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Summary 

During lamination, residual thermo-mechanical stresses are induced in the 

encapsulated solar cells composing photovoltaic (PV) modules. Depending on the 

material and geometrical configuration of the layers of the laminate, this residual 

stress field can be beneficial since it may lead to a compressive stress state in 

Silicon and therefore crack closure effects in the presence of cracks, with a 

recovery of electrical conductivity in cracked solar cells. It is therefore important 

to investigate the distribution of thermo-mechanical stresses within the PV 

laminate with a view to optimizing the coupling between the electrical response 

and elastic deformation in the operation of PV modules. A promising approach 

proposed in the present thesis regards the prediction of residual stresses in 

composite laminates by using a shear-lag theory to model the epoxy-vinil-acetate 

polymeric layers, accounting for their thermo-visco-elastic response. Moreover, it 

will be shown that thermomechanical formulations for stress analysis of a PV 

laminate lead to a system of higher order ordinary differential equations or partial 

differential equations in which the exact solutions may be impossible to be 

determined in closed form and hence numerical schemes become desirable. 

However, the computational cost associated with the implementation of the 

numerical scheme may be significantly expensive. Therefore, a method to reduce 

the computational complexity is expected to be very important. To this aim, Model 

Order Reduction (MOR) techniques are applied hierarchically, first to the thermal 

system of a PV module in service, and then extended to coupled thermo-mechanical 
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problems. A combination of proper orthogonal decomposition (POD) and discrete 

empirical interpolation method (DEIM) with a modified formulation is proposed 

for the first-order thermal equations of photovoltaic system during service and a 

new coupled second-order Krylov based formulation is developed for model order 

reduction of the coupled thermo-mechanical model of the photovoltaic module. 

The results of these reduction schemes show a huge computational gain in the 

reduced system solutions and a high accuracy of the reduced system outputs. 
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Sommario 

Durante la laminazione, sollecitazioni termomeccaniche residue nascono nelle 

celle solari che compongono i moduli fotovoltaici. A seconda della configurazione 

del materiale e della geometrica degli strati del laminato, questo campo di tensione 

residuo può essere vantaggioso in quanto può portare ad uno stato sollecitazione di 

compressione nel Silicio inducendo effetti di richiusura nelle fessure, con un 

recupero della conducibilità elettrica nelle celle solari fessurate. È quindi 

importante indagare la distribuzione delle sollecitazioni termo-meccaniche 

all'interno del laminato al fine di ottimizzare l'accoppiamento tra la risposta 

elettrica e la deformazione elastica nel funzionamento dei moduli fotovoltaici. In 

questa tesi si propone un promettente approccio per la previsione delle tensioni 

residue mediante la teoria shear-lag per la modellazione degli strati di materiale 

polimerico incapsulante, considerando il suo comportamento termo-visco-elastico. 

Inoltre, la formulazione del problema termo-meccanico per l'analisi delle tensioni 

nel modulo fotovoltaico porta ad un sistema di equazioni differenziali ordinarie o 

alle derivate parziali di non agevole soluzione in forma chiusa. Per ridurre al 

minimo la complessità computazionale del modello di calcolo associato alla 

soluzione numerica, si propongono tecniche di Model Order Reduction applicate 

in modo gerarchico, innanzitutto al sistema di equazioni dovute al problema 

termico, successivamente estese al problema termo-meccanico accoppiato. Una 

combinazione del metodo del proper orthogonal decomposition (POD) e del 
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discrete empirical interpolation method (DEIM) con una formulazione modificata 

viene proposto per la soluzione delle equazioni termiche differenziali del primo 

ordine per prevedere la risposta del modulo fotovoltaico in condizioni di servizio, 

ed una formulazione originale accoppiata del secondo ordine basata sul metodo di 

Krylov per la riduzione del modello termomeccanico accoppiato. I risultati di 

questi algoritmi di riduzione portano ad un guadagno computazionale enorme 

grazie ai modelli ridotti, seppure preservando una notevole accuratezza.  
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation 

The necessity to reduce CO2 emission has shifted the focus for global energy supply 

to renewable energy sources [1]. By reducing the production cost, increasing the 

module efficiency and improving the service lifetime of the module, the cost per 

KWh of PV power can be reduced [2]. Lifetime indicator (warranties) given by 

module manufacturer over the years has reached 25 years due to improved 

reliability studies which date back to early commercial production in the 1980s (see 

Figure 1.1). 

To address the thermomechanical induced failure of photovoltaic (PV) modules, 

standard test like thermal cycling, hail and mechanical test are employed in order 

to imitate field service conditions for the modules [2]. Research studies have shown 

that silicon cells are under compressive stresses up to 76 MPa due to thermal 

cycling [3, 12]. On this basis, thermomechanical characteristics of the PV module 

during production and service can be determined and service life of the PV can be 

improved in turn. 

Some of the critical issues relating to lifetime service of PV module are 

microcracking and fatigue degradation which can be present in case of repeated 

mechanical loading. These have been widely reported to affect the performance of 
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silicon cells [3, 4, 8, 10]. Due to mechanical and thermal loads which induce 

mechanical stresses in the encapsulated solar cells, photovoltaic modules may 

experience electrical power loss during service [4, 5]. The presence of different 

materials composing the layers of photovoltaic modules further complicates the 

distribution of stresses which in turn affects the phenomenon of crack propagation 

in the silicon solar cells. This is particularly the case when the module is cooled 

down in the laminator as shown in Figure 1.4 from a high temperature, which is 

the stress-free condition during the production stage, to the ambient temperature 

leading to a build-up of residual stresses after lamination due to the thermo-elastic 

mismatch between the materials composing the layers of a PV module. Depending 

on the thicknesses and on the thermo-mechanical properties of the layers 

composing the photovoltaic module, compressive stresses in silicon may lead to a 

crack closure state, which is positively influencing the recovery of electrical 

conductivity in the cracked regions [3]. This coupling between the electrical 

response and the elastic deformation in the presence of cracking is an important 

concept which can be used to improve the lifetime of silicon solar cells. On the 

other hand, high stress concentrations might arise in critical points of the laminates, 

promoting layers delamination after exposing the module to the environment, 

causing  thermoelastic deformation which may induce failure of the busbars 

connecting solar cells, due to an increase in the gap between cells, as 

experimentally and numerically studied in [6, 4]. Moreover, cyclic thermoelastic 

stresses are responsible for crack growth in silicon cells and a power-loss of the PV 

system in time. In all of these cases, it is important to accurately compute the 

temperature distribution in the plane of the solar cells [10], but also the temperature 

in the various layers [8] for the study of fully coupled thermomechanical problems. 

Similarly, the computation of thermal stresses and thermo-elastic displacements is 

of paramount importance both during the production process, and during the 

operating conditions of the module. Several research studies on thermo-elastic 
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lamination theory within the last few years have been dedicated to the distribution 

of stresses inside the laminate with a uniform temperature profile [11, 13, 14, 15] 

while other studies focused on modelling the behaviour of a PV module during 

thermal cycling and have shown that Silicon cells are under compressive stresses 

up to 76 MPa [12]. In view of the interaction between various fields (elastic, 

thermal and electric) that characterize a typical photovoltaic system as illustrated 

in Figure 1.3, a multiphysics approach has been proven to be very attractive [7]. 

 

Figure 1.1 Comparison among warranty specifics declared by various producers of 

PV modules [5]. 

 

Figure 1.2. Cross-section of a PV module. 

 



4 
 

A photovoltaic (PV) system usually consists of an array of PV modules (e.g. 10), 

and each module contains several solar silicon cells (e.g. 60 or 70 in commercial 

modules) as shown in Figure 1.5. Each module is a layered composite such that the 

silicon cells are sandwiched between the different layers (see Figure 1.2 for a 

schematic representation of a module cross-section). So far, semi-analytical and 

numerical solutions [6, 4] for the assessment of the change in the gap between solar 

cells have been proposed by assuming a uniform temperature field across the 

module, which is an assumption holding for stationary conditions. In reality, 

temperature contour plots obtained from finite element thermal analysis [9] show 

that there is a temperature gradient across each layer, with the regions near the 

frame being significantly cooler, while the temperature distribution across the cells 

in the centre of the module is found to be quite uniform.  

 

Figure 1.3 Interplay among the elastic, the thermal and the electric fields in PV 

modules [5]. 
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Figure 1.4 Representation of a symmetrical laminator for PV module production 

[101]. 

In addition, existence of cracks in the silicon cells may induce a localized 

temperature increment (hot spots) in the region near the cracks due to a localized 

electrical resistance [7]. Moreover, transient regimes, such as those taking place in 

accelerated environmental tests within climate chambers, or under operating 

conditions, have only marginally been investigated due to the inherent complexity 

related to the very different thicknesses of the layers composing a PV module. In 

such cases, accurate predictions require the solution of large systems of equations 

resulting from the finite element or finite difference approximation of the partial 

differential equations governing the problem of heat conduction and 

thermomechanical deformation. Suitable techniques for reducing the 

computational requirements for such simulations are therefore highly desirable. 

 



6 
 

 

Figure 1.5 Real PV modules of different sizes. 

Model order reduction (MOR) is a numerical procedure that is performed to find a 

low order approximation of the original high order model with the main objective 

of obtaining best approximation of the output of the original system. In other words, 

the purpose of MOR is to minimize the error between the outputs of the original 

system and the reduced-order model as illustrated in Fig. 1.6 [78]. One of the most 

significant gain of MOR scheme is the decrease in runtime of repeated simulations. 

With respect to thermomechanical simulations of PV modules, model formulations 

lead to derivation of systems of higher order ordinary differential equations or 

higher order partial differential equations in which the exact solution is either too 

complex to be derived or it is not feasible at all. On the other hand, implementing 

suitable numerical solutions for the system equations with many degrees of 

freedom may be computationally expensive to accomplish or may give rise to 

significant errors in the final result due to inherent errors in the numerical scheme. 

By performing model order reduction of the system equations based on 

minimization of some predefined error functions and deleting less important states 

and using an input function u(t) (see Fig. 1.6) to train the system, it is possible to 

match some parameters of the original and reduced systems. In case of repeated 

simulations, the reduced-order model can be excited with desirable input signals to 

determine the system response. 
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Figure 1.6. Order reduction by minimization of the difference of the outputs [78]. 

Early model reduction methodologies in structural fields are based on mode 

superposition methods [104] or its variant such as mode acceleration method [104, 

105]. In these methods, small number of free vibration modes is used to represent 

the system dynamics with reduced number of generalized degrees of freedom. 

However due to some computational limitations associated with these methods, 

other efficient methods such as Krylov subspace methods have been proposed. 

These methods approximates a large system with many degrees of freedom with a 

small system with fewer degrees of freedom and similar input-output behaviour. 

The method proposed in this work for reduction of second-order thermomechanical 

system is based on the Krylov subspace method and a review of the variants of this 

method is discussed in detail in Chapter 3. 

 

 

 

Figure 1.7. Main steps of Krylov subspace method [78]. 
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1.2 Outline of the thesis 

In the next Chapter, a brief discussion on current Silicon collar cell technology is 

presented. The focus is mainly on single crystalline and multicrystalline Silicon 

solar cell technology as it constitutes the major share of the production market. 

Layer-by-layer material composition and properties of PV module are presented 

and finally, recent developments in reliability studies of PV modules are 

highlighted.   

Fundamental theory of isotropic linear thermoelasticity is presented in Chapter 3 

with specific focus on linear elasticity and linear viscoelasticity. A major review of 

methods to estimate the behaviour of viscoelastic materials is expatiated. This is 

followed by detailed discussion on theory of thermomechanics based on small 

displacement principle. Method of derivation of equilibrium equations for plates 

using Kirchhoff’s theory are shown. 

Since equilibrium equations for thermomechanical models leads to derivation of 

system of differential equations, Chapter 4 is focused on a review of method for 

solution of system of linear partial differential equations. Exact solution methods 

for homogeneous and non-homogeneous initial and boundary value problems are 

presented. Discussed in detail is the numerical solution by method of implicit finite 

difference for first order and second order system and a special treatise on non-

uniform finite difference method is mentioned in brief. Techniques for finite 

difference discretization at the boundary for structural system are also emphasized. 

Finally, a review of the fundamentals of model order reduction techniques for first-

order and second-order systems is presented. 

In Chapter 5 a detail formulation for coupled thermomechanical shear-lag model is 

developed. Following the 2D derivation is an extension to 3D formulation for 
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comprehensive stress analysis of the PV module. Results of residual stresses are 

for 2D and 3D cases are provided with detailed analysis. 

Chapter 6 is focused on model order reduction application to thermomechanical 

models for PV modules and a step-by-step application is offered for thermal system 

with a first-order formulation and extended to coupled second-order 

thermomechanical model developed in chapter 5 with a newly proposed coupled 

second-order structure-preserving formulation. Numerical examples are presented 

showing the suitability of the order reduction schemes for PV systems. 

Chapter 7 is the concluding part of this work where general discussions about the 

developed shear-lag models for PV systems are presented and promising 

applications of proposed model order reduction techniques to PV systems are 

highlighted. Further developments and recommendations for improvement on 

current models are also mentioned.   
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CHAPTER 2 

PHOTOVOLTAIC MODULES: 

MATERIALS AND PRODUCTION 

2.1  Introduction 

A photovoltaic module is a unit comprising several PV cells which is intended to 

generate direct current (DC) electrical power from semi-conductors under 

illumination of photons from un-concentrated sunlight [17, 18]. Two categories of 

technology commonly used for the manufacturing of PV cells are crystalline 

Silicon and thin films as illustrated in Figure 2.2. Crystalline Silicon are 

manufactured either as a single or multicrystalline wafers or ribbons which was 

reported in 2001 to account for almost 90% of worldwide production [17] (see Fig. 

2.1).  

 

Figure 2.1. PV market distribution by technology [17].  
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Figure 2.2. PV technology.  

 

2.2  Production of photovoltaic modules 

Production of Silicon starts with carbothermic reduction of silicates in an electric 

arc furnace, a process where metallurgical grade silicon (MG-Si) reacts with HCl 

to form a range of chlorosilanes, including tri-chlorosilane (TCS). A detail 

representation of the production stages is illustrated in Fig. 2.3 [19]. 

 

  

Figure 2.3. Supply chain for solar cell modules. 
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By passing TCS over high purity silicon starter rods in a bed reactor, TCS is heated 

to 1150 0C through electrical resistive heating and the gas decomposes according 

to the chemical equation: 

2HSiCl3 → Si + 2HCl + SiCl4  

This process results in the deposition of a solar grade Silicon (SOG-Si) on the silico 

rods which can be used to produce high quality solar cells. The next step entails 

production of thin Silicon wafers which are typically of 200 − 300 μm  size 

thickness. The Silicon wafers are then treated with chemicals to enhance optical 

and electrical properties after which the Silicon is doped with phosphorous or boron 

to produce the p-n junction for the supply and extraction of electrons in the 

conduction bands. To reduce reflection losses at the front surface, the Silicon is 

coated with anti-reflection layers which trap incident light within the cell. Finally, 

front and back electrical contacts are added to complete the production process [19, 

22]. 

 

2.2.1  Lamination 

The components needed for the encapsulation of the Silicon cell are [20]: 

- Superstrates: Glass / polymeric layer (PGT) 

- Encapsulant: Poly (ethylene-co-vinyl acetate) or EVA 

- Substrates: Backfoils (or Backsheet) 

- Edge seals 

The encapsulation process takes place in a high performance vacuum laminator 

where the laminate as configured in Fig. 1.2 is heated up to a temperature of about 

150 0 C for about 30 minutes. Typically there are two stages involved in the 

encapsulation process: The lamination process to bond the different layers together 
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which occurs at a temperature of 110 – 120 0 C and curing process to enable cross-

linking of the EVA polymer and this occurs at a temperature of about 140 – 150 0 

C. These processes can be actualized as a single step in the laminator (fast cure) or 

double step, lamination in the laminator and curing in the oven (slow cure). It 

should be noted that the lamination process depends on numerous variables such 

as temperature (heating plate, membrane and temperature rates), the time (insertion 

time, time on pins, time on plate, curing time and cooling time) and the pressure 

(upper and lower chamber as well as the pressure application rates) [20, 21, 23]. 

Systematic research (experimental and simulation) to optimise the process to obtain 

the fastest cycle time which guarantees high quality process are continuously being 

performed. 

2.3  Material composition and properties 

A typical PV module is designed as a stack of materials with different geometrical, 

thermal, mechanical and electrical properties. This design configuration is indeed 

responsible for the complicated nature of thermomechanical simulation of PV 

modules. Investigations to enhance material performance and consequently 

reliability of PV modules are continuously being undertaken. In this section, a 

layer-by-layer composition of the module is discussed and the properties of 

different materials which compose the module are highlighted. 

2.3.1  Crystalline Silicon (C-Si) 

A standard Silicon cell is made up of 150 – 350 nm deep diffusion layer of 

phosphorous or boron doped Silicon, a passivation layer of Silicon nitride (anti-

reflective coating) of about 80 nm thickness, a metallization grid of 15 – 25 μm 

thick H-like pattern silver paste at the front (divided into two device elements 

namely contact busbars and contact fingers) for efficient carrier transport, a 25 – 

50 μm thick metallization of aluminium at the back (contact pads) to enhance 
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mechanical contact and collect current from the metallized area and a front surface 

of 2 – 15 μm high randomly distributed pyramids to increase photon transmission 

into the Silicon absorber [2, 23]. 

Crystalline Silicon cells are made into standard sizes of 125 mm × 125 mm or 

156 mm × 156 mm  pseudo-square or full-squared (see Fig. 2.4). Crystalline 

silicon investigated in this work is oriented in the crystallographic direction of < 

100 > i.e. the edges of the Silicon cells are parallel to the [100] direction. As cubic 

symmetry holds in this direction, it follows that: 

E<100 > = E<010 > = E<001 > = E𝑥 = E𝑦 = E𝑧 

To complete the parameter requirements for thermomechanical simulation, thermal 

properties such as density, thermal conductivity as well as specific heat capacity of 

the Silicon cells have to be specified. Table 2.1 shows in details material properties 

for the Silicon cells considered in this study. 

 

    

Figure 2.4. Crystalline Silicon cell as a finished product. 
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2.3.2  Interconnectors 

These are highly conductive solder coated ribbon strips along the length of the cell 

which extended part is soldered to the back of a neighbouring cell to enable current 

transfer from the front of one cell to the back of a neighbouring cell in series 

connections [24, 25]. The size of a typical ribbon for Silicon cell is 130 μm thick 

and 2 mm wide while the solder coating has thickness of 20 μm. Infra-red soldering 

method is used to attach the interconnect to the solar cell, a process which may 

induce high thermomechanical stresses in the module and in turn accelerate fatigue 

failure. Alternatively, a well-controlled laser soldering technology may be used 

which delivers heat fast, and efficiently on a small area of the solder 

interconnection with minimum physical contact with the crystalline silicon [25]. 

2.3.3  Glass 

The general criteria for selection of glass superstrate include low iron content, high 

transmittance, tempered, toughened, pre-stressed, plain or textured [2, 20, 26]. 

Typically, the standard size for a float glass for solar application is 4 mm and the 

glass is designed to provide mechanical rigidity, optical transparency, impact 

resistance (hail), electrical insulation and outdoor weatherability [2]. To modify 

performance for specific needs, some glass superstrate are supplied with anti-

reflective and corrosion retarded coatings [27]. In general for thermomechanical 

simulations, mechanical and thermal properties of glass are essentially required 

parameters. Glass properties considered in this study are enumerated in Table 2.1. 

2.3.4  Encapsulant 

 This is the adhesive material that provides chemical and physical bond between 

different layers of the PV module. The use of EVA encapsulant has been field-

proven over 20 years due to its favourable optical, physical electrical, mechanical 



16 
 

and thermal properties. EVA is a viscoelastic material which transform from 

viscous material at high temperature in the laminator to elastomeric material after 

lamination [2, 6, 28]. Like other viscoelastic materials, EVA properties have strong 

dependence on time and temperature during lamination. This is confirmed from 

experimental studies [2] which results are shown in Fig. 2.5.  

