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Reflective workpiece detection and localization
for flexible robotic cells

Sergey Astanin, Dario Antonelli∗, Paolo Chiabert, Chiara Alletto

aPolitecnico di Torino, Corso Duca degli Abruzzi 24, Turin, Italy

Abstract

A smart vision system for industrial robotic cells is presented. It can recognize and localize a reflective workpiece,
and allows for automatic adjustments of the robot program. The purpose of the study is to improve industrial robots
awareness of the environment and to increase adaptability of the manufacturing processes where full control over
environment is not achievable. This approach is particularly relevant to small batch robotic production, often suffering
from only partial control of the process parameters, such as the order of jobs, workpiece position, or illumination
conditions.

A distinguishing aspect of the study is detection of workpieces made of diverse materials, including shiny metals.
Reflective surfaces are common in the industrial manufacturing, but are rarely considered in the research on object
recognition because they hinder many of the object recognition algorithms. The proposed solution has been qualified
and tested on a selected benchmark in realistic workshop environment with standard artificial light conditions. The
training of the object recognition software is an automatic process and can be executed by non-expert industrial users
to allow for recognition of different types of objects.

Keywords: Machine Vision, Human-Robot Cooperation

1. Introduction

Flexibility in manufacturing is a multifaceted concept.
Its definition varies according to the context. In [1] twelve
different definitions are reported. [2] proposes several
quantitative definitions of the flexibility. This work is
mostly concerned with product flexibility, which is the
ability of a manufacturing system to make a variety of
part types with the same equipment [3]. It is referred to
as reconfigurability of a manufacturing system on cell and
work-piece levels, or its ability to switch with minimal ef-
fort to a particular family of workpieces.

This kind of flexibility is particularly relevant in col-
laborative human-robot scenarios for small and medium
enterprises, where some operations, usually handling, are
executed by the human operator, while the others, usu-
ally assembling or processing, are performed by the robot
[4]. Introduction of the human factor brings the advan-
tage of more dexterity in the execution of tasks but intro-
duces a source of variability within the workplace. The
cell may not be considered a structured environment any-
more, so this scenario hinders offline robot programming
[5]. Therefore an adaptive robotic system should be aware
of the environment, analyze it, and change its behavior
dynamically [6, 7].

∗Corresponding author.
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In a hypothetical scenario, where workpieces are han-
dled and positioned by a human worker, and robot is sup-
posed to do some other operations on them, the variable
aspects are workpiece readiness, type, state and location.

2. State of the Art

In this section some methods to solve the above men-
tioned problems of object detection, recognition and local-
ization are presented with a focus on industrial applica-
tions.

Detection of unknown objects is a frequent task in video
processing and surveillance. Background subtraction is
a very popular approach to detect unknown objects [8].
More elaborate methods may rely on image segmentation
[9, 10] or saliency detectors [11].

Background subtraction allows to highlight the areas of
the image which are significantly different from the previ-
ous (background) images. In the industrial settings with
a fixed camera, this allows to see what areas of the work
space are different with respect to some reference state, or,
in other words, to see where new objects have appeared or
the work area was modified.

Object detection and the wider problem of object recog-
nition and localization do not necessarily imply that
vision-based techniques should be used. Autonomous ve-
hicles often use laser scanners to detect unknown objects
[12, 13]. Some industrial applications opt for non-visual
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methods to recognize and localize objects too. RFID is
a common means to carry object type and identity [14].
Three-dimensional range imaging and scanners like Kinect
are becoming increasingly popular too [15, 16, 17, 18]. For
a full review of 3D data acquisition techniques see [19].
But machine vision still remains one of the most popular
methods for parts identification [20].

Reflective objects are rarely considered in visual recogni-
tion research. Sometimes the object is only slightly reflec-
tive and the traditional methods are still applicable [21],
but this is rarely the case for textureless objects. Many au-
thors employ workarounds like relying on contours [22] or
using 3D scanners[23, 24]. However, 3D scanners often fail
to obtain reliable 3D depth images from non-Lambertian
surfaces, and few point-to-point correspondences can be
found in a stereo pairs [24]. Impressive results based on
matching the contours were achieved in [25, 26]. Unfor-
tunately, the method relies on a custom multi-flash cam-
era [27]. To the extent of our knowledge at the time of
writing, no commercial implementation of such hardware
exists, and the image processing code is not widely avail-
able, neither in Open Source nor commercially.

