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Abstract

Orthogonal Fractional Factorial Designs and in particular Orthogonal Arrays are frequently
used in many fields of application, including medicine, engineering and agriculture. In this
paper we present a methodology and an algorithm to find an orthogonal array, of given size
and strength, that satisfies the generalized minimum aberration criterion. The methodology
is based on the joint use of polynomial counting functions, complex coding of levels and
algorithms for quadratic optimization and puts no restriction on the number of levels of each
factor.
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1 Introduction

In this paper we present a methodology to find one obistorthogonal arrays for the generalized
minimum aberration (GMA) criterion, as defined in Cheng and Ye (2004). We refer to these
designs as GMA-optimal designs. For arfactor design, the GMA-criterion is to sequentially
minimize the severity of aliasing between all théactor dfects and the overall mean, starting
fromi = 1 (main dfects) and finishing at= m (m-factor interaction fects).

The joint use of polynomial indicator functions and complex coding of levels provides a general
theory for mixed level orthogonal fractional factorial designs, see Pistone and Rogantin (2008). It
also makes use of commutative algebra, see Pistone and Wynn (1996), and generalizes the ap-
proach to two-level designs as discussed in Fontana et al. (2000). This theory does not put any
restriction either on the number of levels of each factor or on the orthogonality constraints. It
follows that our methodology can be applied to find any GMA-optimal mixed-level orthogonal
array.

Orthogonal Arrays (OAs) are frequently used in many fields of application, including medicine,
engineering and agriculture. Theffer a valuable tool for dealing with problems where there are
many factors involved and each run is expensive. They also keep the statistical analysis of the data
quite simple. The literature on the subject is extremely rich. A non-exhaustive list of references,
mainly related to the theory of the design of experiments, includes the fundamental paper of Bose
(1947) and the following books: Raktoe et al. (1981), Collombier (1996), Dey and Mukerjee
(1999), Wu and Hamada (2000), Mukerjee and Wu (2006) and Bailey (2008).

Orthogonal Arrays represent an important class of Orthogonal Fractional Factorial Designs
(OFFDs), see, for example, Hedayat et al. (1999) and Schoen et al. (2010). Indeed an Orthogo-
nal Array of appropriate strength can be used to solve the wide range of problems related to the
guantification of both the size of the maifiexts and the interactions up to a given order of interest.

This paper is organized as follows: in Section 2 we briefly review the algebraic theory of
OFFDs based on polynomial counting functions. The computation of the wordlength pattern of a
design is described in Section 3 while we describe the algorithm in Section 4. Some applications

of the algorithm are presented in Section 5. Finally, concluding remarks are in Section 6. Section 2
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is closely based on Section 2 of Fontana (2013). We include it here to facilitate the reader.

2 Algebraic characterization of OFFDs

In this Section, for ease in reference, we present some relevant results of the algebraic theory of
OFFDs. The interested reader can find further information, including the proofs of the proposi-

tions, in Fontana et al. (2000) and Pistone and Rogantin (2008).

2.1 Fractions of a full factorial design

Let us consider an experiment which inclugefactors?D;, j = 1,...,m. Letus code the; levels

of the factorD; by then;-th roots of the unity

DJ = {(,()g]j), ey w(nj)l},

nj—

wherew" = exp(\/—lﬁ—’jr K, k=0,....nj-1 j=1....m
The full factorial designwith complex codings O = D; x --- Dj--- X Dy, We denote its

cardinality by #D, #D = ]}, n;.

Definition 1. A fraction¥ is a multiset(F., f.) whose underlying set of elememtsis contained
in O and f is the multiplicity function .f: #. — N that for each element iff. gives the number

of times it belongs to the multisgt.

We recall that the underlying set of elemefitss the subset ab that contains all the elements
of D that appear i at least once. We denote the number of elements of a fragtiby #7,
with #7 = 3 7. 1.(0).

