
13 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

On the supersymmetric extension of Gauss-Bonnet like gravity / Concha, P. K.; CALDERON IPINZA, Marcelo; Ravera,
Lucrezia; Rodríguez, E. K.. - In: JOURNAL OF HIGH ENERGY PHYSICS. - ISSN 1029-8479. - ELETTRONICO. -
2016:9(2016), pp. 0-13. [10.1007/JHEP09(2016)007]

Original

On the supersymmetric extension of Gauss-Bonnet like gravity

Publisher:

Published
DOI:10.1007/JHEP09(2016)007

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2650071 since: 2022-01-12T12:29:19Z

Springer Verlag



J
H
E
P
0
9
(
2
0
1
6
)
0
0
7

Published for SISSA by Springer

Received: July 6, 2016

Accepted: August 29, 2016

Published: September 1, 2016

On the supersymmetric extension of Gauss-Bonnet

like gravity

P.K. Concha,a,b M.C. Ipinza,c,d,e L. Raverad,e and E.K. Rodŕıgueza,b
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1 Introduction

The presence of a boundary in the context of (super)gravity has been studied with great

interest these last 40 years. In particular, the inclusion of boundary terms plays an im-

portant role for the study of the fruitful duality between string theory on asymptotically

AdS space-time and a quantum field theory living on the boundary (AdS/CFT corre-

spondence) [1–4]. The study of bulk and boundary theories has led to the development

of the so called holographic renormalization. Indeed, UV divergences in the field theory

(boundary) are related to IR divergences on the gravitational side (bulk) which can be dealt

through the holographic renormalization procedure [5–7], adding appropriate counterterms

to the boundary.

At the bosonic level, the introduction of the topological Gauss-Bonnet term to the

four-dimensional AdS gravity allows to regularize the action and the related conserved

charges [8–13]. Remarkably, the inclusion of the Gauss-Bonnet term does not require to

impose Dirichlet boundary conditions on the fields. On the other hand, the addition of

boundary terms to supergravity has been considered in different approaches [14–17]. In

particular, contrary to the Gibbons-Hawking prescription [18], it was pointed out that the

supergravity Lagrangian should be supersymmetric invariant without imposing Dirichlet

boundary conditions. Interestingly, it was recently shown in ref. [19] that the introduction

of a supersymmetric extension of the Gauss-Bonnet term in a N = 1 and N = 2 supergrav-

ity Lagrangian (with cosmological constant) allows to recover supersymmetry invariance.

This last result, together with the bosonic ones, suggests that the (super)symmetry in-

variance of the theory requires the addition of topological terms which besides provide the

counterterms that regularize the action.

The study of the boundary contributions needed to recover supersymmetry invariance

in the presence of matter or bigger supersymmetries remains poorly explored. In this work,
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using a geometrical approach (rheonomic), we explore the boundary terms needed in order

to restore a particular enlarged supersymmetry known as AdS-Lorentz.

The AdS-Lorentz (super)algebra is obtained as a deformation of the Maxwell (su-

per)symmetries [20, 21], and can be alternatively derived as an abelian semigroup expan-

sion (S-expansion) [22–25] of the AdS (super)algebra [26–29]. As shown in ref. [30, 31], it

is possible to introduce a generalized cosmological constant term in a Born-Infeld like grav-

ity action when the AdS-Lorentz algebra is considered. Analogously, the supersymmetric

extension of the AdS-Lorentz algebra allows to introduce a generalized supersymmetric

cosmological constant term in a four-dimensional supergravity theory [28].

We shall first present the explicit construction of the bulk Lagrangian in the rheonomic

framework. In this geometric approach to supergravity, the duality between a superalgebra

and the Maurer-Cartan equations is used to write down the curvatures in the superspace,

whose basis is given by the vielbein and the gravitino (bosonic and fermionic directions, re-

spectively). Subsequently, we will study the supersymmetry invariance of the Lagrangian in

the presence of a non-trivial boundary. In particular, we will show that the supersymmetric

extension of a Gauss-Bonnet like term is required in order to restore the supersymmetry in-

variance of the full Lagrangian. Interestingly, the supergravity action obtained reproduces

a MacDowell-Mansouri type action [32].