 

  

Figure 2.5 Temperature dependence of Storage modulus and Young’s modulus of 

EVA [2]. 

 

To accurately determine and model the temperature dependent properties of EVA, 

uniaxial relaxation tests have to be performed and then traditionally interpreted by 

using rheological models à la Maxwell. A detail study of the procedures to obtain 

the properties of EVA using classical Maxwell model has been presented in [2]. 

Other efficient methods to determine viscoelastic material properties has also been 

proposed in [28, 29, 30, 31]. In this study, we have implemented proposed models 

as described in [2, 28, 31] for thermomechanical simulations using the shear-lag 

theory. An overview of the different modelling and identification procedures used 

in this study for determination of material viscoelastic properties is discussed 
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within the framework of linear viscoelasticity in the next chapter.  Geometrical and 

thermal properties of EVA are detailed in Table 2.1. 

Other examples of non-EVA encapsulant are PVB, silicones, ionomer, TPU e.t.c. 

The requirements of a good encapsulant include but not limited to high  density 

breakdown, high volume resistivity, high adhesion strength, mechanically strong 

and resistant to break, low moisture absorption, high resistant to ultraviolet light, 

resistant to moisture induced delamination. Some of the functions of an encapsulant 

are electrical and physical insulation for the solar cell, mechanical support and 

physical support against environmental degradation [20]. 

2.3.5  Backsheet 

This is the outermost layer on the rear side of the PV module to protect the solar 

cell and the encapsulant from environmental degradation while acting as an 

electrical insulator [32, 33]. Backsheet are multi-layered polymeric materials with 

different compositions such as TPT-primed (Tedlar/ PET /Tedlar), TPE (Tedlar/ 

PET /EVA) or PVF (polyvinyl fluoride) [20]. For the shear-lag model described in 

the work, mechanical and thermal properties of the backsheet are reported in table 

2.1. 

Table 2.1. Material properties of PV module. 

Layer Thickness 

(mm) 

Elastic 

modulus 

(MPa) 

Coefficient of 

thermal 

expansion 

Poisson’s 

ratio 

Thermal 

conductivity 

(W/ m K) 

Density 

(Kg/ m3) 

Specific 

heat 

capacity 

(J/ Kg K) 

Glass 4 73000 8 × 10−6 0.23 1.8 3000 500 

EVA 0.5 Viscoelastic 2.7 × 10−4 0.35 0.35 960 2090 

Silicon cell 0.166 130000 2.49 × 10−6 0.28 148 2330 677 

Backsheet 0.1 2800 5.04 × 10−5 0.4 237 2700 900 
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2.4  Reliability and durability of photovoltaic modules 

After the installation of a solar panel on site, some challenges arise during service 

which affect the long term performance of the panel. Key criteria to measure 

reliability of solar panels for long term service are efficiency with which sunlight 

is converted into power and how this relationship changes with time [34].  Common 

challenges encountered in long term service of the module may include corrosion 

due to harsh environment (including moisture and heat), interconnect cracking and 

failure due to poorly specified material and processes and poor lamination quality, 

cell cracks due to wind storm, hot spot due to current mismatch or voltage 

mismatch which arises from shading of the connected solar cells (see Fig. 2.6). 

Long term service of the module are affected by these problems which effects range 

from increase resistance at the solar cell, reduction of current flow and loss of 

efficiency, delamination, micro-cracking and power loss [35]. 

Of particular importance in the reliability assessment of PV module are failures 

which occur at the end of working lifetime (wear-out failures). Common failures 

in this category are delamination of encapsulant and/or loss of elastic properties, 

cell part isolation and discolouration of the laminate encapsulant which may lead 

to power loss of 10% in the mean [36]. To eliminate these problem requires careful 

selection of adhesive and primers which are stable to UV and moisture, control of 

raw materials  and processes and most importantly, module testing. 

Standard tests to predict and possibly improve reliability of the module during 

service may include environmental stress test, mechanical load test, humidity 

freeze test, accelerated aging test, hotspot endurance test, thermal cyclic test and 

glass breakage test [35, 36]. These standard physical tests are usually expensive to 

perform, hence the need for simulation strategy to complement physical 

experiments for efficient reliability assessment.  
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Numerical approaches to reliability assessment of PV module is increasingly being 

adopted as reported in [7, 10, 37, 38]. Particularly promising is a multi-physics 

approach which treats the coupling between various fields governing the behaviour 

of PV module in service (see Fig. 1.3). 

 

 

    

(a) (b)   (c) 

Figure 2.6 (a) Corrosion of cell interconnects or soldering joints (b) Crack solar 

cell (c) Solar cell hotspot.  
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CHAPTER 3 

THERMO-VISCOELASTICITY OF 

COMPOSITE LAMINATES 

3.1 Introduction  

Most composite laminate structures are composed of various types of materials 

representing different layers. Reliability and life of such structures depends on the 

internal microstructural characteristics of the materials as well as on the structural 

design parameters. In thermomechanics of solids, conservation principles e.g., 

equations of continuity, motion and energy (thermodynamics) are frequently 

invoked in form of differential equations which express balance of conserved 

quantities over differential volume elements. To produce a well posed problem that 

can be solved by standard mathematical methods requires additional equations 

which constitute mathematical description of individual material response or 

behaviour. Such equations which are called constitutive equations are available for 

a whole group of material behaviours such elastic, viscoelastic, plastic and so on. 

With regards to thermomechanics of PV laminates, elastic and viscoelastic material 

behaviours have been identified to ideally represent the system response of the 

layers of the PV module during lamination. In line with these realities, a review of 

thermomechanical theories of solids with elastic and viscoelastic material 

behaviour is presented in this chapter. 
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3.2 Linear thermo-elasticity of an isotropic solid 

The governing equations for isotropic thermoelastic solid in a steady state are: 

 Equilibrium equations: 

𝜕𝜎𝑖𝑗

𝜕𝑥𝑗
+ 𝑋𝑗 = 0  𝑖, 𝑗 = 1, 2, 3     (3.1) 

where  𝜎𝑖𝑗  is the stress tensor, 𝑋𝑗  is the force vector and 𝑥𝑗  is the vector of 

coordinates. 

 Thermoelastic constitutive (stress-strain) relations: 

𝜎𝑖𝑗 = 𝜆𝑒𝑘𝑘𝛿𝑖𝑗 + 2𝐺𝑒𝑖𝑗 − 𝛽𝛿𝑖𝑗𝜃      (3.2) 

where 

𝜆 =
𝐸𝑣

(1+𝑣)(1−2𝑣)
  , 𝐺 =

𝐸

2(1+𝑣)
 ,   𝛽 =

𝐸𝛼

2(1+𝑣)
 ,  𝜃 = 𝑇 − 𝑇𝑜 

𝑒𝑖𝑗 is the strain tensor, 𝛿𝑖𝑗 is the Kronecker's delta, 𝐸 is the elastic modulus and 𝑣 

is the Poisson’s ratio. 𝑇 is the body temperature, 𝑇𝑜 is the reference temperature 

and 𝛼 is the coefficient of thermal expansion. 

Eq. (3.2) can be expressed in strain-stress form as: 

𝑒𝑖𝑗 =
1+𝑣

𝐸
𝜎𝑖𝑗 −

𝑣

𝐸
𝜎𝜇𝜇𝛿𝑖𝑗 + 𝛼𝜃𝛿𝑖𝑗     (3.3) 

 The small displacement strain-displacement relations: 

𝑒𝑖𝑗 =
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖)       (3.4) 

And the compatibility equations must be satisfied. 
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The temperature distribution 𝜃 can be determined from the energy conservation 

equation: 

𝑑𝑈

𝑑𝑡
= 𝑇

𝜕𝑆

𝜕𝑡
+
1

𝜌
𝜎𝑖𝑗𝑉𝑖𝑗       (3.5) 

where 𝑈 is the internal energy, 𝑆 is the entropy and 

𝑉𝑖𝑗 =
1

2
(
𝜕𝑣𝑖

𝜕𝑥𝑗
+
𝜕𝑣𝑗

𝜕𝑥𝑖
)       (3.6) 

is the rate of deformation tensor where 𝑣𝑖 is the velocity vector. 

From the equation above i.e. from Eqs. (3.5) and (3.6), the thermal energy balance 

equation can be derived as: 

𝜕𝐻

𝜕𝑡
+ 𝜃𝛽𝑖𝑗

𝜕𝑒𝑖𝑗

𝜕𝑡
= ∇. (𝑘∇𝜃) + 𝑟      (3.7) 

where 𝐻  is the enthalpy, 𝛽𝑖𝑗  is the experimentally determined numerical 

coefficient and 𝑟 is the rate of internal energy generation. 

By solving Eq. (3.7) subject to suitable initial and boundary conditions, the 

temperature field in the body can be determined. For steady state conditions in a 

medium of constant conductivity without internal heat generation, the harmonic 

function 

∇2𝜃 = 0        (3.8) 

has to be solved. 

In uncoupled thermoelastic theory, the mechanical terms in the energy and heat 

equations are neglected so that heat conduction and thermoelastic problem can be 

handled separately. 
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By substituting the generalized thermoelastic constitutive equations Eq. (3.2) and 

strain-displacement relations Eq. (3.4) into Eq. (3.1), the generalized Navier’s 

equation can be derived: 

𝐺𝑢𝑖,𝜇𝜇 + (𝜆 + 𝐺)𝑢𝜇,𝜇𝑖 + 𝑋𝑖 − 𝛽𝜃,𝑖 = 0     (3.9) 

Equation (3.9) is the generalized thermomechanical equilibrium equation which 

together with the energy equation and the stress-strain constitutive relations 

constitute a set of relations to determine the unknown displacements 𝑢𝑖, stresses 

𝜎𝑖𝑗 and the temperature field 𝜃. This system is complete and yields unique solution 

under suitable boundary conditions and resulting strain satisfies the compatibility 

conditions. 

3.3 Isotropic linear visco-elastic model 

Viscoelasticity is a time-dependent mechanical response to loading exhibited by 

mostly polymeric materials. In other words, viscoelasticity combines time 

independent elastic behaviour and time dependent viscous behaviour, hence the 

linear viscoelastic constitutive relation 

𝜎 = 𝐶𝜖 + 𝜂
𝑑𝜖

𝑑𝑡
        (3.10) 

in which the first term describes the elastic behaviour while the second term 

describes the viscous behaviour. This relation is referred in the literature to as Voigt 

model. This model fails to describe the phenomenon of stress relaxation 

mathematically described as 𝐺(𝑡) =
𝜎(𝑡)

e⁄  or creep described as 𝐽(𝑡) =
e(𝑡)

𝜎⁄  

where 𝐺(𝑡)  and 𝐽(𝑡)  are, respectively, the time dependent stress relaxation 

modulus and creep compliance. To account for these viscoelastic behaviours, 

Boltzmann proposed the superposition principle to compute the stress-strain 
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response of a viscoelastic solid subjected to an arbitrary loading history. He 

proposed for an applied stress 𝜎(𝑡), strain as [106]: 

e𝑖𝑗 = ∫ 𝐽𝑖𝑗𝑘𝑙(𝑡 − 𝜏)
𝜕𝜎𝑘𝑙

𝜕𝜏

𝑡

−∞
𝑑𝜏      (3.11) 

And for applied strain 𝑒(𝑡), stress as 

𝜎𝑖𝑗 = ∫ 𝐺𝑖𝑗𝑘𝑙(𝑡 − 𝜏)
𝜕e𝑘𝑙

𝜕𝜏
𝑑𝜏

𝑡

−∞
      (3.12) 

where 𝐺𝑖𝑗𝑘𝑙  and 𝐽𝑖𝑗𝑘𝑙  are the experimentally determined tensorial relaxation 

modulus and creep compliance function. 

For an isotropic solid, Eq. (3.12) can be decomposed into deviatoric and the 

volumetric part such that the constitutive relations is formulated in terms of the 

shear relaxation modulus 𝐺(𝑡)  and bulk relaxation modulus 𝐾(𝑡) . Given that 

assumption of linearity holds for polymeric materials up to small strains in the 

range of few percent, the constitutive relation for isotropic linear viscoelasticity is 

given as [2, 39]: 

𝝈 = ∫ 𝐺(𝑡 − 𝜏)�̇�(𝜏)𝑑𝜏
𝑡

−∞
+ 𝐾tr(𝐞(𝑡))     (3.13) 

or 

𝝈 = 𝒔(𝑡) + 𝒑(𝑡)       (3.14) 

where 𝒔(𝑡) = ∫ 𝐺(𝑡 − 𝜏)�̇�(𝜏)𝑑𝜏
𝑡

−∞
,   𝒑(𝑡) = 𝐾tr(𝐞(𝑡))  

It is noted that the relations above are generalization of the Maxwell material and 

indeed the integral equation can be defined as a generalized Maxwell model by 

making 𝐺(𝑡) to assume the Prony series form: 

𝐺(𝑡) = 𝐺∞ + ∑ 𝐺𝑖
𝑁
𝑖=1 exp

−𝑡

𝜆𝑖
      (3.15) 
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or alternatively 

𝐺(𝑡) = 𝐺 (𝜇0 + ∑ 𝜇𝑖
𝑁
𝑖=1 exp

−𝑡

𝜆𝑖
)      (3.16a) 

where 𝐺 is the instantaneous modulus i.e. 𝐺(𝑡 = 0). At 𝑡 = 0, 

𝐺(𝑡 = 0) = 𝐺∞ + ∑ 𝐺𝑖
𝑁
𝑖=1       (3.16b) 

and it is remarked from Eq. (3.16a) that: 

𝜇0 +∑𝜇𝑖 = 1

𝑁

𝑖=1

 

where 𝐺𝑖 and 𝜆𝑖 represent, respectively, shear relaxation modulus and relaxation 

times for each Maxwell’s arm. 𝑁 is the number of Maxwell arms taken into account 

in the approximation and 𝐺∞ is the long term shear modulus once the material is 

totally relaxed at an infinite time. 

The integral representation of 𝒔(𝑡) in Eq. (3.14) can be simplified by dividing the 

integral into [39]: 

∫ (. )
𝑡

−∞

= ∫ (. )
0−

−∞

+∫ (. )
0+

−0

+∫ (. )
𝑡

0+

 

Given that material is undisturbed until a time identified as zero, the first term is 

zero and the result of this separation applied to 𝒔 in Eq. (3.14) gives: 

𝒔(𝑡) = 2𝐺(𝑡)𝐞0 + 2∫ 𝐺(𝑡 − 𝜏)�̇�(𝜏)𝑑𝜏
𝑡

0
     (3.17) 

where the first term is a jump associated with 𝐞0  at time 𝑡 = 0 and the second term 

covers the subsequent strain history. 

By substituting Eq. (3.16) into Eq. (3.17), we obtain: 
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𝒔(𝑡) = 2𝐺 [𝜇0𝐞(𝑡) + ∑ 𝜇𝑖
𝑁
𝑖=1 exp

−𝑡

𝜆𝑖
(𝐞0 + ∫ exp

𝑡

𝜆𝑖�̇�(𝜏)𝑑𝜏
𝑡

0
)]  (3.18) 

According to [31, 39], the integral in Eq. (3.18) can be numerically evaluated as: 

∫ (. )
𝑡

0

= ∫ (. )
𝑡𝑛

0

+∫ (. )
𝑡

𝑡𝑛

 

By defining integral variables as: 

𝐢𝑖(𝑡) = ∫ exp
𝜏

𝜏𝑖�̇�(𝜏)𝑑𝜏
𝑡

0
       (3.19) 

and with the above separation, Eq. (3.19) becomes: 

𝐢𝑖(𝑡) = 𝐢𝑖(𝑡𝑛) + ∫ exp
𝑡

𝜆𝑖�̇�(𝜏)𝑑𝜏
𝑡

𝑡𝑛
     (3.20) 

Let 𝐡𝑖(𝑡) = exp
𝑡

𝜆𝑖𝐢𝑖(𝑡)       (3.21) 

𝐡𝑖 at time 𝑡𝑛+1 can now be written as: 

𝐡𝑛+1
𝑖 = exp

(
−Δ𝑡

𝜆𝑖
)
𝐡𝑛

𝑖 + Δ𝐡𝑖      (3.22) 

It is remarked that 𝐡0
𝑖 = 𝐞0 from Eq. (3.18), and:  

Δ𝐡𝑖 = ∫ exp
−(

𝑡𝑛+1−𝜏

𝜆𝑖
)
�̇�(𝜏)𝑑𝜏

𝑡𝑛+1
𝑡𝑛

     (3.23) 

By approximating the strain rate �̇�(𝜏) as constant over each time increment 𝑡𝑛 to 

𝑡, we get: 

�̇�(𝜏) =
𝐞𝑛+1−𝐞𝑛

Δt
        (3.24) 

where 𝐞𝑛 denotes strain at time 𝑡𝑛 and Δt = 𝑡𝑛+1 − 𝑡𝑛.  

With this approximation, Eq. (3.23) becomes: 
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Δ𝐡𝑖 =
1

Δt
∫ exp

−(
𝑡𝑛+1−𝜏

𝜆𝑖
)
(𝐞𝑛+1 − 𝐞𝑛)𝑑𝜏

𝑡𝑛+1
𝑡𝑛

    (3.25) 

The integral in Eq. (3.25) can now be directly evaluated to obtain: 

Δ𝐡𝑖 =
𝜆𝑖

Δt
[1 − exp

−(
Δt

𝜆𝑖
)
] (𝐞𝑛+1 − 𝐞𝑛) = Δℎ

𝑖(𝐞𝑛+1 − 𝐞𝑛)  (3.26) 

where Δℎ𝑖 =
𝜆𝑖

Δt
[1 − exp

−(
Δt

𝜆𝑖
)
] 

This approximation has the advantage of being doubly asymptotically accurate as 

it produces stable results for small time steps and large time steps and also gives 

smooth transitions under variable time steps. 

The constitutive relation (3.18) now takes the form: 

𝒔𝑛+1 = 2𝐺[𝜇0𝐞𝑛+1 + ∑ 𝜇𝑖
𝑁
𝑖=1 𝐡𝑛+1

𝑖]     (3.27) 

 

By substituting 𝐡𝑛+1
𝑖
 into Eq. (3.27) and differentiating, we can determine the 

stress increment at time 𝑡𝑛+1 as:  

𝜕𝒔𝑛+1

𝜕𝐞𝑛+1
= 2𝐺[𝜇0 +∑ 𝜇𝑖

𝑁
𝑖=1 Δℎ𝑖(∆𝑡)] = 2𝐺𝑣𝑖𝑠𝑐    (3.28) 

  

where 𝐺𝑣𝑖𝑠𝑐 is the equivalent shear relaxation modulus for the evaluation of EVA 

properties in the PV laminate. 

3.3.1 Estimation of relaxation parameters 

It is shown in Eq. (3.28) that relaxation parameters 𝜇𝑖 and 𝜆𝑖 are needed to estimate 

the equivalent shear relaxation modulus for evaluation of viscoelastic properties. 

This section highlights procedures to obtain experimentally, the relaxation 

parameters for accurate modelling of EVA properties. 
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The procedure to obtain these parameters are mainly [2]: 

a. Determination of tensile relaxation modulus and creep compliance at 

different constant temperatures. 

b. Time-temperature superposition of relaxation and creep functions. 

c. Interconversion of tensile data to shear relaxation modulus. 

d. Fitting generalized Maxwell model to a mastercurve. 

Eitner [2] carried out a tensile test on laminated EVA to determine the tensile 

relaxation moduli and tensile creep compliance at different constant temperatures. 

The results indicate strong dependence of EVA properties on the temperature as 

shown in Fig. 3.1. 

