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Abstract  

The aim of this paper is to highlight the potentialities for supporting the decision making process and design activities, for the 

case of retrofit projects with alternative technological solutions to compare. A multidisciplinary approach was adopted, involving 

the contribution of Real Estate Market and Economic Evaluation of Project, Architectural Technology and Building Physics. A 

simplified application of the Life Cycle Costing methodology was used, in synergy with energy analyses, to select, among 

different scenarios, the most viable solution for the retrofitting project of a single house in Northern Italy.  

© 2017 The Authors. Published by Elsevier Ltd. Peer-review under responsibility of [KES International.]. 
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1. Introduction 

The building and the construction sector, and consequently the real estate market, have been largely impacted by 

the economic-financial crisis effects over the last years. In fact, the collapse of permits for the construction of new 

buildings has been about 80% in Italy. On the contrary, interventions of restoration and energy requalification of the 

built heritage has shown a positive trend. As a result, the energy requalification of the built heritage represents an 

opportunity for construction enterprises to get over the crisis. This condition is of particular interest in Italy: over 
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half of buildings were erected before the Seventies, and currently they need strong and possibly low costs 

interventions aimed at architectural and technological improvements, in an energy requalification perspective. 

Furthermore, the Italian governance policies have been moving toward regulations that limit the use of Greenfield 

for new constructions, strengthening the interest of operators and practitioners for the restoration of the built 

heritage.  

The energy requalification of the built heritage can generate positive effects not only from an economic 

viewpoint, but also in environmental terms. It is well known that the construction sector is one of the major 

responsible for the global pollution and CO2 emissions. The annual energy use in the construction sector in Italy is 

almost half of the entire national consumption, with values higher than what recorded for the transportation and 

industrial sectors. Both economic and environmental reasons have led the research toward highly efficient buildings, 

able to limit the use of energy resources and polluting emissions, while reducing the ground consumption. The 

objective to “rethink the built” can be pursued through punctual interventions on buildings, which are aimed at 

optimizing the global energy efficiency and at creating enlargements and elevations of buildings, with an impact on 

their architectonical quality and usability.  

Within this context, the paper deals with the topic of the energy requalification of buildings, focusing on the 

typology of single houses. About 85% of the Italian built heritage includes residential buildings, and about three 

quarters of this share consists of single or double family houses. For these reasons, the following aims are assumed 

as fundamental:  

 to define sustainability strategies to address interventions on the built heritage, with special attention to the 

typology of residential single houses. This typology is particularly suitable for enlargement, considering that the 

increase in the volume could be coupled with an increase in the energy efficiency  

 to define a methodological framework concerned with retrofitting of existing buildings, especially when in the 

presence of alternative technological solutions. Such framework should assist practitioners and administrators in 

defining, evaluating and selecting the optimal scenario, from both an economic and an environmental viewpoint 

The goal of this paper is to explore the application of a multidisciplinary approach to a real case-study (a double-

family single house located in a municipality near Turin, Northern Italy), taking advantage of the contribution of 

three disciplines: Architectural Technology, Real Estate Appraisal and Economic Evaluation of Project, and 

Building Physics [1,2]. The contribution of these disciplines is finalized to define a methodology simple and easy to 

be replicated, also considering the general difficulty – particularly in Italy – in data collecting. Specifically, the Life 

Cycle Costing approach, well known and extensively investigated in the international context but not so commonly 

treated in Italy [3], is here adapted and applied to a case-study. A simplified modality of the classic Global Cost 

calculation is proposed.  

Starting from the Standard ISO 15686:2008 - part 5, and from the Global Cost calculation as defined in Standard 

EN 15459:2007, the Life Cycle Costing methodology was used in synergy with an energy evaluation procedure to 

compare different technological solutions for the considered case-study, so as to define the most viable solution not 

only in technological and energy terms, but also from an economical viewpoint. 

 

2. Methodology  

 

In this work, a ‘simplified’ application of the LCC methodology was used to identify the optimal scenario among 

a set of different technological solutions aimed at reducing the energy requirements for heating and at including the 

use of renewable energy sources. The Standard ISO 15686–5:2008 - Buildings and constructed assets – Service-life 

planning (prepared by Technical Committee ISO/TC 59, Building construction, Subcommittee SC 14, Design life), 

specifically the Part 5: Life Cycle Costing, was used as the methodological reference [4].  

