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Abstract—This paper proposes a meet-in-the-middle approach
for the modeling and simulation of heterogeneous systems.h&
starting point is a set of heterogeneous models, developed/ b
adopting the designer’s favorite design language and formsm.

The methodology exploits automatic translation, abstradbn and Distributed Distributed
integration flows to generate a single homogeneous system#| _Sensing _Actuation
description, that allows fast system simulation. The apprach | Bilions of devices Bilions of devices
. A . . gathering data physically

is supported by two novel design domain/abstraction levelax- |from the interacting with
onomies, that generalize a state-of the art taxonomy [1] talientify | environment o the environment
what characteristics would allow efficient system-level siulation, data % dic?sions

together with the transformations that must be applied to the Intelligence

starting model to achieve them. The advantage of the appro&c Figure 1: Main idea behind the concept of “Smart Planet”.
on system design and prototyping is particularly evident onany

kind of highly heterogeneous systems, such as smart systems
The overall automatic flow has been implemented and applied

to an open-source case study to measure the performance of o analyzing sensed data to correctly understand and predict
each identified abstraction level, and the impact of the propsed the evolution of physical processes:

methodology.
e take decisions on how the system should react to the
current state of the physical environment;

control the environment through actuation mechanisms;

|. INTRODUCTION

Microelectronics and systems design have been pushe.d
by the Moore’s Law for the last decades, impacting not o )
only general purpose computing, but also embedded devicet.PEform communication between different parts of the
This intensive improvement of computational capabilifies system, given the distributed nature of the problem.
designers to move functionality from HW to SW, in order ,
to decrease costs and design time. Thus, a major trend fof‘s, such, the design of a.sm.arter planet can be seen as the
embedded platforms was to create general-purpose minia u'alon OT, an enormous d'St”bUte_d CO””‘?' problem, where
ized architectures, running the SW implementation of argiv% € “plant’ to control is the physical environment we are

functionality. At the same time, systems and circuits regea ving in. Thus, the environment itself must be instrumente

in Electronic Design Automation (EDA) was mainly focuseaf\’Ith m|n|atur|zed componer(;ts capable_ of pequIrmmsmg,
on Very Large Scale Integration (VLSI) and single Integdateacwat'on’ compu.tatlon and communicationhile meeu_ng
Circuit (IC), to stay on Moore's Law track, thus repeated! trong extra—fungtlonal requ!rer_nentsg, thermal properties,
doubling the density of transistors into a single IC, and t wer cons_umptlon, and reliability). Such componentslaeet
Smart Deviceor Smart SystemsThus, we might say that

number of chips in a single board [2]. 0
The recent years saw a shift in research, that moved its foc[art Systems are the building blocks of the Smart Planet

from devices to systems. Thus, we entered in the so-calle

More than Moore” era, where communication, sensing a art Systems extremely heterogeneous objects [4], elyin

actuation have been integ.rated anngsid.e computatiorin/vit%n countless different technologies and consequentlyitiegu
the same system. Emerging technologies embed more %%qerogeneous expertise and tools for their design. Rrgvio

more intelligence into everyday life, thus pushing toward Rork [1] showed how system simulation may benefit from

“chimera” defined aSmart PlanetThe idea was first proposedreducing heterogeneity to homogeneous models, whilengisi

by IBM in 2008 [3], and it consists in leveraging the use %bstraction in order to work at System-level. This papersgoe

new technologies .for a smarter management of the phys'ﬁﬁjther, by proposing a concrete automatic design flow for
environment, ranging frpm energy management to traffic. mart systems, that unifies heterogeneous descriptions int
F{gure 1 depicts the |_deal structure Qf the §mart planet. -E%mogeneous models, that can be the starting point for well-
realize such "_’1 system, It qut be possmlg to: established System-Level Design (SLD) flows. The proposed
o perform distributed sensing of the environment, to gathggyy allows the designer to model each component with the
data about the involved physical processes; most suitable language or tool, while producing highly effi-
978-1-5090-4270-8/16/$31.092016 IEEE cient executable virtual platforms for smart system sirtioiha

dThe tight interaction with the physical environment makes



Table I: State-of-the-art taxonomy of the main tools usedsfoart system design [1].