 

Performing the tensile tests to obtain the relaxation modulus 𝐸(𝑡)  and creep 

compliance 𝐽(𝑡), interconversion between different deformation modes is deemed 

necessary to determine the shear relaxation modulus 𝐺(𝑡) which can then be fitted 

to the generalized Maxwell model in Eq. (3.16). To achieve this, elastic-

viscoelastic correspondence principle is applied using the Laplace transform on the 

stress-strain constitutive relations in order to express the applied stress during 

uniaxial tests in terms of the shear modulus. The transformed constitutive relations 

is given as: 

�̅�11(𝑠) = 2𝑠�̅�(𝑠)(e̅11(𝑠) − e̅22(𝑠))     (3.29) 

which can now be inverse transformed to obtain an expression for the unknown 

𝐺(𝑡) as: 

𝜎11(𝑡) = 2𝐺(𝑡)(e11(0) − e22(0)) + 2∫ 𝐺(𝜏)
𝑑(e11(𝑡−𝜏)−e22(𝑡−𝜏))

𝑑𝜏
𝑑𝜏

𝑡

0
 (3.30) 

where 𝜎11, e11 and e22 are known from the relaxation and creep tests. To solve Eq. 

(3.30), a recursive interconversion procedure is applied by using numerical 

interconversion formulas from which 𝐺 is calculated from discrete test data. This 
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procedure which is explained in details in [2] produces the shear relaxation 

modulus 𝐺 within the range of numerical errors. 

 

 

 

 

 

 

 

 

(a)       (b) 

Figure 3.1 (a) Tensile relaxation moduli for laminated EVA at constant 

temperatures (b) Tensile creep compliance for laminated EVA at constant 

temperatures [2]. 

 

As an example, Fig. 3.2 shows interconverted 𝐺 for relaxation and creep tests at 

60℃ and 39℃ respectively. 
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Figure 3.2 Interconversion of two different experiments via recurrence formula 

(black) and regularized formulation (grey) [2]. 

 

To account for the strong sensitivity of EVA to temperature, a time-temperature 

superposition can be applied. This procedure involves shifting the relaxation curves 

along the logarithmic time axis to another curve from a slightly different 

temperature which results in the overlapping of both curves. The new curve now 

covers a larger time domain at the constant (reference) temperature of the unshifted 

curve. This procedure can be applied to several relaxation curves to create a 

relaxation curve known as a mastercurve which covers a time domain which cannot 

be practically included in one experiment. 

Typically, for 2 isothermal curves at 𝑇ref and 𝑇1, a modulus value is selected at 

different times and the modulus value 𝐸(𝑡, 𝑇1)  at 𝑇1  is then shifted to 𝑇ref 

according to the relation: 

𝐸(𝑡, 𝑇1) = 𝐸 (
𝑡
𝛼𝑇ref(𝑇1)
⁄ , 𝑇ref) = 𝐸(𝑡red, 𝑇ref)    (3.31) 
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where 𝛼𝑇ref(𝑇1) is the shift factor, a material property which indicates how far the 

relaxation curve at 𝑇1 has to be shifted to overlap the curve at 𝑇ref and 𝑡red is the 

reduced time representing the shifted time scale.  The relationship between 𝑡red 

and 𝛼𝑇ref(𝑇1) is expressed as: 

𝑡red = 𝜉(𝑡) = ∫
1

𝛼𝑇ref(𝑇(𝜏))
𝑑𝜏

𝑡

0
      (3.32) 

To implement the reduced time into viscoelastic constitutive relation, a derivation 

of temperature-dependent viscoelastic constitutive relation is expressed as [40]: 

𝜎(𝑡, 𝑇(𝑡)) = ∫ 𝐸(𝜉(𝑡) − 𝜉(𝜏), 𝑇ref)ė(𝜏)𝑑𝜏
𝑡

0
    (3.33) 

The shift factor 𝛼𝑇ref(𝑇) is needed to estimate 𝜉(𝑡) in Eq. (3.33) and this can be 

achieved by using empirical models in the literature. For example, to approximate 

the shift factor as a function of temperature, respectively, below the glass transition 

temperature 𝑇G  and for temperatures between 𝑇G − 10  and 𝑇G + 100 , the 

Arrhenius model and the Williams-Landel-Ferry (WLF) model are widely used and 

are expressed as: 

log10 𝛼𝑇ref(𝑇) =
𝐸𝐴

2.303𝑅
(
1

𝑇
−

1

𝑇ref
)     (3.34) 

log10 𝛼𝑇ref(𝑇) =
−𝐶1(𝑇−𝑇ref)

𝐶2+𝑇−𝑇ref
      (3.35) 

where 𝐸𝐴 and 𝑅 are the activation energy and the universal gas constant while 𝐶1 

and 𝐶2 are fit  parameters from the shift factor versus temperature curve. Fig. 3.3 

shows the mastercure and shift factor values of EVA at a reference temperature of 

−20℃. 
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(a)      (b) 

Figure 3.3 (a) Values of 𝛼−20 from time-temperature superposition of EVA (b) 

Mastercurve and Prony fit of shear modulus 𝐺 of EVA using interconverted data 

from relaxation and creep experiments and then shifted with WLF equation. 

 

 

 

 

 

 

 

 

(a)      (b) 

Figure 3.4 (a) Time-temperature curve of cooling stage of lamination (b) Reduced 

times calculated from time-temperature curve of the cooling stage of lamination. 
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The mastercurve in Fig. 3.3b is fitted with Maxwell’s arm to cover reduced time 

domain up to 1022 . The Maxwell relaxation parameters for the viscoelastic 

material model for EVA is presented in Table 3.1. 

To determine the number of Maxwell arms that is needed to satisfactory estimate 

the shear relaxation modulus, the range of the reduced times that can be crossed 

during lamination of the PV module should be inspected using the temperature-

dependent viscoelastic constitutive relation in Eq. (3.33) from which the argument 

𝜉(𝑡) − 𝜉(𝜏)  for the relaxation modulus can be computed for a number of 

experimental times 𝑡𝑖 < 𝑡. 

 

Table 3.1: Parameters for viscoelastic material model for EVA with 26 Maxwell 

arms determine in [2].  

Maxwell parameters 

 𝜆𝑖 𝐺𝑖 

0  0.24 

1 10−3 90 

2 10−2 40 

3 10−1 19 

4 10−0 11 

5 101 7 

6 102 4 

7 103 2.5 

8 104 1.4 

9 105 1 

10 106 0.8 
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Maxwell parameters 

 𝜆𝑖 𝐺𝑖 

11 107 0.6 

12 108 0.7 

13 109 0.8 

 𝜆𝑖 𝐺𝑖 

14 1010 0.8 

15 1011 0.7 

16 1012 0.6 

17 1013 0.56 

18 1014 0.48 

19 1015 0.5 

20 1016 0.3 

21 1017 0.25 

22 1018 0.12 

23 1019 0.07 

24 1020 0.03 

25 1021 0.02 

26 1022 0.02 

 

By considering the time-temperature curve shown in Fig. 3.4a during the cooling 

of the laminate, the calculated reduced times is shown in Fig. 3.4b. 

3.3.2 Visco-elastic model based on fractional calculus 

Model fitting using the Prony series involves a lot of parameters to satisfactorily 

evaluate the relaxation modulus of EVA within the range of application of PV 
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modules. A Prony series of up to 32 and 100 Maxwell arms were used in [2, 41] to 

satisfactorily model the behaviour of encapsulant in PV module. In addition, the 

numerical procedure for the identification of these parameters is a tedious task as 

described in the previous section. To overcome these drawbacks, Paggi et al [28], 

based on the work of Di Paola [29, 30], proposed a rheological model to accurately 

estimate the relaxation modulus of EVA. The constitutive material relation is 

derived based on fractional calculus using a two parameter element consisting of a 

fractional dashpot to model the viscoelastic properties of the encapsulant. The 

fractional model is obtained by replacing the first order derivative in the 

constitutive equation 𝜎 = 𝜂
𝑑𝜖

𝑑𝑡
 with the derivative of order 𝛼 ∈ (0, 1) [42]. Using 

the simplest fractional element known as Scott-Blair element, the constitutive 

relation for the fractional model is: 

𝜎(𝑡) = 𝑎
𝑑𝛼𝜖

𝑑𝑡𝛼
  𝛼 ∈ (0, 1)      (3.36) 

The relaxation modulus 𝐸(𝑡) assumes the power law of the form: 

𝐸(𝑡) = 𝑎
𝑡−𝛼

Γ(1−𝛼)
        (3.37) 

𝑎 (with SI unit of Pa s𝛼) has the mechanical meaning from stiffness (𝛼 = 0) to 

viscosity (𝛼 = 1). Time 𝑡 is measured in seconds. 

Based on the results of uniaxial relaxation tests carried out in [2], the fractional 

model is applied to obtain a fit to evaluate the coefficients of nonlinear regression 

functions at different temperatures using a least square estimate [19]. The 

efficiency of the fractional model is seen from Fig. 3.5 for the relaxation of EVA 

as it is noted the fractional model fits well with the experimental data. It is also 

notable to point out that this formulation has the advantage over Prony series to 

involve only two parameters (𝑎 and 𝛼) to model the viscoelastic behaviour of the 

EVA accurately. Table 3.2 shows the identified parameters for the fractional model 

to fit experimental uniaxial relaxation tests at different temperatures. 
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To obtain the relaxation modulus 𝐸(𝑡)  of the EVA during cooling using the 

fractional model, fitted parameters identified in Table 3.2 are plotted against a 

change in temperature with respect to the reference temperature to determine 𝑎 and 

𝛼  as functions of temperature change. Due to modification in the material 

microstructure of EVA at ∆𝑇~84 ℃ , two different correlations are used to 

accurately fit the experimental data. The correlations for 𝑎 and 𝛼 in Fig. 3.6 are 

mathematically represented as (𝑇ref = −20℃): 

 

 

 

 

 

 

 

 

 

 

Figure. 3.5 Relaxation modulus vs. time for EVA specimens at different 

temperatures: experimental data (in circles) and fractional model (continuous lines) 

[28].  
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Table 3.2: Identified parameters for the fractional model to fit experimental 

uniaxial relaxation tests at different temperatures [28]. 

Temperature 

(℃) 

𝛼 𝑎 (Pa s𝛼) Mean absolute percentage error 

(%) 

−35 0.22600 814.7 3.728 

−28 0.16810 182.7 2.702 

−18 0.10150 52.63 1.823 

0 0.05566 23.55 1.851 

20 0.04227 11.04 0.3044 

40 0.07417 4.668 2.977 

49 0.08634 4.116 5.467 

60 0.06542 1.544 0.9898 

80 0.05117 1.049 1.110 

100 0.04179 0.9276 0.8064 

119 0.03610 0.7965 0.9627 

139 0.03311 0.8228 0.3811 

𝛼 = { −6.5 × 10
−7∆𝑇3 + 1 × 10−4∆𝑇2 − 0.0093∆𝑇 + 0.225       ∆𝑇 ≤ 84 ℃

−1.2 × 10−7∆𝑇3 + 5.4 × 10−5∆𝑇2 − 0.0083∆𝑇 + 0.474       ∆𝑇 > 84 ℃
 

         (3.38a) 

𝑎 = {
733.5 exp−0.26∆𝑇 + 81.2 exp−0.04∆𝑇       ∆𝑇 ≤ 84 ℃

6.5 × 106 exp−0.17∆𝑇 + 1.7 exp−0.004∆𝑇       ∆𝑇 > 84 ℃
 (3.38b) 
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Figure. 3.6 Correlations for 𝛼 and 𝑎 as a function of the change of temperature. Tref 

corresponds to -20°C. 

 

With the mathematical correlations in Eq. (3.38), values of 𝛼 and 𝑎 can be 

determined at any temperature which can now be used in Eq. (3.37) to estimate 

𝐸(𝑡). 

3.4 Thermo-mechanical stress analysis of composite laminates 

A significant advantage offered by composite laminates is that their properties can 

be designed; layer-by-layer, to meet specific field applications. During production 

and service, laminates are widely known to experience high stress gradients at the 

interface near the free edges which may cause delamination and high stresses in the 

layers [14-15, 43-44]. The first step in predicting the mechanical response of a 

laminate is by developing the stress-strain relations of the laminate structure and a 

good approach at achieving this is by using the beam theory as presented in [45-

50].  

In classical plate theory, small deflection of plates is based on Kirchhoff’s 

hypothesis which states as follows: 

a. The middle plane remains unstrained (see Fig. 3.7). 
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b. The normal strain 휀𝑧𝑧 in the z direction is small enough to be neglected and 

the normal stress 𝜎𝑧𝑧  is small compared 𝜎11  and 𝜎22  so that it can be 

neglected in the stress-strain relations. 

c. The normal to the middle plane before bending remains normal to this 

plane after bending. This implies that out-of-plane shear strains are small 

and can be neglected. 

These assumptions can be expressed mathematically as: 

휀𝑧𝑧 =
𝜕𝑤

𝜕𝑧
= 0        (3.39a) 

휀11 =
𝜕𝑢1

𝜕𝑥1
=
1

𝐸
(𝜎11 − 𝑣𝜎22)      (3.39b) 

휀22 =
𝜕𝑢2

𝜕𝑥1
=
1

𝐸
(𝜎22 − 𝑣𝜎11)      (3.39c) 

휀1𝑧 =
1

2
(
𝜕𝑢1

𝜕𝑧
+

𝜕𝑤

𝜕𝑥1
) ≈ 0       (3.40a) 

휀2𝑧 =
1

2
(
𝜕𝑢2

𝜕𝑧
+

𝜕𝑤

𝜕𝑥2
) ≈ 0       (3.40b) 

휀12 = 휀21 =
1

2
(
𝜕𝑢1

𝜕𝑥2
+
𝜕𝑢2

𝜕𝑥1
)      (3.40c) 
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Figure 3.7 A stressed plate showing the middle plane. 

It is noted from Eq. (3.39a) that the plate deflection 𝑤 is a function of 𝑥1 and 𝑥2. 

By integrating Eqs. (3.40a) and (3.40b) with respect to 𝑧, we get: 

𝑢1 = −𝑧
𝜕𝑤

𝜕𝑥1
+ 𝑔1(𝑥1, 𝑥2)      (3.41a) 

𝑢2 = −𝑧
𝜕𝑤

𝜕𝑥2
+ 𝑔2(𝑥1, 𝑥2)      (3.41b) 

where 𝑔1 and 𝑔2 are mid-plane displacements which are negligible according 

Kirchhoff’s assumption. Therefore, Eq. (3.41) becomes: 

𝑢1 = −𝑧
𝜕𝑤

𝜕𝑥1
        (3.42a) 

𝑢2 = −𝑧
𝜕𝑤

𝜕𝑥2
        (3.42b) 

With respect to Eq. (3.42), the relations for strains in Eqs. (3.39) and (3.40) can 

now be expressed as: 

휀11 = −𝑧
𝜕2𝑤

𝜕𝑥1
2 =

1

𝐸
(𝜎11 − 𝑣𝜎22)      (3.43a) 
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휀22 = −𝑧
𝜕2𝑤

𝜕𝑥2
2 =

1

𝐸
(𝜎22 − 𝑣𝜎11)      (3.43b) 

휀12 = 휀21 = −𝑧
𝜕2𝑤

𝜕𝑥1𝜕𝑥2
=
𝜎12

2𝐺
      (3.43c) 

From Eq. (3.43), the stresses are then functions of 𝑤 as follows: 

𝜎11 = −
𝐸𝑧

1−𝑣2
(
𝜕2𝑤

𝜕𝑥1
2 + 𝑣

𝜕2𝑤

𝜕𝑥2
2)      (3.44a) 

𝜎22 = −
𝐸𝑧

1−𝑣2
(
𝜕2𝑤

𝜕𝑥2
2 + 𝑣

𝜕2𝑤

𝜕𝑥1
2)      (3.44b) 

𝜎12 = −
𝐸𝑧

1+𝑣

𝜕2𝑤

𝜕𝑥1𝜕𝑥2
       (3.44c) 

By considering the differential element d𝑥1d𝑥2d𝑧  in Fig. 3.8, the equilibrium 

equations for this differential element are: 

∑𝐹𝑥1 = 0        (3.45a)  

∑𝐹𝑥2 = 0         (3.45b) 

∑𝐹𝑧 = 0         (3.45c) 

By neglecting body forces, the equilibrium equations yield: 

𝜕𝜎1

𝜕𝑥1
+
𝜕𝜎12

𝜕𝑥2
+
𝜕𝜎𝑧1

𝜕𝑧
= 0       (3.46a) 

𝜕𝜎12

𝜕𝑥1
+
𝜕𝜎2

𝜕𝑥2
+
𝜕𝜎𝑧2

𝜕𝑧
= 0       (3.46b) 

𝜕𝜎1𝑧

𝜕𝑥1
+
𝜕𝜎2𝑧

𝜕𝑥2
+
𝜕𝜎𝑧𝑧

𝜕𝑧
= 0               (3.46c) 
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Figure 3.8. A differential element subject to internal stresses. 

 

The boundary conditions to solve the equilibrium equations are specified as 

follows: 

𝜎1𝑧 = 0,  𝜎2𝑧 = 0, 𝜎𝑧𝑧 = 𝑞  at  𝑧 =
ℎ

2
= 𝑐  (3.47a) 

𝜎1𝑧 = 0,  𝜎2𝑧 = 0, 𝜎𝑧𝑧 = 0  at  𝑧 = −
ℎ

2
= −𝑐           (3.47b) 

where 𝑞 is the applied load at the upper part of the plate. 

