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orthogonal arrays: a general approach based on

sequential integer quadratically constrained quadratic
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Abstract

Orthogonal Fractional Factorial Designs and in particular Orthogonal Arrays are frequently

used in many fields of application, including medicine, engineering and agriculture. In this

paper we present a methodology and an algorithm to find an orthogonal array, of given size

and strength, that satisfies the generalized minimum aberration criterion. The methodology

is based on the joint use of polynomial counting functions, complex coding of levels and

algorithms for quadratic optimization and puts no restriction on the number of levels of each

factor.

Keywords: Design of experiments; Generalized minimum aberration criterion; General-

ized wordlength pattern; Counting function; Integer quadratically constrained quadratic pro-

gramming
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1 Introduction

In this paper we present a methodology to find one of thebestorthogonal arrays for the generalized

minimum aberration (GMA) criterion, as defined in Cheng and Ye (2004). We refer to these

designs as GMA-optimal designs. For anm-factor design, the GMA-criterion is to sequentially

minimize the severity of aliasing between all thei-factor effects and the overall mean, starting

from i = 1 (main effects) and finishing ati = m (m-factor interaction effects).

The joint use of polynomial indicator functions and complex coding of levels provides a general

theory for mixed level orthogonal fractional factorial designs, see Pistone and Rogantin (2008). It

also makes use of commutative algebra, see Pistone and Wynn (1996), and generalizes the ap-

proach to two-level designs as discussed in Fontana et al. (2000). This theory does not put any

restriction either on the number of levels of each factor or on the orthogonality constraints. It

follows that our methodology can be applied to find any GMA-optimal mixed-level orthogonal

array.

Orthogonal Arrays (OAs) are frequently used in many fields of application, including medicine,

engineering and agriculture. They offer a valuable tool for dealing with problems where there are

many factors involved and each run is expensive. They also keep the statistical analysis of the data

quite simple. The literature on the subject is extremely rich. A non-exhaustive list of references,

mainly related to the theory of the design of experiments, includes the fundamental paper of Bose

(1947) and the following books: Raktoe et al. (1981), Collombier (1996), Dey and Mukerjee

(1999), Wu and Hamada (2000), Mukerjee and Wu (2006) and Bailey (2008).

Orthogonal Arrays represent an important class of Orthogonal Fractional Factorial Designs

(OFFDs), see, for example, Hedayat et al. (1999) and Schoen et al. (2010). Indeed an Orthogo-

nal Array of appropriate strength can be used to solve the wide range of problems related to the

quantification of both the size of the main effects and the interactions up to a given order of interest.

This paper is organized as follows: in Section 2 we briefly review the algebraic theory of

OFFDs based on polynomial counting functions. The computation of the wordlength pattern of a

design is described in Section 3 while we describe the algorithm in Section 4. Some applications

of the algorithm are presented in Section 5. Finally, concluding remarks are in Section 6. Section 2
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is closely based on Section 2 of Fontana (2013). We include it here to facilitate the reader.

2 Algebraic characterization of OFFDs

In this Section, for ease in reference, we present some relevant results of the algebraic theory of

OFFDs. The interested reader can find further information, including the proofs of the proposi-

tions, in Fontana et al. (2000) and Pistone and Rogantin (2008).

2.1 Fractions of a full factorial design

Let us consider an experiment which includesm factorsD j , j = 1, . . . ,m. Let us code thenj levels

of the factorD j by thenj-th roots of the unity

D j = {ω
(nj )
0 , . . . , ω

(nj )
nj−1},

whereω(nj )
k = exp

(√
−1 2π

nj
k
)
, k = 0, . . . , nj − 1, j = 1, . . . ,m.

The full factorial designwith complex codingis D = D1 × ∙ ∙ ∙D j ∙ ∙ ∙ × Dm. We denote its

cardinality by #D, #D =
∏m

j=1 nj.

Definition 1. A fractionF is a multiset(F∗, f∗) whose underlying set of elementsF∗ is contained

in D and f∗ is the multiplicity function f∗ : F∗ → N that for each element inF∗ gives the number

of times it belongs to the multisetF .