LCC is an approach for quantifying costs and benefits, with a special attention to the relevant costs along the 

whole life cycle [5,6]. This approach is used for supporting decisions among alternative design solutions, or 

components, or single materials, on the base of efficiency and effective criteria. Furthermore, it is a technique for 

economic evaluation of a project in the case of new projects or retrofitting of existing buildings: it allows 

considering individual products or components, or an entire building systems (e.g. HVAC and lighting systems), as 

well as immediate and/or long term costs and benefits (usually savings). The approach can be applied with different 

purposes: to compare alternative technical solutions to assess the relative difference in terms of their life cycle costs; 
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to define a ranking among alternative projects, focusing on the benefits which can be obtained by investments with 

limited resources; to assess the budget of a selected project for a predetermined lifespan. The results are expressed 

through quantitative indicators (Net Present Value, Net Present Cost, Net Savings, Discounted Pay Back Period 

etc.), starting from input data on costs, cost profiles of each option considered, and financial input data.  

The Global Cost concept is the basis of LCC. It is defined in the Standard EN 15459:2007 [7] and specified in the 

Guidelines accompanying Commission Delegated Regulation (EU) No 244/2012 [8], which followed the Directive 

2010/31/EU – EPBD recast [9]. The Standard EN 15459 aims at harmonizing the methodology for the calculation of 

the energy performance of a building at an European level and at representing the methodological base for the 

Global Cost calculation. It relies on two approaches: the global cost method and the annuity method. The global cost 

method considers the initial investment and the sum of annual and disposal costs. The residual value of the 

components with a life-cycle longer than the building lifetime must be deducted, as shown in Equation (1): 

       jViRjCCC fi diajIG 
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where: CG(τ) = global cost (referred to starting year τ0); CI = initial investment costs; Ca,i (j) = annual cost during 

year i of component j, which includes annual running costs (energy costs, operational costs, maintenance costs) and 

periodic replacement costs; Rd (i) = discount rate during year i; Vf,τ(j) = residual value of the component j at the end 

of the calculation period, referred to the starting year.  

Input data related to costs are usually based on market analyses (e.g. comparison with recent and similar building 

projects, market-based databases, market prices defined by the operators). Normally, running costs and residual 

values of building elements must be considered for the whole calculation period. For this reason, the choice of an 

appropriate calculation period is a crucial step. Usually, it is determined with regard to the estimated life-cycle of a 

building and its technological components, accounting for the guidelines provided in the Commission Delegated 

Regulation (EU) No 244/2012 concerning the time period for the calculation, and the values set in European 

Standard EN 15459:2007 (Annex A) concerning the lifetime of the elements of the building envelope and systems. 

The costs over the calculation period must be discounted, through the discount factor Rd:  
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where: p is the number of years starting from the initial time and r is the real discount rate, which is defined 

according to the country in which the analysis is conducted. The distribution of the costs along the life cycle phases 

in the construction sector is presented in Fig. 1. The relevant costs related to each phase are identified according to 

the definition in [5]. The costs occurring in phases 1 to 4 are not discounted, assuming that the preliminary-

executive process is usually shorter when compared to the management phase. This latter, in fact, is discounted at 

the present time. The same applies to end of life/disposal costs.  

In this study, a ‘simplified’ Global Cost calculation was used, according to the following assumptions:  

 the “global cost method” was adopted as an alternative to the annuity method  

 the initial investment costs, which include the specific technological solutions, were related to heating, cooling, 

electric lighting and DHW systems  

 the relevant costs considered the operational costs and the maintenance costs 

 the residual value of asset or materials or components and disposal costs were not considered 

Consequently, the LCC approach was resolved according to equation (3):  
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Fig. 1. Relevant costs during life cycle phases and discounting for Global Cost calculation (elaboration from: D. Langdon, Life Cycle Costing 

(LCC) as a contribution to sustainable construction: a common methodology – Final methodology, 2007, p. 52).  

 

where: LCC is the Life Cycle Cost; CI the investment costs; Co the operational and energy costs and Cm the 

maintenance costs; t the year in which the cost occurred and N the number of years of the entire period considered 

for the analysis; r the discount rate. The residual value of asset or materials or components, as well as the end of life 

costs, were not considered in the calculation.  