2 AdS-Lorentz supergravity and rheonomy approach

In the geometric framework the variational field equations obtained from the Lagrangian

are written in terms of exterior differential forms, excluding the Hodge duality operator.

Therefore they can be implemented either on the x-space manifold, or on any larger man-

ifold containing the x-space. In particular, if they are implemented on the full superspace,

one obtains algebraic relations between curvature components in x-space and curvature

components in directions orthogonal to x-space. When it happens, the former completely

determines the latter, and a solution of the field equations on the x-space submanifold can

be uniquely extended to a solution of the whole group manifold. The possibility of this

lifting is called rheonomy.

This rheonomic lifting can also be viewed as an x-space transformation of the fields,

which maps solutions of the x-space field equations into new solutions. From this point of

view, it is nothing other than the on-shell supersymmetry transformation.

The principal demand of any supergravity theory is the invariance of the Lagrangian

under supersymmetry transformations. In the rheonomic (geometric) approach, the bosonic

one-form V a (a = 0, 1, 2, 3) and the fermionic one-form ψα (α = 1, . . . , 4) define the super-

vielbein basis in superspace [33]. In this framework, the supersymmetry invariance is

satisfied requiring that the Lie derivative of the Lagrangian vanishes for diffeomorphisms

in the fermionic directions of superspace,

δǫL = lǫL = ıǫdL+ d (ıǫL) = 0 . (2.1)

When a supergravity Lagrangian is considered on space-times without boundary, the con-

dition (2.1) trivially reduces to the first contribution such that ıǫL|∂M = 0. However, in

the presence of a non-trivial boundary the condition (2.1) requires a more subtle treatment.

– 2 –
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Before analyzing N = 1, D = 4 AdS-Lorentz supergravity in the presence of a non-

trivial boundary, we will first study the construction of the bulk Lagrangian and the cor-

responding supersymmetry transformation laws. First of all, we will apply the rheonomic

approach to derive the parametrization of the AdS-Lorentz curvatures by studying the

different sectors of the Bianchi Identities.

2.1 Curvatures parametrization

The four-dimensional AdS-Lorentz superalgebra is generated by {Jab, Pa, Zab, Qα}, whose

generators satisfy the (anti)commutation relations

[Jab, Jcd] = ηbcJad − ηacJbd − ηbdJac + ηadJbc , (2.2)

[Jab, Zcd] = ηbcZad − ηacZbd − ηbdZac + ηadZbc , (2.3)

[Zab, Zcd] = ηbcZad − ηacZbd − ηbdZac + ηadZbc , (2.4)

[Jab, Pc] = ηbcPa − ηacPb , [Pa, Pb] = Zab , (2.5)

[Zab, Pc] = ηbcPa − ηacPb , (2.6)

[Jab, Qα] = −
1

2
(γabQ)α , [Pa, Qα] = −

1

2
(γaQ)α , (2.7)

[Zab, Qα] = −
1

2
(γabQ)α , (2.8)

{Qα, Qβ} = −
1

2

[

(

γabC
)

αβ
Zab − 2 (γaC)αβ Pa

]

. (2.9)

Here C stands for the charge conjugation matrix and γa, γab are Dirac matrices. Let us no-

tice that the Lorentz type algebra L = {Jab, Zab} is a subalgebra of the above superalgebra.