Abstraction SgﬂnEs'gri & Power Discrete and Analog Digital Embedded
Levels Sources power devices and RF Hardware Software
Actuators
. SystemVue SystemVueg
Transactional SystemVue SystemVue SystemVue| SystemVue SystemC-TLM QEMU Simulation
Functional C++ C++ C++ C++ C++ QEMU |
ADS, Matlab, Matlab. Simulink AMS HDLs, Cycle
Structural AMS HDLs, AMS’ HDLs ADS Matlab, ADS, RTL HDLs Accurate
MEMS+ SPICE QEMU
AMS HDL, EMPro, AMS HDLs, AMS HDLs,
Device Matlab, FE'\SAPngeIS’ Momentum Matlab, ADS, | Matlab, ADS, - Co-
MEMS+ Spectre SPICE SPICE Simulation
_ FEM models, FEM models, EMPro, AMS HDLs AMS HDLs,
Physical Matlab, SPICE Momentum Matlab, ADS, SPICE -
MEMS+ Spectre SPCE | —"— | 1

[l. STATE OF THE ART ON MODELING AND SIMULATION OF the platform. Then, system peripherals may be easily pldgge
HETEROGENEOUS SYSTEMS AND CONTRIBUTION into the simulation by using their Hardware Description Lan
) _ guage (HDL) specifications, thus enhancing integration of
The approaches proposed in the literature to handle hgfinnonents for component-based approaches. Howeveg, thes
erogeneity in modern devices can be divided into two majfg|s are mostly focused on HW/SW co-simulation and they
categoriestop-downandbottom-updesign flows [3]. do not support continuous-time models. As a result, they do
Top-down flows are mostly based on the concept of Mod&{st permit to simulate analog-mixed signals peripherat$ an
based Design (MBD). MBD relies on high-level models SPe¢hysical processes.
ified by the designer, that are then step-by-step refined tothe recently proposed Functional Mock-up Interface (FMI)
achieve a final implementation through a set of correct-b¥andard [13] facilitates to plug third-party simulatassMBD
construction transformations [6]. MBD frameworks, indgl  frameworks. This allows to co-simulate already designed-co
Simulink [7] and Ptolemy [8], are extensively used in th@onents of the system, thus improving reuse. However, some
practice by system engineers since they enable to mogglitations are still unsolved [14] and systematic reusstit
systems employing different Models of Computation (MoCs),,t possible to realize in MBD approaches.
and to put them in communica_tion to _integrate complex pjatform-Based Design (PBD) emerged as the prominent ap-
models. However, they do not easily permit component réU$Roach to the design of complex heterogeneous systems [15].
integrating already designed components requires a mangap s a meet-in-the-middle approach that merges the ad-
re-modeling, that may lead to errors and inconsistencigs [alantages of both top-down and bottom-up approaches. It
Reuse of components is well supported by bottom-up flowsrovides a rigorous framework to reason about both verti-
In particular,Component-baseapproaches reduce complexitycal and horizontal integration between components that are
by assembling strongly encapsulated design entities ¢om- heterogeneous in terms of design-domain or abstracticei-le
ponent§ equipped with concise and rigorous interface speqgitowever, automation for PBD is not available at the state-of
fications. As such, the first challenge is to provide inte¥faghe-art. This paper aims at introducing an automatic design
specifications that are rich enough to cover all phases of j&y based on PBD for heterogeneous smart devices.
design cycle. The IP-XACT standard [9] has been definedconcerning simulation tools and frameworks for smart
to allow specification of interfaces for digital IPs. Howeve systems, a first effort to categorize them has been perfoimed
an IP-XACT-based automatic tool-chain did not emerge e context of the SMAC European Project [16]. A preliminary
the state of the practice. Consequently, component-based Gutcome of this project [1] was the taxonomy reported in
proaches must still rely on complex co-simulation envirorfaple |. The taxonomy identifies the abstraction levels Gow
ments to simulate an entire heterogeneous system [10]. Skl the design domains (column) of the most widespread tools
environments are usually based on a multitude of simulatighg |anguages. Starting from this taxonomy, [1] proposes a
tools, each of them specialized on a specific design domaiade generation methodology that generates high-levektaod
Thus, they are computationally burdened by synchroninatigf the components by relying on a single MoGN(VERCM
and interprocess communication overheads. Furthermaee, 1117])_ Experimental results showed that resulting siniatat
to the lack of specification languages support, the integrat oytperforms co-simulation due to synchronization ovedhea
of the components is still performed by hand in a timegnd that simulation can be performed only at the higher
consuming and error-prone process. abstraction levels, while the lower co-simulation framewo
Recently, some solutions are emerging to mitigate thge unavoidable.
limitations of the two aforementioned approaches. Virtual -
Platforms, such as Imperas’ OVP [11] or Cadence’s Virtud): Contribution
System Platform [12], allow to define the computational Some limitations are identifiable in [1]. The taxonomy
architecture of a system by employing a high-level instaurct (Table I) does not properly organize the design domaegg,
set simulator of the underlying CPU to develop SW running dh does not cover the network and communication domain).



Table II: Taxonomy of the main modeling and simulation toated for smart system design.