Integrating Eq. (3.46) with respect to 𝑧 gives: 

𝜎1𝑧 =
𝐸

2(1−𝑣2)
(𝑧2 −

ℎ2

4
)
𝜕𝑤

𝜕𝑥1
∇2𝑤      (3.48a) 

𝜎2𝑧 =
𝐸

2(1−𝑣2)
(𝑧2 −

ℎ2

4
)
𝜕𝑤

𝜕𝑥2
∇2𝑤     (3.48b) 
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𝜎𝑧𝑧 = −
𝐸

2(1−𝑣2)
(
ℎ3

12
+
ℎ2𝑧

4
−
𝑧3

3
) ∇4𝑤     (3.48c) 

where ∇2𝑤 =
𝜕2𝑤

𝜕𝑥1
2 +

𝜕2𝑤

𝜕𝑥2
2 and ∇4𝑤 =

𝜕4𝑤

𝜕𝑥1
4 + 2

𝜕4𝑤

𝜕𝑥2
2𝜕𝑥1

2 +
𝜕4𝑤

𝜕𝑥2
4  

By applying the boundary condition at 𝑧 =
ℎ

2
 to Eq. (3.48c), 

𝑞 = −
𝐸ℎ3

12(1−𝑣2)
∇4𝑤       (3.49) 

The axial force, shear force and moment resultants 𝑁, 𝑄, 𝑀 are defined as: 

𝑁𝑖 = ∫ 𝜎𝑖
𝑐

−𝑐
𝑑𝑧         (3.50a) 

𝑀𝑖 = ∫ 𝜎𝑖
𝑐

−𝑐
𝑧𝑑𝑧        (3.50b) 

𝑄𝑗 = ∫ 𝜎𝑗𝑧
𝑐

−𝑐
𝑑𝑧                 (3.50c) 

for 𝑖 = 1, 2, 6 and 𝑗 = 1, 2 

With respect to stress relations in Eq. (3.44), the 𝑖 = 1, 2, 6 indices in the resultant 

equations (3.50) correspond to 𝑖 = 11, 22, 12. Thus, 𝑁6 = 𝑁12 and 𝑀6 = 𝑀12 are, 

respectively, the twisting force and twisting moment. Substituting Eqs. (3.44) and 

(3.48) into Eq. (3.50), the relations for the resultants are expressed as: 

𝑀1 = −
𝐸ℎ3

12(1−𝑣2)
(
𝜕2𝑤

𝜕𝑥1
2 + 𝑣

𝜕2𝑤

𝜕𝑥2
2)      (3.51a) 

𝑀2 = −
𝐸ℎ3

12(1−𝑣2)
(𝑣

𝜕2𝑤

𝜕𝑥1
2 +

𝜕2𝑤

𝜕𝑥2
2)     (3.51b) 

𝑀6 = −
𝐸ℎ3

12(1−𝑣2)
(1 − 𝑣)

𝜕2𝑤

𝜕𝑥1𝜕𝑥2
      (3.51c) 



44 
 

𝑄1 = −
𝐸ℎ3

12(1−𝑣2)

𝜕𝑤

𝜕𝑥1
∇2𝑤      (3.51d) 

𝑄2 = −
𝐸ℎ3

12(1−𝑣2)

𝜕𝑤

𝜕𝑥2
∇2𝑤      (3.51e) 

Substituting Eqs. (3.51d) and (3.51e) into Eq. (3.48) while noting that thickness 

ℎ = 2𝑐 and moment of inertia 𝐼 =
ℎ3

12
, 𝜎1𝑧, 𝜎2𝑧 and 𝜎𝑧𝑧 are now expressed as: 

𝜎1𝑧 =
𝑄1

2𝐼
(𝑐2 − 𝑧2)       (3.52a) 

𝜎2𝑧 =
𝑄2

2𝐼
(𝑐2 − 𝑧2)       (3.52b) 

𝜎𝑧𝑧 =
𝑞

6𝐼
(2𝑐3 + 3𝑐2𝑧 − 𝑧3)      (3.52c) 

The expression for axial stresses can be rewritten as: 

𝜎𝑖 =
𝑁𝑖

ℎ
+
𝑀𝑖

𝐼
𝑧  (for 𝑖 = 1, 2, 6)     (3.53) 

By substituting Eqs. (3.52) and (3.53) into the equilibrium equation (3.46), the 

following differential relations are obtained: 

𝜕𝑁1

𝜕𝑥1
+
𝜕𝑁6

𝜕𝑥2
= 0        (3.54a) 

𝜕𝑁2

𝜕𝑥2
+
𝜕𝑁6

𝜕𝑥1
= 0        (3.54b) 

𝜕𝑀1

𝜕𝑥1
+
𝜕𝑀6

𝜕𝑥2
− 𝑄1 = 0       (3.54c) 

𝜕𝑀2

𝜕𝑥2
+
𝜕𝑀6

𝜕𝑥1
− 𝑄2 = 0       (3.54d) 
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𝜕𝑄1

𝜕𝑥1
+
𝜕𝑄2

𝜕𝑥2
+ 𝑞 = 0       (3.54e) 

The set of partial differential equations in (3.54) can be solved by substituting for 

the constitutive relations in Eq. (3.51) to obtain the displacement 𝑤 and it 

derivatives and in turn determine the stress and strain distribution in the plate. 
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CHAPTER 4 

MODEL ORDER REDUCTION APPLIED TO 

LINEAR SYSTEM OF DIFFERENTIAL 

EQUATIONS 

4.1 Introduction 

Modelling of many physical systems involves derivation of differential equations 

with many dependent variables and more than one independent variables. Typically 

in the case of structural and thermo-mechanical models, formulation of general 

equilibrium equations leads to derivation of higher order differential equations with 

many dependent variables with respect to time and space. This is even more 

complicated in the case of composite laminates which may be composed of many 

real or numerical layers with each layer governed by a system of partial differential 

equations and this eventually leads to a system comprising of many differential 

equations. Exact solution, although rare, may be obtained for some of the system 

equations by imposing special conditions but most commonly numerical solutions 

are sought to compute the solution of variables which ideally and realistically 

represent the physical system. To this end, exact and numerical solutions are 

implemented in this work and specifically, the finite difference (FD) method has 

been used to obtain numerical solutions of the derived system equations. In this 
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chapter, a review of methods for the solution of system of differential equations 

and discrete dynamical system is presented. In order to minimize the computational 

complexity of the numerical solutions, model order reduction techniques are often 

necessary. Basic techniques in the literature to reduce linear state-space systems 

are discussed in details and recent advances in reduction of second order systems 

are highlighted. 

4.2 Exact solution of first-order linear system of differential 

equations  

A first order system of differential equation is of the form: 

d𝑥1

d𝑡
= 𝑓1(𝑡, 𝑔1, 𝑥1, 𝑥2, …… , 𝑥𝑛 )  

d𝑥2

d𝑡
= 𝑓2(𝑡, 𝑔2, 𝑥1, 𝑥2, …… , 𝑥𝑛 )  

⋮           ⋮          ⋮          ⋮          ⋮   

d𝑥𝑛

d𝑡
= 𝑓𝑛(𝑡, 𝑔𝑛, 𝑥1, 𝑥2, …… , 𝑥𝑛 )       (4.1) 

Equation (4.1) is a first order linear system of differential equations of the functions  

𝑓1, 𝑓2, … . , 𝑓𝑛  which are linear in the dependent variables 𝑥1, 𝑥2, … . , 𝑥𝑛 . If the 

functions 𝑔1, 𝑔2, … . , 𝑔𝑛 are zero, then Eq. (4.1) is called homogeneous system of 

differential equations. Otherwise, the system is non-homogeneous. System Eq. 

(4.1) can be written in matrix form: 

d𝑿

d𝑡
= 𝑨𝑿 + 𝑮(𝑡)       (4.2) 

where 𝑿 is the vector of all unknown dependent variables, 𝑨 is the coefficient 

matrix and 𝑮 is the vector of non-homogeneous terms. For homogeneous system, 

𝑮 = 𝟎 and Eq. (4.2) reduces to: 
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d𝑿

d𝑡
= 𝑨𝑿        (4.3) 

To determine which solution of Eq. (4.2) or (4.3), a set of initial conditions are 

specified at a point in the system, say 𝑡0 so that Eq. (4.2) or (4.3) becomes an initial 

value problem (IVP). The solution of this system is a vector defined on the interval 

𝑰 whose entries are differentiable functions satisfying Eq. (4.2) or (4.3) on the 

interval 𝑰 with column matrix given by: 

𝑿 = [

𝑥1(𝑡)
𝑥2(𝑡)
⋮

𝑥𝑛(𝑡)

] 

For the system described by Eqs. (4.2) and (4.3), if the coefficient function entries 

in matrix 𝑨 and the non-homogeneous term 𝑮 are each continuous in an interval 

around 𝑡 = 𝑡0, then the system 

d𝑿

d𝑡
= 𝑨𝑿 + 𝑮   

with the initial conditions 𝑥1(𝑡0) = 𝑏1, … . . 𝑥𝑛(𝑡0) = 𝑏𝑛  has a unique solution 

(𝑥1, 𝑥2, … . , 𝑥𝑛)  in some interval around 𝑡 = 𝑡0 . This is called the existence-

uniqueness theorem. 

Finding a solution of this system requires the determination of the eigenvalues and 

eigenvectors of 𝑛 × 𝑛 matrix 𝑨. The eigenvalue 𝜆 and the eigenvector 𝜼 of 𝑨 are 

defined by the expression: 

 𝑨𝜼 = 𝜆𝜼        (4.4) 

If Eq. (4.4) is rewritten as: 

(𝑨 − 𝜆𝑰)𝜼 = 𝟎        (4.5) 
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Equation (4.5) is a system of homogeneous linear equations in which the 

eigenvectors 𝜼 are the values which characterise non-zero solution of the system. 

This implies that the eigenvalue 𝜆 of matrix 𝑨 are the values for which: 

det(𝑨 − 𝜆𝐼) = 𝟎 

Eq. (4.5) is an 𝑛-th degree polynomial called the characteristic polynomial of 

matrix 𝑨. The idea behind this eigenvalue procedure is that: 

if 𝒗 = [

𝑐1
𝑐2
⋮
𝑐𝑛

]  is an eigenvector of 𝑨  with an eigenvalue 𝜆 , then 𝑿 = [

𝑐1
𝑐2
⋮
𝑐𝑛

] 𝑒𝜆𝑡  is 

solution to Eq. (4.3). 

 Therefore, if 𝑨  has 𝑛  linearly independent eigenvectors  𝒗1, … . . , 𝒗𝑛  with 

eigenvalues  𝜆1, … . . ,  𝜆𝑛, then the general solution to the matrix differential system 

(4.3) are given by:  

𝑿 = C1𝒗1𝑒
 𝜆1𝑡 + C2𝒗2𝑒

 𝜆2𝑡 +⋯+ C𝑛𝒗𝑛𝑒
 𝜆𝑛𝑡 

where   C1, … . . ,  C𝑛 are arbitrary constants. 

This remark allows us to solve all homogeneous system of linear differential 

equations whose coefficient matrix 𝑨 is diagonalizable with 𝑨 = 𝑷−1𝑫𝑷 where 

the diagonal elements of 𝑫 are 𝜆1, … . . ,  𝜆𝑛 and the columns of 𝑷 are the vectors 

𝒗1, … . . , 𝒗𝑛. It is noted that determining the eigenvalues of 𝑨 may present some 

possibilities: 

(a) 𝑨 has distinct real eigenvalues 

(b) 𝑨 has complex conjugate eigenvalues 

(c) 𝑨 has a repeated real eigenvalue. 
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If, for example, the number of linearly independent eigenvectors 𝑛 = 2, then for 

case (a): 

𝑿 = C1𝒗1𝑒
 𝜆1𝑡 + C2𝒗2𝑒

 𝜆2𝑡 

In case (b), matrix 𝑨  has complex conjugate eigenvalues 𝜆 = 𝜆1 ± 𝜇1𝑖  and by 

implication, a complex conjugate eigenvectors 𝒗 = 𝒂 ± 𝒃𝑖, then the homogeneous 

system (4.3) has a real-valued general solution:  

𝑿 = C1𝑒
 𝜆1𝑡(𝒂 cos 𝜇1𝑡 −𝒃 sin𝜇1𝑡) + C2𝑒

 𝜆1𝑡(𝒂 sin 𝜇1𝑡 +𝒃 cos𝜇1𝑡) 

In case (c) where matrix 𝑨 has a repeated real eigenvalues 𝜆, there are 2 sub-cases: 

- 𝜆 has two linearly independent eigenvectors 𝒗1 and 𝒗2, then the system 

has a general solution: 

𝑿 = C1𝒗1𝒆
𝜆𝑡 + C2𝒗2𝒆

𝜆𝑡 

- 𝜆 has only one linearly dependent eigenvectors 𝒗1, then the system has a 

general solution: 

𝑿 = C1𝒗1𝒆
𝜆𝑡 + C2(𝒗1𝑡𝒆

𝜆𝑡 +𝝋𝒆𝜆𝑡) 

where the vector 𝝋 is any solution of non-homogeneous linear system of equations: 

(𝑨 − 𝜆𝑰)𝝋 = 𝒗1 

4.2.1 General solution to non-homogeneous system of linear differential 

equations 

Based on the method of variation of parameters, if the homogeneous part of Eq. 

(4.2) is assumed to have a fundamental set of solutions 𝑿1, … . . , 𝑿𝑛 , then the 

general solution is given by: 
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𝑿 = C1 [

𝑥11
𝑥21
⋮
𝑥𝑛1

] + C2 [

𝑥12
𝑥22
⋮
𝑥𝑛2

] + ⋯+ C𝑛 [

𝑥1𝑛
𝑥2𝑛
⋮
𝑥𝑛𝑛

] = 𝚿(t)𝐂 

where 𝐂 is 𝑛 × 1 vector containing of all the arbitrary constants C1, … . . , C𝑛  and 

𝚿(t) is an 𝑛 × 𝑛 matrix whose columns consist of entries of the solution vector of 

the homogeneous system 
d𝑿

d𝑡
= 𝑨𝑿. Matrix 𝚿(t) is called the fundamental matrix 

of the system. Substitution of 𝑿 = 𝚿(t)𝐂 into 
d𝑿

d𝑡
= 𝑨𝑿 yields: 

d𝚿(t) 

d𝑡
= 𝑨𝚿(t)         (4.6) 

If we assume the particular solution of the non-homogeneous system (4.2) is 

expressed as: 

𝑿𝑝 = 𝚿(t)𝐐(t)        (4.7) 

where 𝐐(t) = [

𝑞1(𝑡)
𝑞2(𝑡)
⋮

𝑞𝑛(𝑡)

] 

By differentiating𝑿𝑝 and substituting into Eq. (4.2), we get: 

𝐐(t)
d𝚿(t)

d𝑡
+𝚿(t)

d𝐐(t)

d𝑡
= 𝑨𝚿(t)𝐐(t) + 𝑮(t)    (4.8) 

By substituting Eq. (4.6) into (4.8),     

𝚿(t)
d𝐐(t)

d𝑡
= 𝑮(t)       (4.9) 

Solving for 𝐐(t) in Eq. (4.9) gives: 

𝐐(t) = ∫𝚿(t)−1𝑮(𝑡)dt           (4.10) 

Therefore, the particular solution of the non-homogeneous system (4.2) is: 
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𝑿𝑝 = 𝚿(t) ∫𝚿(t)
−1𝑮(𝑡)dt                 

(4.11) 

So the general solution of the non-homogeneous system (4.2) is expressed as: 

𝑿 = 𝚿(t)𝐂 + 𝚿(t) ∫𝚿(t)−1𝑮(𝑡)dt                

(4.12) 

4.3 Solution of higher-order differential equations 

Given an 𝑛-th order linear differential equation of the form: 

𝑎𝑛𝑥
(𝑛) + 𝑎𝑛−1𝑥

(𝑛−1) + 𝑎𝑛−2𝑥
(𝑛−2) +⋯+ 𝑎2𝑥

′′ + 𝑎1𝑥
′ + 𝑎0𝑥 = 𝑔(𝑡)            

(4.13) 

By making the substitutions 𝑦1 = 𝑥, 𝑦2 = 𝑥
′, 𝑦3 = 𝑥

′′, … , 𝑦𝑛 = 𝑥
(𝑛−1), and 𝑦𝑛

′ =

𝑥(𝑛), Eq. (4.13) can be reduced to a system of first order differential equations of 

the form: 

𝑦1
′ = 𝑦2  

𝑦2
′ = 𝑦3  

⋮           ⋮   

𝑦(𝑛−1)
′ = 𝑦𝑛  

𝑦𝑛
′ = −

𝑎0

𝑎𝑛
𝑦1 −

𝑎1

𝑎𝑛
𝑦2 −⋯−

𝑎𝑛−1

𝑎𝑛
𝑦𝑛 −

𝑔(𝑡)

𝑎𝑛
                

(4.14) 

With the linear system of first order differential equations (4.14), a solution can be 

obtained as described in Sec. 4.1. If we have a linear system of higher order 

differential equations, it is remarked that this technique can also be used to reduce 
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the system to a system of first order differential equations and solutions obtained 

as described for first order systems.  

4.4 The boundary value problems 

The system described in the previous section is an initial value problem (IVP) 

because it has conditions or value of the solution variables specified at one time 𝑡0. 

In the case of boundary value problem (BVP), values of the solution variables are 

specified at different spatial points such that a complete solution of the system can 

be obtained. For example, a BVP for a second order system may be expressed as: 

d2𝑿

d𝑡2
+𝑫

d𝑿

d𝑡
+ 𝑨𝑿 = 𝑮(𝑡)      (4.15a) 

𝑿(𝑡0) = 𝑿0 𝑿(𝑡1) = 𝑿1      (4.15b) 

A BVP such as Eq. (4.15) is homogeneous if, in addition to 𝑮(𝑡) = 0, the values 

of the solution at the boundaries are also zero i.e., 𝑿(𝑡0) = 𝟎  , 𝑿(𝑡1) = 𝟎 . 

Otherwise, the system is non-homogeneous. To solve a BVP requires the same 

technique like IVP except that BVP is more complicated since, depending on the 

values of the solution variables at the boundaries, a BVP may have an infinite 

solution or no solution. 

4.5 The finite difference method 

Modelling of many physical systems in engineering usually leads to a system of 

partial differential equations (PDEs) with more than one independent variable, or 

higher order ordinary differential equations (ODEs) with a variable coefficient 

matrix. Such a situation may arise due to the boundary conditions of the system, 

geometry of the problem or dynamics of the system. To obtain a solution, a 

numerical approach which involves approximating the solution variables at 

discrete points in the system is required. There are many standard numerical 
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procedures available to obtain the numerical solution of the system and of these 

procedures, the finite difference (FD) method has been identified in this work for 

the solution of a system of differential equations. 

4.5.1 Formulae for the approximation of derivatives 

Given a small value of grid spacing ℎ > 0, the 𝑑-th order derivative satisfies the 

equation: 

ℎ𝑑

𝑑!
𝐹(𝑑)(𝑡) = ∑ 𝐶𝑖

𝑖𝑚𝑎𝑥
𝑖𝑚𝑖𝑛

𝐹(𝑡 + 𝑖ℎ) + 𝒪(ℎ𝑑+𝑝)    (4.16) 

for some choice of extreme indices 𝑖𝑚𝑖𝑛  and 𝑖𝑚𝑎𝑥  and for some choice of 

coefficients 𝐶𝑖. The integer order of error 𝑝 > 0 may be selected as desired. The 

approximations are obtained by neglecting the error terms indicated by the 𝒪 

notation. The order of error is seen from formal expansion as Taylor’s series about 

the value of 𝑡: 

𝐹(𝑡 + ℎ) = 𝐹(𝑡) + ℎ𝐹′(𝑡) +
ℎ2

2!
𝐹′′(𝑡) + ⋯ = ∑

ℎ𝑛

𝑛!
𝐹(𝑛)(𝑡)∞

𝑛=0   (4.17) 

and  

𝐹(𝑡 − ℎ) = 𝐹(𝑡) − ℎ𝐹′(𝑡) +
ℎ2

2!
𝐹′′(𝑡) + ⋯ = ∑ (−1)𝑛

ℎ𝑛

𝑛!
𝐹(𝑛)(𝑡)∞

𝑛=0  (4.18) 

where 𝐹(𝑛)(𝑡) denotes the 𝑛-th derivative of 𝐹 . By subtracting 𝐹(𝑡) from both 

sides of Eqs. (4.17) and (4.18) on one hand and subtracting Eq. (4.18) from Eq. 

(4.17) on the other hand, the first derivative finite difference formulae for forward 

difference, backward difference and centred difference are, respectively, given as: 

 𝐹′(𝑡) =
𝐹(𝑡+ℎ)−𝐹(𝑡)

ℎ
+ 𝒪(ℎ)      (4.19a) 

𝐹′(𝑡) =
𝐹(𝑡)−𝐹(𝑡−ℎ)

ℎ
+𝒪(ℎ)      (4.19b) 
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𝐹′(𝑡) =
𝐹(𝑡+ℎ)−𝐹(𝑡−ℎ)

2ℎ
+ 𝒪(ℎ2)      (4.19a) 

The forward difference and backward difference formula have first order 

approximation error  𝒪(ℎ)  while the centred difference have second order 

approximation error. Higher order approximations can be obtained by using more 

terms in the Taylor’s series. Higher order derivatives can be derived in a similar 

manner to first derivative. In Tables 4.1, 4.2 and 4.3, the coefficients of finite 

difference formulae for up to fourth derivatives are reported. 

