It is originally implemented in Verilog.

• UART: digital HW peripheral performing Parallel to Serial
conversion. It provides a serial interface to the device, that
can be used to program the entire system, or read computed
data. Its open-source VHDL implementation is available in
the 16550 UART component project of OpenCores.

• Accelerometer: analog HW peripheral, implementing a
two-axis accelerometer. It is used to sense the environment,
in terms of the accelerations that the platform is subjected
to. The original Verilog-A description of the IP has been
provided by industrial partners of the SMAC European
Project.

• RF-Transceiver and Network: network peripheral used to
transmit data over a packet-based network. The original
model is developed at a high-level of abstraction, using
SCNSL.

• APB Bus: main bus used to connect the CPU-memory
subsystem to the peripherals. The adopted implementation
complies with the ARM APB and it is modeled both in
Verilog and as IP-XACT specification.

• Communication, Interfaces and Interconnections: internal
connections and communication among the components of
the platform are described at ESL using IP-XACT.

• a Software Applicationrunning on the CPU. The SW main
loop samples and gathers data sensed by the accelerometer.
The data are then transmitted as follows: the least signif-
icant byte is written on the UART, while the entire value
is sent through a packet switching network by using the
RF-transceiver. The SW is given as Assembly code and as
the list of opcodes generated for the MLite-CPU.

The list of the constituting components highlights that the
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Figure 5: Mapping of the six scenarios used in the experi-
mental section with respect to the abstraction levels of the
taxonomy in Table III.

OS
3TC is subjected to a high degree of heterogeneity, in terms

of both domains and abstraction levels. As such it represents
a good case study for smart systems design methodologies.

VI. EXPERIMENTAL RESULTS

The OS3TC has been used to evaluate the impact of
translation and abstraction on system simulation. For the
experimental analysis, we generated six scenarios at different
abstraction levels of the proposed taxonomy, and we compared
them in terms of simulation speed.

We considered three co-simulation scenarios:

(1) The original models of the components are co-
simulated by different simulators and synchronized
through Keysight’s SystemVue, a Ptolemy-based simu-
lation environment [26];

(2) The original models of the components are co-simulated
by different simulators and synchronized within the het-
erogeneous environment provided by Mentor’s Questa;

(3) All the components are translated into C++, despite of the
UART, that is co-simulated by using an ad-hoc simulator
and synchronized with the others by using SystemVue.

The flow in this paper has then been applied to the OS3TC
to create three simulation scenarios:

(4) Components are translated into SystemC-RTL and
SystemC-AMS, to be integrated and simulated within the
SystemC simulation kernel;

(5) Components are abstracted into C++ descriptions, im-
ported and integrated within SystemVue;

(6) Components are abstracted and integrated to create a
unique homogeneous C++ model providing a “mono-
lithic” simulation of the entire smart system.

Figure 5 places the scenarios in the abstraction levels of the
taxonomies described in Section III. Arrows on the right of
the Figure depict the transformations applied to move from
one level to another (as described in Section IV). The three
co-simulation scenarios are Structural models of the OS3TC,
while the three simulation scenarios express the system at
three different abstraction levels. Scenario (4) is obtained by
applying model conversion for each component of the system

to automatically generate its SystemC model, and is thus at
Homogeneous structural level. Components are aggregated
together by interfacing the SystemC models at the Register-
Transfer Level (RTL). The system model in Scenario (5) is
obtained by abstracting the Homogeneous Structural model
of each component to theTransactional level. SystemVue-
compliant C++-implementations of the system components are
generated and integrated by the designer within SystemVue.
Finally, Scenario (6) performs further abstraction and integra-
tion to create a “monolithic”Behavioraldiscrete-event model
of the OS3TC. Code generation is exploited to create the final
C++ model for simulating the entire system.

Table IV summarizes the execution time needed by the
different scenarios to simulate 100 ms of system execution,
with a time step of 100 ns. ColumnRelative Speed-upreports
the speed-up between consecutive scenarios,e.g., as a result of
abstraction or transformations. ColumnTotal Speed-upreports
the speed-up of each scenario w.r.t. scenario (1), that is the
most heterogeneous one.

A first fact that appears clear from these results is that the
number of simulators instantiated, hence the number of co-
simulation interfaces employed, heavily impacts performance.
In particular, it is worth noticing that every co-simulation
interface (three in the case of the first entry of the table, two
in the second and only one in the third), seems to introduce
around 60 seconds overheadw.r.t. the simulation without any
co-simulation interface (fourth scenario). This corresponds to
an overhead of more than 60%. As a result, the impact of
interfaces and conversion layers between different tools seems
highly relevant and dependent on the number of used interfaces
and external tools. Thus, translating to a unique language
positively impacts on the simulation time required.

Introducing abstraction together with translation (fifth en-
try of the table) provides themaximum relative speed-up.
Finally, the sixth scenario merges synchronization and behav-
iors within a unique monolithic executable model, preserving
only the events of functional interest for the designer. This
provides the most optimized simulation environment available
for the system and thus the best simulation performance,
corresponding to themaximum total speed-up. These results
show that the configuration identified in Section III, combining
homogeneous simulation and the adoption of the discrete-event
MoC, is the most effective for the design of heterogeneous
smart systems.

Note that, given the same case-study, this paper leads to
a there is a slight reduction of speed-up with respect to the
results obtained in [1] (24.11x against 13.10x). The better
performance of [1] can be easily justified by the fact that the
proposed flow was not entirely automatic. The approach in [1]
required indeed manual definition of theUNIVERCM models
of some components, thus resulting in a time-consuming and
error-prone re-modeling activity by the designer, that on the
other hand allowed the application of manual optimization.In
this work, instead, the process isfully automaticand allowed
to produce the final Scenario (6) in few minutes rather than
few man-days, still providing a speed-up in the same order of
magnitude.
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Table IV: Execution time needed by the different simulation
and co-simulation scenarios considered.

Scenario
Simulation
Time (s)

Relative
Speed-up

Total
Speed-up

Co-Simulation

(1)
Structural

278.59 - -(SystemVue-based
coordination)

(2)
Structural

215.47 1.29x 1.29x(Modelsim &
ELDO SPICE)

(3)
Structural

153.23 1.37x 1.82x(SystemVue &
Modelsim)

Simulation

(4)
Homogeneous

97.59 1.61x 2.85xStructural
(SystemC-RTL)

(5) Transactional 36.32 2.69x 7.67x(C++/SystemVue)

(6) Behavioral 21.26 1.71x 13.10x
(C++)

VII. C ONCLUSIONS

This work presented a meet-in-the-middle approach to
model and simulate heterogeneous smart devices. From a set
of components belonging to different design domains and
expressed in a heterogeneous set of abstraction levels, the
methodology exploits automatic translation, abstractionand
integration to reconcile the heterogeneous set of component
models into a single homogeneous system-level model. The
high-level model generation is guided by the analysis of
two taxonomies of modeling and simulation technologies for
heterogeneous devices. A virtual prototype of smart system
device has been presented and released open-source as a
demonstrator. The application of the proposed methodology
showed the positive impact of the proposed solution.
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