Abstraction SgﬂnEslza/lri & Power Analog and Ne;\avgrk Digital Embedded
Levels Sources Physical L Hardware Software
Actuators Communication
Transactional SystemVue SystemVue SystemVue SystemVug SystemVpe Syiséemn
Functional C++ C++ C++ C++ C++ C++ Simulation
Homogeneous SystemC SystemC SystemC SystemC SystemC SystemC
Structural (AMS) (AMS) (AMS) (SCNSL) (RTL, TLM) (TLM)
ADS, Matlab, Simulink AMS HDLs, NS3, OPNET, Cycle |-~~~ 7~
Structural AMS HDLs, AMS HDLs Matlab, ADS, SystemC RTL HDLs Accurate
MEMS+ SPICE (SCNSL) QEMU
AMS HDL, FEM models EMPro, AMS HDLs, AMS HDLs,
Device Matlab, SPICE ' Momentum Matlab, ADS, Matlab, ADS, - Co-
MEMS+ Spectre SPICE SPICE Simulation
FEM models, EMPro, AMS HDLs,
Physical Matlab, FE'\éPngels‘ Momentum Matlab, ADS, AMSSPT&DELS’ -
MEMS+ Spectre SPICE

At the same time, the organization of the abstraction levadstuation tasks. Whenever RF models are instead considered
does not allow to strictly define simulation and co-simwaati as communication media, it does not seem correct to consider
i.e. due to the use of QEMU at the two topmost levelsthem as part of this domain. A new design domaietwork
Furthermore, [1] does not provide full automation of thethig and Communicationhas thus been inserted to consider such
level models code generation process. Indeed, not all tbemponents and their network models.
design domains are supported for automatic translatiom int The last modification involves one of the rows of Table I.
UNIVERCM [18], thus enforcing a manual modeling effort. The Structural abstraction level has been split into twa-var
This paper aims at overcoming such limitations. It proposesions: Structural and Homogeneous Structuralhe former
a rationalization of the taxonomy in Table | to better defibe allows to connect simultaneously different tools, speaific
which levels to employ co-simulation and simulation framethe involved design domains. On the contrary, the enforces
works. Then, the a MoC-based generalization of the taxononie adoption of a single simulation framework to represent
is proposed, to identify the ideal abstraction level fortegs  within a single environment all the involved domains. This
level simulation. Finally, a fully automatic translatiomdr is the case.g, of SystemC and its extension, that allows to
abstraction flow is defined. This allows to automatically @ovcover multiple domains with a single framework, even if each
models up in the taxonomy, in order to produce system-leu@mponent may adopt different synchronization mechanisms
models for smart design simulation at the identified level of Based on this taxonomy it is possibly to correctly differen-
abstraction. tiate the use of co-simulation and simulation accordinght® t
two dimensions. In particular, in this work we define:

Thi . b he ab ion-level d o simulationas the imitation of system behavior over time
Is section reasons about the abstraction-levels and do- performed entirely within a single environment.

mains involved in smart system design, to introduce theetarg ) ) o ) ,
e co-simulationas the imitation of system behavior over time

of the proposed design flow. ) i i -
performed by the collaboration of different simulations.

A. Taxonomy of the main tools used for smart system desighat suddenly emerges analyzing the proposed taxonomy is
The analysis of the limitations of [1] lead to a reconsidethat models at the lowest abstraction levels are implendente
ation of Table I, and to the definition of a new taxonomywith different design languages, that require their ownusim
depicted in Table Il. With respect to Table I, the Analodator. This forces to build co-simulation environments.thAg¢
HW domain is now generalized by the introduction of a newtate of the practice, simulation can be performed only @t th
domain:Analog and Physicathat includes models expressindiighest levels of abstraction, where there is a convergance
analog electronics or physical processes. This domain ddesns of languages and tools.
not include MEMS designs, that usually rely on domain- When the goal is achieving fast execution for smart virtual
specific modeling tools and techniques (and thus havepktforms, raising the abstraction level leads thus to two
dedicated domaini.e, MEMS Sensors & Actuators). The main advantages. On one hand, a more abstract model needs
novel definition of the Analog and Physical domain allowto simulate a lower level of detail, thus providing a first
to absorb also the Power and Discrete Devices domain sfeed-up. On the other hand, it makes possible to move
Table |, as these devices usually rely on the same modeliingm co-simulation to simulation, thus removing the ovexthe
and simulation technologies used for analog devices. introduced by the synchronization of multiple tools. Ndtatt
Secondly, Table | grouped RF models together with anautomating model abstraction would give a further advastag
log models, in a single design domain (Analog and RFExecutable virtual platforms can indeed be created in a erann
RF models can be considered within the novel Analog atlat is seamless to designers specialized in differentgdesi
Physical domain whenever they are employed in sensing atamains and technologies: designers can model components