Many industrial applications rely on relatively simple
marker-based [28, 29, 30] and convolution-based methods
[22, 31]. Recognition and localization problems can be
completely bypassed when fiducial markers used. Their
practical applications are limited by the necessity to at-
tach and detach markers, operations which complicate the
production process. Convolution-based method is a case
of an example-driven search. They are especially sensi-
tive to variability of the object, and usually are not scale-
and rotation-invariant [32, 33]. Thus both approaches are
poorly suited for localization of manually positioned re-
flective objects in industrial environment.

More elaborate methods rely on feature-based matching.
The features may be derived from CAD models [34] or
chosen manually in an ad-hoc manner [35]. Unfortunately,
the choice of good invariant features is not straight-forward
and requires human expertise.

General object recognition methods are very helpful if
the system is supposed to deal with highly variable object
appearances. Many such methods are able to learn or
select good features automatically, given a good training
set [36, 37, 38]. These methods have been successfully
used for face or pedestrian detection and general object
recognition.

In this paper a system fordetection, recognition and lo-
calization of a workpiece made of reflective metal is pro-
posed. It does not rely on fiducial markers and can cope
with high variability of the illumination conditions and
object appearance.

The proposed solution is build upon a simple back-
ground subtraction to detect unknown objects, and a
Viola-Jones classifier to recognize the workpiece. 3D
scanners were avoided because their performance is known
to degrade when working with the reflective surfaces. Au-
tomatic feature selection based on actual workpiece ap-

Figure 1: A potential role of a vision system in an adaptive robotic
cell, where some operations like handling and positioning are carried
out by a human operator. The vision system may communicate to
the human (by suggesting what to do or warning about irregularities)
and with the robot (by adjusting the robot program and vetoing
execution until the environment is ready).

pearance was preferred over the manual feature selection
or features design from the object design. The output of
the system is used to adjust and run the robot program,
and the performance of the method is validated experi-
mentally.

3. Case Study

To demonstrate our implementation of the adaptive
robotic cell, a case study was planned which consisted of
1) manually positioning of an aluminum CNC machined
workpiece on the bench, 2) detection, recognition and lo-
calization of the workpiece using a vision system, 3) adjust-
ment of the robot program according to the type and the
location of the workpiece, or sending a signal to delay or
prevent program execution, if the workpiece is not present
or it is a wrong one (Fig. 1). This section describes various
aspects of the experiment, such as workpiece design and
material selection,

Workpiece. The workpiece used in the experiment has
geometrical features typical of most mechanical compo-
nents, such as, cylindrical holes and pins, prismatic ribs.

Material. The choice of the workpiece material is the
fundamental decision in the design of the experiment. Im-
age interpretation and object recognition depend on many
properties, such as texture, color, visible edges which may
vary according to the material [39]

Metals and polymers are both frequently present in
manufacturing, but metals represent a challenge for many
vision methods. On a reflective material we may see false
specular edges or edges highlighted according to partic-
ular orientation between light source, object surface and
observer [39]. Specular reflections are often overexposed,
thus texture and color information may be easily lost. Sur-
face roughness is another factor to consider. Rough sur-
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faces may appear to have more diffuse reflection. Smooth
surfaces tend to produce more specular reflections. Pol-
ished reflective material appears to be the worst case in
terms of reflections. The proposed method is tuned specif-
ically to deal with objects made of reflective metal.

Illumination conditions. The trials were conducted
in a laboratory, with artificial fluorescent lights typical for
a workshop. The illumination is stationary and constant
but is not uniform nor diffuse.

Work area. The experiment is carried out in a robot
cell which includes a robot, a work bench, a camera, a
computer to run image processing software, a local area
network to communicate with the robot, and a physical
barrier that enclosed all elements. The work bench has
a white shiny surface, completely reachable by the robot
arm.

Equipment. To carry out the trials, a USB camera,
Logitech C920, operated in VGA resolution, and an an-
thropomorphic robot with six degrees of freedom, Comau
Smart5 NS, were used. The camera was located over the
work bench so that the entire workarea was visible.

Figure 2: Usage scenario in our case study.

Usage scenario. The full cycle of the system is sup-
posed to start with a stopped robot, so that the operator
may enter the work cell. Once he or she positions the
workpiece on the bench, the vision system should detect
the workpiece, calculate its location, and update the robot
program. The operator leaves the cell to start the robot
from outside. The vision system may prevent it from run-
ning if it detects unknown objects on the work bench.

The following outcomes were considered:

• No object is detected at all; the robot program cannot
be generated.

