POLITECNICO DI TORINO
Repository ISTITUZIONALE

SaFe-NeC: A scalable and flexible system for network data characterization

Original

SaFe-NeC: A scalable and flexible system for network data characterization / Apiletti, Daniele; Baralis, ELENA MARIA;
Cerquitelli, Tania; Garza, Paolo; Venturini, Luca. - ELETTRONICO. - (2016), pp. 812-816. (Intervento presentato al
convegno 2016 IEEE/IFIP Network Operations and Management Symposium, NOMS 2016 tenutosi a Istanbul (Turkey)
nel 2016) [10.1109/NOMS.2016.7502905].

Availability:
This version is available at: 11583/2650989 since: 2016-12-01T11:41:06Z

Publisher:
Institute of Electrical and Electronics Engineers Inc.

Published
DOI:10.1109/NOMS.2016.7502905

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright

(Article begins on next page)

20 May 2024



SaFe-NeC: a Scalable and Flexible system for
Network data Characterization

Daniele Apiletti, Elena Baralis, Tania Cerquitelli, Paolo Garza, and Luca Venturini
Department of Control and Computer Engineering
Politecnico di Torino, Italy
{name.surname} @polito.it

Abstract—Nowadays, large volumes of data and measurements
are being continuously generated by computer and telecommuni-
cation networks, but such volumes make it difficult to extract
meaningful knowledge from them. This paper presents SaFe-
NeC, an innovative methodology for analyzing network traffic by
exploiting data mining techniques, i.e. clustering and classification
algorithms, focusing on self-learning capabilities of state-of-the-
art scalable approaches. Self-learning algorithms, coupled with
self-assessment indicators and domain-driven semantics enriching
data mining results, are able to build a model of the data
with minimal user intervention and highlight possibly meaningful
interpretations to domain experts. Furthermore, a self-evolving
model evaluation phase is included to continuously track the
quality degradation of the model itself, whose rebuilding is
triggered as soon as quality indicators fall below a threshold
of tolerance. The proposed methodology can exploit the com-
putational advantages of distributed computing frameworks, as
the current implementation runs on Apache Spark. Preliminary
experimental results on a real traffic dataset show the full
potential of the proposed methodology to characterize network
traffic data.

I. INTRODUCTION

Due to the continuous growth in network speed and service
usage, and the increasing number of end users and service
providers, even medium-scale networks transfer terabytes of
data per day. Thus, two major issues hamper network data
analysis: (i) A huge amount of data can be collected even in
short time frames. (ii) Traffic and usage patterns rapidly evolve
and new behaviors or services appear, making the dataset
heterogeneous, unstable, harder to mine and to understand
for domain experts. When dealing with Big Data collections,
such as the network datasets, the computational cost of the
data mining process (and in some cases the feasibility of the
process itself) can potentially become a critical bottleneck in
data analysis. To date, parallel and distributed approaches have
been adopted to increase efficiency and scalability of network
traffic mining algoritms [1], [2], [3], [4].

In this paper we argue towards a new methodology of
proactive and self-learning network data analytics systems that
automatically mine large network datasets with minimal user
intervention. The challenge is to devise new efficient and
scalable approaches, able to deal with huge network traffic
data and to provide meaningful insights.

A significant effort has been devoted to the application
of data mining techniques to network analysis. The scopes
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include studying correlations among data (e.g., association rule
extraction for network traffic characterization [5], [6] or for
router misconfiguration detection [7]), extracting information
for prediction (e.g., multilevel traffic classification [8], Naive
Bayes classification [9], analytics and statistical models for
LTE Network Performance [10], one-class SVM [11] for intru-
sion detection), grouping network data with similar properties
(e.g., clustering algorithms for intrusion detection [12], for
classification [13], [14], for deriving node topological informa-
tion [15], for identifying classes of traffic [16], for unveiling
YouTube CDN changes [17]). While supervised classification
algorithms require previous knowledge of the application do-
main (e.g., a labeled traffic trace), clustering algorithms do
not. Hence, the latter is a widely-used exploratory technique
exploited to identify groups of similar network flows.