I1l. TAXONOMY OF THE SMART SYSTEM DESIGN SPACE



Table 1ll: Taxonomy of the main MoCs used for smart systemgtes

Abstraction MEMS Power Analog and Network Digital Embedded || Synchronization
Sensors & . and
Levels Sources Physical - Hardware Software & Concurrency
Actuators Communication
Behavioral Discrete Events
Transactional Continuous | Continuous Time or| Continuous Discrete Discrete Discrete Synchronous
Time Discrete Events Time Events Events Events Data Flow
Functional Continuous | Continuous Time or| Continuous Discrete Discrete Discrete
Time Discrete Events Time Events Events Events Discrete
Homogeneous . ) Discrete Discrete Discrete Events
Structural Continuous Time Events Events Events
Structural Continuous Time Discrete Discrete Discrete
Events Events Events
Device Continuous Time - Continuous
Physical Continuous Time - Time

with languages and formalisms they are used to, and get at tinee, adopted by the lowest levels of abstraction, is reggac

same time the benefits of a higher level of abstraction tHrougy discrete event aStructural Homogeneous structuraind

the adoption of automatic flows. Functional Finally, theTransactionalevel bases communica-

By looking at the taxonomy in Table I, it is quite straighttion on the synchronous dataflow MoC.

forward to see that the tools and frameworks supported ardt is now possible to define the target abstraction level for

only a small subset of the ones available for smart syste®ystem-level simulation of heterogeneous smart systefms. T

design. The scope of the taxonomy is indeed restricted is totarget abstracted model of the system mustthe simplest

and frameworks used in the context of the SMAC projeatmodel that preserves the details to consi@@ccam’s razor),

This makes the taxonomy non-exhaustive when dealing witlit not simplef8]. In the case of System-level simulation, this

a generic smart system. level must be able to preserve all the input/output events of
the system that are considered “of interest” by the desidxter

B. Taxonomy of the main MoCs used for smart system desjgg same time, the abstraction must be able to remove all othe

The second taxonomy proposed in this paper aims at bem@ails, not to burden simulation with unnecessary details
more complete, by moving the focus from tools to the underlfAt such level, the entire system can be seen as a sequence
ing execution mechanism they implemein,, the MoC. This Of discrete events in the logic time. For this reason, the
allows to genera“ze the taxonomy1 as a given MoC is adoptwonomy in Table Il adds th&ehavioral abStraCtion'leVel
by a number of tools. At the same time, the implementéiﬁfined as the level where every component and as well the
MoC is the element that, despite of the syntactic construcynchronization between components is modeled according t
better characterizes a tool or a framework, and that fatdlit the discrete-evenMoC.
to understand whether the tool matches a certain domain ofhe conclusion that can be reached analyzing the two
not. taxonomies is that the target environment:

The resulting taxonomy is depicted in Table 1lI, that iden-e must rely ona single tool or languageto remove syn-
tifies the abstraction levels (rows) and the domains (coB)mn  chronization and communication overhead:;
of the most widgspread MoCs. The lowest abstraction levelg st be based on thdiscrete-event MoCin order to
feature the continuous time MoC, that adheres more to the preserve only details “of interest”.
natural evolution of physical processes (levBlsysical and
Devicg. As the level of abstraction raises, other MoCs come V.
into play, including the discrete event MoC, that matchel we
domains like digital HW and embedded SW. Note that, onceFigure 2 gives an overview of the proposed methodology for
again, the taxonomy in Table Il reports only a subset of thenhancing smart system design. The flow consciously recalls
possible MoCs, as it focuses on the ones derived for the tothie classical schema of PBD [15]. In fact, the proposed flow
in Table II. considers theHigh-Level Specificatiorof the functionality

So far, the taxonomies focused on single componen&s theApplication Spacewhile the Architectural Spaces
However, when dealing with MoCs, it is necessary to specifyiven by theLibrary of Reusable ComponentBhus, the pair
not only the definition of a componenti.e., what is an composed by the specification and the library is the starting
actor, and how actors evolve), but also tt@ncurrencyand point of the proposed design flow, that exploits both top-
communication mechanisnfise., how actors act together anddown and bottom-up steps to reduce all the heterogeneous
exchange information) [8]. For this reason, Table Il adds @escriptions into homogeneous models, and to obtain a final
further dimension to the analysis: tSgnchronization & Con- implementation of the overall system.
currency column reports the MoC governing the interaction The final objective is to create a virtual prototype of
between components at any abstraction level. The adopthd system under design, expressed at the behavioral level
MoC varies across the different abstraction levels: comtirs of abstraction. The overall process is fully automated by

I NTEGRATION FLOW



into the intermediate format syntax and semantics [17]]{19
[23].