For the LCC calculation, it is necessary to know data on the energy performance of the building, related to a set 

of technological scenarios with different costs and performances, among which to select the most viable one both in 

economic and in energy performance terms. For this reason, the calculation of the energy use of the considered 

building was carried out as a key analysis of the work, using the software Termolog Epix 6 (licensed by Logical 

Soft). The calculation was carried out in accordance with the latest regulations issued in Italy following the 

European Building Performance Directives EPBD [10]. The global energy performance index of the building used 

as case-study was determined through the calculation of the following indices [11]:  

icdhwhgl EpEpEpEpEp   (4) 

where: Eph, Epdhw, Epc, and Epl are the building energy performance indices for space heating, domestic hot water 

DHW production, space cooling, and electric lighting, respectively (in (kWh/m
2
/a) for residential buildings). All 

indices account for the amount of primary energy consumed to provide a certain energy need for the building as well 

as for the auxiliary energy provided by the systems to produce energy from different sources. They need to be 

calculated on a monthly basis, assuming a quasi-steady state, according to the procedures specified in the UNI-TS 

11300-1 technical standards [12,13], on the basis of the methodology adopted in EN 13790 [14]. Termolog allows 

the energy performance indices to be calculated according to these specifications set by Italian standards.  

The ‘simplified’ LCC methodology used in this study was applied through a two-phase approach:  

1) energy evaluation, which consisted of the following steps:  

 definition of the energy efficiency solutions, regarding the improvement of the energy performance of the 

building envelop and the exploitation of renewable energies  

 definition of different scenarios on the basis of different combinations of technological solutions  

 calculation of the primary energy consumptions for each scenario. At this stage of the research, the analysis was 

limited to the calculation of the energy performance indices for heating and for DHW from renewable sources 

(EPh and EPdhw in equation (4))  

2) economic evaluation, which consisted of the following steps:  

 calculation of the life cycle cost for each scenario, referred to the whole building life cycle (Global Cost)  

 calculation of economic performance indexes through a ‘simplified’ Life Cycle Costing approach  

 comparison of the economic indexes with respect to a base-case scenario  

 identification of the most viable solution from both an energy and an economic viewpoint 
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3. The case-study  

 

As shown in Fig. 2, the case-study consists of a two-storey family residential building, located in the municipality 

of Carmagnola (South area of Turin, Northern Italy). The district has a high number of single family or family 

houses, many of which are currently being retrofitted using traditional technologies. The reference building is 

therefore representative of the main building typology in this area, which is nevertheless largely diffused across the 

Italian territory, especially in small town and villages. The building, erected in 1963, has a rectangular plan and 

includes two flats, for a total floor area of 204 m
2
. As far as the envelope technologies are concerned, the thermal 

transmittance of existing walls was assumed to be 0.9 W/m
2
K, while the windows have a single pane glazing with 

frames (see Fig. 3). As far as the HVAC technologies are concerned, the independent heating system consists of a 

natural gas unit, while two condensing boilers were installed in 2002 to serve the two residential units, providing 

heating and DHW. Based on current conditions, the building was classified in Energy Class E (Epgl = 118 

kWh/m
2
/a) and the annual energy cost (heating gas consumptions, DHW and electricity for the two apartments) is 

3024 € (taken from the bills paid by the occupants). As part of the study, a vertical enlargement was designed to 

obtain a third apartment on the roof of the existing building; furthermore, a side enlargement was also designed to 

extend the existing flats. Besides, a retrofit intervention was defined (and calculated) to enhance the energy 

performances of the envelope and of the systems, as described in section 4.1.  

 

Fig. 2. The residential building used as case-study: existing and project schemes (the second floor having the same layout of ground floor). 

 

At the time of the study, these surface and volume enlargements were allowed by regional regulations (Piedmont 

Region Housing Plan), provided that the final volume of the enlarged building is within +135% of the existing 

building. The volume/area ratio meets the limits imposed by the master plan of Carmagnola.  

 

4. Energy evaluation 

 

4.1 Energy Efficiency scenarios 

 

Following the EPBD guidelines, various energy efficiency solutions were defined and applied to the case-study. 

These can be summarized into two main groups:  

a) solutions to allow a reduction of the energy requirement for heating, concerning: 

 the external thermal insulation of opaque walls  

 the replacement of existing windows with highly insulating packages  
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 installation of decentralized controlled mechanical ventilation units, dual-flow with heat recovery system 

b) solutions to exploit the renewable energy sources, concerning:  

 the installation of solar panels for the production of at least 60% of the DHW demand (consistently with local 

regulations issued in the Piedmont Region)  

 the installation of photovoltaic panels for the production of electric energy 

Fig. 3. Summary of different energy efficiency measures. 