  

Table. 4.1: Coefficients for centred divided FD scheme 

Derivativ

e 

Accurac

y 

Points  

−𝟑 −𝟐 −𝟏 𝟎 𝟏 𝟐 𝟑 

1 2   −1 2⁄  0 1 2⁄    

4  1 2⁄  −2 3⁄  0 2 3⁄  −1 2⁄   

2 2   1 −2 1   

4  −1 12⁄  4 3⁄  −5 2⁄  4 3⁄  −1 12⁄   

3 2  −1 2⁄  1 0 −1 1 2⁄   

4 1 8⁄  −1 13 8⁄  0 −13 8⁄  1 −1 8⁄  

4 2  1 −4 6 −4 1  

4 −1 6⁄  2 −13 2⁄  28 3⁄  −13 2⁄  2 −1 6⁄  
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Table. 4.2: Coefficients for forward divided FD scheme 

Derivative Accuracy 

order 

Points  

𝟎 𝟏 𝟐 𝟑 𝟒 𝟓 

1 1 −1 1     

2 −3 2⁄  2 −1 2⁄     

2 1 1 −2 1    

2 2 −5 4 −1   

3 1 −1 3 −3 1   

2 −5 2⁄  9 −12 7 −3 2⁄   

4 1 1 −4 6 −4 1  

2 3 −14 26 −24 11 −2 

 

Table. 4.3: Coefficients for backward divided FD scheme 

Derivative Accuracy 

order 

Points  

𝟎 −𝟏 −𝟐 −𝟑 −𝟒 −𝟓 

1 1 1 −1     

2 3 2⁄  −2 1 2⁄     

2 1 1 −2 1    

2 2 −5 4 −1   

3 1 1 −3 3 −1   

2 5 2⁄  −9 12 −7 3 2⁄   

4 1 1 −4 6 −4 1  

2 3 −14 26 −24 11 −2 

 

Given the coefficients of finite difference formulae, an approximation of second 

order mixed derivative using centred divided FD method is obtained as follows: 
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𝐹,𝑥𝑦 =
𝐹,𝑥(𝑦+ℎ𝑦)−𝐹,𝑥(𝑦−ℎ𝑦)

2ℎ𝑦
+ 𝒪(ℎ2)     (4.20) 

𝐹,𝑥(𝑦 + ℎ𝑦) =
𝐹(𝑥+ℎ𝑥,𝑦+ℎ𝑦)−𝐹(𝑥−ℎ𝑥,𝑦+ℎ𝑦)

2ℎ𝑥
+ 𝒪(ℎ2)   (4.21a) 

𝐹,𝑥(𝑦 − ℎ𝑦) =
𝐹(𝑥+ℎ𝑥,𝑦−ℎ𝑦)−𝐹(𝑥−ℎ𝑥,𝑦−ℎ𝑦)

2ℎ𝑥
+ 𝒪(ℎ2)   (4.21b) 

where the subscript after the comma denotes a derivative with respect to the 

corresponding variable. Substituting Eq. (4.21) into (4.20), we get: 

𝐹,𝑥𝑦 =
𝐹(𝑥+ℎ𝑥,𝑦+ℎ𝑦)−𝐹(𝑥−ℎ𝑥,𝑦+ℎ𝑦)−𝐹(𝑥+ℎ𝑥,𝑦−ℎ𝑦)+𝐹(𝑥−ℎ𝑥,𝑦−ℎ𝑦)

4ℎ𝑥ℎ𝑦
+ 𝒪(ℎ2) (4.22) 

Using a similar procedure, the formulae for forward divided FD and backward 

divided FD are: 

𝐹,𝑥𝑦 =
𝐹(𝑥+ℎ𝑥,𝑦+ℎ𝑦)−𝐹(𝑥,𝑦+ℎ𝑦)−𝐹(𝑥+ℎ𝑥,𝑦)+𝐹(𝑥,𝑦)

ℎ𝑥ℎ𝑦
+ 𝒪(ℎ)   (4.23) 

𝐹,𝑥𝑦 =
𝐹(𝑥,𝑦)−𝐹(𝑥−ℎ𝑥,𝑦)−𝐹(𝑥,𝑦−ℎ𝑦)+𝐹(𝑥−ℎ𝑥,𝑦−ℎ𝑦)

ℎ𝑥ℎ𝑦
+ 𝒪(ℎ)   (4.24) 

The procedure can be routinely repeated to obtain the formulae for higher order 

mixed derivatives. 

4.5.2 Relationship between finite difference method and Lagrange 

polynomials 

An alternative to deriving the finite difference weights from the Taylor’s series is 

to differentiate Lagrange polynomials given as: 

𝑙𝑗(𝜉) =  ∏
𝜉−𝑥𝑖

𝑥𝑗−𝑥𝑖

𝑛
𝑖=0,𝑖≠𝑗         (4.25) 

where, for a 3-point stencil, the interpolation points are: 
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𝑥0 = 𝑥 − ℎ,  𝑥1 = 𝑥,  𝑥2 = 𝑥 + ℎ. 

The quadratic polynomial 𝑃2(𝑥) interpolating 𝐹(𝑥) at these points is given as: 

𝑃2(𝑥) = ∑ 𝐹(𝑥𝑗)𝑙𝑗(𝑥)
2
𝑗=0       (4.26) 

Differentiating Eq. (4.26), we get: 

𝑃2,𝑥(𝑥) = ∑ 𝐹(𝑥𝑗)𝑙𝑗,𝑥(𝑥)
2
𝑗=0       (4.27) 

The finite difference approximation of 𝐹,𝑥1 at the mid-point  𝑥 = 𝑥1 is: 

𝐹,𝑥(𝑥1) = 𝑙0,𝑥(𝑥1)𝐹(𝑥0) + 𝑙1,𝑥(𝑥1)𝐹(𝑥1) + 𝑙2,𝑥(𝑥1)𝐹(𝑥2) + 𝒪(ℎ
2) (4.28) 

By evaluating the derivatives of the 3 Lagrange polynomials at 𝑥1 gives the same 

weights for centred difference formula for first derivative with second order 

accuracy as shown in Table 4.1. To obtain higher order derivatives or higher order 

approximations, higher order polynomials are needed to estimate the weights of the 

derivatives using a stencil that covers more points around the point of interest. 

 

4.5.3 Finite difference method applied to a non-uniform grid 

The significance of the Lagrange polynomials is that the procedure to obtain the 

weights for the derivative of mesh points with uniform spacing can be easily 

extended to mesh points with non-uniform spacing. Accordingly, the second and 

fourth derivatives of the points in Fig. 4.1 are shown in Table 4.4 (see Appendix 

B). 
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Figure 4.1. Nodes along longitudinal axis with non-uniform mesh size. 

 

Table 4.4: Finite difference weights for derivatives at nodes with non-uniform 

mesh size. 

Derivative  Points 𝑦1 𝑦2 𝑦3 𝑦4 

 

 

4 

−2 4𝑟(2 + 𝑟)(1 + 𝑟)

𝑠1
 

12𝑟(1 + 𝑟)

𝑠1
 

24𝑟

𝑠1
 

24

𝑠1
 

−1 −12𝑟(3 + 𝑟)(1 + 𝑟)

𝑠1
 

−24𝑟(3 + 𝑟)

𝑠1
 

−24(3 + 𝑟)

𝑠1
 −4𝑟(3 + 𝑟)(𝑟2 + 3𝑟 + 2)

𝑠1
 

0 12𝑟(3 + 𝑟)(2 + 𝑟)

𝑠1
 

12(3 + 𝑟)(2 + 𝑟)

𝑠1
 
12(3 + 𝑟)(2 + 𝑟)

𝑠1
 

12𝑟(3 + 𝑟)(2 + 𝑟)

𝑠1
 

1 −4𝑟(3 + 𝑟)(𝑟2 + 3𝑟 + 2)

𝑠1
 
−24(3 + 𝑟)

𝑠1
 

−24𝑟(3 + 𝑟)

𝑠1
 

−12𝑟(3 + 𝑟)(1 + 𝑟)

𝑠1
 

2 24

𝑠1
 

24𝑟

𝑠1
 

12𝑟(1 + 𝑟)

𝑠1
 

4𝑟(2 + 𝑟)(1 + 𝑟)

𝑠1
 

 

2 

−1  2𝑟

𝑠2
 

2

𝑠2
 

 

0  2(1 + 𝑟)

𝑠2
 

2(1 + 𝑟)

𝑠2
 

 

1  2

𝑠2
 

2𝑟

𝑠2
 

 

 

where the variables 𝑟, 𝑠1 and 𝑠2 are given by: 

𝑟 =
ℎ1

ℎ2
 , 𝑠1 = 𝑟(3 + 𝑟)(2 + 𝑟)(1 + 𝑟)ℎ2

4
 , 𝑠2 = 𝑟(1 + 𝑟)ℎ2

2
 . 
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4.5.4 Finite difference discretization of boundary conditions for structural 

systems 

Application of finite difference approximations at a point of the boundary or near 

the boundary of a domain is cumbersome as points outside the physical domain are 

involved. It is admitted therefore, that the differential equation remains valid 

outside the domain. 

 

Figure 4.2. 1D structural beam with uniform mesh size. 

With respect to a 1D simple structural beam as shown in Fig. 4.2, three basic 

boundary conditions at an end point, say 𝑥1 are identified, namely: 

(a) Simply supported end: vertical deflection 𝑤 and moments are zero at point 

𝑥1. Mathematically, 

𝑤(𝑥1) = 0,  𝑤,𝑥𝑥(𝑥1) = 0  

(b) Fixed or clamped end: vertical deflection 𝑤 and rotation vanish at point 

𝑥1. Mathematically, 𝑤(𝑥1) = 0,  𝑤,𝑥(𝑥1) = 0  

(c) Free end: point 𝑥1 is free from any external load and the bending moment 

and shearing force vanish at this point. Mathematically, 

𝑤,𝑥𝑥(𝑥1) = 0,  𝑤,𝑥𝑥𝑥(𝑥1) = 0 

Considering that points 𝑎  and 𝑏  are outside the domain, the centred difference 

approximations for derivatives of the deflection 𝑤 at point 𝑥1 gives: 

𝑤(𝑎) = 𝑤(𝑥2) − 2ℎ 𝑤,𝑥(𝑥1)      (4.29a) 

𝑤(𝑎) = 2 𝑤(𝑥1) − 𝑤(𝑥2) + ℎ
2 𝑤,𝑥𝑥(𝑥1)    (4.29b) 

𝑤(𝑏) = 2 𝑤(𝑎) − 2 𝑤(𝑥2) + 𝑤(𝑥3) − 2 ℎ
3 𝑤,𝑥𝑥𝑥(𝑥1)   (4.29c) 
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So depending on the boundary condition of interest, an estimate for the unknowns 

of the points outside the domain (also known as phantom nodes) can be obtained. 

For example, with a fixed end at point 𝑥1, 𝑤,𝑥(𝑥1) = 0 and Eq. (4.29a) becomes: 

𝑤(𝑎) = 𝑤(𝑥2)        (4.30) 

Also, for a fixed end at point 𝑥1, the fourth derivative at point 𝑥2 is obtained as: 

ℎ4 𝑤,𝑥𝑥𝑥𝑥(𝑥2) = 7 𝑤(𝑥2) − 4 𝑤(𝑥3) + 𝑤(𝑥4)    (4.31) 

The same approach can be used to obtain estimates for displacement of points at 

the end points or near the end points for a simply supported end or for a free end at 

point 𝑥1. Accordingly, for a simply supported end at point 𝑥1,  𝑤(𝑥1) = 0 and 

𝑤,𝑥𝑥(𝑥1) = 0, so that Eq. (4.29b) becomes: 

𝑤(𝑎) = −𝑤(𝑥2)       (4.32) 

 And the fourth derivative approximation at point 𝑥2 is now given as: 

ℎ4 𝑤,𝑥𝑥𝑥𝑥(𝑥2) = 5 𝑤(𝑥2) − 4 𝑤(𝑥3) + 𝑤(𝑥4)    (4.33) 

As for a free end at point 𝑥1,  Eqs. (4.29b) and (4.29c) become: 

𝑤(𝑎) = 2 𝑤(𝑥1) − 𝑤(𝑥2)      (4.34a) 

𝑤(𝑏) = 4 𝑤(𝑥1) − 4 𝑤(𝑥2) + 𝑤(𝑥3)     (4.34b) 

And by substitution of Eq. (4.34) into the centred difference formula for fourth 

derivative of the deflection 𝑤(𝑥1) at point 𝑥1, we get: 

ℎ4 𝑤,𝑥𝑥𝑥𝑥(𝑥1) = 2 𝑤(𝑥1) − 4 𝑤(𝑥2) + 2 𝑤(𝑥3)    (4.35) 

The fourth derivative at point 𝑥2 is then given as: 

ℎ4 𝑤,𝑥𝑥𝑥𝑥(𝑥2) = −2 𝑤(𝑥1) + 5 𝑤(𝑥2) − 4 𝑤(𝑥3) + 𝑤(𝑥4)  (4.36) 
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4.5.5 Alternative approach to the discretization of the boundary conditions 

The procedure described in Sec. 4.5.4 consider external points for the discretization 

at the boundary. In some cases, due to poor boundary treatment, this can give rise 

to large errors in the results. An alternative approach proposed in [51] uses the 

Taylor’s series expansion of the derivatives at the boundary using a desired number 

of terms to get the best approximation. For example, to get the best approximation 

for fourth derivative of the deflection at point 𝑥2 in terms of 𝑤(𝑥1), 𝑤(𝑥2), 𝑤(𝑥3) 

and 𝑤(𝑥4), Taylor series expansion is considered as: 

{
 
 

 
 
𝑤(𝑥1)

𝑤(𝑥2)

𝑤(𝑥3)

𝑤(𝑥4)

𝑤,𝑥(𝑥1)}
 
 

 
 

=

[
 
 
 
 
1 −ℎ ℎ2 2⁄ −ℎ3 6⁄ ℎ4 2⁄ 4
1 0 0 0 0
1 ℎ ℎ2 2⁄ ℎ3 6⁄ ℎ4 2⁄ 4

1 2ℎ 4ℎ2 2⁄ 8ℎ3 6⁄ 16ℎ4 2⁄ 4

0 1 −ℎ ℎ2 2⁄ −ℎ3 6⁄ ]
 
 
 
 

{
 
 

 
 

𝑤(𝑥2)

𝑤,𝑥(𝑥2)

𝑤,𝑥𝑥(𝑥2)

𝑤,𝑥𝑥𝑥(𝑥2)

𝑤,𝑥𝑥𝑥𝑥(𝑥2)}
 
 

 
 

 (4.37) 

By multiplying the first equation in the matrix Eq. (4.37) by 𝐴, the second by 𝐵, 

the third by 𝐶, the fourth by 𝐷 and the last by ℎ𝐸 and adding all the five equations 

together, we get: 

𝐴𝑤(𝑥1) + 𝐵𝑤(𝑥2) + 𝐶𝑤(𝑥3) + 𝐷𝑤(𝑥4) + ℎ𝐸𝑤,𝑥(𝑥1) = (𝐴 + 𝐵 + 𝐶 +

𝐷) 𝑤(𝑥2) + (−𝐴 + 𝐶 + 2𝐷 + 𝐸)  ℎ𝑤,𝑥(𝑥2) + (𝐴 + 𝐶 + 4𝐷 −

2𝐸)  
ℎ2

2
 𝑤,𝑥𝑥(𝑥2) + (−𝐴 + 𝐶 + 8𝐷 + 3𝐸)  

ℎ3

6
 𝑤,𝑥𝑥𝑥(𝑥2) + (𝐴 + 𝐶 + 16𝐷 −

4𝐸)  
ℎ4

24
 𝑤,𝑥𝑥𝑥𝑥(𝑥2) + ⋯ (4.38) 

If the right hand side of Eq. (4.38) is the best approximation of 𝑤,𝑥𝑥𝑥𝑥(𝑥2), then 

the coefficients of 𝑤(𝑥2) , 𝑤,𝑥(𝑥2) , 𝑤,𝑥𝑥(𝑥2) , 𝑤,𝑥𝑥(𝑥2)  must be zero and the 

coefficient of 𝑤,𝑥𝑥𝑥𝑥(𝑥2) must be unit. Therefore, 
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[
 
 
 
 
1 1 1 1 0
−1 0 1 2 1
1 0 1 4 −2
−1 0 1 8 3
1 0 1 16 −4]

 
 
 
 

{
 
 

 
 
𝐴
𝐵
𝐶
𝐷
𝐸}
 
 

 
 

=
24

ℎ4

{
 
 

 
 
0
0
0
0
1}
 
 

 
 

          

(4.39) 

By solving Eq. (4.39): 

𝐴 = −
22

3ℎ4
 , 𝐵 =

12

ℎ4
 , 𝐶 = −

6

ℎ4
 , 𝐷 =

4

3ℎ4
  , 𝐸 = −

4

ℎ4
 . 

The fourth derivative approximation for 𝑤 at point 𝑥2 is now given as: 

 𝑤,𝑥𝑥𝑥𝑥(𝑥2) =
1

ℎ4
(−4ℎ 𝑤,𝑥 −

22

3
 𝑤(𝑥1) + 12 𝑤(𝑥2) − 6 𝑤(𝑥3) +

4

3
 𝑤(𝑥4))  

(4.40) 

For a fixed condition at point 𝑥1 , 𝑤(𝑥1) = 𝑤,𝑥(𝑥1) = 0  so that the fourth 

derivative at point 𝑥2 now becomes: 

  𝑤,𝑥𝑥𝑥𝑥(𝑥2) =
1

ℎ4
(12 𝑤(𝑥2) − 6 𝑤(𝑥3) +

4

3
 𝑤(𝑥4))         

(4.41) 

By using a similar procedure for a simply supported beam, the approximation 

gives: 

𝑤,𝑥𝑥𝑥𝑥(𝑥2) =
1

11ℎ4
(12ℎ2 𝑤,𝑥𝑥 − 24 𝑤(𝑥1) + 60 𝑤(𝑥2) − 48 𝑤(𝑥3) +

12 𝑤(𝑥4))        

 (4.42) 

As  𝑤(𝑥1) = 𝑤,𝑥𝑥(𝑥1) = 0 for simply supported end, Eq. (4.42) becomes: 

𝑤,𝑥𝑥𝑥𝑥(𝑥2) =
1

11ℎ4
(60 𝑤(𝑥2) − 48 𝑤(𝑥3) + 12 𝑤(𝑥4))   (4.43) 
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For a free end, fourth derivative at points 𝑥1 and 𝑥2 gives: 

𝑤,𝑥𝑥𝑥𝑥(𝑥1) =
1

7ℎ4
(12 𝑤(𝑥1) − 24 𝑤(𝑥2) + 12 𝑤(𝑥3))   (4.44a) 

𝑤,𝑥𝑥𝑥𝑥(𝑥2) =
1

11ℎ4
(−24𝑤(𝑥1) + 60 𝑤(𝑥2) − 48 𝑤(𝑥3) + 12 𝑤(𝑥4)) (4.44b) 

The approach is general and can be used in ODEs or PDEs with any type of 

boundary conditions. 

 

4.6 Solution of a system of partial differential equations using 

the finite difference method 

As noted in the previous sections, modelling of many physical systems leads to 

derivation of system of PDEs or higher order ODEs whose exact solutions are too 

complex to be obtained in closed form. As the finite difference scheme has been 

identified in this work, methods to obtain numerical solution of first order and 

second order systems are highlighted in this section. Since most higher order 

differential equations that occur in applications can be converted into first order or 

second order system, finite difference solutions of first order and second order 

system and specifically, implicit finite difference schemes which has been 

identified in this work are discussed in the sub-sections below. 

 

4.6.1 Implicit time integration for first-order linear systems (backward 

Euler) 

Given an example of a system represented by a parabolic PDE as: 

u̇ = 𝑐u,𝑥𝑥        (4.45) 
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where the dotted variable represents a derivative with respect to time and a 

subscripted variable denotes a derivative with respect to space. An approximation 

of Eq. (4.45) at time 𝑡𝑗+1 using backward difference formula for u̇ and centred 

difference formula for u,𝑥𝑥 gives: 

u𝑖,𝑗+1−u𝑖,𝑗

∆𝑡
=

𝑐

ℎ2
(u𝑖+1,𝑗+1 − 2 u𝑖,𝑗+1 + u𝑖−1,𝑗+1)    (4.46) 

where ∆𝑡 is the time step. 

Eq. (4.46) can be rewritten as: 

u𝑖,𝑗 = −�̅�u𝑖+1,𝑗+1 + (1 + 2�̅�)u𝑖,𝑗+1 − �̅�u𝑖−1,𝑗+1    (4.47) 

where �̅� =
𝑐∆𝑡

ℎ2
 

Using matrix notation, Eq. (4.47) is rewritten as: 

𝑩𝐮𝑗+1 = 𝐮𝑗 + �̅�𝐛𝑗+1       (4.48) 

where 𝐛𝑗+1 is the boundary condition vector at time 𝑡𝑗+1. 

