
13 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Dynamic trajectory planning for mobile robot navigation in crowded environments / Primatesta, Stefano; Russo,
LUDOVICO ORLANDO; Bona, Basilio. - ELETTRONICO. - (2016). (Intervento presentato al convegno 21st IEEE
International Conference on Emerging Technologies and Factory Automation (ETFA 2016) tenutosi a Berlin (DE) nel
September 6-9, 2016) [10.1109/ETFA.2016.7733510].

Original

Dynamic trajectory planning for mobile robot navigation in crowded environments

Publisher:

Published
DOI:10.1109/ETFA.2016.7733510

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2650938 since: 2016-12-20T10:46:37Z

Dynamic Trajectory Planning for Mobile Robot
Navigation in Crowded Environments

Stefano Primatesta, Ludovico Orlando Russo, Basilio Bona
Dipartimento di Automatica e Informatica

Politecnico di Torino
Torino, Italy

Email: {name.surname}@polito.it

Abstract—This paper describes a trajectory planning algo-
rithm for mobile robot navigation in crowded environments; the
aim is to solve the problem of planning a valid path through
moving people.

The proposed solution relies on an algorithm based on the
Informed Optimal Rapidly-exploring Random Tree (Informed-
RRT*), where the planner continuously computes a valid path
to navigate in crowded environments. While the robot executes
the trajectory of the current path, this re-planning method always
allows a feasible and optimal solution to be obtained.

Compared to other state-of-the-art algorithms, this solution
does not compute the entire path each time an obstacle is
detected, instead it evaluating the current solution validity, i.e.,
the presence of moving obstacles on the current path; in this
case the algorithm tries to repair the current solution. Only
if the current path is completely unacceptable is a new path
computed from scratch. Thanks to its reactivity, our solution
always guarantees a valid path that brings the robot to the desired
goal position.

This dynamic approach is validated in a real case scenario
where a mobile robot moves through a human crowd in a safe
and reliable way.

I. INTRODUCTION

The presence of robots in our lives is growing. Service
robotics aims at developing novel robotic solutions that co-
operate with human beings. To this reason, it is necessary for
a mobile robot to be able to navigate among people in a safe
and reliable way.

Navigation in crowded environments is challenging, since
they change very quickly. State-of-the-art approaches in robot
navigation compute the path from the initial position to the
goal position, assuming the environments to be static; if the
robot then senses an obstacle on the computed path, it re-
computes the entire path from scratch. In crowded environ-
ments path computation is performed several times, so that
the robot stops and changes path too often to reach the goal
in a reasonable amount of time.

Autonomous navigation is very important in Service
Robotics, because it allows any desired position to be reached
in a safe and reliable way. For example in [1], a robot navigates
in autonomy for Data Center Monitoring. Instead, in [2] a
mobile robot explores museum spaces and shows a real-time
video to remote users.

Several approaches have been proposed to solve the prob-
lem of mobile robot navigation in crowded environments. In

particular, there are two strands of thought: (i) prediction of
people motion, or (ii) dynamic path planning.

Very important work has been done by P. Trautman; in
[3], he introduced an approach to solve the freezing robot
problem using Interacting Gaussian Processes (IGP) to model
and predict people trajectory. In [4] he focused on Multiple
Goal Interacting Gaussian Processes (MGIGP), which aim
at estimating the behaviour of a crowd, and introduced a
cooperation model between robot and people. In this way
the robot can navigate in dense human crowds. This solution
requires the environment to be structured, since a pedestrian
tracking system must be put in place.

In [5], P. Henry at al. proposed using Inverse Reinforcement
Learning (IRL) to learn some of the pedestrians’ decisions.
The robot is hence controlled so that the humans’ predicted
path is minimally disrupted.

However, these approaches require tracking all the people
in a crowd. To do this the use of onboard robot sensors is not
enough; it is often necessary to use external sensors to monitor
the human crowd.

In dynamic Path Planning, important work has been done
with Sample-Based methods, in particular using the RRTs-
based algorithms (Rapidly-exploring Random Trees).

