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Modified compact Genetic Algorithm for Thinned
Array Synthesis

B. V. Ha, Student Member, IEEE, M. Mussetta, Member, IEEE, P. Pirinoli, Member, IEEE,
and R. E. Zich, Member, IEEE

Abstract—In this paper, a new optimization algorithm, the
Modified compact Genetic Algorithm (M-cGA) is introduced
and applied to the synthesis of thinned arrays. The M-cGA
has been derived from the compact Genetic Algorithm (cGA),
properly modified and improved by implementing more than
one probability vector (PV) and adding suitable learning scheme
between these PVs. The so obtained algorithm has been applied to
the optimized synthesis of different size linear and planar thinned
arrays: in all the considered cases it outperforms not only the
cGA, but also the other optimization schemes previously applied
to this kind of problems, both in terms of goodness of the solution
(minimization of the peak side-lobe level) and of computational
cost.

Index Terms—Compact genetic algorithm, optimization algo-
rithm, thinned array, antenna.

I. INTRODUCTION

IN recent years, thinned arrays have attracted significant
attention from researchers because of their advantages such

as the reduction of the array weight and of the complexity of
the feeding network. However, array thinning has also some
disadvantages, the main of which is the decreasing of the
maximum gain value, that corresponds to an increase of the
side-lobe level (SLL) with respect to a fully populated array
with the same equivalent size [1].

To circumvent this drawback, several techniques have been
proposed, aimed to find the best location of the active elements
inside the array grid [2]–[12]. Deterministic approaches have
been firstly adopted, but they do not show significant improve-
ments with respect to the random element placement [2], [3].
Recently, dynamic program [4] and stochastic optimization
techniques, including Genetic Algorithm (GA) [5], simu-
lated annealing (SA) [6], [7], and Ant Colony Optimization
(ACO) [8], [9], have been applied to the optimization of
thinned array. The obtained results are remarkable, even if
they could be further improved.

The combination of deterministic approaches and stochas-
tic optimization have been proposed exploiting the available
knowledge of Different Sets (DS) or Almost Different Sets
using GA [10]–[12]. These combinations proved that this
procedure most of the times is very effective. However,

B. V. Ha is with Universit catholique de Louvain, ICTEAM, Belgium, e-
mail:(buivanhabk@gmail.com).

M. Mussetta and R. E. Zich are with the Dipartimento di Energia, Po-
litecnico di Milano, Milan, Italy e-mail: (marco.mussetta@polimi.it, ric-
cardo.zich@polimi.it).

P. Pirinoli is with the Dipartimento di Elettronica e Telecomunicazioni,
Politecnico di Torino, Torino, Italy e-mail:(paola.pirinoli@polito.it).

Manuscript received . . . 2014.

the operations performed by the optimizer still presents the
inherent disadvantage of stochastic based optimization, i.e.
the process convergnce can be really slow, with a resulting
increase of its computational cost.

In [13] the previous hybrid approach has been extended to
planar thinned arrays, while in [14] the synthesis of these last
have been carried out by the combination of others optimiza-
tion algorithm (PSO) and combinatorial method. Also [15]
deals with the synthesis of planar thinned arrays, proposing
two techniques that are the hybridization of a deterministic
approach (the density tapering) in one case with the random
location of the elements, in the other with the iterative Fourier
Transform. This last is instead used alone for the design of
large planar arrays in [16].

In this framework, the compact Genetic Algorithm (cGA)
[17] seemed to be a good candidate for the optimized synthesis
of thinned arrays. The authors have recently introduced an
improved version, named Modified cGA (M-cGA), with the
aim of overcoming the limitation of the former one [18].
Some preliminary results have been presented in [19], [20],
showing that M-cGA provided good solutions with a reduced
computational cost, i.e. it converged faster. In view of these
encouraging results on its application to different test functions
and simple electromagnetic problems, the use of M-cGA was
further investigated: in this paper the results of its application
to the optimization of several, different-size linear and planar
thinned arrays are reported, and compared with the results
obtained with other approaches. The paper is structured as
follows. In Section II, the compact genetic algorithm (cGA) is
firstly introduced, followed by the description of the M-cGA;
in Section III the results of the optimization of planar and
linear thinned arrays through the M-cGA are shown, while in
Section IV some conclusions are drawn.