 

The different solutions which were identified were combined to create five scenarios with different performances 

in terms of energy consumption and costs. The energy consumption includes gas, which is used both for heating and 

for production of DHW, and electricity. The use of thermal and prefabricated façade coating panels (plug and play 

components) was adopted and the integration of these with windows and technical systems was addressed. For all 

scenarios, the installation of a solar thermal system for the production of DHW was assumed. This system consisted 

of two collectors Beretta SC-F20, with a storage tank of 120 liters (installed with a tilt angle of 30°, facing south).  

A baseline scenario 0 was assumed as reference case: traditional technologies were used to achieve a low energy 

building (with an energy performance slightly better than the existing situation). The alternative scenarios were 

based on innovative technologies: the greater wrap thermal insulation and the ventilation with heat recovery allow 

the energy requirement for heating to be minimized and this reduced energy requirement was coupled with the 

installation of two photovoltaic systems to balance the electricity use (each system consisting of monocrystalline 

silicon panels Solon Black 230/07, with a power installed for each system of 3 kW (tilt angle of 30°, facing south). 

These systems were positioned on the flat roof of the garage. In this way, the innovative scenarios were configured 

in accordance with the ‘passivhaus’ and nearly zero energy building criteria. Furthermore, innovative scenarios 3 

and 4 were integrated with an additional photovoltaic system on the south-facing façade (26 Monocrystalline silicon 

panels Solon Black 230/07, installed power: 6 kW, tilt: 90°, azimuth: 18° off south). This system allows an extra 

production of electricity, with a surplus compared to the electricity use in the house. As a result, this extra energy 
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produced is fed into the grid, with a gain, thus configuring two ‘plus energy building’ scenarios. The characteristics 

of the various energy scenarios are summarized in Fig. 3. 

 

4.2 Simulation assumptions 

 

The energy evaluation was conducted with the following aims: i) to calculate the thermal transmittance U and the 

periodic thermal transmittance YIE of the envelope (walls and roof); ii) to calculate the energy consumption for 

heating and DHW, and then the primary annual energy Ep of the various scenarios, as well as the Energy 

Performances Class EPC (according to Law 90/2013); iii) to quantify the effect of the renewable energy systems on 

the energy consumption, also calculating the annual energy cost; iv) to verify to what extent the different scenarios 

were able to comply with the limit values set by the Italian technical-regulatory framework (see Fig. 4).  

Fig. 4. Summary of transmittance and primary energy consumptions. 

Table 1. Summary table of consumptions and costs of two apartments. 

 existing  scenario 0 scenario 1 scenario 2 scenario 3 scenario 4 

 A  gas  

for  

heating  

consumption (kWh/m2 yr) 97 35  14  8.5 8.0  8.1  

saving (%)  - 60 84 90 91 91 

cost (€/year)  -1656 -622  -263  -162  -153  -155 

B  gas  

for  

DHW  

consumption (kWh/m2 yr) 21  7.2 7.2  7.2  7.2  7.2 

saving (%)  - 61  61  61  61  61  

cost (€/year)  -356  -138  -138 -138 -138 -138  

C 

 

electric 

energy 

 

consumption (kWh/m2 yr) 29  29  0 0 0 0  

saving (%)  - - 100 100 100 100  

surplus (kWh/yr) - - 3180 3180 9540 9540  

cost (€/yr) -1012  -1012  +350 +350 +1040 +1040  

energy costs (A + B + C)  -3024  -1812 -51 +50 +749 +747  

 operating costs  - - -70 -70 -140 -140  

CG (energy costs + operating costs)  -3024  -1812  -121 -20 +609 +607  

Cm (maintenance costs)  / - -220 -220 -370 -370  

CS (replacement costs of façade insulation, 20° yr)  / -22842 -25772 - - - 

CI (initial investment costs)  / -206219 -236220 -242109 -326849 -301680 
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For the energy simulations with Termolog, two thermal zones were defined, one per each of the two housing 

units. The heating system was assumed to be active October 15
th
 through April 15

th
, consistently with the 

prescriptions of the Italian regulations for the climate zone E (2714 Degree Days).  

The results which were obtained for the different scenarios are summarized in Table 1: the scenario 0 presents an 

annual cost slightly lower than the existing building. Scenarios 1 and 2 present a cost close to 0, scenarios 3 and 4 

present energy gains, rather than costs. The percentage of saving is calculated with respect to the existing condition. 