In the methodology we propose, named SaFe-NeC, we aim
at addressing the lack of parameter-free solutions in the state
of the art, building upon the characteristics of supervised and
unsupervised techniques by combining the strengths of both
approaches. SaFe-NeC introduces innovative self-assessment
features and adds new domain-driven semantics to data mining
results, provides valuable insights to network experts and helps
them exploit advanced data mining techniques. A self-evolving
model evaluation phase is included to continuously track the
quality degradation of the model itself, whose rebuilding is
triggered as soon as quality indicators fall below a threshold
of tolerance.

This paper is organized as follows. Section II describes the
main building blocks of SaFe-NeC. Section III discusses the
preliminary experiments performed to show the potential of
SaFe-NeC on a real traffic dataset, while Section IV draws
conclusions and presents future developments of this work.

II. METHODOLOGY

The SaFe-NeC methodology introduces a two-step ap-
proach to build a self-evolving model able to (i) autonomously
identify homogeneous groups of traffic data without prior
knowledge and (ii) classify new traffic flows in real time.
Step (i) is based on a scalable clustering algorithm, followed
by a domain-driven post-processing phase that enriches the
anonymous clustering results to provide valuable semantics
in the networking context. Step (ii) builds a classification
model by exploiting clusters as labels. The classification model
is then applied to new traffic flows by labeling them in
real time. The model can be tuned to maximize both the
technical performance, i.e., its accuracy, and the insights into
the data, i.e., the human-readability of the model, by selecting



among different classification algorithms. At each step and
over time, quality indicators are used to self assess the model
fitting and its results. When the quality indicators fall below
given thresholds, the model is automatically rebuilt to better
fit new data, thus providing self-evolutionary features. The
whole methodology has been built to provide a scalable, semi-
autonomous and flexible approach, able to cope with very large
datasets, to offload the user from arbitrary parameter choices,
and to adapt to domain-specific requirements and semantics.

The rest of this Section describes the building blocks of the
proposed methodology: network measurement collection, self-
learning data characterization, classification model training,
real-time data labeling, and self-evolving model evaluation.

A. Network measurement collection

As a use case to show SaFe-NeC’s potential, we collect
and analyze TCP network measurements. To this aim, a passive
probe is located on the access link (vantage point) that connects
an edge network to the Internet. The passive probe sniffs
all incoming and outgoing packets flowing on the link, i.e.,
packets directed to a node inside the network and generated
by a node in the Internet, and vice versa. The probe runs
Tstat [18], a passive monitoring tool allowing network and
transport layer measurement collection. Tstat rebuilds each
TCP connection by matching incoming and outgoing segments.
Thus, a flow-level analysis can be performed [19]. A TCP
flow is identified by snooping the signaling flags (SYN, FIN,
RST). The status of the TCP sender is rebuilt by matching
sequence numbers on data segments with the corresponding
acknowledgement (ACK) numbers.

Among Tstat’s many measures, we selected the following:

e the minimum (R7T"T'Min) and maximum (R7TT'M ax)
Round-Trip-Time observed on a TCP flow, for both the
client and the server, separately

o the number of hops (Hops) from the remote node to
the vantage point observed on packets belonging to
the TCP flow, as computed by reconstructing the IP
Time-To-Live'

e the flow reordering probability (Pyeorq), Which can be
useful to distinguish different paths

o the flow duplicate probability (Pg,;), that can high-
light a destination served by multiple paths?

e the total number of packets (NumPkt), of data pack-
ets (DataPkt), and of bytes (DataBytes) sent from
both the client and the server, separately

e the minimum (WinMin), maximum (WinMazx), and
scale (WinScale) values of the TCP congestion win-
dow for both the client and the server, separately

e the class of service (Class), as defined by Tstat, e.g.,
HTTP, video, VoIP, SMTP, etc.

I'The initial TTL value is set by the source, typical values being 32, 64,
128 and 255.

2P, eorq and Pgyup are computed by observing the TCP sequence and
acknowledgement numbers carried by segments of a given flow. We refer
the reader to [19] for more details.

As discussed in Section III, the Class feature is used only
to select the TCP flows of interest and focus our analysis on
a specific subset of data.

B. Self-learning data characterization

The collected network flows are the input records to
the core of the SaFe-NeC approach: the self-learning data
characterization block. This block consists of (i) a clustering
phase and (ii) a post-processing enrichment phase. Before the
clustering phase the dataset is normalized with the z-score
technique [20].