Example 2. Let us consider r& 1, n; = 3. We get

D =11, exp( V-1 %) , exp( V-1 4—§)}

The fractionF = {1, 1, exp(\/—_l %)} is the multise(7, f,) where¥, = {1, exp(\/—_l %)} f.(1) =
2,and f(exp( V=1%)) = 1. We gettF = f.(1) + f.(exp(V-1&)) =2+1=3.
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In order to use polynomials to represent all the functions defined®©yercluding multiplicity

functions, we define

¢ Xj, the j-th component function, which maps a point (1, ..., ¢m) of D to its j-th com-
ponent,
Xj: D3(§1,...,§m) — (:j ED] .

The functionX; is asimple ternor, by abuse of terminology, factor.

o X% = Xfl-...-X%m,ae L =2y X+ XZn, i.€., the monomial function
X D3 (L, .. lm) o G

The functionX? is aninteraction term

We observe thatX* : @ € L = Z,, X --- X Z_} is a basis of all the complex functions defined
over?D. We use this basis to represent the counting function of a fraction according to Definition
3.

Definition 3. Thecounting functiorR of a fraction¥ is a complex polynomial defined ovérso
that for eachy € D, R(¢) equals the number of appearances’oh the fraction. A0 — 1 valued
counting function is called amdicator functionof a single replicate fractiorr. We denote by,c

the cogficients of the representation of R @husing the monomial bas{X?, « € L}:

R = Y 6X(). {eD. c,eC.

ael
With Proposition 4 from Pistone and Rogantin (2008), we link the orthogonality of two inter-
action terms with the cdicients of the polynomial representation of the counting function. We

denoteby X the complex conjugate of the complex numker

Proposition 4. If ¥ is a fraction of a full factorial designD, R = .. ¢, X* is its count-

ing function ande - ] is the m-tuple made by the componentwiggedénce in the ring<,,,

([al _ﬁl]nl DI [am _ﬁm]nm), then
1. the cogficients ¢ are given by ¢ = 2 3. X*(0) ;
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2. the term X is centered o1 i.e., # Yer X9(¢) = 0if,and only if, ¢ = ¢_) = 0;
3. the terms Xand X are orthogonal orF if and only if, g,_5 = O.

We now define projectivity and, in particular, its relation with orthogonal arrays. Qiven

{is,....IkJc{l,....mhi; <...<igandl = ({1,...,{m) € D we define the projection (¢) as

m@)=6=,. ... 6) €D, X... XD, .

Definition 5. A fraction¥ factorially projectsonto the I-factors, k& {iy,...,ik} Cc {1,...,m}, i; <
... <, ifthe projectionr, () is a multiple full factorial design, i.e., the multiggd;, x. . .xD;,, f.)

where the multiplicity function, fis constant oveD;, x ... X D,.

Example 6. Let us consider & 2,n; = n, = 2 and the fractionF = {(-1,1), (-1, 1),
(1,-1),(1,1)}. We obtainmy(F) = {-1,-1,1,1} and () = {-1,1,1,1}. It follows thatF

projects on the first factor and does not project on the second factor.

Definition 7. A fraction# is a mixed orthogonal arragf strength t if it factorially projects onto

any |l-factors with#l =t.

Proposition 8. A fractionfactorially projects onto thé-factors
I ={i,....0k} C{1,....,m}i; <... <l if and only if, all the coficients of the counting function

involving the I-factors only aré.
Proposition 8 can be immediately stated for mixed orthogonal arrays.

Proposition 9. A fraction is anorthogonal array of strengthif and only if, all the coficients

C., @ # (0,...,0) of the counting function up to the order t abe

3 Aberration criterion

Using the polynomial counting function, Cheng and Ye (2004) provide the following definition of
the generalized wordlength patterr = (a1(F),...,am(¥)) of a fraction¥ of the full factorial
design?d.
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Definition 10. The generalized wordlength pattem3 = (a1(F),...,an(F)) of a fractionF of

the full factorial desigrnD is defined as
“(F)= Y (%)Z i=1,....m
jlomi O
wherel|a||o is the number of non-null elements @f

According to the algebraic methodology that we have described in Sectiorc2s ase com-

plex numbers, we should simply generalize Definition 10 as follows.