• One and only one item of the correct type is placed
on the bench and nothing is left in the visible work

area; a new robot program may be executed when the
operator leaves the cell.

• An item of the correct type and one or more additional
objects of any type are detected in the visible work
area; the program can be generated, but its execution
is delayed until the additional objects are removed.

4. Algorithms

The problem was decomposed into three tasks: detec-
tion and recognition of the known workpiece, estimation of
the object location in the real-world coordinate frame, and
detection of unknown objects via background subtraction.
The output of these tasks drives the final decision making.

4.1. Workpiece detection and recognition

A workpiece made of reflective metal may look very dif-
ferently depending on its location with respect the camera
and the light source. In Fig. 3 ten randomly selected
samples of the same item are presented. The images were
cropped from a frame taken with a stationary camera and
under constant artificial illumination. Only location of
the workpiece on the bench was varied. It can be also
noted, that when the camera is observing a wider area,
the amount of detail and resolution of the smaller object
of interest could be severely reduced.

Figure 3: Variability of the workpiece appearance with respect to
small (< 50 cm) displacements observed from h ≈ 1 m.

Manual selection of the distinctive features or their com-
binations is not trivial. For this reason the Viola–Jones
method [37, 40] was used, which can identify good features
automatically. The method relies on four ideas:

• Build an integral image which allows to calculate inte-
grals of image intensity over an arbitrary rectangular
area in O(1) time. Given the original image i(x, y),
the integral image can be defined as

I(x, y) =
∑

0≤x′≤x
0≤y′≤y

i(x′, y′)

• Consider only the so called Haar-like features: the dif-
ferences in the integral intensity between two or three
adjacent rectangular areas of the image. Only four
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references to the integral image are sufficient to cal-
culate an integral over an arbitrary rectangular area
of the original image.

• Use Haar-like features as “weak classifiers” (choose
a threshold θ and polarity for every feature f). Such
classifiers usually have very high error rates (up to 0.4)
individually, but they can be combined using a boost-
ing method (like AdaBoost or Gentle AdaBoost [41])
to construct stronger classifiers.

• Build a degenerate decision tree (a “cascade”) which
rejects negative candidates as early as possible. At
every node of the cascade, the threshold of the strong
classifier is adjusted to minimize false negatives. If
the first node yields a negative result, the processing
is terminated. If the result is positive, the classifier
of the second node is used and so on. The cascade
tries to reject as many negatives as possible as early as
possible. The subsequent classifiers are trained on the
data samples which pass through the previous stages

This method allows for fast real-time recognition of ob-
jects. Notably, the method, by its nature relying on in-
tegral macro features, is relatively forgiving to low res-
olution and out of focus images. According to [37] the
accuracy of the cascading classifier can be tuned by choos-
ing a maximum acceptable rate of false positives fFP at
every stage (it decides how many false positives remain
after every stage), a maximum acceptable miss rate fFN

at every stage (it decides how many positive samples are
irrevocably missed at every stage), and the number of the
stages n. The false positive rate of the cascading classifier
can be estimated as

FFP =

n∏
i=1

fFP = fnFP .

And the recall (the ratio of true positive outcomes to
the number of positive samples) of the classifier can be
estimated as

FFN =

n∏
i=1

(1− fFN ) = (1− fFN )n.

Assuming that a single stage classifier has a false pos-
itive rate of only 0.4, and miss rate of 0.005, the cas-
cading classifier with 10 stages will have a false posi-
tive rate of 0.410 ≈ 1/1000, and will manage to detect
(1− 0.005)10 ≈ 95% of the positive samples.

In applications, the cost of type I errors (false positives,
the workpiece was reported when it was not there) and
type II errors (false negative, the workpiece was not de-
tected) errors may be different. The objectives on both
depend on the chosen risk management policy. The de-
sired overall false positive and detection rates and can be
achieved by imposing the number of classifier stages, vary-
ing the number of features used on each stage and choosing

thresholds of each stage. Also the importance of a suffi-
ciently large and diverse training set cannot be underesti-
mated.

330 positive samples and 183 background samples were
randomly selected for a training set. To produce back-
ground samples, the object was artificially removed from
the image by inpainting [42] and a random area of the im-
age was selected. To mitigate effects of manual labeling of
the objects’ region of interest, the training set was further
increased tenfold by doing ten random crop and random
rotations per each sample (Fig. 4). So the effective size
of the training set was over 5000 samples produced from
330 distinct video frames. A test set of the same size was
produced from the remaining labeled frames.