In order to provide automation, it was necessary to extend
the front-end functionalities provided by HIFSuite, origily
intended only for the Digital HW domain. In particular:

e Analog HW and MEMSlesign domains have been sup-
ported by proposing a novel translation methodology [23],
that reproduces the entire set of equations expressed by the
original analog model of the system in the homogeneous
intermediate representation.

e Embedded SWhas been supported by implementing a
front-end tool for UML/SysML state diagrams annotated

High-Level System Specification

\P-XACT Temp.oral " A/G
Logics Contracts

ILP
yorren €
Models Definition Homogeneous
and Integration Virtual Prototype
(C++)
Homogeneous '
Intermediate

Representation

Homogeneous Model
Manipulation:

* Functional Model
* Extra-Functional Model
* Verification Environment

*  Correct-by-
construction
integration

*  Abstraction-level

manipulation

HIFSuite Model

ity
and Abstraction

— Library of Reusable Components W|th C++ InStrUCtIOHS [20]

s s SW__J [Functional e The possibility to import thelP-XACT model of the
components has been implemented to improve the reuse
of System-level models and IPs.

. . ) ) ) After applying the top-down specification and bottom-up
using the intermediate representation and model manipolatese, all the components of the system are represented in a
functionalities provided by HIFSuite [19]. homogeneous representation. Thus, they can be manipulated
A. Models Definition and Integration within a single framework.

Requirements and high-level specifications go through te Homogeneous Model Manipulation
top-down flow(i.e., Step@ in Figure 2): they are concretized -
with a precise semantics provided by the HIFSuite reprasen After Steps@ and @, components are still disconnected

tion, and then integrated with any other model composing t em each. other and _fuIIy .detalled. Ste®) of Figure 2
intermediate representation of the system functionalitye perform_s different man|pulat|or_13 on top of the homogeneous
framework supports different specification mechanisms: model, in order to correctly integrate components and to

. ipulate their levels of abstraction.
e Modeling languagessuch as UML and SysML, can bemanlpuae eir 1evels of abstraction

; . . . HIFSuite alread rovided abstraction and optimization
used to specify the desired functionality and tasks [20]'functi0nalities for é/ig?tal HW models [19], [22]. FI)-|owever

e IP-XACT permits to specify how the subcomponents of thgome additions have been implemented to support heteroge
system must interact in order to implement the functionreous smart devices. In particular, the methodology pteden
ality. A recent extension to extra-functional informationy [24] to automatically abstract Analog HW and MEMS
permits to analyze and develop the functional behavior g{odels has been implemented on top of HIFSuite in a tool
the system keeping an eye on extra-functional propertiggiled OCCAM The abstraction procedure starts from an
of the system, that may be crucial when dealing with smaghajog model expressed in the HIFSuite format and a set of
systems design [21]. physical quantitiesif., “values of interest”) of the system

e Formal specifications and extra-functional parametars specified by the designer. Usually, values of interest are
currently supported in terms of mathematical basethose quantities that carry behavioral information to theeo
formalisms,e.g. Temporal Logic properties, Mixed-Integercomponents of the systene.§, input or output nodes of an
Linear problems, and Assume-Guarantees Contracts. Taisctrical analog device). The abstraction procedure ressu
allows designers to specify in mathematical terms systeime preservation of the values of interest, and it explditics
parameterse.g, properties orthogonal to functionality, likealgebraic symbolic resolution to simplify the system. Afte
timing, reliability, and costs. the abstraction, the model of the component preserves only

To support this flow, the HIFSuite front-end mechanismi§€ events on the values of interest. .
and semantics are extended to manage UML/SysML models!ntegration of components is then performed by matching
Assume/Guarantees Contracts and IP-XACT specification fg?mponents interfaces (automatically extracted from tte- H

Homogeneous'
Code
Generation

Figure 2: Overview of the proposed design flow.

both functional and extra-functional specifications. Suite models) with the information given by the designenabo
) ) interfaces and communication between componends high-
B. Models Conversion and Abstraction level system specifications provided as IP-XACT descrip)o

Models within the library of reusable components are aB@nce components are integrated into the homogeneous model,
ready specified in a number of languages and frameworks. Itlie processes involved in the system are synchronized. The
thus necessary to remove their language-specific detadsioa synchronization is delegated to a scheduling generatiooepr
convert them into the intermediate representation of Hif€Sudure [22], extended to support events generated by conisiuo
through thebottom-uppath of the methodologyi.€., Step@ time components.
in Figure 2). These automatic translations correctly map th After abstraction and integration, the system is compjetel
semantics of the different formalisms and languages imalvspecified by a single homogeneous model, entirely based on