Clustering is exploited to autonomously identify homo-
geneous groups of traffic flows without prior knowledge.
Different clustering algorithms can be exploited to this aim
in SaFe-NeC; however, in the current work we focus on the
popular K-means algorithm [21].

K-means algorithm is effective for spherical-shaped clus-
ters. Nevertheless, it is sensitive to the random initialization
of centroids and to cluster size, densities of data points, non-
globular shapes of clusters and outliers. K-means also requires
the a-priori knowledge of the number of clusters. Despite
all these limitations, K-means has seen a widespread usage
for cluster analysis in many different application contexts
(e.g., medical records [22], data partitioning in a computer
networking [23]), for its low computational cost and the
tightness of the globular clusters resulting.

SaFe-NeC’s self-assessment of clustering results also pro-
vides the benefit of choosing k£ in K-means: clustering is
performed for a wide range of k values, then the trend of
quality measures, such as SSE (Sum of Squared Errors), are
exploited to infer the optimal value of k. To this aim, the qual-
ity measure chosen (e.g., SSE) is plotted against & to reproduce
the well-known ”Elbow” graph (or ”Knee” approach) ([24]):
the optimal value of & must be selected at the coordinates
where the gain from adding a centroid is negligible, or in
other words the SSE reduction is not interesting anymore. Such
procedure can be automatized, parametrizing the threshold
below which an SSE reduction is not interesting; however,
the domain expert can here select a compromise between the
loss of information and the need to inspect a high number of
clusters (see Section III-A for an example).

To make anonymous groups, as clusters are, human-
inspectable, the SaFe-NeC methodology is designed to enrich
the clusters with both general attribute-based statistics, and
domain-specific knowledge. In the current SaFe-NeC evalua-
tion, we associate each cluster with the number of records it
contains and four attributes of interest. The number of records
provides insights into the data distribution, by identifying clus-
ters covering most of the dataset and others identifying small
“remote” groups of data points. For instance, some network
datasets present a predominant cluster with regular traffic and
many smaller clusters identifying deviations. Other datasets
may present similarly-sized clusters for different subnets or
services. To this we add the 2 attributes with the lowest
absolute variance and the 2 with the highest variance reduction
ratio with respect to their variance over the whole normalized
dataset. Given an estimator for the variance 62, the variance
reduction ratio (VRR) for the j-th cluster and i-th feature z*



is defined as follows.
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where &2D is the variance over the whole dataset and &JQ- is the

variance over the j-th cluster.

VRR;(z") = )

The rationale behind the variance reduction is to quantify
the information gain, for a given attribute, obtained by isolating
some of the records in a cluster; it is inherited from decision
trees [25], where the order in which the attributes are consid-
ered widely affects the performances and the results. Together
with the variance itself, is a strong indicator of the features that
characterize a cluster the most and their relative importance.

C. Classification model training

The flows processed by the clustering algorithm are la-
belled accordingly to the cluster id and form a labeled dataset,
which can be exploited for supervised learning. The goal of
this phase is thus building a classifier to efficiently label new
unseen records as they are captured. In the present work, the
classification algorithm is a decision tree [26], which is a
popular technique able to reach both good results and easy
model interpretability. The output tree provides an easy-to-read
overview of the features that best split the dataset according
to the labels: for each node of the tree the split criterion
can be written as an if/else condition over a single feature
and a splitting value, and few levels of the tree are usually
sufficient to show the most significant splits for the purpose
of the classification.

D. Real-time data labeling

The decision tree trained at the previous step is exploited
to label new unseen data as they are captured, in a real-time
fashion. The prediction algorithm relies simply on the visit of
the tree, according to the rules at the nodes. The time required
to label each record depends on the depth of the tree, i.e. on
the number of comparisons to be performed before reaching
the outcome label.

E. Self-evolving model evaluation

The quality of the trained model is subject to ageing, as
the scenario identified by the clustering continuously evolves.
Therefore, SaFe-NeC continuously evaluates the quality degra-
dation of the model itself, and triggers its regeneration as soon
as quality indexes fall below a threshold of tolerance. To this
aim, SaFe-NeC currently exploits the SSE, which is updated
every N new records of data, where N is set by the user.
In the case of SSE we expect it to raise while new data are
added to the model (see Section III-C for an example). As
soon as the SSE raises above a given threshold, expressed as
a percentage variation from the initial SSE, the entire process
must restart from the clustering phase, either from scratch or
in an incremental way, if supported by the selected clustering
algorithm. The new clustering can be executed on the whole
historical dataset or on the most recent flows only; the latter
option generates a more specific up-to-date model, that could
be less general due to the fewer training data.