Figure 4: Manually labeled region of interest (solid line) and two
possible random crops (dashed line).

The recognition method developed for our case study
is a binary classifier. The common approach to evaluate
its performance is to apply the classifier to a labeled test
set and calculate the confusion matrix, i.e. the number of
true positive (TP), true negative (TN), false positive (FP)
and false negative (FN) results. This allows to calculate
various performance metrics [43]:

• Precision = TP/(TP + FP ),

• Recall = TP/(TP + FN),

• F-score F1 = 2TP/(2TP + FP + FN).

Recall, also known as sensitivity, reflects the effective-
ness of the classifier to identify positive values (to never
miss the object). Precision reflects a degree of agreement
of the data with the positive labels with the labels given
by the classifier (its ability to avoid producing false pos-
itives). F1, also known as F-score, is the harmonic mean
of the precision and the recall.

In OpenCV implementation of the multi-scale Viola-
Jones detector, the user may choose a sensitivity parame-
ter minNeighbors. Different values of the parameter rep-
resent different trade-offs between precision and recall of
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the classifier (Fig. 5). Even with only fixed-scale detector,
it was possible to achieve 98% recall with optimal preci-
sion. Such an object detector was adequate for our case
study.

4.2. Location estimation

The position of the detected workpiece is defined in
the reference frame of the image, in pixels. To trigger
robot program the location of the workpiece in the three-
dimensional real world reference frame has to be calcu-
lated.

A common camera calibration procedure was used with
a 9×6 chessboard-like pattern observed in different lo-
cations of the frame [44, 45]. This procedure is widely
known in the field of computer vision, and allows to es-
timate camera projection matrix, distortion coefficients,
and rotation-translation matrices for each of the chess-
board positions. One of the chessboard positions was re-
lated to the real-world (robot’s) reference frame. Camera
calibration allows to estimate parameters of the nonlinear
transform from the real-world coordinates X, Y , Z to the
image coordinates u, v. The inverse transform is generally
not unique, unless an additional constraint is imposed.
The region of interest of a two-dimensional image provides
only two degrees of freedom, (u, v). Assumption, that the
workpiece is positioned on the surface of the table Z = 0
is the additional constraint. The inverse transform was
calculated by an iterative solver. Thus for any point of
the image three-dimensional real-world coordinates of the
corresponding point on the bench can be calculated and
passed to the robot.

Coordinates (X,Y, Z) of the approximate center of the
object could be sufficient to execute many manufactur-
ing operations. Whenever the complete location informa-
tion is required, an additional step should be taken. A
higher resolution image of the region of interest was used
in this case to find (predict) positions of 5 or more ref-
erence points on the workpiece. The predictor could be
as simple as a random forest regressor [46, 47] trained on
the same training set (if the reference points were prop-
erly marked). Though our preliminary results show that
neural networks could have better generalization proper-
ties. These points and camera calibration data could be
used to estimate all six degrees of freedom of the workpiece
location [48] (Fig. 6).

5. Background subtraction

Object detection method and classifier may recognize
instances of the known object. To detect unknown ob-
jects, the foreground objects have to be separated from
the background image.

Many of the publications on background subtraction are
concerned with dynamically updating background mod-
els. Mixture of Gaussians [49] appears to be one of the
mostly used background models [50, 51]. In our case, on a

work bench under artificial illumination, the background
is always the same, and a simple Gaussian model should
suffice.

The average background is subtracted from every frame,
and a binary threshold is applied. The threshold parame-
ter t is global and constant. It was set just above the level
where the method detects reflections on the bench surface
(Fig. 7).

5.1. Decision-making

The output of the Viola–Jones classifier is a set of
bounding boxes (rectangles) of likely locations of the work-
piece. Usually just one such location is expected. In our
case there is no indication if they are good matches.

The output of the background subtraction is a binary
image mask where all pixels different from the normal
background are assigned a positive intensity value.

This information is merged together to calculate:

• Ai, the area of the foreground objects within every
detected bounding box i,

• Ao, the area of the foreground objects outside of the
detected bounding boxes.

All area values are normalized to keep the implemen-
tation resolution-independent. The value of Ao indicates
how big or how many unknown objects are present in the
frame. Ai could be optionally used to discard some of the
false positives. This technique may be useful to increase
sensitivity of the classifier at the cost of loss of precision.

A positive decision is triggered if and only if:

• There is just one detected object

• The area Ao of unknown objects is below some thresh-
old level ta

• (Optional condition) The area A1 is bigger than a half
of the bounding box area

The complete workflow is depicted in Fig. 8. In Fig. 9
different outcomes of the decision process are shown. Only
in Fig. 9 (c) the decision is positive.