 

5. Economic analysis  

 

In the second phase of the study, the economic analysis was carried out. The LCC was applied using equation (3), 

with the support of a specifically built Microsoft Excel
®
 sheet. The following set of input data was assumed:  

 financial data: the lifespan for the calculation, which corresponds to the technological life of the less durable 

element used in the retrofitting (photovoltaic/solar systems); the discount rate, set as a function of the investment 

risk (lowered to account for the potential savings generated by the retrofitting, tax reduction, enhancement of the 

asset value, enlargement of the house etc.) 

 the initial investment costs CI, assumed at the year 0, which include:  

 construction costs, quantified considering the enlargement and retrofit costs separately. The enlargement 

cost was calculated through the application of a “mixed comparative-analytics procedure”, while the 

retrofit costs were calculated using the price lists of companies 

 non-construction costs, i.e. infrastructure costs (derived from the local municipality) and design costs 

(calculated as 5% of construction costs) 

 the annual costs during the holding period Ct:  

 operational costs Co, the most relevant being the energy costs (related to gas consumptions for heating 

and DHW and electricity consumptions, which were obtained from the simulation results) and the 

operating costs (related to net energy metering of photovoltaic electricity, considering the annual cost 

for the service) 

 maintenance costs Cm, including the ordinary maintenance costs (efficiency maintenance and systems’ 

cleaning, from price lists of companies) and extraordinary maintenance costs (components replacement)  

As a consequence, the Net Present Value (NPV) was calculated with respect to the starting year τ0 considering 

the costs for a lifespan of 30 years, with a discount rate of 2.5%. The initial investment costs were referred to the 

year 0, taking the reduced construction period due to the use of prefabricated technologies into consideration. The 

annual costs Ct were discounted at the year 0 and then considered constant throughout the lifespan, except for the 

replacement costs. Among the maintenance costs, a replacement of the external wall insulation system after 20 

years, in line with is usually requested for this kind of systems, was assumed.  

The NPV was calculated for every scenario, while other economic indicators – Net Savings (NS), Discounted 

Pay Back Period (DPB), Saving to Investment Ratio (SIR), Adjusted Internal Rate of Return (AIRR), Simple Pay 

Back Period (SPB) were calculated only for the alternative scenarios, compared to the base case 0.  

 

5.1 Results of economic evaluation 

 

Table 2 shows the values of the economic indicators which were calculated for each scenario: Net Present Costs 

(NPC), Net Savings (NS), Savings to Investment Ratio (SIR), Adjusted Internal Rate of Return (AIRR), Simple Pay 

Back Period (SPB), Discounted Pay Back Period (DPB). Scenario 0 presents initial investment costs much lower 

than all the other scenarios; nevertheless, it is worth stressing, based on the results of all the economic indicators, 

that scenario 1 is comparable to scenario 0 while scenario 2 appears to be preferable: in spite of the higher initial 

investment, they actually allow a reduction of the costs during the holding phase. A little difference in terms of NPC 

was observed between scenarios 0 and 1, nevertheless the scenario 1 is preferable because it has nearly zero energy 

costs; instead the scenario 0 presents energy costs, although better than the existing situation, but still high. 

The initial investment of the scenarios 3 and 4 was found to be very high, for two reasons: the use of more 

expensive envelope technologies; the installation of a photovoltaic system for the selling of electricity. High initial 

costs affect negatively on economic indicators. Scenarios 3 and 4 present longer Pay Back Periods, but this should 
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not influence their final selection: in fact, these include envelop technologies which are expected to be more durable 

over time, and for which high replacement costs are not necessary, unlike scenarios 0 and 1.  

Adopting the approach ‘Plus Energy Building’ may be questionable for such a small building. In fact, production 

and selling of electricity from renewable sources partially balances the costs; this strategy could be more profitable 

in the case of photovoltaic systems of large size, taking advantage of tax incentives. From a residential building’s 

owner point of view, it is advantageous to adopt systems based on renewable sources only to strictly cover the own 

building energy consumption.  