Definition 11. The generalized wordlength pattewy = (a1(F),...,an(F)) of a fractionF of

the full factorial desigrD is defined as
||ca||z)2 .
ai(F) = — I=1....m
@) ,,(;ozi (||Co||2
where||X||, is the norm of the complex numbgr

The generalized minimum aberration criterion is to sequentially minimiz€) fori = 1,..., m.

In Section 3.1 we provide a formula to compwér), i = 1,...,m, given a fractiorx C D.

3.1 The wordlength pattem of a fraction

Given afF of the full factorial desigrD, let us consider its counting functiéh= }’ ., c,X*. From

item 1 of Proposition 4 the cdigcientsc, are given by

1 _
Co = = Xa(g)
#D (EZ?

or equivalently
1 -
Co = #D Z R()X*(2).
eD
The square of the norm of a complex numkiean be computed as It follows that

2 —_—
”Ca”z = CyCqy

To make the notation easier we make the non-restrictive hypothesis that both tigeofithe full
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factorial designD and the multi-indexes df = Z,, x --- x Z,, are considered in lexicographic
order. We get
#HD)lcE = ) ROX Q) =
eD

= (X V)@ Y) = YTXexeTy

whereX? is the column vectofZ? : € D], Y is the column vectofR(¢) : £ € D] and.” denote
the transpose of a vectoks in Fontana (2011) e/refer toY as the counting vector of a fraction.
We denote byH® = [h; :i,j = 1,...,#D] the matrix X*XT. By construction the matrikl® is

Hermitian and positive-definite.

Proposition 12. The square of the norm of ¢s

ICal3 = (#@)ZYTHEKY
where H; = [Re(h ) i, ] = 1,...,#D] andRe( ) is the real part of the complex number, h
Proof. For a quadratic form we have

YTHeY = YT (HY)TY
The matrixH® is Hermitian: H*)" = He. It follows that

(#D)llcallz = YTHRY

whereHZ = [Re( ;) :i,j = 1,...,#D] and Rey ;) is the real part of the complex numbdgs. O

In this way we can compute the generalized word length pattern using only real valued vectors
and matrices. In Proposition 13 we provide an explicit expression of the elements of the matrix
Hg.

Proposition 13. The real part of the element jof the matrix H is

27T v N .
COS(FZ —ak(tk—zk)] Lj=1...,#D
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where(z, ..., zy,) (resp.(ty,. .., ty) ) is the i-th (resp. j-th) row of = Z,,, X - -- X Z,, and n is the

lowest common multiple ofn..,ny,, n=lcm(ng, ..., Ny).

Proof. Let{ = (Z1,. .., {m) be thei-th row of D. We havei = exp(V-1%z),k = 1,...,mwhere
(z,...,2zy) is thei-th row of L = Zp, X --- X Z,_ . Analogously letr = (74,...,7y) be thej-th row
of D. We haver, = exp(\/—_ln@ktk), k=1,...,mwhere(,...,ty) is thej-row of L.

The complex conjugate af is 7, = exp V—_ln@kzk) k=1,...,m It follows thath; ; can be
written as

exp(v—_ln@lal(tl —z)) ... exp(x/—_l?am(tm ~ Z))

or

exp(\/—_l%(nﬂlal(tl —z)+...+ nia’m(tm - Zm)))

m

wheren is the lowest common multiple of,, ..., ny,, n = lcm(ny,. .., ny). Taking the real part of

hi,; we complete the proof. O

Proposition 14. The generalized wordlength pattet = (a1(F), ..., an(F)) of a fraction# of
the full factorial desigrD is

ai(F) = YTHYi=1...,m

(#F)?
Proof. From Definition 11 we have
||ca||z)2 .
ai(F) = — I=1....,m
» ,,%‘;(nconz
From item 1 of Proposition 4 we geg = % and thereforacollg = (%)2. We can also write

HD)? D llcal = #D)? > YTHRY =

llallo=i llallo=i
= (#DPYT( > HR)Y = (#D)PYTHY
llello=i

Whel’eH, = Z”ﬂ’”O:i Hg O

From a computational point of view (see Section 3.2) it is useful to consider the Cholesky