This subalgebra and its extensions to higher dimensions have been useful to derive General

Relativity from Born-Infeld gravity theories [34–36]. Further generalizations of the AdS-

Lorentz superalgebra containing more than one spinor charge Q can be found in ref. [28]

which can be seen as a deformation of the minimal Maxwell superalgebras [37–40]. Inter-

estingly, the following redefinition of the generators Jab → Jab, Zab → 1
ē2
Zab, Pa → 1

ēPa,

Qα → 1
ēQα provides us with the non-standard Maxwell superalgebra in the limit ē → 0. Let

us note that the AdS-Lorentz superalgebra, corresponds to a supersymmetric extension of

the C4 algebra. The Cm algebras have been of particular interest in order to derive different

Lovelock gravity actions from Chern-Simons and Born-Infeld gravity theories [31, 41].

Let us consider the Lorentz type curvatures in the superspace which are given by

Rab = dωab + ωa
cω

cb , (2.10)

Ra = DωV
a + kabV

b −
1

2
ψγaψ , (2.11)

Fab = Dωk
ab + kack

cb , (2.12)

ρ = Dωψ +
1

4
kabγabψ , (2.13)

– 3 –
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where Dω = d + ω is the Lorentz covariant exterior derivative. They satisfy the Bianchi

identities:

DωR
ab = 0 , (2.14)

DωR
a = Ra

bV
b + Fa

bV
b +Rck a

c + ψγaρ , (2.15)

DωF
ab = Ra

ck
cb −Rb

ck
ca + Fa

ck
cb −Fb

ck
ca , (2.16)

Dωρ =
1

4
Rabγ

abψ +
1

4
Fabγ

abψ −
1

4
kabγ

abρ . (2.17)

The most general Ansatz for the Lorentz type curvatures in the super-vielbein basis (V a, ψ)

of the superspace is given by

Rab = Rab
cdV

cV d +Θ
ab
cψV

c + αēψγabψ , (2.18)

Ra = Ra
cdV

cV d +Θ
a
cψV

c + ξēψγaψ , (2.19)

Fab = Fab
cdV

cV d + Λ
ab
cψV

c + βēψγabψ , (2.20)

ρ = ρabV
aV b + δēγaψV

a +Ωαβψ
αψβ . (2.21)

where ē is the rescaling parameter. Setting Ra = 0, we can withdraw some terms ap-

pearing in the curvatures, through the study of the scaling constraints. On the other

hand, the coefficients α, β, ξ and δ appearing in the Ansatz can be determined considering

the parametrization involved in the Bianchi identities in the superspace (2.14)–(2.17) and

studying their various sectors. We obtain that the Bianchi identities are satisfied when:

Rab = Rab
cdV

cV d +Θ
ab
cψV

c , (2.22)

Ra = 0 , (2.23)

Fab = Fab
cdV

cV d + Λ
ab
cψV

c + ēψγabψ , (2.24)

ρ = ρabV
aV b − ēγaψV

a , (2.25)

where Θ
ab
c = Λ

ab
c = ǫabde (ρ̄cdγeγ5 + ρecγdγ5 − ρdeγcγ5). In this way we have found the

parametrization of the curvatures and we can now consider the rheonomic construction of

the bulk Lagrangian in the geometric approach.

2.2 Rheonomic construction of the Lagrangian

Following the building rules for the construction of rheonomic Lagrangians [33], we start

by writing the most general Ansatz for the Lagrangian as follows

L = ν(4) + FAν
(2)
A + FAFBν

(0)
AB , (2.26)

where the super-index (p) denotes a p-form and FA are the super AdS-Lorentz Lie algebra

valued curvatures defined by

Rab = dωab + ωa
cω

cb , (2.27)

Ra = DωV
a + kabV

b −
1

2
ψγaψ , (2.28)

F ab = Dωk
ab + kack

cb + 4ē2V aV b + ēψγabψ , (2.29)

Ψ = Dωψ +
1

4
kabγabψ − ēγaψV

a , (2.30)

– 4 –



J
H
E
P
0
9
(
2
0
1
6
)
0
0
7

and where

ν(4) = α1ǫabcdV
aV bV cV d + α2ψγ

abψV cV dǫabcd + α3ψγabψV
aV b , (2.31)