6. Robotic cell implementation

The camera was mounted on a statically placed photo-
graphic tripod directly over the working bench. The bench
was completely within the operating range of the robot and
remained easily accessible to the human operator from one
of the sides. The video stream was continuously analyzed
by a computer program, and a new workpiece location was
uploaded to the robot when the positive decision triggered.
This event was displayed to the operator (Fig. 9 c). As the
prototype did not implement security measures, the opera-
tor had to leave the cell and manually start robot program
from the outside. A token operation was executed: the
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Figure 5: Precision and recall of the trained classifier.

Figure 6: Reference points of the workpiece were predicted by a
random forest regressor, and the pose was estimated using EPnP
algorithm [48]. It was used to project a wireframe model over the
image.

robot was supposed to approach and touch the workpiece.
The correctness of the execution was visually controlled by
analyzing the record or by examining a paint mark left
by the robot (Fig. 10).

7. Conclusions

The proposed augmentation of the robot cell with a vi-
sion system allowed to recognize known workpiece and esti-
mate its location, as well as to detect presence of unknown
objects. This information can be used to adjust robot pro-
gram automatically in the working environment where the
exact position of the workpiece is unknown. The feature
may be particularly useful in collaborative human-robot
work cells, where handling and positioning are responsi-
bility of the human.

We have shown that a generic object recognition
method, initially developed for face detection, can be eas-
ily trained to recognize objects made of reflective metal
even in unfavorable light conditions. The training of the
object detector is an automatic process. Even a non-expert
end user may teach the system to recognize new workpiece
types if he or she supplies some labeled images of the new

(a) Original frames

(b) Background subtraction, t = 10

(c) Background subtraction, t = 25

(d) Background subtraction, t = 80

Figure 7: Foreground masks of a sequence of frames for various values
of the threshold parameter t. In (b) t = 10 and reflections of the hand
and some spurious bright spots are detected on the table surface. In
(c) t = 25 and only the workpiece, the hand and its shadow are
detected. In (d) t = 80 and the shadows are not detected anymore,
but the masks of the hand and the workpiece are incomplete.
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Grayscale image

Search with a sliding
window (Viola–Jones)

Region(s) of interest Calculate Ao, Ai

#(RoI) = 1 ∧ Ao < ta

Subtrack
background

Camera calibration

Estimate X,Y
for Z = 0

Detect reference points
(neural net/random forest)

Update robot program

(u, v)

(X,Y, Z)

Estimate X,Y, Z, α, β, γ
(EPnP)

(u
i , v

i )

(X,Y, Z)

(α, β, γ)

true

Figure 8: Complete workflow for workpiece detection, recognition and localization in a robotic cell where the location of the workpiece is
subject to variability.

(a) (b) Ao shown in red

(c) (d)

Figure 9: Screenshots of the workpiece detector in action. (a) Neither the workpiece nor other objects are visible (negative decision). (b) The
workpiece is detected, but there is an unknown object (the hand). The decision is negative. (c) Only one workpiece is detected and no other
object is detected (positive decision). (d) Two copies of the workpiece are detected (negative decision).

workpiece.

An advantage of the developed system is its easy in-
tegration with the existing robot cells: it doesnt require

to replace the robotic equipment already installed in the
work plant. Only a basic video camera is required, and all
the algorithms have multiple Open Source and commer-
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Figure 10: Experimental setup and execution of the token operation
on the workpiece (touching a point with a marker).

cial implementations. Localization and pose estimation do
not require a complete CAD model (only few points are
used). Detection, recognition, and partial localization with
only three degrees of freedom could be done without CAD.
This property could be particularly relevant if collabora-
tive robotics is ever pushed to small-scale or even artisan
manufacturing. In terms of hardware and software avail-
ability and ease of setup this method compares favorably
to other methods that can deal with reflective workpieces
(either marker-based solutions or edge-matching systems,
which rely on custom cameras, and need CAD models even
for recognition).

The method can be scaled to few (up to N ∼ 5) work-
piece types by simply training multiple Viola–Jones detec-
tor and running them in parallel. Our preliminary testing
shows that when the number of workpiece types is large
(N > 10), a multi-class classifier, like a deep neural net-
work, is a more effective approach. However, the questions
of multi-class recognition and the issues of optimal train-
ing set construction have to be addressed in a separate
study.
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