The original RRT was introduced by S. LaValle in [6] to
solve a Static Path Planning problem. RRT is able to find
a feasible solution, even in a high-dimensional state space,
but it is not guaranteed to be optimal. For this reason, many
improvements to the original RRT approach have been pro-
posed in literature. One of these was introduced by Karaman
and Frazzoli in [7], where the authors proposed an alternative
method, known as RRT*. It is an RRT-based algorithm with
asymptotic optimality. In [8], the authors proposed an Anytime
Motion Planning using RRT*, where, after a first solution is
found, it continues to search for an optimal path.

In general, Sample-Based algorithms are used in static Path
Planning approaches. Dynamic path planning is more difficult,
since the movements of obstacles are unknown.

In [9] Svenstrup et al. use a modified version of RRT to
compute a path in a human environment: it estimates people’s
motion in order to have a better and natural path. A similar
approach has been proposed in [10] where the authors use
Probabilistic RRT to navigate in dynamic environments.

Figure 1. Example of indecision behaviour. In (a) the robot follows the
solution path. During the execution, the algorithm computes new paths at
every loop. The resulting indecision behaviour can be viewed between (b) and
(c), where the robot changes direction toward different trajectories. However,
after many loops the robot overcomes the obstacle (d).

Another solution to Dynamic Path Planning is the re-
planning method. In [11] S. Yun uses a Genetic Algorithm
with a re-planning approach to avoid obstacles dynamically.
A similar approach is used in [12] by D. Ferguson et al. In
this work, the authors introduce a re-planning method in RRTs
algorithms. When a solution is interrupted by an obstacle, the
algorithm removes the invalid segments and computes new
ones, starting from the current exploration tree. In [13] and
[14], the authors propose a reactive motion planning method
capable of re-planning the path online when the environment
changes during the execution.

In [15] the authors use bi-directional RRT (Bi-RRT) with
a re-planning method to solve a Dynamic Path Planning
problem. In this work a novel 2D-span re-sampling is used
to repair an invalid path.

In any case, with the dynamic path planning approach there
can be undesirable behaviour. When a trajectory is computed
to go around an obstacle, the algorithm searches for an optimal
path that always passes on the same side of the obstacle. Since
RRT*-based algorithms find a near optimal solution, if the
distance cost is similar on both sides, there can be indecision.
In fact the algorithm can find solution paths on alternating
sides, during different runtime loops. This causes indecision
behaviour on the robot motion, which first follows one side,
then the other. Figure 1 depicts this behaviour.

In this paper, we propose a new framework for dynamic
motion planning in order to overcome the crowd, where people
are assumed to be simple dynamic obstacles. A re-planning
method is used to maintain a valid path from start to goal
positions. Initially the algorithm computes the entire path;
then, while the robot moves along this path, the algorithm
continues to check, repair and improve the path, while the
environment changes.

This approach uses a sample-based algorithm called
Informed-RRT*. This algorithm was introduced in [16] by J.

Gammel et al. and allows a fast computation of the solution
path in a high-dimensional space to be performed.

The method permits to be maintained stable trajectories,
producing a better movement of the robot and avoiding the
indecision behaviour described above. In fact, since it com-
putes a new path each time, it involves a continuous change
of trajectories that the robot follows by changing direction.
Another benefit is a reduction in CPU resources.

In this work we adopt a very simple approach to solve the
path planning problem in highly dynamic environments. We do
not perform motion estimation of dynamic obstacles. In fact, in
a crowded environment it is very difficult to track all the people
around the robot using only on-board sensors. Our solution
does not require information from external sensors, in order
to reduce the system complexity and extend the application
scenarios.

The paper is organized as follows: in Section II the original
Informed-RRT* is described. Then in Section III our method
for efficient re-planning in dynamic environments is presented.
Afterwords, in Section IV the proposed method is validated by
experimental result in simulation and in a real environment.

II. THE INFORMED-RRT* ALGORITHM

In this section the original Informed-RRT*, introduced in
[16] by Gammel et al., is discussed. Informed-RRT* performs
stochastic research using a sampling-based method, such as the
original Rapidly-exploring random tree (RRT). RRT is popular
in motion planning because it efficiently finds solutions to
single-query problems. Optimal RRT (RRT*) is an improve-
ment that allows a near-optimal solution to be found. Indeed
RRT is not optimal, because the existing tree biases future
expansions during the exploration. Instead RRT* connects new
states considering all near states, even if this means replacing
an edge in an existing tree.