TABLE 1. CLUSTERS’ CHARACTERIZATION

Top-2 representative attributes
id num. Ranking by highest Ranking by lowest
records variance reduction ratio absolute variance
Attribute Avg. value Attribute Avg. value
Preord 4.06E-6 DataBytesg 225654

0 247053 WinScales 3 DataBytesc 189340
DataBytesc 506 DataBytesc 506

1 38 DataPktc 3 WinMaxg 73726
DataBytesc 577 DataBytesc 577

2 52 DataPktc 4 DataBytess 158772

Hops 12 WinMazg 122511

3 105 WinMaxg 122511 DataBytess 5946043
DataBytesc 436 DataBytesc 436

4 96 DataPktc 2 DataBytess 60723
DataBytesc 424 DataBytesc 424

5 119 DataPktc 3 DataBytess 9487
DataBytesc 2924 DataBytesc 2924

6 62 DataPktc 17 WinMaxs 93271
DataBytesc 1085 DataBytesc 1085

7 55 DataPktc 7 WinMaxs 53991

III. PRELIMINARY EXPERIMENTAL VALIDATION

A set of preliminary experimental results have been ob-
tained on a real traffic network dataset. The performed exper-
iments address (i) parameter setting analysis, (ii) data cluster
characterization through the proposed measures (e.g., variance
reduction ratio and absolute variance), (iii) classification algo-
rithm evaluation, and (iv) self-evolving model evaluation.

The dataset used for the experimental validation consists of
1 million flows as recorded by Tstat, extracted from the logs
of a backbone-link probe of a nation-wide ISP in Italy with 3
different vantage points. ISP vantage points expose traffic of 3
different Points-of-Presence (POP) in different cities of Italy,
each of them aggregating traffic from more than 10,000 ISP
customers. Such dataset counts for approximately 79.6 hours
of flows, that correspond to an average of 3.48 complete flows
per second. The preprocessing part of the algorithm filters out
the HTTP and HTTPS flows to focus the analysis on more
heterogeneous data, resulting in a dataset of approximately
500,000 records. The first half of this dataset was then reserved
to the training phase, while the second half was kept for the
simulation of the real-time arrival of new records.

SaFe-NeC has been developed in Scala by exploiting the k-
means and decision-tree algorithms available in MLLib [27].
Experiments were performed on a cluster of 5 nodes, each
with a 2.67 GHz six-core Intel(R) Xeon(R) X5650 and 32 GB
RAM, running Cloudera Distribution of Hadoop (CDHS5.3.1).

A. Parameter setup

Figure 1 shows the SSE plot for a number of different k.
The candidates for &k that can be chosen following the method
explained in Section II-B are 4 and 8. The latter especially
does not see any improvement when an extra centroid is added,
and is therefore our choice for this test. However, a network
analyst could choose £ = 4 for the ease of analysis or other
background knowledge.

B. Data characterization

The results of a K-means run for ¥ = 8 are shown
in Table I. As we can see, cluster O absorbs most of the
records, while the remainder is scattered among the others. To
characterize this anonymous piece of knowledge we inspect



TABLE II.

STATISTICS OF A REPRESENTATIVE CLUSTER (CLUSTER O IN TABLE I). TOP-3 ATTRIBUTES FOR EACH RANKING

Ranking by highest variance reduction ratio Ranking by lowest absolute variance

Attribute Variance reduction ratio | Average value Variance Attribute Variance reduction ratio | Average value Variance