We recall that the underlying set of elementsF∗ is the subset ofD that contains all the elements

of D that appear inF at least once. We denote the number of elements of a fractionF by #F ,

with #F =
∑
ζ∈F∗ f∗(ζ).

Example 2. Let us consider m= 1, n1 = 3. We get

D = {1,exp

(√
−1

2π
3

)

,exp

(√
−1

4π
3

)

}.

The fractionF = {1,1,exp
(√
−1 2π

3

)
} is the multiset(F∗, f∗) whereF∗ = {1,exp

(√
−1 2π

3

)
}, f∗(1) =

2, and f∗(exp
(√
−1 2π

3

)
) = 1. We get#F = f∗(1)+ f∗(exp

(√
−1 2π

3

)
) = 2+ 1 = 3.
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In order to use polynomials to represent all the functions defined overD, including multiplicity

functions, we define

• Xj, the j-th component function, which maps a pointζ = (ζ1, . . . , ζm) of D to its j-th com-

ponent,

Xj : D 3 (ζ1, . . . , ζm) 7−→ ζ j ∈ D j .

The functionXj is asimple termor, by abuse of terminology, afactor.

• Xα = Xα1
1 ∙ . . . ∙ X

αm
m , α ∈ L = Zn1 × ∙ ∙ ∙ × Znm i.e., the monomial function

Xα : D 3 (ζ1, . . . , ζm) 7→ ζα1
1 ∙ . . . ∙ ζ

αm
m .

The functionXα is aninteraction term

We observe that{Xα : α ∈ L = Zn1 × ∙ ∙ ∙ × Znm} is a basis of all the complex functions defined

overD. We use this basis to represent the counting function of a fraction according to Definition

3.

Definition 3. Thecounting functionR of a fractionF is a complex polynomial defined overD so

that for eachζ ∈ D, R(ζ) equals the number of appearances ofζ in the fraction. A0 − 1 valued

counting function is called anindicator functionof a single replicate fractionF . We denote by cα

the coefficients of the representation of R onD using the monomial basis{Xα, α ∈ L}:

R(ζ) =
∑

α∈L

cαX
α(ζ), ζ ∈ D, cα ∈ C .

With Proposition 4 from Pistone and Rogantin (2008), we link the orthogonality of two inter-

action terms with the coefficients of the polynomial representation of the counting function. We

denoteby x the complex conjugate of the complex numberx.

Proposition 4. If F is a fraction of a full factorial designD, R =
∑
α∈L cαXα is its count-

ing function and[α − β] is the m-tuple made by the componentwise difference in the ringsZnj ,
([
α1 − β1

]
n1
, . . . ,

[
αm− βm

]
nm

)
, then

1. the coefficients cα are given by cα = 1
#D

∑
ζ∈F Xα(ζ) ;
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2. the term Xα is centered onF i.e., 1
#F

∑
ζ∈F Xα(ζ) = 0 if, and only if, cα = c[−α] = 0;

3. the terms Xα and Xβ are orthogonal onF if and only if, c[α−β] = 0.

We now define projectivity and, in particular, its relation with orthogonal arrays. GivenI =

{i1, . . . , ik} ⊂ {1, . . . ,m}, i1 < . . . < ik andζ = (ζ1, . . . , ζm) ∈ D we define the projectionπI (ζ) as

πI (ζ) = ζI ≡ (ζi1, . . . , ζik) ∈ Di1 × . . . ×Dik .

Definition 5. A fractionF factorially projectsonto the I-factors, I= {i1, . . . , ik} ⊂ {1, . . . ,m}, i1 <

. . . < ik, if the projectionπI (F ) is a multiple full factorial design, i.e., the multiset(Di1×. . .×Dik, f∗)

where the multiplicity function f∗ is constant overDi1 × . . . ×Dik.