FAν
(2)
A = γ1ǫabcdR

abV cV d + γ2ǫabcdF
abV cV d + γ3Ψγ5γaψV

a + γ4ΨγaψV
a+

γ5R
aψγaψ + γ6R

abψγabψ + γ7R
abVaVb + γ8ǫabcdR

abψγcdψ+

+ γ9F
abVaVb + γ10ǫabcdF

abψγcdψ + γ11F
abψγabψ , (2.32)

FAFBν
(0)
AB = β1R

abRab + β2F
abFab + β3ǫabcdR

abRcd + β4ǫabcdR
abF cd+

+ β5ǫabcdF
abF cd + β6ΨΨ+ β7Ψγ5Ψ+ β8R

aRa , (2.33)

with αi, βj , γk being constants. Note that the curvatures (2.27)–(2.30) are invariant under

the rescaling ωab → ωab, kab → kab, V a → wV a, ψ → w1/2ψ and ē → w−1ē. Additionally,

the Lagrangian must scale with w2, being w2 the scale-weight of the Einstein term. We

can prove that the term RaRa in (2.33) is linear in the curvature. Furthermore, due to

scaling constraints reasons, some of the terms in (2.33) disappear. Here we have to observe

that a theory in AdS includes a cosmological constant and, since the coefficients appearing

in the Lagrangian can be dimensional objects and scale with negative powers of ē, some of

the terms in FAFBν
(0)
AB can survive the scaling and contribute to the Lagrangian as total

derivatives. However, since we are now constructing the bulk Lagrangian, we can neglect

them and set FAFBν
(0)
AB = 0. We will show that these terms will be fundamental for the

construction of the boundary Lagrangian.

Let us consider now the scaling in (2.31) whose coefficients must be redefined in the

following way in order to give non-vanishing contributions to the Lagrangian:

α1 ≡ ē2α′
1 , α2 ≡ ēα′

2, α3 ≡ ēα′
3 . (2.34)

In this way, all the terms in ν scale as w2. Then, applying the scaling and the parity

conservation law to (2.31) and (2.32) we obtain

α3 = 0 ; γ4 = γ5 = γ6 = γ7 = γ8 = γ9 = γ10 = γ11 = 0 . (2.35)

Therefore, we are left with the Lagrangian

L = ǫabcdR
abV cV d + γ3ψγaγ5ΨV a + γ2ǫabcdF

abV cV d

+ α′
1ē

2ǫabcdV
aV bV cV d + α′

2ēǫabcdψγ
abψV cV d , (2.36)

where we have consistently set γ1 = 1. Using the definition of the AdS-Lorentz curva-

tures (2.27)–(2.30), we can write

L = ǫabcdR
abV cV d + γ3ψγaγ5DωψV

a +
γ3
4
ǫabcdk

abψγcψV d

+ γ2ǫabcd

(

Dωk
ab + kack

cb
)

V cV d +
(

α′
1 + 4γ2

)

ē2ǫabcdV
aV bV cV d

+
(

α′
2 + γ2 +

γ3
2

)

ēǫabcdψγ
abψV cV d .

– 5 –
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We can now determine the coefficients α′
1, α

′
2, γ2 and γ3 through the study of the field

equations. In order to obtain them, let us compute the variation of the Lagrangian with

respect to the different fields. The variation of the Lagrangian with respect to the spin

connection ωab is given by

δωL = 2ǫabcdδω
ab

(

DωV
c + γ2k

c
fV

f −
1

8
γ3ψγ

cψ

)

V d . (2.37)

Here we see that, if γ2 = 1 and γ3 = 4, δωL = 0 leads to the field equation for the

AdS-Lorentz supertorsion:

ǫabcdR
cV d = 0 . (2.38)

The variation of the Lagrangian with respect to kab gives the same result.