ACCEPTED MANUSCRIPT
8



ACCEPTED MANUSCRIPT

decomposition of the symmetric and positive definite malttixH; = UiTUi, i=1...,m Thus

from Proposition 14 the wordlength pattern of a fractorc D can be written as

1

ai(?"):w

UiYI5 i=1...,m

3.2 GMA for mixed level orthogonal arrays

From Proposition 9 we know that for orthogonal arrays of strengihthe codficientsc, of the
counting function up to ordéer(that is O< ||a|lo < t) must be 0. The generalized wordlength pattern

ag Of an orthogonal arraf of strengtht will be
O,...,0,at,1(F), ..., am(F)).
It follows that the counting vectors must satisfy the following condition
UY=0 i=1,...,t

or, equivalently,

where

U

Fontana and Pistone (2013) show that, given the full factorial deSigithe counting vectors
Y =[R(Q) : ¢ € D] of the orthogonal arrayg C D of strengtht are the positive integer solutions
of a system of linear equation&Y = 0. This result was used to build an algorithm, Fontana (2013),
and a software, Fontana and San{@013), for minimum-size mixed-level orthogonal fractional
factorial designs generation. The present paper showBeaatit way to build the constraint matrix
A.

Let us suppose that we are interested in orthogonal arrays olNsiZ&e GMA-criterion will

provide the OAs with the maximum strendtfor the given sizeN. If the norm ofU,Y is strictly
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positive,||U. Y], > O for all the counting vector¥ it follows that no OA exists for that sizN.

4  An algorithm for GMA designs

A counting vector of a GMA-optimal design can be obtained througmtkeeps of the algorithm

below.

1. The input of the algorithm is made of:

(a) the numbem of the factors and the number of levglof thei-th factor,i = 1,...,m;

(b) the sizeN of the fractionF.

2. Solve the following quadratic optimization problem

min||U.YI3

subject to
1)
1TY =N,

Y=[yilyi€Zy >0
Let us denote by one solution and ledV} = ||U1Y1*||§.
3. Solve the following quadratic optimization probldms 2,..., m
min||UkYI13
subject to
1Y =N,

IU1YI5 = W, - 2

Uk Y15 = W,

Y=[yl.yi€Zy =20

ACCEPTED MANUSCRIPT
10



ACCEPTED MANUSCRIPT

Let us denote by one solution and le¥}! = [UyY;!l3. We observe that iV = 0, ] €

{1,...,m} then the conditioer* = ||U,-Y||§ can be simply replaced dy;Y = 0.

4. If|JUYxll = ... = lU Y]l = 0 and||Uy, 1 Y|l > O the solutionY;: of the last optimization
problem, corresponding to timeth step, is the counting vector of an orthogonal atfag D
of size N and strengtt that is optimal according to the GMA-criterion. The wordlength
pattern ofF is

1 1
(O”O,W” "W

If JULYZll2 > O then the solutiorY, is a fraction that is optimal according to the GMA-

2 2
WA, - IWGI2)-

criterion but that is not an OA.

5 Testcases

We denote byYOA(N, n; - ... - Ny, t) @ mixed level orthogonal array witR rows, m columns (the
i-th column hagy levels,i = 1, ..., m) and with strengtt.

The computations are made using

e one main module, written in SAS IML, that prepares theptimization problems, SAS

Institute Inc. (2008);

e MOSEK that solves each optimization problem, MOSEK ApS (2044) that is accessed
using the R-to-MOSEK interface, Friberg (2012).

The simulation study has been conducted on a standard laptop (CPU Intel Core i7-2620M CPU
2.70 GHz 2.70 GHz, RAM 8 Gb).