Example 6. Let us consider m= 2,n1 = n2 = 2 and the fractionF = {(−1,1), (−1,1),

(1,−1), (1,1)}. We obtainπ1(F ) = {−1,−1,1,1} and π2(F ) = {−1,1,1,1}. It follows thatF

projects on the first factor and does not project on the second factor.

Definition 7. A fractionF is a mixed orthogonal arrayof strength t if it factorially projects onto

any I-factors with#I = t.

Proposition 8. A fractionfactorially projects onto theI -factors,

I = {i1, . . . , ik} ⊂ {1, . . . ,m}, i1 < . . . < ik, if and only if, all the coefficients of the counting function

involving the I-factors only are0.

Proposition 8 can be immediately stated for mixed orthogonal arrays.

Proposition 9. A fraction is anorthogonal array of strengtht if and only if, all the coefficients

cα, α , (0, . . . , 0) of the counting function up to the order t are0.

3 Aberration criterion

Using the polynomial counting function, Cheng and Ye (2004) provide the following definition of

the generalized wordlength patternαF = (α1(F ), . . . , αm(F )) of a fractionF of the full factorial

designD.
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Definition 10. The generalized wordlength patternαF = (α1(F ), . . . , αm(F )) of a fractionF of

the full factorial designD is defined as

αi(F ) =
∑

‖α‖0=i

(
cα
c0

)2

i = 1, . . . ,m

where‖α‖0 is the number of non-null elements ofα.

According to the algebraic methodology that we have described in Section 2, ascα’s are com-

plex numbers, we should simply generalize Definition 10 as follows.

Definition 11. The generalized wordlength patternαF = (α1(F ), . . . , αm(F )) of a fractionF of

the full factorial designD is defined as

αi(F ) =
∑

‖α‖0=i

(
‖cα‖2
‖c0‖2

)2

i = 1, . . . ,m

where‖x‖2 is the norm of the complex numberx.

The generalized minimum aberration criterion is to sequentially minimizeαi(F ) for i = 1, . . . ,m.

In Section 3.1 we provide a formula to computeαi(F ), i = 1, . . . ,m, given a fractionF ⊆ D.

3.1 The wordlength pattern of a fraction

Given aF of the full factorial designD, let us consider its counting functionR=
∑
α∈L cαXα. From

item 1 of Proposition 4 the coefficientscα are given by

cα =
1

#D

∑

ζ∈F

Xα(ζ)

or equivalently

cα =
1

#D

∑

ζ∈D

R(ζ)Xα(ζ).

The square of the norm of a complex numberx can be computed asxx. It follows that

‖cα‖
2
2 = cαcα

To make the notation easier we make the non-restrictive hypothesis that both the runsζ of the full
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factorial designD and the multi-indexes ofL = Zn1 × ∙ ∙ ∙ × Znm are considered in lexicographic

order. We get

(#D)‖cα‖
2
2 =

∑

ζ∈D

R(ζ)Xα(ζ) =

= (Xα
T
Y)(Xα

T
Y) = YTXαXαTY

whereXα is the column vector
[
ζα : ζ ∈ D

]
, Y is the column vector

[
R(ζ) : ζ ∈ D

]
and .T denote

the transpose of a vector.As in Fontana (2011) we refer toY as the counting vector of a fraction.

We denote byHα = [hi j : i, j = 1, . . . , #D] the matrix XαXαT . By construction the matrixHα is

Hermitian and positive-definite.

Proposition 12. The square of the norm of cα is

‖cα‖
2
2 =

1
(#D)2

YTHαRY

where HαR = [Re(hi, j) : i, j = 1, . . . , #D] andRe(hi, j) is the real part of the complex number hi, j .

Proof. For a quadratic form we have

YTHαY = YT(Hα)TY

The matrixHα is Hermitian: (Hα)T = Hα. It follows that

(#D)‖cα‖
2
2 = YTHαRY

whereHαR = [Re(hi, j) : i, j = 1, . . . , #D] and Re(hi, j) is the real part of the complex numberhi, j. �

In this way we can compute the generalized word length pattern using only real valued vectors

and matrices. In Proposition 13 we provide an explicit expression of the elements of the matrix

HαR.