On the other hand, the variation of the Lagrangian with respect to the vielbein V a

leads to

2ǫabcd(R
abV c + F abV c) + 4ψγdγ5Ψ = 0 , (2.39)

where we have used

ǫabcdk
abψγcψ = ψγdγ5k

abγabψ ,

and where we have set α′
1 = −2 and α′

2 = −1, in order to recover the AdS-Lorentz

curvatures. In the same way, from the variation with respect to the gravitino field ψ we

find the following field equation:

8V aγaγ5Ψ+ 4γaγ5ψR
a = 0 . (2.40)

Summarizing, we have found the following values for the coefficients:

α′
1 = −2, α′

2 = −1, γ2 = 1, γ3 = 4 . (2.41)

Thus we have completely determined the bulk Lagrangian Lbulk of the theory, which can

be written in terms of the Lorentz type curvatures (2.10)–(2.13) as follows

Lbulk = ǫabcdR
abV cV d + ǫabcdF

abV cV d + 4ψγaγ5ρV
a

+ 2ē2ǫabcdV
aV bV cV d + 2ēǫabcdψγ

abψV cV d . (2.42)

2.3 Supersymmetry transformation laws

The parametrizations we got in the previous section allow to obtain the supersymmetry

transformation laws. Indeed, in the rheonomic formalism, the transformations on space-

time are given by

δµA = (∇ǫ)A + lǫF
A , (2.43)

where ǫA ≡
(

ǫab, ǫa, εab, ǫ
)

. Then, restricting us to supersymmetric transformations we

have ǫab = ǫa = εab = 0 and

lǫ(R
ab) = Θ

ab
cǫV

c , (2.44)

lǫ(R
a) = 0 , (2.45)

lǫ(F
ab) = Λ

ab
cǫV

c + 2ēǫγabψ , (2.46)

lǫ(ρ) = −ēγaǫV
a , (2.47)

– 6 –
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which provide the following supersymmetry transformation laws:

δǫω
ab = Θ

ab
cǫV

c ,

δǫV
a = ǭγaψ ,

δǫk
ab = −2ēǫγabψ + Λ

ab
cǫV

c ,

δǫψ = dǫ+
1

4
ωabγabǫ+

1

4
kabγabǫ+ ēγaǫV

a .

Under these transformation laws the Lagrangian is invariant up to boundary terms. The

presence of a boundary requires to check explicitly the condition (2.1).

3 Supersymmetry invariance in the presence of a boundary

In this section, following the approach presented in ref. [19], we analyze the supersymmetry

invariance of the Lagrangian in the presence of a non-trivial boundary. In particular, we

present the explicit boundary terms required in order to recover the full supersymmetry

invariance of the Lagrangian.

Let us consider the Lagrangian found in the previous section,

Lbulk = ǫabcdR
abV cV d + 4ψ̄V aγaγ5ρ

+ ǫabcd

(

FabV cV d + 2ēV aV bψ̄γcdψ + 2ē2V aV bV cV d
)

. (3.1)

The supersymmetry invariance in the bulk is satisfied on-shell

Ra = 0 .

Nevertheless, the boundary invariance of the Lagrangian under supersymmetry is not triv-

ially satisfied:

lǫLbulk|∂M4
6= 0 . (3.2)

In order to recover the supersymmetric invariance of the theory, we require a more subtle

approach. Indeed, we have to add boundary terms to the bulk Lagrangian.