From the simulation study, we observe that, if we want that the processing time does not exceed
one hour, we should consider a maximum of 6-7 factors. However, even if the processing time is
not a critical feature for design generation some actions could be taken to improve the performance
of the algorithm. First of all, high performance computing systems could be used in place of
standard laptops. Then the software could be made nfficesat (i) avoiding the use of high-level

languages like SAS and R in favor oft@ and (ii) also implementing some simplifications like,
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for example, the replacement, when possible, of the quadratic condiipfi|; = W with the

linear conditionU;Y = 0, as discussed in Section 4.

5.1 Fiveand sixfactors with 2 levels each

We consider five factors with 2 levels each. We initially chobse= 16. Using the algorithm
described in Section 2, we obtain 5 fractions, that are the optimal solutions corresponding to steps
1,...,5. The wordlength patterns of these fractions are shown in Table 1. The GMA-optimal
fraction, that is found at the last iteration, is @#(16, 2°, 4) with a wordlength pattern equal to
(0,0,0,0,1). The processing time was 29 seconds

We now consideN = 6,8,10,12 14. The wordlength patterns of the GMA-optimal solutions
together with the corresponding processing tirakespresented in Table 2.

Finally we consider six 2-level factors witkh = 16. The GMA-optimal fraction, that is found
at the last iteration, is a®A(16, 2%, 3) with a wordlength pattern equal to,(®0,3,0,0). The

processing time was 26 minutes

5.2 Mixed-level orthogonal arrays
5.2.1 Four factors, one with2 levels and three with3 levels each

We consider four factors, the first with 2 levels and the remaining three with 3 levels each. We
chooseN = 18. We obtain 4 fractions, that are the optimal solutions obtained at step4. The
wordlength patterns of these fractions are reported in Table 3. The GMA-optimal fraction, that is
found at the last iteration, is @DA(18, 2 - 33, 2) with a wordlength pattern equal to, 0.5, 1.5).

The processing time was 4 minutes and 30 seconds.

5.2.2 Four factors, one with4 levels, one with3 levels and two with2 levels each

We chooseN = 24. The GMA-optimal fraction is a®A(24,2? - 3 - 4,2) with a wordlength

pattern equal to (®,0.11, 0.89). The processing time was 37 minutes. Then we chbdbse

ACCEPTED MANUSCRIPT
12



ACCEPTED MANUSCRIPT

12. The GMA-optimal fraction is at®A(24,2? - 3 - 4,1) with a wordlength pattern equal to
(0,0.22,1.89,0.89). The processing time was 8 minutes.

6 Conclusion

The joint use of polynomial counting functions and quadratic optimization tools makes it possible
to find GMA-optimal mixed-level orthogonal arrays of a given size. It is worth noting that the
methodology does not put any restriction on the number of levels of each factor and so it can be
applied to a very wide range of designs. The methodology works with the standard partition of
the set of the monomial exponents,= Z,, x ... x Z,,: main dfects, 2-factor interactions, ...,
m-factor interaction but it can also be easily adapted to work with any partitien ©he range of

applications is limited only by the amount of computation@&be required.
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Table 1: Wordlength patterns of optimal fractions dfetient stepsn=5n=...=ns=2,N =
16
step| au(F) @o(F) as(F) as(F) as(F)
1 0 10 0 5 0
2 0 0 1 0 0
3 0 0 0 1 0
4 0 0 0 0 1
5 0 0 0 0 1
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Table 2: Wordlength patterns of GMA-optimal fractions dfdient sizesn=5n; = ... =ns =2
N | 1(F) @oF) as(F) as(F) as(F) Type Proc.times
6 0 111 178 1.44 0 OA(6,2°,1) 0m28s
8 0 0 2 1 0 OA@8 2,2 Om 8s
10 0 0.4 0 1.8 0 OA(10,2°,1) 1m36s
12 0 0 1.11 0.56 0 OA(122%2) O0m9s
14 0 0.2 0 1.08 0 OA(14,2°,1) 56m55s
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Table 3: Wordlength patterns of optimal fractions= 4,n; =2,n, =... =ny;=3,N =18
step| a1(F) @o(F) as(F) asF)

1 0 181 1.09 1.09
2 0 0 1.78 0.22
3 0 0 0.5 15
4 0 0 0.5 15
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