Proposition 13. The real part of the element hi, j of the matrix Hα is

cos



2π
n

m∑

k=1

n
nk
αk(tk − zk)


 i, j = 1, . . . , #D
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where(z1, . . . , zm) (resp.(t1, . . . , tm) ) is the i-th (resp. j-th) row of L= Zn1 × ∙ ∙ ∙ × Znm and n is the

lowest common multiple of n1, . . . , nm, n = lcm(n1, . . . , nm).

Proof. Let ζ = (ζ1, . . . , ζm) be thei-th row ofD. We haveζk = exp(
√
−12π

nk
zk), k = 1, . . . ,m where

(z1, . . . , zm) is thei-th row of L = Zn1 × ∙ ∙ ∙ × Znm. Analogously letτ = (τ1, . . . , τm) be the j-th row

ofD. We haveτk = exp(
√
−12π

nk
tk), k = 1, . . . ,m where (t1, . . . , tm) is the j-row of L.

The complex conjugate ofζk is ζk = exp(−
√
−12π

nk
zk) k = 1, . . . ,m. It follows thathi, j can be

written as

exp(
√
−1

2π
n1
α1(t1 − z1)) ∙ . . . ∙ exp(

√
−1

2π
nm
αm(tm− zm))

or

exp(
√
−1

2π
n

(
n
n1
α1(t1 − z1) + . . . +

n
nm
αm(tm− zm)))

wheren is the lowest common multiple ofn1, . . . , nm, n = lcm(n1, . . . , nm). Taking the real part of

hi, j we complete the proof. �

Proposition 14. The generalized wordlength patternαF = (α1(F ), . . . , αm(F )) of a fractionF of

the full factorial designD is

αi(F ) =
1

(#F )2
YTHiY i = 1, . . . ,m

where Hi =
∑
‖α‖0=i HαR.

Proof. From Definition 11 we have

αi(F ) =
∑

‖α‖0=i

(
‖cα‖2
‖c0‖2

)2

i = 1, . . . ,m.

From item 1 of Proposition 4 we getc0 =
#F
#D and therefore‖c0‖22 =

(
#F
#D

)2
. We can also write

(#D)2
∑

‖α‖0=i

‖cα‖
2
2 = (#D)2

∑

‖α‖0=i

YTHαRY =

= (#D)2YT(
∑

‖α‖0=i

HαR)Y = (#D)2YTHiY

whereHi =
∑
‖α‖0=i HαR. �

From a computational point of view (see Section 3.2) it is useful to consider the Cholesky
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decomposition of the symmetric and positive definite matrixHi, Hi = UT
i Ui, i = 1, . . . ,m. Thus

from Proposition 14 the wordlength pattern of a fractionF ⊆ D can be written as

αi(F ) =
1

(#F )2
‖UiY‖

2
2 i = 1, . . . ,m.

3.2 GMA for mixed level orthogonal arrays

From Proposition 9 we know that for orthogonal arrays of strengtht all the coefficientscα of the

counting function up to ordert (that is 0< ‖α‖0 ≤ t) must be 0. The generalized wordlength pattern

αF of an orthogonal arrayF of strengtht will be

(0, . . . , 0, αt+1(F ), . . . , αm(F )).

It follows that the counting vectors must satisfy the following condition

UiY = 0 i = 1, . . . , t

or, equivalently,

AtY = 0

where

At =




U1

. . .

Ut




Fontana and Pistone (2013) show that, given the full factorial designD, the counting vectors

Y = [R(ζ) : ζ ∈ D] of the orthogonal arraysF ⊆ D of strengtht are the positive integer solutions

of a system of linear equations,AY= 0. This result was used to build an algorithm, Fontana (2013),

and a software, Fontana and Sampó (2013), for minimum-size mixed-level orthogonal fractional

factorial designs generation. The present paper shows a different way to build the constraint matrix

A.