II. THE MODIFIED COMPACT GENETIC ALGORITHM

Despite of its name, the compact Genetic Algorithm, first
presented in [17], belongs to the Estimation Distribution Algo-
rithms, since, in order to get the distribution of good solutions,
it uses a probability vector (PV) to represent a possible
solution; this PV is managed in place of the population of
entities typical of Evolutionary Algorithms. The length of the
PV corresponds to the number N of variables of the problem,
and the value of the PV elements represents the probability
of a variable to get a particular value. A full treatment of
the method can be found in [17], [21], but for the sake of
clarity and uniformity of notation it is briefly summarized in
the following subsection.
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Fig. 1. Pseudo code of the cGA

A. Compact Genetic Algorithm

The pseudo code of the cGA is shown in Fig. 1. Initially,
each element of the PV is set equal to 0.5, assuming a
uniform distribution for each one. At the following step, two
individuals are generated from each element of the current
PV. They compete each other, and the winner is responsible
for the updating the corresponding PV’s element: its value
is increased or decreased by a factor 1/n (where n is the
population size) according to the value of the winner. The
cGA will stop when all the PV’s elements are uqual to 0 or
1, i.e. the optimal solution is found.

A first variation of the standard cGA has already been
introduced in [17], by increasing the number of generated
offspring and applying tournament competition, i.e. simulating
higher selection pressure. This modification however has a
high computational cost since it needs to store and evaluate a
considerable number of individuals.

In [21], Ahn proposed new versions of cGA introducing
elitism. He created two different approaches, i.e. the persistent
elitism cGA (pe-cGA) and the non-persistent elitism cGA (ne-
cGA). The elitism-based cGAs outperform the original cGA
in term of function evaluations but they do not perform better
in term of solution quality.

B. Modified compact Genetic Algorithm

The idea behind the M-cGA is to enhance the exploration
capability of the cGA, that tends to stagnate, by adding one
of the operator typical of the stochastic algorithms. Therefore,
starting from the ne-cGA, the Modified cGA was implemented
by introducing more PVs and integrating a learning scheme
in the update procedure. In Fig. 1, the new “step 4” of the
M-cGA is reported, which describes the updating procedure,
different from that of the standard cGA. In fact, in M-cGA
each element of each PV is update according to the rule used

Fig. 2. New updating rules for the M-cGA

in the standard cGA, that represents its self-knowledge, but it
is also influenced by the elements of the other PVs, i.e. by a
global knowledge, and in particular by the best element among
those of all the PVs. In this way it is possible to enhance
the exploration properties of the algorithm and increase the
ability to avoid local optimum, with a reduced increase of
the computational cost: in fact, the number of operations
performed by the M-cGA is equal to that carried on by the
cGA, just multiplied by the number of PVs, that is generally
very small (2-6).

III. THINNED ARRAY SYNTHESIS

In view of the preliminary results reported in [18], [19],
[20], the application of the M-cGA to thinned array has
been further investigated. Several configurations of both lin-
ear and planar thinned arrays have been considered. The
performance of the M-cGA has been compared with results
available in literature, obtained by other approaches on the
same configurations. They have been compared both in terms
of their capability to obtain a good solution, i.e. a configuration
that minimize the Peak Sidelobe Level (PSL), and of their
computational cost. In all the considered situations, the M-
cGA uses 4 PVs and the reported results are the average values
over 50 independent trials.

A. Synthesis of Linear Thinned Array

For what concerns linear arrays, five different configurations
have been considered: arrays with 96, 198 and 502 element,
the 50% of which is turned on, a 198 element array, with
79 elements switched off, and an array with 200 elements,
46 of which are off. These configurations were chosen due
to the availability of previous results in literature, therefore it
was possible to compare the performance of the M-cGA not
only with the standard cGA but also with other established
approaches [12].
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TABLE I
PSL [DB] OBTAINED WITH DIFFERENT METHODS FOR ARRAYS WITH THE

50% OF THE ELEMENTS SWITCHED OFF

Array GA[12] ADS-GA [12] cGA M-cGA

98/49 −19.82 −20.4 −19.8 −20.45

198/99 −18.20 −19.24 −19.9 −21.9

502/251 −20.83 −21.31 −20.4 −23.53
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Fig. 3. Function Evaluation of different thinned arrays

Table I reports the PSL of the first three configurations, i.e.
the arrays with the 50% of elements switched off, obtained
with the M-cGA, the cGA, the GA and the hybrid ADS-
GA [12] respectively. These results show that the cGA works
almost always as the GA, while the M-cGA outperforms both
the GA and the cGA in all cases, most significantly when the
size of the array increases; its performance is comparable with
those of the ADS-GA for the smallest array, but it becomes
better than the latter when increasing the problem size.

