
20 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Online Time Interference Detection in Mixed-Criticality Applications on Multicore Architectures using Performance
Counters / Esposito, Stefano; Violante, Massimo; Sozzi, Marco; Terrone, Marco; Traversone, Massimo. - STAMPA. -
(2016), pp. 213-214. (Intervento presentato al convegno 22nd IEEE International Symposium on On-Line Testing and
Robust System Design tenutosi a Sant Feliu de Guixols (ESP) nel 4-6 July 2016).

Original

Online Time Interference Detection in Mixed-Criticality Applications on Multicore Architectures using
Performance Counters

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:

Terms of use:

Publisher copyright

©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2650472 since: 2016-09-22T12:18:30Z

IEEE

Online Time Interference Detection in Mixed-
Criticality Applications on Multicore Architectures

using Performance Counters

Stefano Esposito, Massimio Violante
DAUIN - Politecnico di Torino

Torino, Italy
{stefano.esposito,massimo.violante}@polito.it

Marco Sozzi, Marco Terrone, Massimo Traversone
Leonardo-Finmeccanica

Italy
{marco.sozzi,marco.terrone,massimo.traversone}@finmeccanica.com

Abstract— In this paper a novel technique is proposed for
online detection of timing interference in multicore architectures.
The technique is aimed at mixed-criticality workloads. This paper
describes a method to use hardware performance counters to
detect such misbehaviors. Experimental data is gathered, showing
the viability of this method. The method can be used as safety-net
in several scheduling approaches.

Keywords— multicore processing; mixed-criticalities; fault
detection; performance counters; safety critical applications; hard
real-time

I. INTRODUCTION
A mixed-criticality system is one in which two or more tasks

with different assurance levels, or criticalities, share the same
hardware resources. In a multicore-based system, such
resources include shared memory and bus. For certification
purposes, all applications sharing resources should be designed
at the same assurance level as the most critical one. This means
that the multicore systems may suffer of under-utilization. To
solve this problem, several scheduling algorithms have been
proposed to ensure schedulability of a system with mixed-
criticalities tasks running on multicore architectures. The main
contribution of this paper is a method for online detection of
temporal interference in multicore-based mixed-criticality
applications. In section II we present a brief overview of the
most relevant works. In section III we describe the proposed
method. Section IV presents the experimental results.
Conclusions are in Section V.

II. RELATED WORKS
Since [1], several works were presented on the topic of mixed

criticalities applications. The basic idea in [1] was that the
Worst Case Execution Time (WCET) of a task is computed
with pessimistic assumptions for high assurance levels. A
scheduling algorithm was proposed to exploit this observation.
The scheduling algorithm was extended in the following years
[2][3]. Starting from [4], cited approaches were extended to
include the multicore case. Multicore architectures are of
particular interest for avionics. Current Integrated Modular
Avionic (IMA) approach is to use the same processing unit to

implement different functions using time multiplexing
strategies [5]. Using multicore would allow to integrate tasks
that can run in parallel on the same processing unit. Use of
multicore in safety-critical hard real-time systems can use
different approaches [5]. Some efforts have been done from an
architectural point of view [6] [7]. Several other works focused
on the WCET analysis in multicore-based systems [8][9].
Authors of [10] proposed performance counters as safety-net,
although they do not present experimental data.

III. FAULT DETECTION USING PERFORMANCE METRICS
The proposed method assumes that a feasible scheduling for

the system has been implemented. The method has been
developed to detect temporal interferences. The proposed
method does not require online monitoring of the execution
time as a watchdog timer: any performance metric correlated to
the execution time can be used. If performance counters for the
selected metric are included in the task context, several
monitored tasks can share the same core.

A. Offline phase
 We consider the selected metric as a random variable 𝑋. A

detection threshold 𝐷 is defined in (1). Any execution with a
metric value above 𝐷 is considered affected by a fault.

𝑃 𝑋 ≤ 𝐷 = C' (1)

𝐶'	is the desired level of confidence that a task with a metric
lower than 𝐷 is fault-free. The probability can be determined by
fitting profiling data to a known distribution.

B. Online phase
The selected metric is monitored through performance

counters, which trigger an Interrupt Request (IRQ) when the
measured metric is above the threshold 𝐷, triggering a recovery
action that can be either graceful degradation – the scheduling
is modified so that the monitored task is scheduled alone, while
tasks that could be scheduled in parallel are scheduled after its
completion – or hot-standby spare.

C. Metric selection
Metric selection is dependent on the application and on the

hardware architecture. In general, the metric should be selected
to measure the penalty that the monitored task could suffer
when other tasks use shared resources in an unexpected way.
Since the goal is to detect temporal interference, the selected
metric should be correlated to execution time. Moreover, the
monitoring of the metric should not introduce temporal
interference with any task.