Informed-RRT* is a simple modification to RRT*; this
method preserves the same completeness and optimality as
RRT*, while improving the convergence rate and the final
solution quality. Informed-RRT* improves RRT* when it
optimizes the path length, i.e. it minimizes the distance cost
function.

Let us define an optimal planning problem. Let X ⊆ Rn be
the state space of the planning problem, Xobs ⊆ X the invalid
states, i.e., those where an obstacle is present, and Xfree =
X \Xobs the remaining valid states. We define xstart, xgoal ∈
Xfree, respectively the initial state and the final state. Let Σ
be the set of all paths, where a single path σ : [0, 1] → X is
a sequence of states. The path planning algorithm searches an
optimal path σ∗ from xstart to xgoal in Xfree that minimizes
a given cost function c : Σ→ R > 0:

σ∗ = arg min
σ∈

∑ c(σ)

subject to σ(0) = xstart

σ(1) = xgoal

∀s ∈ [0, 1] , σ(s) ∈ Xfree.

(1)

Figure 2. Ellipse that describes the ellipsoidal informed subset of states. The
focal points are xstart and xgoal.

Now, let us assume that f(x) is the cost of an optimal path
and there is a set of states Xf ⊆ X that improve the current
path with current solution cost cbest.

Xf = {x ∈ X | f(x) < cbest} (2)

In general f(·) is unknown, but we can estimate an heuristic
function f̂(·). Similarly we can estimate a subset of poses Xf̂ ,
such that Xf̂ ⊇ Xf .

Informed-RRT* uses an ellipsoidal informed subset of states
that may improve the current solution with current solution
cost cbest.

Xf̂ = {x ∈ X
∣∣ ‖xstart − x‖2 + ‖xgoal − x‖2 6 cbest} (3)

In the resulting ellipse, xstart and xgoal are the focal
points. The value of major axis is cbest and the minor axis
is
√
c2best − c2min. Figure 2 shows the resulting ellipse.

The algorithm is similar to RRT*. In the same way it looks
for optimal path by incrementally building a tree in state space.
It differs from RRT* once a first solution is found, because it
focuses the search on the part of the planning problem that
can improve the solution. This is possible by sampling in
ellipsoidal informed subset of states Xf̂ . In this way it reaches
an optimal solution quicker than RRT*. Figure 6 and Figure
7 show the different behaviour of RRT* and Informed-RRT*

Sample-based algorithm requires a definition of State Space
(or Configuration Space). State Space defines all possible
configuration of states where the algorithm can sample and
build exploration tree. The bounds of State Space are defined
by dimension of the environment map. It is necessary to define
the degree of freedom of State Space. In this work it is
used a robot with differential drive that it rotates and moves
forward in 2D workspace. As already discussed in previous
section, the trajectory planner algorithm is used to define the
optimal path from current to desired pose. After the robot
follows each position in solution path using a local planner
algorithm. This means that the orientation of the robot during
the path is not relevant, except the final pose. For this reason
the Configuration Space is described using R2, where distance
function is the L2 norm.

Figure 3. Main architecture of the proposed algorithm. After Check routine
there are three possible cases: path valid (1); path invalid (2); path invalid but
repairable (3).

III. INFORMED-RRT* BASED TRAJECTORY PLANNING

The architecture of the path planning algorithm is depicted
in Figure 3. The core is the Informed-RRT* algorithm de-
scribed in the previous Section, that finds a near-optimal
solution rapidly. The idea is that while the robot executes the
current solution, the trajectory planner continues to check its
validity and, if necessary, it computes a new one. In fact with
dynamic environments, the path is valid for sure only in the
moment it is computed.

Since we consider a dynamic environments, then Xobs and
Xfree change in time, so that, at each iteration k, at time
sk of the algorithm, we can define different sets Xobs(k) and
Xfree(k), such that Xfree(k) = X \Xobs(k).

At every iteration, the sensors measurements allow to update
Xobs(k) and Xfree(k); then the Check routine is executed in
order to validate the current path in the new environment. The
algorithm computes a score χ(σ) over the current path, that
is defined as

χ(σ) =
|{Vobs, Eobs ∈ σ([sk, 1])}|

|{V,E ∈ σ}|
, (4)

where V and E are, respectively, the vertexes and the edges
of the path σ, while Vobs and Eobs are the invalid vertexes
and edges of the path not yet executed σ([sk, 1]), i.e., edges
that intersect Xobs(k) and edges that belong to Xobs(k); the
|·| set operator represents the cardinality of a set.