Fig. 3 gives an information about the computational cost of
the four considered methods applied to arrays with the 50%
of elements switched off, since it shows the variation of the
number of cost function evaluations vs. the total number of
array elements. This plot highlights the advantage of using the
probability vector instead of the population, since it allows a
drastic reduction of the workload. Moreover, it proves that M-
cGA outperforms cGA, since the use of more PVs speeds up
the convergence.

Finally, Tab. II summarizes the results for the last two
considered arrays, for what concerns both the minimum PSL
and the number of cost function evaluations, relative to the M-
cGA and compared with those for the ADS-GA [12]; in fact,
from the above analysis, the latter appears to provide better
results than the cGA and the GA. Also in these two cases,
the PSL values obtained with the M-cGA are slightly better
than those given by the ADS-GA, but the M-cGA outperforms
the ADS-GA for what concerns the computational cost, that
is reduced to one half in the first case and even to one third

TABLE II
COMPARISON OF THE M-CGA AND THE ADS-GA [12] IN TERMS OF

MINIMUM PSL AND COMPUTATIONAL COST

Array PSL [dB] No. of cost function eval.
ADS-GA [12] M-cGA ADS-GA [12] M-cGA

198/79 −20.25 −21.10 126, 126 60, 000

200/46 −23.05 −23.75 305, 600 100, 000
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Fig. 4. Avarage curve of convergence of the M-cGA applied to the optimiza-
tion of the 20× 10 thinned array

for the second array.

B. Synthesis of Planar Thinned Array

In this section, results on the synthesis of planar, i.e.
square and rectangular, thinned arrays, are shown. Similarly to
the linear case, different configurations have been considered
based on previous literature availability. In all the cases, the
fitness function optimized by the M-cGA is the sum of PSLs in
two main planes, i.e. φ = 0◦, and φ = 90◦ and the probability
vectors are one-dimensional vectors as for the linear array.

The first configuration considered is a 20×10 element planar
array, in which 108 elements are turned on. In Fig. 4 the M-
cGA average curve of convergence is plotted: the value of the
fitness function after 3000 iterations corresponds to an array
configuration whose radiation pattern is shown in Fig. 5. The
PSL is equal to −26.6 dB in the φ = 0◦ plane, and to −23.5 dB
in the φ = 90◦ plane. These achieved values are lower than
those obtained with the GA in [5], and with the modified real
genetic algorithm (MGA) that optimized also the position of
the elements switched on [22]. Moreover, the number of fitness
function evaluations required to converge is around 12000 for
the M-cGA, i.e. less than half of those needed by the MGA
[22].

As a last example of application of the M-cGA to the
optimized synthesis of planar thinned arrays, different square
arrays have been considered, with different size and percentage
of switched off elements. The obtained PSLs, which in these
cases is equal in the two planes, are reported in the third
column of Tab. III. In the columns 4–7 the results obtained
with the cGA, the HSPSO [14], the ACO [9] and the IFTDT
[15] are also shown.
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Fig. 5. Far-field patterns in the two main planes for the 20× 10 optimized
thinned array

TABLE III
MINIMUM PSL [DB] OBTAINED WITH DIFFERENT METHODS APPLIED TO

DIFFERENT SIZE PLANAR THINNED ARRAYS

array % of ON M-cGA cGA HSPSO ACO IFTDT
size elements [14] [9] [15]

12× 12 48 −19.4 −17.9 −16.7 − −17.6

24× 24 44 −23.3 −22.0 −19.0 − −22.8

30× 30 60 −24.6 −23.9 − −23.5 −24.3

IV. CONCLUSION

In this paper, the M-cGA, an enhanced version of the cGA,
recently introduced integrating learning mechanism in cGA,
is applied to the synthesis of thinned arrays. The results here
presented reveal that the M-cGA is able to well control the
PSL of both linear and planar thinned array, with a reduced
computational cost.
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