 

Eq. (4.48) ensures that the solution variables at time 𝑡𝑗+1 is obtained using the 

previous solution and the predetermined boundary values at the current time. 
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4.6.2 Modified Euler method for the solution of first-order linear system 

An obvious shortcoming of the Euler method is that it makes the approximation 

based on information at the beginning of the time interval only. This problem is 

eliminated by the use of the so called improved Euler method otherwise known as 

modified Euler method. This method considers the function at the beginning and 

the end of each time step and take the average of the two. This is illustrated 

mathematically: 

Given  u̇ = 𝑓(𝑡, u)       (4.49) 

The formula for the modified Euler method is expressed as: 

𝐮𝑗+1 = 𝐮𝑗 +
∆𝑡

2
(𝒇(𝑡𝑗, 𝐮𝑗  ) + 𝒇(𝑡𝑗+1, 𝐮𝑗+1 ))    (4.50) 

By applying the formula (4.50) to Eq. (4.45), we get: 

𝐮𝑗+1 = 𝑩𝟏
−1(𝑩𝟐𝐮𝑗 + ℎ̅𝒃1)      (4.51) 

  

  

where  ℎ̅ =
𝑐∆𝑡

2ℎ2
  , 𝒃1 = �̅�𝑗 + �̅�𝑗+1 . 

�̅�𝑗+1 and �̅�𝑗 are the boundary conditions at time 𝑡𝑗+1 and 𝑡𝑗 respectively. 
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4.6.3 Newmark algorithm for time integration of second-order linear 

systems 

Given a second order ODE of the form: 

𝐌𝐮ẗ + 𝐂𝐮ṫ + 𝐊𝐮t = 𝐅t       (4.52) 

where 𝐌, 𝐂 and 𝐊 are the mass matrix, damping matrix and stiffness matrix. 

From Taylor’s series, we can obtain expansion for 𝐮t and �̇�t:  

𝐮t = 𝐮t−∆t + ∆𝑡�̇�t−∆t + 
∆𝑡𝟐

2
�̈�t−∆t + 

∆𝑡3

6
�⃛�t−∆t +⋯   (4.53) 

�̇�t = �̇�t−∆t + ∆𝑡�̈�t−∆t + 
∆𝑡𝟐

2
�⃛�t−∆t +⋯     (4.54) 

These equations can be truncated and expressed in the following form: 

𝐮t = 𝐮t−∆t + ∆𝑡�̇�t−∆t + 
∆𝑡𝟐

2
�̈�t−∆t +  𝛽∆𝑡

3�⃛�    (4.55) 

�̇�t = �̇�t−∆t + ∆𝑡�̈�t−∆t +  𝛾∆𝑡
𝟐�⃛�     (4.56) 

Assuming the acceleration is linear within the time step, then: 

�⃛� =
�̈�t−�̈�t−∆t

∆𝑡
        (4.57) 

By substituting Eq. (4.57) into Eqs. (4.55) and (4.56), we get: 

𝐮t = 𝐮t−∆t + ∆𝑡�̇�t−∆t + (
1

2
− 𝛽)∆𝑡𝟐�̈�t−∆t +  𝛽∆𝑡

2�̈�t   (4.58) 

�̇�t = �̇�t−∆t + (1 − 𝛾) ∆𝑡�̈�t−∆t +  𝛾∆𝑡�̈�t     (4.59) 

These are the standard Newmark approximation of displacement 𝐮t and velocity 

�̇�t. We can write from Eqs. (4.55) and (4.56): 

�̈�t = 𝑏1(𝐮t − 𝐮t−∆t) + 𝑏2�̇�t−∆t + 𝑏3�̈�t−∆t     (4.60) 
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�̇�t = 𝑏4(𝐮t − 𝐮t−∆t) + 𝑏5�̇�t−∆t + 𝑏6�̈�t−∆t     (4.61) 

where 𝑏1 to 𝑏6 are constants specified as: 

𝑏1 =
1

𝛽∆𝑡2
 , 𝑏2 =

1

𝛽∆𝑡
 , 𝑏3 = 𝛽 −

1

2
 ,   

𝑏4 = 𝛾∆𝑡𝑏1 , 𝑏5 = 1 − 𝛾∆𝑡𝑏2 , 𝑏6 = ∆𝑡(1 + 𝛾𝑏3 −  𝛾) . 

By substituting Eqs. (4.60) and (4.61) for �̈�t and �̇�t into Eq. (4.52), we get: 

(𝑏1𝐌+ 𝑏4𝐂 + 𝐊)⏟          
�̅�

𝐮t

= 𝐅t +𝐌(𝑏1𝐮t−∆t − 𝑏2�̇�t−∆t − 𝑏3�̈�t−∆t) +  𝐂(𝑏4𝐮t−∆t − 𝑏5�̇�t−∆t − 𝑏6�̈�t−∆t)⏟                                                
𝐅t̅

  

�̅�𝐮t = 𝐅t̅        (4.62) 

�̅� and 𝐅t̅ are the effective stiffness matrix and the effective load vector. 

The algorithm for the implementation of Newmark’s solution is shown in 

Algorithm 4.1. 

 

Algorithm 4.1 (Newmark) 

I. Initial calculation 

a. Form a static stiffness matrix 𝐊, mass matrix 𝐌, and damping matrix 𝐂 

b. Specify the integration parameters 𝛽 and 𝛾. 𝛾 ≥ 0.50  𝛽 ≥ 0.25(0.5 +

𝛾)2 

c. Calculate the integration constants 

 𝑏1 =
1

𝛽∆𝑡2
 ,  𝑏2 =

1

𝛽∆𝑡
 ,  𝑏3 = 𝛽 −

1

2
 ,  𝑏4 = 𝛾∆𝑡𝑏1 

𝑏5 = 1 − 𝛾∆𝑡𝑏2 ,  𝑏6 = ∆𝑡(1 + 𝛾𝑏3 −  𝛾) 

d. Form the effective stiffness matrix 
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�̅� = 𝑏1𝐌+ 𝑏4𝐂 + 𝐊 

e. Triangularize the effective stiffness matrix �̅� = 𝐋𝐃𝐋𝑇 

f. Specify initial conditions 𝐮0, �̇�0 and �̈�0 

II. Each time step 

a. Calculate the effective load vector 

�̅�t = 𝐅t +𝐌(𝑏1𝐮t−∆t − 𝑏2�̇�t−∆t − 𝑏3�̈�t−∆t)

+  𝐂(𝑏4𝐮t−∆t − 𝑏5�̇�t−∆t − 𝑏6�̈�t−∆t) 

b. Solve for node displacement vector 𝐮t at time 𝐭 from �̅�𝐮t = 𝐅t̅ 

𝐋𝐃𝐋𝑇𝐮t = �̅�t  forward and back substitution only 

𝐋𝑇𝐮t = {𝒚},  𝐃{𝒚} = {𝒛} 

𝐋{𝒛} = �̅�t obtain {𝒛} by forward substitution 

𝐃{𝒚} = {𝒛}  obtain {𝒚} by diagonal scaling 

𝐋𝑇𝐮t = {𝒚}  obtain 𝐮t by backward substitution 

c. Calculate node velocity and acceleration at time 𝐭 

�̈�t = 𝑏1(𝐮t − 𝐮t−∆t) + 𝑏2�̇�t−∆t + 𝑏3�̈�t−∆t  

�̇�t = 𝑏4(𝐮t − 𝐮t−∆t) + 𝑏5�̇�t−∆t + 𝑏6�̈�t−∆t  

d. Go to step II (a) with 𝑡 = 𝑡 + ∆t 

 

4.6.4 Stability of the Newmark method 

For a vanishing damping, Newmark’s method is conditionally stable if 

𝛾 ≥
1

2
 and 𝛽 ≤

1

2
 and ∆t ≤

1

𝜔𝑚𝑎𝑥√
𝛾

2
−𝛽

 

where 𝜔𝑚𝑎𝑥 is the maximum frequency in the structural system. Newmark’s is 

unconditionally stable if 
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2𝛽 ≥ 𝛾 ≥
1

2
 

However, if 𝛾 is greater than half, errors are introduced which are associated with 

numerical damping and period elongation. 

Other similar methods in the Newmark family include Hilber, Hughes and Taylor’s 

𝛼 method [86] and Wilson method [84, 85]. 

 

4.7 Introduction to model order reduction 

The formulation of higher order system of differential equations for modelling 

composite laminates has been established in Chapter 3. Due to restrictions in 

numerical algorithm and digital computers, solving a high order model is 

associated with high computational time and poses a risk of computational errors 

in the result, hence the need for Model Order Reduction (MOR).  MOR is a mature 

field when applied to linear systems, and several excellent books on the subject are 

available [52–55]. Many techniques are available for linear order reduction, 

including Krylov subspace projection based on orthogonal Arnoldi [56–57] or 

biorthogonal Lanczos [58] processes, principal components analysis and balanced 

truncation [59, 67-69], Hankel norm approximation [60], and singular value 

decomposition (SVD) based methods, which include Proper Orthogonal 

Decomposition (POD) in its many variants [61]. Many extensions to nonlinear 

system are also available, see e.g. [62–66], which combine system projection or 

truncation with suitable approximations of the nonlinear terms. While MOR has 

been widely applied in the fields of electric circuit and interconnect modelling [90–

95] and Micro-Electro-Mechanical System (MEMS) [87–89], applications in 

structural models have received much less attention [102 – 103]. 
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Choosing a particular MOR technique that is suitable for a particular system 

depends on several factors, such as type of system (linear or nonlinear), number 

and structure (order) of equations to be solved for and, in case of nonlinear systems, 

the degree of nonlinearity. In the case of PV module, derived formulations for 

thermal and mechanical system may either lead to first-order system, second-order 

system or coupled second-order system of differential equations. The general state-

space approach is based on first order system and the procedure can be extended to 

reduction of second order or coupled second order systems but due to 

computational restraints and the need to preserve the system structure, second order 

based model order reduction schemes has been proposed in [70–72]. A brief review 

of the reduction methods based on first order and second order systems is presented 

in the sequel. 

 

4.8 Model order reduction of first order systems 

The state-space description of a system using the classical MOR is expressed as: 

{
�̇�(𝑡) = 𝑨𝒙(𝑡) + 𝑩𝑖(𝑡),
𝒚(𝑡) = 𝑪𝒙(𝑡) + 𝑫𝑖(𝑡),

       (4.63) 

with 𝑨 ∈ ℝ𝑁×𝑁 ,  𝑩 ∈ ℝ𝑁×𝑃 ,  𝑪 ∈ ℝ𝑃×𝑁  and 𝑫 ∈ ℝ𝑃×𝑃 , and obtain a reduced 

order model  

{
�̇�𝑞(𝑡) = 𝑨𝑞𝒙𝑞(𝑡) + 𝑩𝑞𝑖(𝑡),

𝒚(𝑡) = 𝑪𝑞𝒙𝑞(𝑡) + 𝑫𝑞𝑖(𝑡),
      (4.64) 

with 𝑨𝑞 ∈ ℝ
𝑞×𝑞 ,  𝑩𝑞 ∈ ℝ

𝑞×𝑃 ,  𝑪𝑞 ∈ ℝ
𝑃×𝑞  and 𝑫𝑞 ∈ ℝ

𝑃×𝑃 , subject to the 

fundamental conditions: 

- The order of the reduced system must be less than the original system i.e.,  

𝑞 ≪ 𝑁; 
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- The transfer matrix of the reduced system 𝑯𝑞(𝑠) must be close in some 

sense to the original transfer matrix 𝑯(𝑠) i.e., 𝑯𝑞(𝑠) ≈ 𝑯(𝑠). 

It is noted from Eqs. (4.63) and (4.64) that 𝑫 = 𝑫𝑞, so this term does not affect the 

system complexity. Therefore, this term is dropped from the system equations by 

setting 𝑫 = 𝑫𝑞 = 𝟎 . The transfer matrices for system (4.63) and (4.64) are 

expressed as: 

{
𝑯(𝑠) = 𝑪(𝑠𝕀 − 𝑨)−1𝑩         

𝑯𝑞(𝑠) = 𝑪𝑞(𝑠𝕀 − 𝑨𝑞)
−1
𝑩𝑞

     (4.65) 

The state-space representation in Eq. (4.64) form the basis on which all the order 

reduction schemes are derived. In the sequel, some order reduction schemes for 

first order systems are highlighted. It is noted here that the techniques mentioned 

here are by no means exhaustive but represent fundamental approaches to reduce 

linear systems. 

 

4.8.1 Moment matching 

The moments or block moments [73, 74] of 𝑯(𝑠)  are defined as the matrix 

coefficients 𝑴𝑘 ∈ ℝ
𝑃×𝑃 of the Taylor expansion 𝑯(𝑠) around 𝑠 = 0: 

𝑯(𝑠) = 𝑴0 +𝑴1𝑠 +𝑴2𝑠
2 +⋯     (4.65) 

where the coefficients are related to the derivatives of the transfer matrix at 𝑠 = 0, 

𝑴𝑘 =
1

𝑘!

𝑑𝒌𝑯(𝑠)

𝑑𝑠𝑘
|
𝑠=0

       (4.67) 

Based on Laplace transform property, the time-domain representation of the 

moment holds, 
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𝑴𝑘 =
(−1)𝑘

𝑘!
∫ 𝑡𝑘
∞

0−
𝒉(𝑡)𝑑𝑡      (4.68) 

where 𝒉(𝑡) = ℒ−1{𝑯(𝑠)} 

An efficient way to obtain the approximation of the local behaviour of 𝑯(𝑠) around 

𝑠 = 0 is to retain 𝑞 terms in the polynomial [75]  

𝑯(𝑠) ≈ ∑ 𝑴𝑘𝑠
𝑘𝑞−1

𝑘=0        (4.69) 

By constraining the first 𝑞 moments of 𝑯𝑞(𝑠) to be identical to the corresponding 

moments of 𝑯(𝑠), a reduced model can be obtained. By rewriting Eq. (4.64) as: 

{
𝒙(𝑡) = 𝚲�̇�(𝑡) + 𝑹𝑖(𝑡),
𝒚(𝑡) = 𝑪𝒙(𝑡),                

       (4.70) 

with 𝑫 = 𝟎, 𝚲 = 𝑨−1 and 𝑹 = −𝑨−1𝑩, it is obvious that 

𝑯(𝑠) = 𝑪(𝕀 − 𝑠𝚲)−1𝑹       (4.71) 

The Taylor expansion of Eq. (4.71) at 𝑠 = 0 gives: 

𝑯(𝑠) = 𝑪(∑ 𝑠𝑘∞
𝑘=0 𝚲𝑘)𝑹 = ∑ [𝑪𝚲𝑘𝑹]𝑠𝑘∞

𝑘=0     (4.72) 

From Eqs. (4.66) and (4.72), it can be seen that the moment of Eq. (4.68) is: 

 𝑴𝑘 = 𝑪𝚲
𝑘𝑹 = 𝑪𝑵𝑘       (4.73) 

with 𝑵𝑘 = 𝚲
𝑘𝑹 = 𝚲𝑵𝑘−1. 

Equation (4.73), with the expression for 𝑵𝑘  can be exploited to calculate the 

moments iteratively. The reduced order approximation 𝑯𝑞(𝑠) can be computed by 

matching moments described by Eq. (4.73) to some prescribed order 𝑞 and this can 

achieved by applying the so-called Pade approximation of 𝑯(𝑠) or the method 

Asymptotic Waveform Evaluation (AWE) described in [75]. 
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4.8.2 Complex frequency hopping (CPH) 

Instead of performing Taylor expansion at only 𝑠 = 0 and match 𝑞 moments at this 

frequency as for moment matching, multiple frequencies 𝑠𝑣 called “hops” can be 

selected, and match small number 𝑞𝑣  of moments 𝑴𝑣,𝑘  at each of these 

frequencies. This is called complex frequency hopping. This provides more 

accuracy control which is distributed over the frequency band of interest. Moments 

evaluation at arbitrary frequencies 𝑠 = 𝑠𝑣 follows from the approach for moment 

matching at a single frequency. By defining 

𝚲𝑣 = (𝑨 − 𝑠𝑣𝕀)
−1 and 𝑹𝑣 = −(𝑨 − 𝑠𝑣𝕀)

−1𝑩 

the transfer function is derived from Eq. (4.65), as: 

  𝑯(𝑠) = 𝑪(𝑠𝕀 − 𝑨)−1𝑩  

= 𝑪[(𝑠 − 𝑠𝑣)𝕀 − (𝑨 − 𝑠𝑣𝕀)]
−1𝑩 

= 𝑪[𝚲𝑣
−1((𝑠 − 𝑠𝑣)𝚲𝑣 − 𝕀)]

−1
𝑩

= 𝑪[𝕀 − (𝑠 − 𝑠𝑣)𝚲𝑣]
−1𝑹𝑣            

= 𝑴𝑣,0 +𝑴𝑣,1(𝑠 − 𝑠𝑣) +𝑴𝑣,2(𝑠 − 𝑠𝑣)
2 +⋯ 

(4.74) 

whose moments at 𝑠 = 𝑠𝑣 are expressed as: 

𝑴𝑣,𝑘 =
1

𝑘!

𝑑𝒌𝑯(𝑠)

𝑑𝑠𝑘
|
𝑠=𝑠𝑣

= 𝑪𝚲𝑣
𝑘𝑹𝑣     (4.75) 

With Eq. (4.75), moment matching at any arbitrary frequency point can be achieved 

by applying the AWE procedure in [75]. 
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4.8.3 Projection method by Krylov subspaces 

Methods of explicit moment matching and CPH are characterised by major 

difficulties in the calculation of the transfer function moments and limited to low 

orders 𝑞  which makes this method to be unreliable. An alternative and more 

reliable approach is by projection of the system equations onto a low-dimensional 

(Krylov) subspaces generated by appropriate basis vectors as illustrated in Fig. 1.7. 

The basic steps in the method of projection are [75]: 

(a) Introduce a change of coordinates through a low-dimensional subspace 

𝑽𝑞 ∈ ℝ
𝑁×𝑞  spanned by 𝑞 ≪ 𝑁  linearly independent vectors. 

Mathematically,  

𝒙 = 𝑽𝑞𝒙𝑞 =∑𝒗𝑘𝑥𝑘

𝑞

𝑘=1

 

(b) Projection of the state-space equations by using another full column rank 

matrix 𝑾𝑞 ∈ ℝ
𝑁×𝑞 that is biorthogonal to 𝑽𝑞 such that 𝑾𝑞

𝑇𝑽𝑞 = 𝕀. 

By premultiplying first part of Eq. (4.63) by 𝑾𝑞
𝑇, we get: 

{
�̇�𝑞(𝑡) = 𝑾𝑞

𝑇𝑨𝑽𝑞𝒙(𝑡) +𝑾𝑞
𝑇𝑩𝑖(𝑡),

𝒚(𝑡) = 𝑪𝑽𝑞𝒙𝑞(𝑡) + 𝑫𝑖(𝑡),                  
     (4.76) 

Equation (4.76) can be compared to Eq. (4.64) by defining the reduced order state 

space matrices as: 

𝑨𝑞 = 𝑾𝑞
𝑇𝑨𝑽𝑞 , 𝑩𝑞 = 𝑾𝑞

𝑇𝑩 ,  𝑪𝑞 = 𝑪𝑽𝑞 , 𝑫𝑞 = 𝑫 . 