The only boundary contributions compatible with parity, Lorentz-like invariance and

N = 1 supersymmetry are

d
(

̟abN cd +̟a
f̟

fb̟cd
)

ǫabcd = ǫabcdN
abN cd ,

d (ρ̄γ5ψ) = ρ̄γ5ρ+
1

8
ǫabcdN

abψ̄γcdψ ,

where we have defined ̟ab = ωab + kab and N ab = Rab + Fab, with Rab and Fab given

by eqs. (2.10) and (2.12), respectively. One can notice that ̟ab and N ab are related to

a Lorentz-like generator Mab = Jab + Zab (see eqs. (2.2)–(2.4)). Thus, let us consider the

following boundary Lagrangian

Lbdy = αǫabcd

(

RabRcd + 2ǫabcdR
abFcd + ǫabcdF

abFcd
)

+ β

(

ρ̄γ5ρ+
1

8
ǫabcdR

abψ̄γcdψ +
1

8
ǫabcdF

abψ̄γcdψ

)

. (3.3)

– 7 –
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Let us note that the structure of a supersymmetric Gauss-Bonnet like gravity appears.

Then, the full Lagrangian is given by

Lfull = Lbulk + Lbdy

= ǫabcdR
abV cV d + 4ψ̄V aγaγ5ρ+ ǫabcd

(

FabV cV d + 2ēV aV bψ̄γcdψ + 2ē2V aV bV cV d
)

+ αǫabcd

(

RabRcd + 2ǫabcdR
abFcd + ǫabcdF

abFcd
)

+ β

(

1

8
ǫabcdR

abψ̄γcdψ +
1

8
ǫabcdF

abψ̄γcdψ + ρ̄γ5ρ

)

. (3.4)

Due to the ē−2-homogeneous scaling of the Lagrangian, we have that the coefficients α and

β must be related to ē−2 and ē−1, respectively.

As we have previously pointed out, the supersymmetry invariance of the full Lagrangian

Lfull requires the following condition

δǫLfull = lǫLfull = ıǫdLfull + d (ıǫLfull) = 0 . (3.5)

Naturally, the condition for supersymmetry in the bulk ıǫdLfull = 0 is satisfied since the

boundary contributions correspond to total derivatives. Thus the supersymmetry invari-

ance of the full Lagrangian Lfull requires to verify the condition ıǫ (Lfull) = 0 on the

boundary. In particular, we have

ıǫ (Lfull) = ǫabcdıǫ

(

Rab + Fab
)

V cV d + 4ǭV aγaγ5ρ+ 4ψ̄V aγaγ5ıǫ (ρ)

+ ǫabcd4ēV
aV bǭγcdψ + 2ıǫ

(

Rab + Fab
)

{

αRcd +
β

16
ψ̄γcdψ + αFcd

}

ǫabcd

+
β

4
ǫabcd

(

Rab + Fab
)

ǭγcdψ + 2βıǫ (ρ̄) γ5ρ . (3.6)

Then, δLfull

δµA

∣

∣

∣

∂M
= 0 implies the following constraints on the boundary:

(

Rab + Fab
)

|∂M = −
1

2α
V aV b −

β

16α
ψ̄γabψ , (3.7)

ρ|∂M =
2

β
V aγaψ . (3.8)

The supersymmetry invariance requires ıǫ (Lfull) |∂M = 0. Thus we find

ıǫ (Lfull) |∂M =−
β

8α
ǫabcdǭγ

abψV cV d + 4ǭV aγaγ5ρ+
8

β
ψ̄V aγaγ5V

bγbǫ

+ 4ēǫabcdV
aV bǭγcdψ −

(

β

4α
ǭγabψ

){

αRcd +
β

16
ψ̄γcdψ + αFcd

}

ǫabcd

+
β

4
ǫabcd

{

Rabǭγcdψ + Fabǭγcdψ
}

− 4ǭγaV
aγ5ρ .

Using the Fierz identity for N = 1, γabψψ̄γ
abψ = 0, we have

ıǫ (Lfull) |∂M =

(

4ē−
β

8α

)

ǫabcdǭγ
abψV cV d +

8

β
ψ̄V aγaγ5V

bγbǫ .