Three different cases can occur:
1) The current path is valid. There is no intersection

between the current path not yet executed σ([sk, 1]) and
the obstacles Xobs(k), i.e.,

χ(σ) = 0. (5)

2) The path is invalid, and several states intersects Xobs(k),
i.e.,

χ(σ) ≥ χmax. (6)

3) The path is invalid, but only few states intersects
Xobs(k), that is

0 < χ(σ) < χmax. (7)

Where χmax is a given threshold.

In the first case the current path is valid and the robot can
continue to follow it. In our approach we execute a short-cut
and smoothing routine over the path. In this way the robot can
follow a smoother trajectory.

In the second case the algorithm searches a new solu-
tion. The search space is completely changed and the old
exploration tree is invalid. Given a new start pose xstart, the
algorithm solves the new planning problem and returns a new
solution path to execute. Of course, the new start pose is set
as the current robot pose xstart,new = σ(sk).

In the third case the path is invalid only in few states. In this
case it is useless to find a new solution, since we can simply
repair the invalid states.

The path planner evaluates the occupation of the robot by
determining the robot radius rrobot, in this way we are sure
that the robot can navigate through obstacles. The value of
rrobot is then inflated to 110% for safety reasons.

As already discussed, while the algorithm checks and re-
turns the updated path, the robot follows the current solution.
This means that it can follows an invalid path for brief time.
In the case of normal crowded environments the trajectory
planner frequency must run at least at 2 Hz (or higher
frequency). With a lower frequency the path can be invalid
too many times, and the executed path might move towards
people.

In [17] authors study the frequency and velocity of walking
people; in the worst case the mean value of walking velocity
is 1.38 m/s. This means that with a planner frequency of 2
Hz a robot follows an invalid path for 500 ms, while people
move 0.69 meters. Experimental tests described in Section IV
showed that with normal human crowd there is no collision.

This new approach has some advantages. Computing new
solution each time, a robot can change the trajectory, causing a
discontinuous movement. With a check and repair routine, the
main trajectory remains stable, because the algorithm adapts
the path to the obstacles movement. The resulting robot motion
is smoother. Preserving old path does not always guarantees
the optimal solution, but the resulting robot behaviour is
considerably improved.

A. Pseudo-code

In this Section a pseudo-code is presented to illustrate the
proposed algorithm. Algorithm 1 describes the main routine
that computes and evaluates the solution path. Algorithms 2
and 3 describe the repair routines, in case of invalid states and
edges respectively.

As showed in Algorithm 1, when a new xgoal goal position
is available, the Trajectory Planning routine starts. First of all,
the exploration tree τ and the path σ are reset, in order to
erase old data.

After that, the algorithm starts the main routine, until robot
reaches xgoal.

The function GoalReached() returns the robot status while
it follows the solution path. It returns the true value only if
the robot reaches the goal position.

Algorithm 1 Trajectory Planning Informed-RRT* based
1: procedure DYNAMICPLANNING(xstart, xgoal)
2: τ ← reset()
3: σ ← reset()
4: while GoalReached() = False do
5: UpdateSearchSpace()
6: χ← Check(σ)
7: if χ > χmax then
8: τ ← reset()
9: τ ← InformedRRT ∗(xstart, xgoal)

10: σ ← BestTrajectory(τ)
11: else if χ > 0 then
12: σ ← RepairStates(σ)
13: σ ← RepairEdges(σ)
14: end if
15: σ ← LocalShortcut(σ)
16: σ ← Smoother(σ)
17: σ ← Interpolate(σ)
18: ExecutePath(σ)
19: end while
20: return
21: end procedure

Algorithm 2 RepairStates() routine
1: function REPAIRSTATES(σ)
2: for i = 1 to i = InvalidState.size() do
3: xn = InvalidState[i]
4: σ ← Disconnect(xn)
5: nnew = NeighborSample(xn, rmax)
6: if StateV alid(xnew) then
7: σ ← Reconnect(xnew)
8: end if
9: end for

10: return σ
11: end function

Algorithm 3 RepairEdges() routine
1: function REPAIREDGES(σ)
2: for i = 1 to i = InvalidEdge.size() do
3: En = InvalidEdge[i]
4: SearchNearState(xn−1, xn+1)
5: σ ← EraseEdge(En)
6: nnew = NeighborSample(xn−1, rmax)
7: if StateV alid(xnew) then
8: σ ← Reconnect(xnew)
9: end if

10: end for
11: return σ
12: end function

At every loop the State Space must be updated. The environ-
ment is modified by sensor measurements that set Xobs ⊆ X
and hence Xfree. When algorithm starts, it loads a static map
of environments. During execution sensors detect any type of
obstacle, both static and dynamic and sensors measurement
allow the map to be modified, and by consequence the State
Space changes.