IV. EXPERIMENTAL SETUP AND RESULTS
The proposed method has been evaluated on a dual-core and

a quad-core Cortex-A9. A commercial type-1 hypervisor was
used to implement partitioning and scheduling. A synthetic
benchmark composed of memory operations and bubble-sort
was designed to stress the memory hierarchy. Monitored task is
periodic and performs memory operations, while the other tasks
execute bubble-sort with the same period. The performance
metric to monitor was selected among those measurable using
the Performance Monitor Unit (PMU), which is a component of
each core that allows counting several events concerning
performance. Data cache dependent stall cycles (DCSC) counts
the cycles during which the core is stalled waiting for data; it is
a good metric for the proposed method. Figure 1 presents data
collected on a quad-core processor in 15,000 runs, showing that
DCSC can detect interference; results are similar on a dual-core
processor. The proposed method was applied with 𝐶' = 0.9985
to compute 𝐷. The benchmark was executed under different
scenarios, 15,000 times in each. Interfering applications were
changed to simulate a software bug causing bus saturation.
Figure 2 shows effects on Xilinx Zynq (dual-core) and on NXP
i.MX6Q (quad-core). Table 1 shows the ratio of executions for
which the recovery action was triggered. It is worthy to mention
that when the detection threshold is not crossed, the bug did not
cause deadline miss.

Figure 1. Probability distribution of the selected metric on a quad-core
architecture, when running alone and when running at the same time as other
tasks (one task per core).

V. CONCLUSIONS
A new online temporal interference detection technique has

been presented, showing its effectiveness with preliminary
experimental data. Results show that the technique is able to
detect timing interference. Although cycle counters could be

used as interference metrics, this measure is often more useful
when used with watchdog timers, which can be complementary
to the proposed method.

ACKNOWLEDGMENT
The research was partially supported by the ARTEMIS Joint

Undertaking project in the Innovation Pilot Programme
“Computing platforms for embedded systems” (AIPP5) under
grant agreement n. 621429 (project EMC2). Thanks to Serhiy
Avramenko for the valuable insights.

Figure 2. Fault effects. The vertical line is the detection threshold.

TABLE 1. RECOVERY ACTION TRIGGER RATIO
Case Dual Core Quad Core
Nominal 0.28% 0.19%
1 Affected Task 99.06% 11.12%
2 Affected Tasks - 75.65%
3 Affected Tasks - 99,93%

REFERENCES
 S. Vestal, “Preemptive scheduling of multi-criticality systems with

varying degrees of execution time assurance,” Proc. - Real-Time Syst.
Symp., pp. 239–243, 2007.

 S. Baruah and S. Vestal, “Schedulability analysis of sporadic tasks with
multiple criticality specifications,” Proc. - Euromicro Conf. Real-Time
Syst., pp. 147–155, 2008.

 S. K. Baruah, V. Bonifaci, G. D’Angelo, A. Marchetti-Spaccamela, S.
Van Der Ster, and L. Stougie, “Mixed-Criticality scheduling of sporadic
task systems,” in Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 2011, vol. 6942 LNCS, pp. 555–566.

 J. Anderson, S. Baruah, and B. Brandenburg, “Multicore operating-
system support for mixed criticality,” in Workshop on Mixed Criticality:
Roadmap to Evolving UAV Certification, 2009.

 J. Nowotsch and M. Paulitsch, “Leveraging Multi-Core Computing
Architectures in Avionics,” 2012 Ninth Eur. Dependable Comput. Conf.,
pp. 132–143, 2012.

 J. Barre, C. Rochange, and P. Sainrat, “An architecture for the
simultaneous execution of hard real-time threads,” Proc. - 2008 Int. Conf.
Embed. Comput. Syst. Archit. Model. Simulation, IC-SAMOS 2008, pp.
18–24, 2008.

 S. Avramenko, S. Esposito, M. Violante, M. Sozzi, M. Traversone, M.
Binello, and M. Terrone, “An Hybrid Architecture for Consolidating
Mixed Criticality Applications on Multicore Systems,” in 2015 IEEE 21st
International On-Line Testing Symposium, 2015, pp. 26–29.

 Y. Li, V. Suhendra, Y. Liang, T. Mitra, and A. Roychoudhury, “Timing
Analysis of Concurrent Programs Running on Shared Cache Multi-
Cores,” 2009 30th IEEE Real-Time Syst. Symp., pp. 57–67, 2009.

 S. Girbal, A. Grasset, E. Q. U. I. Nones, S. Yehia, and F. J. Cazorla, “On
the Evaluation of the Impact of Shared Resources in Multithreaded COTS
Processors in Time-Critical Environments,” vol. 8, no. 4, pp. 1–25, 2012.

 J. Nowotsch, M. Paulitsch, A. Henrichsen, W. Pongratz, and A. Schacht,
“Monitoring and WCET analysis in COTS multi-core-SoC-based mixed-
criticality systems,” Des. Autom. Test Eur. Conf. Exhib. (DATE), 2014,
pp. 1–5, 2014.