Let us suppose that we are interested in orthogonal arrays of sizeN. The GMA-criterion will

provide the OAs with the maximum strengtht for the given sizeN. If the norm ofU1Y is strictly

9
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positive,‖U1Y‖2 > 0 for all the counting vectorsY it follows that no OA exists for that sizeN.

4 An algorithm for GMA designs

A counting vector of a GMA-optimal design can be obtained through them steps of the algorithm

below.

1. The input of the algorithm is made of:

(a) the numberm of the factors and the number of levelni of the i-th factor,i = 1, . . . ,m;

(b) the sizeN of the fractionF .

2. Solve the following quadratic optimization problem





min‖U1Y‖22

subject to

1TY = N,

Y = [yi], yi ∈ Z, yi ≥ 0

. (1)

Let us denote byY?1 one solution and letW?
1 = ‖U1Y?1 ‖

2
2.

3. Solve the following quadratic optimization problemk = 2, . . . ,m





min‖UkY‖22

subject to

1TY = N,

‖U1Y‖22 = W?
1 ,

. . .

‖Uk−1Y‖22 = W?
k−1,

Y = [yi], yi ∈ Z, yi ≥ 0

. (2)

10
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Let us denote byY?k one solution and letW?
k = ‖UkY?k ‖

2
2. We observe that ifW?

j = 0, j ∈

{1, . . . ,m} then the conditionW?
j = ‖U jY‖22 can be simply replaced byU jY = 0.

4. If ‖U1Y?m‖2 = . . . = ‖UtY?m‖2 = 0 and‖Ut+1Y?m‖2 > 0 the solutionY?m of the last optimization

problem, corresponding to them-th step, is the counting vector of an orthogonal arrayF ⊆ D

of size N and strengtht that is optimal according to the GMA-criterion. The wordlength

pattern ofF is

(0, . . . , 0,
1

(#F )2
‖W?

t+1‖
2
2, . . . ,

1
(#F )2

‖W?
m‖

2
2).

If ‖U1Y?m‖2 > 0 then the solutionY?m is a fraction that is optimal according to the GMA-

criterion but that is not an OA.

5 Test cases

We denote byOA(N,n1 ∙ . . . ∙ nm, t) a mixed level orthogonal array withN rows,m columns (the

i-th column hasni levels,i = 1, . . . ,m) and with strengtht.

The computations are made using

• one main module, written in SAS IML, that prepares them optimization problems, SAS

Institute Inc. (2008);

• MOSEK that solves each optimization problem, MOSEK ApS (2014)and that is accessed

using the R-to-MOSEK interface, Friberg (2012).

The simulation study has been conducted on a standard laptop (CPU Intel Core i7-2620M CPU

2.70 GHz 2.70 GHz, RAM 8 Gb).

From the simulation study, we observe that, if we want that the processing time does not exceed

one hour, we should consider a maximum of 6-7 factors. However, even if the processing time is

not a critical feature for design generation some actions could be taken to improve the performance

of the algorithm. First of all, high performance computing systems could be used in place of

standard laptops. Then the software could be made more efficient (i) avoiding the use of high-level

languages like SAS and R in favor of C++ and (ii) also implementing some simplifications like,

11
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for example, the replacement, when possible, of the quadratic condition‖U jY‖22 = W?
j with the

linear conditionU jY = 0, as discussed in Section 4.

5.1 Fiveand six factors with 2 levels each

We consider five factors with 2 levels each. We initially chooseN = 16. Using the algorithm

described in Section 2, we obtain 5 fractions, that are the optimal solutions corresponding to steps

1, . . . , 5. The wordlength patterns of these fractions are shown in Table 1. The GMA-optimal

fraction, that is found at the last iteration, is anOA(16,25,4) with a wordlength pattern equal to

(0,0,0,0,1). The processing time was 29 seconds.

We now considerN = 6,8,10,12,14. The wordlength patterns of the GMA-optimal solutions

together with the corresponding processing timesare presented in Table 2.

Finally we consider six 2-level factors withN = 16. The GMA-optimal fraction, that is found

at the last iteration, is anOA(16,26,3) with a wordlength pattern equal to (0,0,0,3,0,0). The

processing time was 26 minutes.