In line 6, Check() function verifies that the current solution
path is valid and returns a ratio of invalid states, according to
equation 4. The algorithm checks that each state and edge
is in free space in the updated Configuration Space, then
xn, En ∈ Xfree. Verification is carried out using a rrobot
tolerance, where rrobot is the robot inflation radius. At this
point, the function evaluates the χ(σ) value; after that, in lines
from 7 to 14, the value from χ(σ) is evaluated according to
equations (5), (6) and (7) and, accordingly, the appropriate
strategy on the path is executed.

If path is invalid, the algorithm computes a new solution
(lines from 8 to 10). Given xstart and xgoal, the Informed-
RRT* algorithm computes a solution path in search space.
Before computing new plan, the old exploration tree is reset;
this is necessary, since checking and repairing all states in τ
is inefficient. Informed-RRT* builds a new exploration tree
τ . The solution path is the trajectory with the lower cost;
BestTrajectory() function searches the minimum path σ in τ .

If the path is invalid but repairable, the algorithm repairs the
invalid states and edges (lines 12, 13). As shown in Algorithms
2 and 3, there are two main simple cases: an invalid state or an
invalid edge between states. Figure 4(a) describes the first case,
where the algorithm searches a new state by sampling around
the invalid state. New sample must belong to a restricted area
around the old state with a radius rmax, that in the present
context is set to 1 meter. If a new state is found, the procedure
erases near edges en = {xn−1, xn}, en+1 = {xn, xn+1}
connected to invalid state xn, and connects xnew with other
states, then en = {xn−1, xnew}, en+1 = {xnew, xn+1}.
Instead in Figure 4(b) there are valid states, but invalid
edges. In this case there is no need to replace any state. The
algorithm erases the edge en = {xn−1, xn}, and looks for
a new state xnew and connects it to neighbours states. Then
en = {xn−1, xnew}, en+1 = {xnew, xn}. With successions
of invalid states the procedure is the same as for a single state.
In general, with a Invalid Ratio less than χmax, the repair
function works with success. If the function returns a failure,
a new path must be computed, as in line 8, 9, 10.

If the path is completely valid, no extra routines are executed
on the path.

Finally, until robot reaches goal pose, in line 18 the resulting
path σ is executed by external local planner.

In this work we set experimentally χmax = 0.15 that
represents a balanced threshold. This value may change in
different scenarios or with different map sizes. With higher
threshold value, the algorithm may not successfully repair
a path in the required time. However with lower ratio it is
necessary to compute a new path, even if it is not necessary.

(a)

(b)

Figure 4. The main simple cases of repair procedure. In (a) there is an invalid
state and it’s need to replace it with new one. In (b) there’s an invalid edge.
It’s need to add new state in order to avoid the Xobs area.

Figure 5. Example of short-cut procedure. xn−1 and xn+1 can be connected
directly without connecting to xn. The function erases xn only if the resulting
cost is lower.

Notice that, in the first cycle, the solution path σ is empty,
and it is considered as invalid.

At the end the algorithm improves the path using three dif-
ferent routines: LocalShortcut(), Smoother() and Interpolate().

LocalShortcut() provides a simplified solution. As shown in
Figure 5, given a state xn, if one can connect directly xn−1 and
xn+1 with a minor cost, xn can be eliminated. This procedure
is dangerous if it compares states at long distance, because it
can significantly change the solution path.

The Smoother() function smooths the path using a Spline
function.

Finally the Interpolate() function adds new states in the path
in order to guarantee to have states every 0.10 meters. This is
useful when the robot executes the trajectory, since it follows
each state in sequence. Using densely placed states, the robot
follows the solution path more closely.