To match the moments of the reduced order system to the original system, the 

projection matrices 𝑽𝑞, 𝑾𝑞 are constructed with basis of order 𝑞 Krylov subspaces 

defined by 
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𝒦𝑞(𝑨,𝑩) = span{𝑩,𝑨𝑩,𝑨
2𝑩,… , 𝑨𝑞−1𝑩 }    (4.77) 

A particular case where 𝑾𝑞 = 𝑽𝑞  , with 𝑽𝑞
𝑇𝑽𝑞 = 𝕀  is called the Galerkin 

projection otherwise known as one-sided Krylov method [70]. A numerically stable 

way to compute an orthogonal matrix whose columns form a basis of the Krylov 

subspace is by using the Arnoldi algorithm. The purpose of the Arnoldi process it 

to compute a block matrix with orthogonal columns at the time in an iteration loop 

and orthogonalize it with the already computed block matrices. The basic block 

Arnoldi algorithm is presented in Algorithm 4.2: 

 

Algorithm 4.2 (Block Arnoldi scheme) 

Input: matrix 𝚲 and vector 𝑹, dimension of Krylov subspace 𝑞1 

Compute QR factorization 𝑹 = 𝑸1𝑿 

For 𝑘 = 1, 2, … . . , 𝑞1 − 1 do 

𝑼 = 𝚲𝑸𝑘; 

for 𝑗 = 1,… , 𝑘 do 

 𝑯𝑗,𝑘 = 𝑸𝑗
𝑇𝑼 

 𝑼 ← 𝑼−𝑯𝑗,𝑘𝑸𝑗 

end for 

compute QR factorization 𝑼 = 𝑸𝑘+1𝑯𝑘+1,𝑘 

end for 

return 𝑽𝑞 = (𝑸1, … . . , 𝑸𝑞1) 

The output of this algorithm guarantees that: 
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im(𝑽𝑞) = 𝒦𝑞(𝑨,𝑩) with 𝑽𝑞
𝑇𝑽𝑞 = 𝕀 

For improved accuracy, numerical stability and preserve passivity of the system, 

other methods which are based on Krylov subspace projection are available as 

discussed in [75]. Examples are Passive Reduced Order Interconnect 

Macromodeling Algorithm (PRIMA), Multipoint moment matching and implicit 

moment matching. Although the Krylov method provides means to reduce large-

scale systems, some difficulties may arise when the number of input/output ports 

𝑃 becomes very large [75]. 

 

4.8.4 Proper orthogonal decomposition (POD) 

Proper orthogonal decomposition (POD) builds on the fact that a good candidate 

for a projection matrix should provide an accurate representation of the subspace 

where the system states evolve during normal operation. In this regard, a full 

simulation of the system can be performed using some training input function 𝑖(𝑡) 

and computes a set of states 𝒙𝑘 = 𝒙(𝑡𝑘) at some time points 𝑡𝑘, for 𝑘 = 1,… ,𝑚. 

The computed vectors at the time points represent snapshots of the system dynamic 

states. By collecting these vectors in a matrix,  

𝑿𝑚 = (𝒙1, … , 𝒙𝑘)       (4.78) 

a good projection matrix for reduction of the system states can be built. Matrix 𝑿𝐾 

can be orthogonalized by using a singular value decomposition (SVD): 

𝑿𝑚 ≈ 𝑼𝑞𝚺𝑞𝑽𝑞
𝑇       (4.79) 

where only 𝑞 ≤ 𝑚  singular values are retained based on a choice of suitable 

threshold. The span of the orthogonal columns of 𝑼𝑞 approximately characterised 
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the image of 𝑿𝑚 . Thus, 𝑼𝑞  serves as the projection matrix for the state-space 

system [75]. 

 

4.9 Model order reduction of second-order systems 

The second order model considered here is given in the form: 

𝐌�̈� + 𝐃�̇� + 𝐊𝐳 = 𝑮𝑖(𝑡)       (4.80a) 

𝒚(𝑡) = 𝑳𝒛(𝑡)        (4.80b) 

with  𝑴,𝑫,𝑲 ∈ ℝN×𝑁 𝑩 ∈ ℝN×𝑛 𝑳 ∈ ℝ𝑛×𝑁  𝒛 ∈ ℝN×1 𝑛 ≪ 𝑁 

The procedure described in Sec. 4.7 can also be extended for reduction of second-

order systems by converting the system (4.80) to first-order system as described in 

Sec. 4.2 and then perform an order reduction as for a regular state-space system. 

However, two major problems are associated with this approach which are (i) 

inability to preserve the second-order structure of the system and (ii) high 

computational cost associated with solving system equations with increased order 

i.e.,  2 × N system of first order equations. The second-order Krylov method which 

was first proposed in [76] and further investigated in [77] provides a good means 

to eliminate these problems. Equivalently, model (4.80) can rewritten as: 

𝐄�̇� = 𝑨𝒙 + �̅�𝑖(𝑡)       (4.81a) 

𝒚(𝑡) = �̅�𝒙(𝑡)        (4.81b) 

where  

 𝐄 = [
𝕀 𝟎
𝟎 𝑴

], 𝑨 = [
𝟎 𝕀
−𝑲 −𝑫

],   �̅� = [
𝟎
𝑮
],   𝒙 = [

𝒛
�̇�
],    �̅� = [𝑳 𝟎] . 

The 𝑖th moment around 𝑠 = 0 for the state-space system Eq. (4.81) is defined as; 
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𝒎𝑖 = �̅�(𝑨
−1𝑬)𝒊𝑨−1�̅�,  𝑖 = 0, 1, …     (4.82) 

By substituting for the matrices 𝑨, 𝑬, �̅� and �̅� into Eq. (4.82), we get: 

𝒎𝑖 = [𝑳 𝟎] ([
𝟎 𝕀
−𝑲 −𝑫

]
−1

[
𝕀 𝟎
𝟎 𝑴

])
𝒊

[
𝟎 𝕀
−𝑲 −𝑫

]
−1

[
𝟎
𝑮
]  (4.83a) 

𝒎𝑖 = [𝑳 𝟎] [
−𝑲−1𝑫 −𝑲−1𝑴
𝕀 𝟎

]
𝒊

[−𝑲
−1𝑮
𝟎

]    (4.83b) 

The second-order Krylov subspace provides means to calculate these moments by 

recursive procedure. A second-order Krylov subspace is defined by [70–72]: 

𝒦𝑞1(𝑨1, 𝑨2, �̅�) = span {𝐩0,   𝐩1, …… , 𝐩𝑞1−1,}    (4.84) 

where  

{
𝐩0 = 𝒃1,       𝐩1 = 𝑨1�̅�
𝐩𝑖 = 𝑨1𝐩𝑖−1 + 𝑨2𝐩𝑖−2

       (4.85) 

 𝑨1 = −𝑲
−1𝑫 , 𝑨2 = −𝑲

−1𝑴 , �̅� = − 𝑲−1𝑮 . 

With respect Eq. (4.84), the so-called input and output second-order Krylov 

subspaces for system (4.80) are, respectively, 𝒦𝑞1(−𝑲
−1𝑫,−𝑴−1𝑫,−𝑲−1𝑮) and 

𝒦𝑞1(−𝑲
−𝑇𝑫𝑇 , −𝑲−𝑇𝑴𝑇 , −𝑲−𝑇𝑳). These Krylov subspaces can be used to find 

the projection matrices 𝑽𝑟 , 𝑾𝑟  that can be applied directly to the second-order 

system (4.80). A change of coordinate may be considered for the original system 

as: 

𝒛 = 𝑽𝑟𝒛𝑟 , 𝑽𝑟 ∈ ℝ
N×𝑞1 , 𝒛𝑟 ∈ ℝ

𝑞1×1 , 𝑞1 ≪ 𝑁 .    (4.86) 

By substituting Eq. (4.86) into (4.80) and then multiply the state equation by the 

transpose of a projection matrix 𝑾𝑟, a reduced order model 𝑞 = 2𝑞1 is obtained 

as: 
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𝑴𝑟�̈�𝑟 +𝑫𝑟�̇�𝑟 +𝑲𝑟𝒛𝑟 = 𝑮𝑟𝑖(𝑡)      (4.87a) 

𝒚(𝑡) = 𝑳𝑟𝒛𝑟(𝑡)        (4.87b) 

where  

𝑴𝑟 = 𝑾𝒓
𝑇(𝑴𝑽𝑟) , 𝑫𝑟 = 𝑾𝑟

𝑇(𝑫𝑽𝑟) , 𝑲𝑟 = 𝑾𝑟
𝑇(𝑲𝑽𝑟) ,   

𝑮𝑟 = 𝑾𝑟
𝑇𝑮 , 𝑳𝑟 = 𝑳𝑽𝑟 . 

According to the theorems stated in [70]: 

Theorem 1: If the matrix 𝑽𝑟 is the basis of the input second-order Krylov subspace 

𝒦𝑞1(−𝑲
−1𝑫,−𝑴−1𝑫,−𝑲−1𝑮) with rank 𝑞1 and the matrix 𝑾𝒓  is chosen such 

that matrix 𝑾𝑟
𝑇𝑲𝑽𝑟 is non-singular, then the first 𝑞1 moments of the original and 

the reduced-order models match. 

As remarked in Sec. 4.7, a particular case where 𝑾𝑟 = 𝑽𝑟 , with 𝑽𝑟
𝑇𝑽𝑟 = 𝕀  is 

called one-sided Krylov method. To generalize the application of theorem 1 to two-

sided methods, theorem 2 is considered thus [76]: 

Theorem 2: If the matrix 𝑽𝑟 and 𝑾𝑟 are the bases of the input and output second-

order Krylov subspaces 𝒦𝑞1(−𝑲
−1𝑫,−𝑴−1𝑫,−𝑲−1𝑮)  and 

𝒦𝑞1(−𝑲
−𝑇𝑫𝑇 , −𝑲−𝑇𝑴𝑇 , −𝑲−𝑇𝑮), both with rank 𝑞1, then the first 2𝑞1 of the 

original moment and reduced-order system match.  

Numerical implementation of the second-order reduction schemes is performed by 

extending the Arnoldi algorithm 1 to find the basis for the second-order Krylov 

subspaces. Algorithm 4.2 [78] given below can be used to find an orthonormal 

basis 𝑽𝑟 such that  𝑽𝑟
𝑇𝑽𝑟 = 𝕀 and the columns of the matrix 𝑽𝑟 are the basis for 

the given subspaces. 
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Algorithm 4.3 (Second-order Arnoldi algorithm) 

Input: 𝑨1 = −𝑲
−1𝑫, 𝑨2 = −𝑲

−1𝑴, �̅� = − 𝑲−1𝑮 

0. (a) Delete all linearly dependent starting vectors to get 𝑚1  linearly 

dependent vectors. 

(b) Set 𝒗1 =
𝒈1 

‖𝒈1‖2
 

where 𝒈1  is the starting vector after deleting the dependent starting 

vectors and set 𝐈1 = 𝟎 for 𝐈1 ∈ ℝ
N×1 

1. For 𝑖 = 2, 3, ……, do 

(a) Calculate the next vector: If 𝑖 ≤ 𝑚1  then set �̅�𝑖  as the 𝑖 th starting 

vector and �̅�𝑖 = 𝟎. Otherwise, set  

�̅�𝑖 = 𝑨1𝒗𝑖−𝑚1
+ 𝑨2𝑰𝑖−𝑚1

,  �̅�𝑖 = 𝒗𝑖−𝑚1
 

(b) Orthogonalization: For 𝑗 = 1 to 𝑖 − 1 do, 

h = �̅�𝑖
𝑇𝒗𝑗, �̅�𝑖 ← �̅�𝑖 − h𝒗𝑗,  �̅�𝑖 ← �̅�𝑖 − h𝑰𝑗 

(c) Deflation: If �̅�𝑖 ≠ 𝟎 then go to (1d) 

Elseif  �̅�𝑖 ≠ 𝟎 then 𝒗𝑖 = 𝟎 and go to (1e) 

Else, 𝑚1 = 𝑚1 − 1 and go to (1a) but go to step (2) if 𝑚1 = 0. 

(d) Normalization:   𝒗𝑖 =
�̅�𝑖 

‖�̅�𝑖‖2
 and 𝑰𝑖 =

�̅�𝑖 

‖�̅�𝑖‖2
 

(e) Increase 𝑖 and go to step (1a). 

Return: 𝑽𝑟 = (𝒗1, … . . , 𝒗𝑠) 

2. Delete the zero columns of the matrix 𝑽𝑟  produced by the deflation 

process. 

In practical implementation, it is remarked in step (1c) that the vectors is not 

compared with zero but with a positive small number 𝜖. Therefore, in step (1c)  

�̅�𝑖 = 𝟎  and �̅�𝑖 = 𝟎  is substituted with ‖�̅�𝑖‖2 < 𝜖  and ‖�̅�𝑖‖2 < 𝜖 . Similar 
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procedure can be used to find the basis of the output Krylov subspace 

𝒦𝑞1(−𝑲
−𝑇𝑫𝑇 , −𝑲−𝑇𝑴𝑇 , −𝑲−𝑇𝑳) . With the computation of 𝑽𝑟  and 𝑾𝑟 , the 

system matrices of the reduced-order model 𝑴𝑟, 𝑫𝑟, 𝑲𝑟 and 𝑮𝑟 can be computed. 

By solving Eq. (4.87a), the reduced states are determined and then the 

approximation of the output of the original states can be obtained by using Eq. 

(4.87b).   
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CHAPTER 5 

ADVANCED SHEAR-LAG MODELS FOR 

COUPLED THERMO-VISCO-ELASTIC 

MODELLING OF PHOTOVOLTAIC 

LAMINATES 

5.1 Introduction 

In Chapter 3, an overview of general theory of isotropic linear thermoelasticity was 

presented and a review of the governing equations for linear thermoelasticity 

outlined. Considering that a photovoltaic laminate is composed of layers of Glass, 

EVA, Silicon and Backsheet with different thermal, electrical and mechanical 

properties, the mechanical response of the laminate during lamination would be 

reasonably estimated using coupled thermoelastic relations. Reference solution for 

coupled thermoelastic relations for photovoltaic module using a classical approach 

is presented in this chapter. This is followed by using thermo-mechanical 

derivations in Chapter 3 subject to relaxed Kirchhoff’s theory to obtain the 

governing thermo-mechanical relations for photovoltaic module during lamination 

by assuming a zero thickness for the EVA layer and substitution of a shear-lag 

interface with time-temperature dependent behaviour estimated based on the 

viscoelastic models highlighted in Chapter 3. A semi-analytic approach is then used 
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to obtain the solutions of the resulting thermo-mechanical equations by first 

assuming a spatially uniform temperature within the laminate and then using a 

more realistic non-uniform temperature distributions to accurately assess the 

amount of the residual compressive stresses raised in the Silicon cells after 

lamination [97]. The procedure described in this chapter is first derived for a 2D 

geometry with a single solar cell and since a typical photovoltaic module contains 

more than one Silicon cell in which the residual thermoelastic stresses may vary 

from one position to the other, an extension of the current formulation is provided 

for 3D geometry containing four Silicon cells so that a comprehensive analysis of 

induced thermoelastic stresses during lamination can be performed. 

 

5.2 Thermo-elastic stress analysis of a laminate with fully 

bonded interface 

This formulation is based on a stack of photovoltaic laminate which layers are 

composed of glass, EVA, Silicon, EVA and Backsheet. All the interfaces between 

the layers are considered here as fully bonded. The cross-section of the PV is shown 

in Fig. 5.1. The stack is heated to a high temperature of 150 0C to allow bonding of 

the various layers and then cooled down to room temperature of 25 0C. Thus, the 5 

layer module is subjected to a differential thermal load of -125 0C.  

 

Figure 5.1: Cross-section of the PV module used for the stress analysis with 

perfectly bonded interfaces. 
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During lamination, the entire module is assumed to be at uniform temperature. 

Table 5.1 shows the material properties of the layers composing the module.  

 

Table 5.1. Material properties of the layers composing the laminate. 

 Glass layer EVA layer Silicon 

layer 

Backsheet 

Young’s Modulus 

(MPa) 

73 × 103 Viscoelastic 130 × 103 2.83 × 103 

Coefficient of 

thermal expansion 

(1/o C) 

8 × 10−6 2.7 × 10−4 2.49

× 10−6 

5.04

× 10−5 

Poisson’s ratio 0.23 0.35 0.28 0.40 

 

Based on the Euler-Bernoulli’s hypothesis of conservation of plane cross-sections, 

the longitudinal strain at an arbitrary position 𝑥2 is given by [96]: 

휀𝑥2,𝑖 = 𝛼𝑖∆𝑇𝑖 +
𝜎𝑥2,𝑖

𝐸𝑖
= 휀0 + Υ𝑧   for 𝑖 = 1, 2, . . ,5   (5.1) 

where 휀0  and Υ  represent, respectively, the longitudinal strain and the beam 

curvature at 𝑥2 = 0. In Eq. (5.1), 𝐸𝑖 , 𝛼𝑖  and ∆𝑇𝑖   are, respectively, the Young’s 

modulus, coefficient of thermal expansion and change in temperature of a generic 

layer. 

Eq. (5.1) allows the computation of the stresses 𝜎𝑥2  at an arbitrary position along 

z: 

𝜎𝑥2,𝑖 = −𝐸𝑖𝛼𝑖∆𝑇𝑖 + 𝐸𝑖휀0 + 𝐸𝑖Υ𝑧     (5.2) 

and the unknowns 휀0  and Υ  can be determined by imposing the conditions of 

vanishing axial force and bending moment:  

∑ ∫ 𝜎𝑥2,𝑖
𝑧𝑖
(2)

𝑧𝑖
(1) 𝜔𝑛

𝑖=1 𝑑𝑧 = 0               (5.3a) 
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∑ ∫ 𝜎𝑥2,𝑖
𝑧𝑖
(2)

𝑧𝑖
(1) 𝜔𝑛

𝑖=1 𝑧𝑑𝑧 = 0                    (5.3b) 

Where 𝑧𝑖
(1) and 𝑧𝑖

(2) are, respectively, the upper and lower interfaces of the 𝑖th 

layer, measured from the 𝑥2 − 𝑧 plane, with thickness ℎ𝑖 = 𝑧𝑖
(2) − 𝑧𝑖

(1), while 𝜔 

denotes the out of plane thickness. By introducing Eq. (5.2) into (5.3), we obtain a 

set of equations in matrix form: 

[
𝑀11 𝑀12
𝑀21 𝑀22

] {
휀0
Υ
} = {

𝑉1
𝑉2
}                 (5.4) 

where the coefficients 𝑀11, 𝑀12, 𝑀21, 𝑀22, 𝑉1 and 𝑉2 are given by: 

𝑀11 = ∑ ∫ 𝐸𝑖
𝑧𝑖
(2)

𝑧𝑖
(1)

𝑛
𝑖=1 𝑑𝑧,                    (5.5a) 

𝑀12 = 𝑀21 = ∑ ∫ 𝐸𝑖
𝑧𝑖
(2)

𝑧𝑖
(1)

𝑛
𝑖=1 𝑧𝑑𝑧,                   (5.5b) 

𝑀22 = ∑ ∫ 𝐸𝑖
𝑧𝑖
(2)

𝑧𝑖
(1)

𝑛
𝑖=1 𝑧2𝑑𝑧,                               (5.5c) 

𝑉1 = ∑ ∫ 𝐸𝑖𝛼𝑖∆𝑇𝑖
𝑧𝑖
(2)

𝑧𝑖
(1)

𝑛
𝑖=1 𝑑𝑧,              

(5.5d) 

𝑉2 = ∑ ∫ 𝐸𝑖𝛼𝑖∆𝑇𝑖
𝑧𝑖
(2)

𝑧𝑖
(1)

𝑛
𝑖=1 𝑧𝑑𝑧                      

(5.5e) 

Having computed 휀0 and Υ, stresses 𝜎𝑥2,𝑖 and strains 휀𝑥2,𝑖 can be determined at any 

point within the layers of the module. 

 

 

  



87 
 

5.3 2D Coupled thermomechanical shear-lag formulation  

In this section, a coupled shear-lag model is proposed to estimate residual thermo-

mechanical stresses in the module after lamination [97]. In this alternative 

structural model, relative displacements are admitted from one layer to the next, as 

the EVA layer is modelled as an adhesive with zero thickness (see Fig. 5.2). As 

compared to the simplified shear-lag theory proposed in [96], which does not 

account for the effect of normal peeling tractions in the shear-lag formulation and 

satisfies the rotational equilibrium only in an approximate way, the present 

formulation accounts for both peeling and shearing tractions. 

 

Figure 5.2: PV module cross-section for the shear-lag model. 

For accurate estimation of the non-uniform temperature field during lamination, a 

formulation for the thermal system is first derived and using the thermal coupling, 

the solution for the thermal system is used as an input to obtain the mechanical 

response of the PV module. 