5.2 Mixed-level orthogonal arrays

5.2.1 Four factors, one with2 levels and three with3 levels each

We consider four factors, the first with 2 levels and the remaining three with 3 levels each. We

chooseN = 18. We obtain 4 fractions, that are the optimal solutions obtained at step 1, . . . , 4. The

wordlength patterns of these fractions are reported in Table 3. The GMA-optimal fraction, that is

found at the last iteration, is anOA(18,2 ∙ 33,2) with a wordlength pattern equal to (0,0,0.5,1.5).

The processing time was 4 minutes and 30 seconds.

5.2.2 Four factors, one with4 levels, one with3 levels and two with2 levels each

We chooseN = 24. The GMA-optimal fraction is anOA(24,22 ∙ 3 ∙ 4,2) with a wordlength

pattern equal to (0,0,0.11,0.89). The processing time was 37 minutes. Then we chooseN =

12
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12. The GMA-optimal fraction is anOA(24,22 ∙ 3 ∙ 4,1) with a wordlength pattern equal to

(0,0.22,1.89,0.89). The processing time was 8 minutes.

6 Conclusion

The joint use of polynomial counting functions and quadratic optimization tools makes it possible

to find GMA-optimal mixed-level orthogonal arrays of a given size. It is worth noting that the

methodology does not put any restriction on the number of levels of each factor and so it can be

applied to a very wide range of designs. The methodology works with the standard partition of

the set of the monomial exponents,L = Zn1 × . . . × Znm: main effects, 2-factor interactions, ...,

m-factor interaction but it can also be easily adapted to work with any partition ofL. The range of

applications is limited only by the amount of computational effort required.
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Fontana, R. and Sampó, S. (2013). Minimum-size mixed-level orthogonal fractional factorial

designs generation: A sas-based algorithm.Journal of Statistical Software, 53(10):1–18.

Friberg, H. (2012). Users guide to the r-to-mosek interface.Available from http.

Hedayat, A. S., Sloane, N. J. A., and Stufken, J. (1999).Orthogonal arrays. Theory and applica-

tions. Springer Series in Statistics. Springer-Verlag, New York.

MOSEK ApS (2014).Users Guide to the R-to-MOSEK Optimization Interface.

Mukerjee, R. and Wu, C. (2006).A modern theory of factorial designs. Springer series in statistics.

Springer.

Pistone, G. and Rogantin, M. (2008). Indicator function and complex coding for mixed fractional

factorial designs.J. Statist. Plann. Inference, 138(3):787–802.

Pistone, G. and Wynn, H. P. (1996). Generalised confounding with Gröbner bases.Biometrika,
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Table 1: Wordlength patterns of optimal fractions at different steps;m= 5,n1 = . . . = n5 = 2,N =

16
step α1(F ) α2(F ) α3(F ) α4(F ) α5(F )

1 0 10 0 5 0
2 0 0 1 0 0
3 0 0 0 1 0
4 0 0 0 0 1
5 0 0 0 0 1
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Table 2: Wordlength patterns of GMA-optimal fractions of different sizes;m= 5,n1 = . . . = n5 = 2

N α1(F ) α2(F ) α3(F ) α4(F ) α5(F ) Type Proc.times

6 0 1.11 1.78 1.44 0 OA(6,25,1) 0m 28s
8 0 0 2 1 0 OA(8,25,2) 0m 8s
10 0 0.4 0 1.8 0 OA(10,25,1) 1m36s
12 0 0 1.11 0.56 0 OA(12,25,2) 0m9s
14 0 0.2 0 1.08 0 OA(14,25,1) 56m55s
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Table 3: Wordlength patterns of optimal fractions;m= 4,n1 = 2,n2 = . . . = n4 = 3,N = 18

step α1(F ) α2(F ) α3(F ) α4(F )

1 0 1.81 1.09 1.09
2 0 0 1.78 0.22
3 0 0 0.5 1.5
4 0 0 0.5 1.5
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