Components Library HIFSuite

Software .
1 . Memory gzt MLite-CPU
| : . Optimized
| Functionality | Optimizations Functionality
Components | Eront-end | y . BUS Interface
Models tools |
] BUS Iterface

Accelerometer

Components BUS Interface

Interfaces

.
Communication
Information

UART

Homogeneous
Serial Interface
Ba:::els"d Implementation I "\"
nd S NETWORK

Structural
Implementation

IP-XACT IP-XACT
Model Front-end

Abstraction

= P Figure 4: Overview of the @3TC structure. Colors highlight
Avstracted [ gadcend %mp'e';;;';m'm the different design domains involved.

Implementation tools

Figure 3: HIFSuite-based flow for integration and absteacti AN2log HW (red), Network peripherals (grey)embedded SW
of smart device models into SystemC and C++ representatioff€!low), and finally, system-level interconnectior{srange,
implemented as digital HW components). Th&‘dC com-

the discrete-event model of computation and thus specitiedg@nents are:

the behavioral abstraction-level. e MLite-CPU: digital HW microprocessor compatible with

D. Homogeneous Code Generation the MIPS instruction set. The IP is originally provided as

One of the main characteristics of the desired simulatienen ¥ 1Dk description, within the Plasma project of Open-
vironment is that it relies on a single language, to remowe an ores;
synchronization overhead. This is achieved by automéatical ® Memory digital HW component implementing a 256KB
generating code from the homogeneous intermediate model, SRAM memory, used to store the SW application as well
expressed in the HIFSuite format. as the data sensed and computed by the device and to han-
Figure 3 recaps how components are integrated and ab-dle Memory Mapped Input-Output communication with
stracted to generate the virtual prototype of a given system the peripherals. It is originally implemented in Verilog.
At this point, the starting descriptions have been condeite e UART: digital HW peripheral performing Parallel to Serial
the HIFSuite intermediate format through front-ends (hefst conversion. It provides a serial interface to the devicat th
arrows). The homogeneous format is then handled by con- can be used to program the entire system, or read computed
sidering functionality and interfaces separately. Ir#teels are data. Its open-source VHDL implementation is available in
matched with the high-level architecture specificationgior the 16550 UART component project of OpenCores.
nally mpdeled through IP-XACT descripti.ons. This permds t § Accelerometer analog HW peripheral, implementing a
determine the structure of the system, in terms of SystemC 4 ayis accelerometer. It is used to sense the environment
modules and connections. The functionality is then used 10 i, yorms of the accelerations that the platform is subjected
populate the modules, after the application of optimizatio  , The original Verilog-A description of the IP has been

steps, like [25]. This information enable_s HIFSuite paold-e provided by industrial partners of the SMAC European
tools to generate homogeneous structurghplementation of Project.

the system in SystemC. . )
y y RF-Transceiver and Netwarletwork peripheral used to

In order to improve performance, it is possible to raise the’ N it dat ket-based network. Th iinal
level of abstraction tdbehavioral level To this extent, the ransmit data over a packet-based network. 1ne origina
model is developed at a high-level of abstraction, using

model undergoes the abstraction procedure implemented bySCNSL
the framework. The final model of the system is automatically _
implemented in C++ by the HIFSuite back-end tools, thus APB Bus main bus used to connect the CPU-memory

constituting an efficient virtual prototype of the system. subsystem to the peripherals. The adopted implementation
complies with the ARM APB and it is modeled both in
V. CASE STUDY: THE OPEN-SOURCE Verilog and as IP-XACT specification.
SMART SYSTEM TESTCASE e Communication, Interfaces and Interconnectioimsernal
The Open-Source Smart-System Test Cas§°(T) rep- connections and communication among the components of

resents an example Smart System, developed in the contextthe platform are described at ESL using IP-XACT.

o:‘l ttf;]e ?MACI Ifjuropgan F;rolect t[16].tTheS®T% ?;]Jppor;[s o a Software Applicatiomunning on the CPU. The SW main

all the typical domains of smart systems, an us clearly loop samples and gathers data sensed by the accelerometer.
hlghllghts the degree_of heterogene|t_y and_the typicalessu The data are then transmitted as follows: the least signif-
that arise at design time. TheSOTC is available as open- icant byte is written on the UART, while the entire value

source demonstrator for HIFSuite is sent through a packet switching network by using the

Itzlgulre 4 depicts ;[E c _stru<|:tuzje ;f th@g Ct: IW:\?\;G Sl'ﬁer' RF-transceiver. The SW is given as Assembly code and as
ent colors expose the involved domaiiigita (blue), the list of opcodes generated for the MLite-CPU.