At the end of every loop the algorithm returns the solution
path σ.

IV. EXPERIMENTAL RESULTS

The algorithm presented in the previous Sections has been
tested in simulation and in real case in crowded environments.

The algorithm has been implemented over the Open Motion
Planning Library (OMPL) [18]. It contains implementations of
many sample-based algorithms for path planning, in particular
many RRTs-based planner. In addition there are many State
Space included in the library, both in 2D and in 3D.

The main advantage of OMPL is modularity. OMPL code
is divided in classes, where each class has a specific func-
tion to solve planning problem. Most important classes are
ProblemDefinition, Planner and SpaceInformation and they
are independent. For this reason, in the proposed framework it
is possible to replace the Planner type algorithm with another
one without modifying the external code. The same concept
applies with the State Space type (in ProblemDefinition class).
As already explained, we have implemented an Informed-
RRT* based Planner that works over a Real Vector State Space
R2.

In order to work in 3D space, the entire map system must
be changed.

The proposed solution has been implemented using the
Robot Operating System (ROS) [19], that enables an easy
deployment in simulation and on real robots.

The simulation and real tests are described below; in both
cases a Turtlebot 2 robot is used.

A. Simulation

To check and debug the developed solution, we firstly run
it on a simulated environment. The first test was executed
in a simulated static environments, in order to evaluate the
behaviour of the trajectory planner. To simulate robot in a
realistic scenario we used the Gazebo Simulator [20].

As described in the previous Section, the algorithm pre-
sented in this paper uses Informed-RRT* to search the solution
path. In Figures 6 and 7 the use of Informed-RRT* and RRT*
is compared. The Informed Space used by Informed-RRT*,
as described in equation (3), is reduced in comparison with
the RRT* that uses the entire search space. In Figure 6 the
algorithm was able to compute a solution path in about 0.5s.
When there is no time constrain RRT* and Informed-RRT*
find similar solution paths. In Figure 7 the solution time has
been reduced to 0.1s and the behaviour of the algorithms
changes. The best use of the search space permits Informed-
RRT* to find a near optimal solution. RRT* finds a solution
too, but it is not optimal.

Both RRT* and Informed-RRT* find first solution in a
same way. Starting from it, in Figure 7 RRT* does not find
any solution that improves the current cost cbest. However
Informed-RRT* computes its informed space where it tries to
find a better solution.

In this framework it is necessary to find the optimal solution
path quickly. This is required because people moves contin-
uously and, in worst cases, it is required to find new paths
as quickly as possible. In Section III, we set the minimum
planner frequency at 2Hz; as a consequence, the solution time

(a)

(b)

Figure 6. An example where we simulate a planning problem. In both figures
the start and goal points, as well as the statics environment, are the same; the
solution time is 0.5 seconds for both methods. Figure (a) shows the RRT*
solution, while in (b) the same solution obtained with Informed-RRT* is
presented. The solution path is represented in green, the exploration tree in
orange. Notice that Informed-RRT* uses Search-Space more efficiently, while
RRT* continues to use the entire Space. After 0.5 seconds both algorithms
find a near-optimal solution.

is limited to 0.5s. Informed-RRT* satisfies this requirement
also in a high-dimensional State Space.

B. Robot Setup and Real Experimentation

We have tested the algorithm in a real case scenario, with a
real robot navigating in a dynamic and crowded environment.

In general the autonomous navigation architecture is a
two-stage problem, composed by global planning and local
planning. The global planner computes the entire path to reach
a given target point. Once the path is computed, the local
planner directly controls the robot in order to follow the path.
In this paper, we focus on the trajectory planner computation.
The local planner is implemented using Enhanced Vector Field
Histogram (VFH+), a real-time motion planning algorithm for
obstacle avoidance introduced by Borenstein et al. in [21]. This
is an improved version of the original Vector Field Histogram
described in [22] by the same authors.

Autonomous navigation requires a map, i.e., the Configura-
tion Space, in order to known the environment and support
the localization process. Localization is implemented using

(a)

(b)

Figure 7. Example similar to Figure 6. The planning problem is the same,
but the figures show the solutions after a reduced time of 0.1 seconds. In (a)
RRT* finds a solution path that is not optimal. Instead in (b) Informed-RRT*
finds a near-optimal solution. This example shows that Informed-RRT* uses
efficiently its search space, finding near-optimal solutions in less time.

the Adaptive Monte-Carlo Localization (AMCL), proposed in
[23]. Monte-Carlo localization approaches recursively estimate
the posterior probability of the robot’s pose using particle
filters (sample-based implementation of Bayesian filters).