 

Table 2. Summary table of results of economic evaluation 

 NPC (Global Cost) NS SIR AIRR SPB DPB 

Acceptability 

conditions: 

as low as possible acceptable > 0 

not accept. < 0 

acceptable > 1 

not accept. < 1 

acceptable > 2,5 

not accept. < 2,5 

as low as possible 

Scenario_0  265869  - - - - - 

Scenario_1  265321  548 1.02 2.6 10 13.2 

Scenario_2  253539  12330 1.3 3.5 10.7 14.6 

Scenario_3  328044  -62175 0.5 0.1 19.5 >30 

Scenario_4  302920  -37052 0.6 0.8 19 21.5 

 

Finally, it is worth stressing that the enlargement-retrofit intervention allows the asset to be enhanced, increasing 

its market value. Globally speaking, the increasing in market value is due to a combination of factors, such as the 

refurbishment of the asset, the increasing in the surface, and, particularly, to the Energy Class shift. Undoubtedly, as 

shown in some recent studies related to the Italian real estate market [15,16], this latter characteristic is able to 

influence the assets market value, even if at the time being it is not possible to quantify the relative marginal price.  

 

6. Discussion  

 

According to the Authors, the research presented in this study has the main merit to have developed a 

multidisciplinary methodology which combined different expertises such as the Real Estate Market and Economic 

Evaluation of Project, Architectural Technology and Building Physics. Such an approach showed for the case-study 

which was analyzed, how energy and economic analyses can be fruitfully used in synergy when addressing different 

possible retrofitting strategies. In this regard, the best performing solution in energy terms does not correspond to 

the best performing solution from the economic indicators viewpoint. Also the opposite applies, which show that the 

best solution is a trade-off which does not limit the analysis to a strict fulfilment of energy requirements, but also 

investigate the global cost of each intervention over time. Secondly, the methodology can be generalized and applied 

to other building typologies, as it represents a supporting tool to orient designers and practitioners in the early design 

phase, decision makers in the decision processes, public authorities in governance activities and in defining 

territorial policies. Furthermore, it can be used for both new and existing buildings, including the case of cultural 

heritage and public properties. For instance, the procedure shows the maximum initial cost, beyond which the 

investment convenience decreases.  

Beside the potentials, there are also some limits which need to be highlighted: for instance, the difficulty in 

defining a lifespan for envelope elements of external wall insulation system or the variability of energy prices in the 

long period may influence the result of the analyses and the conclusions which are drawn. Similarly, the simulation 

tool which was used for the energy analyses (Termolog) is an important tool that may impact on the final results. 

Actually, Termolog uses a quasi-steady procedure, consistently with the Italian regulations for the energy 

certification process [12-13]. If other tools were used, which allow dynamic simulations to be run, the results of the 

analyses would change accordingly. On the other hand, it is also true that a dynamic analysis is particularly 

important for the cooling period, which was not addressed in the analysis carried out in the present study: this was 

actually limited to the heating season (including the production of DHW).  
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7. Conclusions  

 

The retrofitting of a double-family house was addressed in this paper through a combined analysis based on both 

energy efficiency and the related costs. A real case-study was investigated, analzying two types of interventions: on 

an enlargement of the volume and energy solutions on the envelop components (using high-insulating prefabricated 

panels) and implementing some mechanical and solar systems (condensation heating unit with heat recovery, solar 

and photovoltaic panels). All the interventions resulted in an Energy Performance Class A (in some cases also 

meeting the passivhaus and NZEB criteria). But the economic analysis, carried out using a ‘simplified’ LCC 

technique, showed a different cost for each solution. The most viable trade-off between energy and economic 

constraints was the scenario 2, which presented the lowest NPC. On the contrary, scenarios 3 and 4, even in the 

presence of operating costs clearly lower compared to the scenario 2, need higher initial investments due to a 

supplementary photovoltaic system for electricity production and to more expensive envelope solutions. The energy 

saving through the envelop is the priority in interventions on existing assets, rather than the production of energy 

surplus through new systems. The envelope is a lasting component, which does not decreases in performances, does 

not require operational or maintenance costs during life cycle. The situation is different for energy production from 

renewable sources: these requires maintenance costs, are subject to reductions in productivity (today rather small), 

and it is not certain the durability and disposal. 

In conclusion, it is worth stressing that the aim of the work is not to find an exemplar project, but to delineate a 

tool to support design activities. The innovative scenarios presented permit to test a working approach useful for 

interventions on built assets, and specifically on residential single houses, which at the time being represent three-

quarters of Italian buildings. Furthermore, it is important to highlight that the real estate market is deeply influenced 

by energy performance and operating costs of the assets; in the meanwhile, the environmental matters have deeply 

influenced the technologies and, consequently, the production in the building sector. 
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