Lhttp://download.hifsuite.com/ The list of the constituting components highlights that the



to automatically generate its SystemC model, and is thus at

Abit:::lt;on Scenario Homogeneogs strugtural leveComponents are aggrega.ted
together by interfacing the SystemC models at the Register-
Behavioral (6) @i\ﬁg&i ?%SJELACCOT]ID%N, Tran_sfer Level (RTL): The system model in Scenario (5) is
Transactional ) GENERATION obtained by abstracting the Hom(_)geneous Structural model
of each component to th&ransactionallevel. SystemVue-
Functional - x(égED]ESéEisgﬁﬁgﬁN compliant C++-implementations of the system componers ar
Homogeneous @ ggnerated and_ integrated by the designer Wi_thin Sys.temVue.
Structural § MODELS CONVERSION Finally, Scenario (6) performs further abstraction anegna-
Structural 1)) 3) & CODE GENERATION tion to crgate a monoI|th|cBeha_1V|oraId|_screte-event mod(_al
of the QS°TC. Code generation is exploited to create the final
Device - C++ model for simulating the entire system.
Physical - Table IV summarizes the execution time needed by the

] ] ] ) ) different scenarios to simulate 100 ms of system execution,
Figure 5: Mapping of the six scenarios used in the expe(jiih a time step of 100 ns. ColunRelative Speed-ugports

mental section with respect to the abstraction levels of the, speed-up between consecutive scenagigsas a result of
taxonomy in Table III. abstraction or transformations. Colurfiatal Speed-upeports

OS3TC is subjected to a high degree of heterogeneity, in terre s;;]eed-up of each scenario w.r.t. scenario (1), thates th
of both domains and abstraction levels. As such it represemOSt eterogeneous one.

a good case study for smart systems design methodologies. A first fact. that appears clgar from these results is that the
number of simulators instantiatethence the number of co-

VI. EXPERIMENTAL RESULTS simulation interfaces employed, heavily impacts perfarosa

The OS3TC has been used to evaluate the impact Up particular, it is worth noticing that every co-simulatio
translation and abstraction on system simulation. For tffgerface (three in the case of the first entry of the table tw
experimental analysis, we generated six scenarios ateiffe N the second and only one in the third), seems to introduce

abstraction levels of the proposed taxonomy, and we cordpaféound 60 seconds overhead.t. the simulation without any
them in terms of simulation speed. co-simulation interface (fourth scenario). This corregeto
We considered three co-simulation scenarios: an overhead of more than 60%. As a result, the impact of
(1) The original models of the components are c |[1_terfaces and conversion layers between different tcgﬂms
simulated by different simulators and synchronize ighly relevant and dependent on th.e number of.used inesfac
and external tools. Thus, translating to a unique language

Itgtri?)l:]ggn\};?gr?:gre]: [S%/]s temVue, a Ptolemy-based Slmlpj)'ositively impacts on the simulation time required.

(2) The original models of the components are co-simulat Introducing abstraction together with translation (fifth- e

d . : :
by different simulators and synchronized within the heE—ry of the ta_ble) prowd_es thenaximum relgmvg speed-up
. i ) Finally, the sixth scenario merges synchronization andabeh
erogeneous environment provided by Mentor's Questa

(3) Allthe components are translated into C++, despite ef tki10rs within a unique mon.OI'th'C. executable model, presegvi
: . . : only the events of functional interest for the designer.sThi
UART, that is co-simulated by using an ad-hoc simulator

and synchronized with the others by using SystemVueprOVides the most optimized simulation environment atééa

) ) i for the system and thus the best simulation performance,
The flow in this paper has then been applied to tHe'TC ¢, responding to thenaximum total speed-ufThese results
to create three simulation scenarios: show that the configuration identified in Section 11, conibin
(4) Components are translated into SystemC-RTL am@mogeneous simulation and the adoption of the discretatev

SystemC-AMS, to be integrated and simulated within thgloC, is the most effective for the design of heterogeneous

SystemC simulation kernel; smart systems.
(5) Components are abstracted into C++ descriptions, im-Note that, given the same case-study, this paper leads to
ported and integrated within SystemVue; a there is a slight reduction of speed-up with respect to the

(6) Components are abstracted and integrated to creatgeguits obtained in [1] (24.11x against 13.10x). The better
unique homogeneous C++ model providing a “mongerformance of [1] can be easily justified by the fact that the
lithic” simulation of the entire smart system. proposed flow was not entirely automatic. The approach in [1]

Figure 5 places the scenarios in the abstraction levelseof ttequired indeed manual definition of thuiivERCM models
taxonomies described in Section Ill. Arrows on the right aff some components, thus resulting in a time-consuming and

the Figure depict the transformations applied to move froerror-prone re-modeling activity by the designer, that be t

one level to another (as described in Section V). The thre¢her hand allowed the application of manual optimization.

co-simulation scenarios are Structural models of t#&TC, this work, instead, the processfigly automaticand allowed
while the three simulation scenarios express the systemta@tproduce the final Scenario (6) in few minutes rather than
three different abstraction levels. Scenario (4) is oletdiby few man-days, still providing a speed-up in the same order of
applying model conversion for each component of the systemagnitude.