In the real test a Turtlebot 2 robot is used; it includes a
differential drive Kobuki base robot, that includes a gyro to
improve odometry and a bumper to detect possible collisions.
In addition a Hokuyo Laser Range Scanner Sensor (URG-
04LX-UG01) is used, that is able to detect obstacles at a
maximum distance of 5.5m.

The experiment was carried in our University corridors.
Several parameters are necessary to the algorithm and they
have been set finding the best configuration experimentally.
The main algorithm loop routine should be able to run at a
rate at least 2Hz. With lower frequency the algorithm may
fail to face the moving people, while with this frequency it
guarantees always a valid and feasible path.

In the experiments shown in Figure 8, we test the algorithm
in a mapped environment of about 35m × 30m. With the
available hardware (CPU Intel CORE i7 with 2-core at 1.9
GHz) the main loop was able to run at a frequency of about
4Hz. With higher frequency the algorithm may return an

(a)

(b)

(c)

(d)

Figure 8. Navigation result in real environment. Map is known and it is
updated by sensors that detect people and new obstacles. Note that laser
detects people in about 5 meters. The algorithm continuously checks and
improves or computes global path. It searches a gap between obstacles.
The robot follows the path and finally reaches the goal point. The red line
represents the current path. Green arrow the final pose, blue arrow the robot
pose, while red arrow the pose gives to local planner.

incomplete or fragmented path, because there is less time
to search for an optimal solution. This frequency has been
possible due to Informed-RRT*, which optimizes its first
solution in Informed space. In fact algorithms like RRT*
search and optimize the solution in all the search space.

In this test the algorithm continuously returns the solution
path, or tries to improve the previous one. In this way the robot
always has a valid path to navigate in crowded environments.
Following the path, the robot can reach the goal pose, avoiding
collisions with people or other obstacles.

This approach requires a lower CPU usage, since the
path planning algorithm is called fewer times; this feature is
important, especially regarding the on-board computer power
consumption.

V. CONCLUSIONS AND FUTURE WORKS

In this paper we propose a new method to perform path
planning computation in crowded and dynamic environments,
where dynamic obstacles frequently modify the environment
and a new solution is often required.

While traditional algorithms always re-compute a new path,
causing an indecision behavior and requiring many more
computational resources, the new algorithm proposed is able
to continuously evaluate and update the current solution path.

In this work, we demonstrated that a continuous check
and repair routine provides a valid path through people. This
approach solves the problem of indecision behavior and saves
computational resources, since the path is rarely computed
from scratch, but is continuously updated while the environ-
ment changes.

Another advantage of the proposed approach is its simplic-
ity; in fact, it does not require moving obstacles to be tracked
and can be executed with only on-board robot sensors, such
as laser range scanners or 3D vision sensors.

Even if people obstruct the robot, the algorithm adjusts the
solution path; in this way, the robot always has a valid path
to follow and reached the goal position in 100% of the tests,
avoiding collision with people and generic obstacles.

This framework could also be used in other applications;
for example the same trajectory planning algorithm could be
adapted to be used with robotic manipulators acting in a 3D
environment.

Future works will include a simple prediction algorithm
for dynamic obstacles able to evaluate their motion. In this
way a better solution with reduced computational resources
is expected, avoiding the computation of paths in those areas
where we expect to find future obstacles.

ACKNOWLEDGMENT

This work was done at the Joint Open Lab CRAB and was
supported by a fellowship from TIM.

REFERENCES

[1] S. Rosa, L. O. Russo, and B. Bona, “Towards a ros-based autonomous
cloud robotics platform for data center monitoring,” in Emerging Tech-
nology and Factory Automation (ETFA), 2014 IEEE, Sept 2014, pp.
1–8.

[2] M. K. Ng, S. Primatesta, L. Giuliano, M. L. Lupetti, L. O. Russo, G. A.
Farulla, M. Indaco, S. Rosa, C. Germak, and B. Bona, “A cloud robotics
system for telepresence enabling mobility impaired people to enjoy the
whole museum experience,” in 10th International Conference on Design
Technology of Integrated Systems in Nanoscale Era (DTIS), 2015, April
2015, pp. 1–6.