Preord 0.9995 4.06E-06 1.01E-04 | DataBytess -1.46E-03 225654 1.18E-19

WinScaleg 1.88E-04 3 2.19E-07 | DataBytesc -1.73E-03 189340 4.90E-19

WinMings 1.19E-04 23071 4.61E-15 WinMaxs -4.09E-04 143591 6.52E-19
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Fig. 1. SSE with respect to the number of clusters k

the two most representative attributes, as discussed in Section
II-B. The ranking by increasing variance shows us that the
most significant attributes are most often DataBytess and
DataBytesc, the total number of bytes sent by server and
client respectively. DataBytesc is as well ranked first by
VRR in 6 of the 8 clusters, which confirms its sensitivity
towards the clustering results. However, with the mere ranking
by absolute variance we do not have many clues on a set
of features distinguishing between the clusters. The VRR
highlights instead a feature that seems to clearly depict what
has gathered the records into cluster 0: a Preorqg close to 0.
Such consideration can lead to interpret cluster O as a prototype
of ideality whereas the other clusters can be seen as outliers
or anomalies. Many of them are characterized by the amount
of data transferred from the client, and in particular some have
an average of very few data packets per flow. An exception to
this trend is cluster 3, which appears to be clustered mostly
for Hops. We exploit all these features to provide a synthetic
description for each cluster; such overview can be a reliable
tool for an analyst to begin its investigations on the QoS or
detect anomalies in the network.

Table II shows a summary for cluster 0, for the top three at-
tributes characterizing the cluster. We recall that the clustering
and the rankings are computed on the normalized values, while
this table shows the actual average and variance, to provide a
sensible value. The table clearly shows that the variance for
Preorq has dropped by more than 3 orders of magnitude; the
V RR for the second feature ranked, WinScaleg, is negligible,
especially as the variance itself was negligible for this feature.
The first-ranked feature is thus a sufficient description of the
cluster. The ranking by absolute variance shows instead three
features with infinitesimal variance, which has had a slight but
still negligible augment in all the three cases. In this cluster,
such features thus seem to provide more a general depiction
of the data than a specific characteristic of the cluster itself;
however, it is still a useful insight for the analyst.

C. Model training and real-time labeling

We built a decision tree with a maximal depth of 4,
using Gini impurity as measure of the information gain. The
validation was done using a 3-fold cross-validation scheme
on the training data.The average accuracy on the three cross
validation runs is 99.6%. The results for precision and recall
for each class are not shown here due to the lack of space; they

250000 300000 350000 400000

Number of data records

450000 500000

Fig. 2. Model quality indicator (SSE) trend as new fresh data are automati-
cally labeled by the classifier

are overall encouraging, with only two classes below the 75%
of precision and 80% of recall. Then, a tree generated on the
whole training dataset has been applied to new records (i.e., the
second half of the original dataset), to simulate the real-time
arrival of fresh data. To show the SSE evolution, we did not
trigger any model rebuilding. Figure 2 shows the evolution
of the SSE as new records are labeled by the decision tree.
The value of SSE steadily increases, as expected, as any new
record contributes to it. Interestingly, a sudden raise just before
the 430000th flow is present, a hint that could be a symptom
of a rapid evolution of the modeled state of the network,
rather than due to the natural imprecision of the model. If the
threshold for recomputing the model had been set at a 50%
increase of the SSE with respect to the starting value, on our
dataset, it would have been triggered after the 467570th record.
Supposing to trigger, then, the model rebuilding, the new SSE
curve for choosing K, not reported here, would show that the
new best value is K = 11, with the SSE dropping at 335.9.
With K=11, new clusters will appear in the next run, and the
whole characterization process will tag them based on their
most specific features. The prediction of a new label takes an
average time of 2.18ms, including the time to update the SSE
and store the new labeled dataset.

IV. CONCLUSION

This paper presents the SaFe-NeC methodology for a self-
learning data analytics system capable of effectively mine
network traffic datasets. SaFe-NeC exploits a two-step ap-
proach to build a self-evolving model to derive semantically-
enriched and homogeneous groups of traffic data without prior
knowledge and classify new traffic flows in real time. SaFe-
NeC also includes self-evolutionary features to automatically
rebuild the network traffic model to better fit new data. To show
the capabilities of the methodology, we performed experiments
on a large dataset of TCP flows statistics, but the whole
approach can be easily applied to any kind of data, e.g. headers,
flows and statistical measurements.

We expect to successfully extend the proposed method-
ology by introducing new comprehensive quality indicators,
such as the Silhouette, and evaluating advanced clustering
algorithms such as DBScan[28], able to semi-autonomously
recognize outliers and noisy points.
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