– 8 –



J
H
E
P
0
9
(
2
0
1
6
)
0
0
7

Then, using the gamma matrices identity, we have that the supersymmetry invariance

implies the following relation between α and β:

β

4α
+

8

β
= 8ē . (3.9)

Solving for β we find

β = 16eα

(

1±

√

1−
1

8ē2α

)

. (3.10)

Let us note that the root vanishes for

α =
1

8ē2
,

which implies

β =
2

ē
.

Interestingly, with these values for α and β we recover the following 2-form curvatures

Nab = Rab + Fab + 4ē2V aV b + ēψ̄γabψ , (3.11)

Ψ = ρ− ēV aγaψ , (3.12)

Ra = DωV
a + kabV

b −
1

2
ψ̄γaψ . (3.13)

which reproduce the AdS-Lorentz curvatures with

Nab = Rab + F ab , where

Rab = dωab + ωa
cω

cb ,

F ab = Fab + 4ē2V aV b + ēψ̄γabψ .

Finally, the full Lagrangian can be written as a MacDowell-Mansouri like form in terms of

the 2-form curvatures (3.11)–(3.12),

Lfull =
1

8ē2
ǫabcdN

abN cd +
2

ē
Ψ̄γ5Ψ , (3.14)

whose boundary term corresponds to a supersymmetric Gauss-Bonnet like term,

Lbdy =
1

8ē2
ǫabcd

(

RabRcd + 2RabFcd + FabFcd
)

+
4

ē

(

1

8
ǫabcdR

abψ̄γcdψ +
1

8
ǫabcdF

abψ̄γcdψ + ρ̄γ5ρ

)

. (3.15)

This term allows to recover the supersymmetric invariance of the theory in the presence

of a boundary. The same phenomenon occurs in pure gravity, where the Gauss-Bonnet

term assures the invariance of the Lagrangian in the presence of a non-trivial boundary.

Additionally, the supersymmetric extension of the Gauss-Bonnet term was introduced in

ref. [19], in order to restore the supersymmetry invariance in N = 1 and N = 2, Osp (N|4)

supergravity in the presence of a boundary.

– 9 –
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On the other hand, the bulk Lagrangian reproduces the generalized supersymmetric

cosmological term presented in ref. [28], and corresponds to a supersymmetric extension of

the results found in refs. [30, 42].

Let us note that an Inönü-Wigner (IW) contraction of the full Lagrangian (3.14) leads

to the Maxwell MacDowell-Mansouri Lagrangian presented in ref. [43], corresponding to

N = 1 pure supergravity Lagrangian in the presence of a non-trivial boundary.

4 Comments and possible developments

In this paper we have first of all presented the explicit construction of the N = 1, D = 4

AdS-Lorentz supergravity bulk Lagragian in the rheonomic framework. In particular, we

have shown an alternative way to introduce a generalized supersymmetric cosmological

term to supergravity. Subsequently, we have studied the supersymmetry invariance of the

Lagrangian in the presence of a non-trivial boundary. Interestingly, the supersymmetric

extension of a Gauss-Bonnet like term is required in order to restore the supersymme-

try invariance of the full Lagrangian. The addition of a topological boundary term in

a four-dimensional bosonic action is equivalent to the holographic renormalization in the

AdS/CFT formalism. Then, it seems that the presence of the kab fields through the Fab

curvature in the boundary would allow to regularize the supergravity action in the holo-

graphic renormalization language. Additionally, as was pointed out in refs. [44, 45], the

bosonic MacDowell-Mansouri action is on-shell equivalent to the square of the Weyl ten-

sor describing conformal gravity. Thus, the supergravity action à la MacDowell-Mansouri

would suggest a superconformal structure which represents an additional motivation in

our approach.

The results obtained here could be useful in order to study supergravity theories in

the presence of a non-trivial boundary in higher dimensions or coupled to matter. In

particular, it would be interesting to analyze the boundary terms necessary to restore the

supersymmetry invariance of a general matter coupled N = 2 supergravity considering the

bulk Lagrangians introduced in refs. [46, 47].
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