[3] P. Trautman and A. Krause, “Unfreezing the robot: Navigation in dense,
interacting crowds,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2010, Oct 2010, pp. 797–803.

[4] P. Trautman, J. Ma, R. M. Murray, and A. Krause, “Robot navigation in
dense human crowds: the case for cooperation,” in IEEE International
Conference on Robotics and Automation (ICRA), 2013, May 2013, pp.
2153–2160.

[5] P. Henry, C. Vollmer, B. Ferris, and D. Fox, “Learning to navigate
through crowded environments,” in IEEE International Conference on
Robotics and Automation (ICRA), 2010, May 2010, pp. 981–986.

[6] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” in TR 98-11, Computer Science Dept., Iowa State University,
October 1998.

[7] S. Karaman and E. Frazzoli, “Incremental sampling-based algorithms for
optimal motion planning,” Proc. Robotics: Science and Systems (RSS),
2010.

[8] S. Karaman, M. R. Walter, A. Perez, E. Frazzoli, and S. Teller, “Anytime
motion planning using the rrt*,” in IEEE International Conference on
Robotics and Automation (ICRA), 2011, May 2011, pp. 1478–1483.

[9] M. Svenstrup, T. Bak, and H. J. Andersen, “Trajectory planning for
robots in dynamic human environments,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2010, Oct 2010,
pp. 4293–4298.

[10] C. Fulgenzi, C. Tay, A. Spalanzani, and C. Laugier, “Probabilistic
navigation in dynamic environment using rapidly-exploring random
trees and gaussian processes,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS) 2008, Sept 2008, pp. 1056–1062.

[11] S. C. Yun, S. Parasuraman, and V. Ganapathy, “Dynamic path planning
algorithm in mobile robot navigation,” in IEEE Symposium on Industrial
Electronics and Applications (ISIEA), 2011, Sept 2011, pp. 364–369.

[12] D. Ferguson, N. Kalra, and A. Stentz, “Replanning with rrts,” in IEEE
International Conference on Robotics and Automation (ICRA), 2006,
May 2006, pp. 1243–1248.

[13] E. Yoshida, K. Yokoi, and P. Gergondet, “Online replanning for reactive
robot motion: Practical aspects,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2010, Oct 2010, pp. 5927–
5933.

[14] E. Yoshida and F. Kanehiro, “Reactive robot motion using path replan-
ning and deformation,” in IEEE International Conference on Robotics
and Automation (ICRA), 2011, May 2011, pp. 5456–5462.

[15] H. Lin and C. S. Yang, “2d-span resampling of bi-rrt in dynamic path
planning,” International Journal of Automation and Smart Technology,
vol. 5, no. 1, 2015.

[16] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, “Informed rrt*:
Optimal sampling-based path planning focused via direct sampling of an
admissible ellipsoidal heuristic,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2014, Sept 2014, pp. 2997–
3004.

[17] P. Aikaterini and J. Tianjian, “Frequency and velocity of people walk-
ing,” The Structural Engineer, vol. 83, no. 3, 2005.

[18] I. A. Şucan, M. Moll, and L. E. Kavraki, “The Open Motion Planning
Library,” IEEE Robotics & Automation Magazine, vol. 19, no. 4, pp.
72–82, December 2012, http://ompl.kavrakilab.org.

[19] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating system,”
in ICRA workshop on open source software, vol. 3, no. 3.2, 2009, p. 5.

[20] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an
open-source multi-robot simulator,” in IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), 2004, vol. 3, Sept 2004,
pp. 2149–2154 vol.3.

[21] I. Ulrich and J. Borenstein, “Vfh+: reliable obstacle avoidance for fast
mobile robots,” in IEEE International Conference on Robotics and
Automation, 1998, vol. 2, May 1998, pp. 1572–1577 vol.2.

[22] J. Borenstein and Y. Koren, “The vector field histogram-fast obstacle
avoidance for mobile robots,” IEEE Transactions on Robotics and
Automation, vol. 7, no. 3, pp. 278–288, Jun 1991.

[23] D. Fox, “Kld-sampling: Adaptive particle filters,” in Advances in neural
information processing systems, 2001, pp. 713–720.