Table 1V: Execution time needed by the different S|mulat|0ﬂ5] A Sangiovanni-Vincentell, “Defining platform-base design.”

and co-simulation scenarios considered. EEDesign of EETime2002.
[16] R. Gillon, G. Gangemi, M. Grosso, F. Fummi, and M. PoogitMulti-

Scenario S}Tnﬁ‘éat(';n SR?;Z‘E"‘_’E SE’;Z'_U domain simulation as a foundation for the engineering ofrsgystems:
— REECLR | Sheetih Challenges and the SMAC vision," IEEE ICECS |EEE, dec 2014,
(1) | (SystemVue-based 278.59 - - pp. 858-861.
coordination) [17] L. Di Guglielmo, F. Fummi, G. Pravadelli, F. StefannhdaS. Vinco,
Structural “UNIVERCM: the UNIversal VERsatile Computational Model rfo
Co-Simulation | (2) |  (Modelsim & 21547 1.29x 1.29x heterogeneous system integratiofZEE Transactions on Computers
ELDO SPICE) vol. 62, no. 2, pp. 225-241, 2013.
@ | (systemvue & 153.23 1.37x 1.82x [18] L. Di Guglielmo, F. Fummi, G. Pravadelli, F. StefannidaS. Vinco, “A
Modelsim) formal support for homogeneous simulation of heteroges@mnbedded
Homogeneous systems,” in Proceedings of the IEEE International Symposium on
4 Structural 97.59 1.61x 2.85x Industrial Embedded Systems (SIES) 20@12, pp. 211-219.
Simulation (SystemC-RTL) [19] N. Bombieri, G. D. Guglielmo, M. Ferrari, F. Fummi, G.a&adelli,
®) (nggsyi‘t’g%’&']e) 36.32 2.69x 7.67x F. Stefanni, and A. Venturelli, “Hifsuite: tools for hdl cectonversion
Behavioral and manipulation,EURASIP Journal on Embedded Systews. 2010,
(6) (C++) 21.26 1.71x 13.10x p. 4, 2010.
[20] M. Lora, F. Martinelli, and F. Fummi, “Hardware Syntliesfrom
Software-oriented UML Descriptions,” ifProc. of IEEE MTV 2014,
. 33-38.
VII. CONCLUSIONS [21] gp Vinco, M. Lora, E. Macii, and M. Poncino, “IP-XACT fosmart

. i theomi systems design: extensions for the integration of funefi@nd extra-
This work presented a meet-in-the-middle approach 10 g uiona) models. inProc. of ECSIEEE FDL 162016, pp. 1-8.

model and simulate heterogeneous smart devices. From a[s8ts. vinco, V. Guarnieri, and F. Fummi, “Code Manipulatidor Vir-
of components belonging to different design domains and tual Platform Integration,”|IEEE Transactions on Computersioi:

expressed in a heterogeneous set of abstraction Ievels,[ Féo'{/lir?gg szoii'foggga',\Azog\}o"nski “Conservative Bafaural

methodology exploits automatic translation, abstractoml Modelling in SystemC-AMS,” inProc. of ECSI/IEEE FDL 2015, pp.
integration to reconcile the heterogeneous set of comgonen 1-8.

: : _ E. Fraccaroli, M. Lora, S. Vinco, D. Quaglia, and F. Fumftintegration
models into a smgle homerneous system level model. T[ﬁé] of mixed-signal components into virtual platforms for Istii simulation

high-level model generation is guided by the analysis of of smart systems iProc. of IEEE/ACM DATE2016, pp. 1-6).
two taxonomies of modeling and simulation technologies f6#5] N. Bombieri, F. Fummi, V. Guarnieri, F. Stefanni, and inco,

- : “HDTLIib: an efficient implementation of SystemC data types fast
hetemgeneous devices. A virtual prototype of smart system simulation at different abstraction leveld)esign Automation for Em-

device has been presented and released open-source as @edded Systemsol. 16, no. 2, pp. 115-135, jul 2012.
demonstrator. The application of the proposed methodolog§] Keysight Technologies, “SystemVue,” http://www.lsight.com/.
showed the positive impact of the proposed solution.
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