 

5.3.1 Heat conduction problem 

A model problem consisting of a Silicon cell embedded in a stack composed of 

glass, EVA and backsheet is considered as shown in Fig. 5.3. For an accurate heat 

conduction simulation of the lamination process and its subsequent stages, we 

consider a 3D heat equation of the form: 
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Figure 5.3: module geometry for the thermal analysis. 

𝐶
𝜕𝑇

𝜕𝑡
= 𝜆𝑥

𝜕2𝑇

𝜕𝑥1
2 + 𝜆𝑦

𝜕2𝑇

𝜕𝑥2
2 + 𝜆𝑧

𝜕2𝑇

𝜕𝑧2
+𝐻     (5.6) 

where 𝑇 (𝑥1, 𝑥2, 𝑧, 𝑡)  represents the unknown space- and time-dependent 

temperature profile; 𝐶 (𝑥1, 𝑥2, 𝑧)  is an equivalent volumetric heat capacity 

(J/m3K), which is equal to an equivalent mass density multiplied by the equivalent 

specific heat capacity (C =𝜌 × 𝑐𝑝), taking into account the composite structure of 

the laminate. The function 𝐻 (𝑥1, 𝑥2, 𝑧, 𝑡) represents a heat source and, since there 

is no heat source in this problem, the term 𝐻 can be dropped from Eq. (5.6). The 

coefficients 𝜆𝑥1(𝑥1, 𝑥2, 𝑧) ,  𝜆𝑥2(𝑥1, 𝑥2, 𝑧)  and 𝜆𝑧(𝑥1, 𝑥2, 𝑧)  are the thermal 

conductivities in the 𝑥1, 𝑥2 and z directions, respectively.  According to Fourier 

law, the heat flows in the 𝑥1, 𝑥2 and z direction can be related to the temperature 

gradients as follows: 

�̅�𝑧 = −𝜆𝑧
𝜕𝑇

𝜕𝑧
        (5.7a) 

�̅�𝑥 = −𝜆𝑥1
𝜕𝑇

𝜕𝑥1
        (5.7b) 

 �̅�𝑦 = −𝜆𝑥2
𝜕𝑇

𝜕𝑥2
        (5.7c) 

Substituting (5.7) into (5.6), we have: 
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𝐶
𝜕𝑇

𝜕𝑡
= −

𝜕𝑞𝑥1
𝜕𝑥1

−
𝜕𝑞𝑥2
𝜕𝑥2

−
𝜕𝑞𝑧

𝜕𝑧
      (5.8) 

Using now a finite difference (FD) discretization scheme defined by grid spacing 

∆𝑥𝑖 , ∆𝑦𝑗  and ∆𝑧𝑘  in the 𝑥1-, 𝑥2- and 𝑧-directions, respectively, with associated 

discretization indices 𝑖  for 1 ≤ 𝑖 ≤ 𝑙 , 𝑗  for 1 ≤ 𝑗 ≤ 𝑠  and 𝑘  for 1 ≤ 𝑘 ≤ 𝑚  (see 

Fig. 5.4), we can rephrase (5.8) as [16, 81]:  

𝐶𝑖,𝑗,𝑘
𝑑𝑇𝑖,𝑗,𝑘

𝑑𝑡
=
𝑞
𝑖−
1
2
,𝑗,𝑘
−𝑞

𝑖+
1
2
,𝑗,𝑘

∆𝑥1𝑖
+
𝑞
𝑖,𝑗−

1
2
,𝑘
−𝑞

𝑖,𝑗+
1
2
,𝑘

∆𝑥2𝑗
+
𝑞
𝑖,𝑗,𝑘−

1
2
−𝑞

𝑖,𝑗,𝑘+
1
2

∆𝑧𝑘
  (5.9) 

 

 

Figure 5.4: Finite difference discretization, reference system and grid spacing for a 

unit cell. 

Multiplying Eq. (5.9) by the volume, 𝑉𝑖,𝑗,𝑘 of each cell in the FD discretization 

leads to:  

𝐶𝑖,𝑗,𝑘𝑉𝑖,𝑗,𝑘
𝜕𝑇𝑖,𝑗,𝑘

𝜕𝑡
= �̅�

𝑖−
1

2
,𝑗,𝑘
− �̅�

𝑖+
1

2
,𝑗,𝑘
+ �̅�

𝑖,𝑗−
1

2
,𝑘
− �̅�

𝑖,𝑗+
1

2
,𝑘
+ �̅�

𝑖,𝑗,𝑘−
1

2

− �̅�
𝑖,𝑗,𝑘+

1

2

 

                (5.10) 

where �̅� represents, consistently with energy conservation principles, the heat flow 

exchanged at mesh points, which can be further expressed as �̅� = 𝐾Δ𝑇, where  Δ𝑇 
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is the temperature variation between two adjacent mesh points, and 𝐾  is the 

corresponding thermal conductance. The latter is a function of the equivalent 

thermal conductivities of the grid points and on the laminate composition through 

its thickness, the width, and the size of the grid spacings, i.e. ∆𝑧𝑘, ∆𝑥2𝑗 and ∆𝑥1𝑖. 

Since the volume of a cell is  𝑉𝑖,𝑗,𝑘 = ∆𝑥1𝑖∆𝑥2𝑗∆𝑧𝑘 , the equivalent thermal 

conductances can be computed according to [81]: 

 

𝐾
𝑖−
1

2
,𝑗,𝑘
=

∆𝑥2𝑗∆𝑧𝑘
∆𝑥1𝑖−1
2𝜆 𝑖−1,𝑗,𝑘

 + 
Δ𝑥1𝑖
2𝜆 𝑖,𝑗,𝑘

 + 𝑅
𝑖−
1
2
,𝑗,𝑘

 ,             (5.11a) 

𝐾
𝑖+
1

2
,𝑗,𝑘
=

∆𝑥2𝑗∆𝑧𝑘
∆𝑥1𝑖+1
2𝜆 𝑖+1,𝑗,𝑘

 + 
Δ𝑥1𝑖
2𝜆 𝑖,𝑗,𝑘 

+ 𝑅
𝑖+
1
2
,𝑗,𝑘

,       (5.11b) 

𝐾
𝑖,𝑗−

1

2
,𝑘
=

∆𝑥1𝑖∆𝑧𝑘
∆𝑥2𝑗−1

2𝜆 𝑖,𝑗−1,𝑘
 + 

Δ𝑥2𝑗

2𝜆 𝑖,𝑗,𝑘
 + 𝑅

𝑖,𝑗−
1
2
,𝑘

,        (5.11c) 

𝐾
𝑖,𝑗+

1

2
,𝑘
=

∆𝑥1𝑖∆𝑧𝑘
∆𝑥2𝑗+1

2𝜆 𝑖,𝑗+1,𝑘
+
Δ𝑥2𝑗

2𝜆 𝑖,𝑗,𝑘
 + 𝑅

𝑖,𝑗+
1
2
,𝑘

,       (5.11d) 

𝐾
𝑖,𝑗,𝑘−

1

2

=
∆𝑥1𝑖∆𝑥2𝑗

∆𝑧𝑘−1
2𝜆 𝑖,𝑗,𝑘−1

 + 
Δ𝑧𝑘
2𝜆 𝑖,𝑗,𝑘

 + 𝑅
𝑖,𝑗,𝑘−

1
2
,

,       (5.11e) 

𝐾
𝑖,𝑗,𝑘+

1

2

=
∆𝑥1𝑖∆𝑥2𝑗

∆𝑧𝑘+1
2𝜆 𝑖,𝑗,𝑘+1

 + 
Δ𝑧𝑘
2𝜆 𝑖,𝑗,𝑘

 + 𝑅
𝑖,𝑗,𝑘+

1
2
,

 ,             (5.11f) 

where the 𝑅 terms are the interfacial resistances between adjacent cells. Since the 

laminate stack can be approximated as periodic in the 𝑥1 and 𝑥2 direction, those 𝑅 

terms in the 𝑥1 and 𝑥2 direction are vanishing, i.e.: 

𝑅
𝑖−
1

2
,𝑗,𝑘
= 𝑅

𝑖+
1

2
,𝑗,𝑘
= 0,  𝑅

𝑖,𝑗−
1

2
,𝑘
= 𝑅

𝑖,𝑗+
1

2
,𝑘
= 0    (5.12) 
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It is also assumed that heat is absorbed from the upper and lower free sides of the 

laminate by natural convection. Therefore, a parallel thermal resistance 

configuration applies at the interface between the layers. If the thermal resistances 

Rg, RE, Rs, and Rb represent, respectively, those of the glass, EVA, Silicon and 

backsheet resistances, then the thermal resistances at the interfaces can be 

computed as follows: 

𝑅𝑖𝑛𝑡1 =
1

𝑅𝑔
+

1

𝑅𝐸
,        (5.13a) 

𝑅𝑖𝑛𝑡2 = 𝑅𝑖𝑛𝑡3 =
1

𝑅𝑠
+

1

𝑅𝐸
,       (5.13b) 

𝑅𝑖𝑛𝑡4 =
1

𝑅𝑏
+

1

𝑅𝐸
                      (5.13c) 

The total heat flow converging to a cell (𝑖, 𝑗, 𝑘) from the 6 adjacent cells is given 

by (see Fig. 5.4): 

�̅�𝑖,𝑗,𝑘 = 𝐾𝑖−1
2
,𝑗,𝑘
(𝑇𝑖−1,𝑗,𝑘 − 𝑇𝑖,𝑗,𝑘) + 𝐾𝑖+1

2
,𝑗,𝑘
(𝑇𝑖+1,𝑗,𝑘 − 𝑇𝑖,𝑗,𝑘) +

𝐾
𝑖,𝑗−

1

2
,𝑘
(𝑇𝑖,𝑗−1,𝑘 − 𝑇𝑖,𝑗,𝑘) + 𝐾𝑖,𝑗+1

2
,𝑘
(𝑇𝑖,𝑗+1,𝑘 − 𝑇𝑖,𝑗,𝑘) + 𝐾𝑖,𝑗,𝑘−1

2

(𝑇𝑖,𝑗,𝑘−1 −

𝑇𝑖,𝑗,𝑘) + 𝐾𝑖,𝑗,𝑘+1
2

(𝑇𝑖,𝑗,𝑘+1 − 𝑇𝑖,𝑗,𝑘)                (5.14) 

By considering that the materials of the layers composing the module are 

continuous along the 𝑥1 and 𝑥2 directions, 𝐾
𝑖−
1

2
,𝑗,𝑘
= 𝐾

𝑖+
1

2
,𝑗,𝑘
= 𝐾𝑖 and 𝐾

𝑖−
1

2
,𝑗,𝑘
=

𝐾
𝑖+
1

2
,𝑗,𝑘
= 𝐾𝑗, thus simplifying Eq. (5.14) as:                       

�̅�𝑖,𝑗,𝑘 = 𝐾𝑖−1
2
,𝑗,𝑘
𝑇𝑖−1,𝑗,𝑘 + 𝐾𝑖+1

2
,𝑗,𝑘
𝑇𝑖+1,𝑗,𝑘 + 𝐾𝑖,𝑗−1

2
,𝑘
𝑇𝑖,𝑗−1,𝑘 + 𝐾𝑖,𝑗+1

2
,𝑘
𝑇𝑖,𝑗+1,𝑘 +

𝐾
𝑖,𝑗,𝑘−

1

2

𝑇𝑖,𝑗,𝑘−1 + 𝐾𝑖,𝑗,𝑘+1
2

𝑇𝑖,𝑗,𝑘+1 − 𝑇𝑖,𝑗,𝑘 (2𝐾𝑖 + 2𝐾𝑗 + 𝐾𝑖,𝑗,𝑘−1
2

+ 𝐾
𝑖,𝑗,𝑘+

1

2

)  (5.15) 

Substituting Eq. (5.15) into the overall heat equation (5.10), we have, for a single 

cell (see Fig. 5.4): 
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𝐶𝑖,𝑗,𝑘𝑉𝑖,𝑗,𝑘
∆𝑇𝑖,𝑗,𝑘

∆𝑡
= �̅�𝑖,𝑗,𝑘       (5.16) 

During module lamination, the stack is kept hot at 150 oC for about 15 minutes 

during which the EVA partially melts and provides the sealing. Afterwards, it is 

cooled down to the ambient temperature in the cooling press and the EVA becomes 

solid. Considering that the press is large and made of a highly conductive material, 

this system can be modelled as a heat sink providing a uniform temperature. On 

this basis, the controlled volume to be analysed can be restricted to the laminate 

and the temperature at its top and at bottom sides can be set equal to the press 

temperature.  

In a PV lamination process, homogeneous temperature enables a significant faster 

lamination process, as well as a more homogeneous cross-linking and sealing of 

the encapsulant. Hence it is assumed that the PV laminate attains a homogenous 

temperature of 150 oC at every point in the module after heating. Therefore, the 

initial condition at time 𝑡 = 0 is given as:  

𝑇(𝑥1, 𝑥2, 𝑧, 0) = 150 ℃,     0 ≤ 𝑥1 ≤ 𝑋,  0 ≤ 𝑥2 ≤ 𝑌,  0 ≤ 𝑧 ≤ 𝑍 (5.17) 

 

5.3.2 Boundary conditions for thermal analysis 

A constant temperature is imposed at the top (𝑧 = 0) and bottom (𝑧 = 𝑍) sides of 

the laminate: 

𝑇(𝑥1, 𝑥2, 0, 𝑡) = 𝑇(𝑥1, 𝑥2, 𝑍, 𝑡) = 𝑇𝑝     (5.18) 

where 𝑇𝑝 is the temperature of the press. Heat is absorbed only from the lateral 

sides of the laminate. Therefore, Robin (mixed) boundary conditions are imposed 

at the laminate sides to absorb heat away from the laminate, i.e., for t > 0: 
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𝜆
𝜕𝑇(𝑋,𝑥2,𝑧,𝑡)

𝜕𝑥1
+ ℎ𝑇(𝑋, 𝑥2, 𝑧, 𝑡) = ℎ𝑇𝑝     (5.19a) 

𝜆
𝜕𝑇(0,𝑥2,𝑧,𝑡)

𝜕𝑥1
+ ℎ𝑇(0, 𝑥2, 𝑧, 𝑡) = −ℎ𝑇𝑝     (5.19b) 

𝜆
𝜕𝑇(𝑥1,𝑌,𝑧,𝑡)

𝜕𝑥2
+ ℎ𝑇(𝑥1, 𝑌, 𝑧, 𝑡) = ℎ𝑇𝑝     (5.19c) 

𝜆
𝜕𝑇(𝑥1,0,𝑧,𝑡)

𝜕𝑥2
+ ℎ𝑇(𝑥1, 0, 𝑧, 𝑡) = −ℎ𝑇𝑝          (5.19d) 

ℎ is the convection coefficient of the air in the cooling press. 

To solve the thermal problem, a backward Euler implicit time integration scheme 

is employed. As described in details in chapter 4, a differential equation of the 

form:  

d𝑦

d𝑡
= 𝑓(𝑡, 𝑦)        (5.20) 

is integrated as 

𝑦(𝑡𝑘+1) − 𝑦(𝑡𝑘) ≈ ℎ𝑓(𝑡𝑘+1, 𝑦(𝑡𝑘+1))                                              (5.21) 

where 𝑦(𝑡𝑘+1)  and 𝑦(𝑡𝑘)  denote the approximate solutions of the differential 

equation at 𝑡 = 𝑡𝑘+1 and 𝑡 = 𝑡𝑘 , respectively. A total cooling period of 30 minutes 

is specified. The topmost (glass) and bottom (backsheet) layers maintain at a 

constant temperature of  25 ℃ (298 K) imposed by the air. Fig. 5.5 shows the 

temperature contour after 30 minutes of cooling in the 𝑥2 − 𝑧 plane of the module. 
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Figure 5.5: temperature contour (K) in the plane 𝑥2 − 𝑧 of the PV laminate along 

the 𝑥1 direction. (a) 𝑥1  = 0 (at the boundary of the laminate); (b) 𝑥1  = 31.3 mm  

(in the middle of the portion of the laminate); (c) Sketch of the laminate. 

 

The solution of the heat equation shows that the temperature profile of the module 

is symmetric along the longitudinal axis, due to the same boundary conditions 

specified at the edges of the laminate. In the thickness direction, the degree of 

symmetry in the temperature variation is very high at the laminate boundary due to 

the same boundary constraints imposed at the top and bottom of the PV stack. 
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5.3.3 Shear-lag formulation for the encapsulant treated as a shear 

deformable zero thickness layer  

As noted in the beginning of this chapter, relative displacements are admitted from 

one layer to the next with the EVA layer modelled as an adhesive with zero 

thickness (see Fig. 5.2). There are 3 real layers i.e., glass, Silicon, backsheet, and 2 

shear-lag interfaces, a geometrical configuration which confers a computational 

advantage since the number of layers to be modelled are reduced with respect to a 

5 layer module in reality. Each of the layer is modelled as a plate based on relaxed 

Kirchhoff’s hypothesis [11, 97] in which the displacements in the 1 and 2 directions 

for a thin plate having axes 𝑥1, 𝑥2 and 𝑧 are expressed as: 

𝑢1 = −
∂𝑤

𝜕𝑥1
𝑧 + 𝑈1(𝑥1, 𝑥2),       (5.22a) 

𝑢2 = −
𝜕𝑤

𝜕𝑥2
𝑧 + 𝑈2(𝑥1, 𝑥2)      (5.22b) 

Where 𝑈1  and 𝑈2  represent the displacements in the middle plane and 𝑤 is the 

deflection of the plate. Strains 휀1 and 휀2 are given by: 

휀1 = −𝑧
𝜕2𝑤

𝜕𝑥1
2 +

𝜕𝑈1

𝜕𝑥1
=
1

𝐸
(𝜎1 − 𝜐𝜎2) + 𝛼∆𝑇     (5.23a) 

휀2 = −𝑧
𝜕2𝑤

𝜕𝑥2
2 +

𝜕𝑈2

𝜕𝑥2
=
1

𝐸
(𝜎2 − 𝜐𝜎1) + 𝛼∆𝑇       (5.23b) 

The product 𝛼∆𝑇 is the thermal strain in the layer due to cooling of the PV from 

150 ℃ to the room temperature. Solving for stresses, we get: 

𝜎1 =
𝐸

1−𝜐2
(휀1 + 𝜐휀2 − 𝛼∆𝑇(1 + 𝜐)) =

𝐸

1−𝜐2
[−𝑧

𝜕2𝑤

𝜕𝑥1
2 +

𝜕𝑈1

𝜕𝑥1
− 𝜐𝑧

𝜕2𝑤

𝜕𝑥2
2 + 𝜐

𝜕𝑈2

𝜕𝑥2
−

𝛼∆𝑇(1 + 𝜐)]          (5.24a) 
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𝜎2 =
𝐸

1−𝜐2
[휀2 + 𝜐휀1 − 𝛼∆𝑇(1 + 𝜐)] =

𝐸

1−𝜐2
[−𝑧

𝜕2𝑤

𝜕𝑥2
2 +

𝜕𝑈2

𝜕𝑥2
− 𝑧𝑣

𝜕2𝑤

𝜕𝑥1
2 + 𝑣

𝜕𝑈1

𝜕𝑥1
−

𝛼∆𝑇(1 + 𝜐)]          (5.24b) 

If the strip has dimensions in 𝑥2 much larger than in 𝑥1, all the derivatives w.r.t. 𝑥1 

can be approximately neglected. Hence, 𝜎1 and 𝜎2 are respectively reduced to: 

𝜎1 =
𝐸𝜐

1−𝜐2
[−𝑧

d2𝑤

d𝑥2
2 +

d𝑈2

d𝑥2
− 𝛼∆𝑇�̅�]            (5.25a) 

𝜎2 =
𝐸

1−𝜐2
[−𝑧

d2𝑤

d𝑥2
2 +

d𝑈2

d𝑥2
− 𝛼∆𝑇(1 + 𝜐)]    (5.25b) 

where �̅� =
(1+𝜐)

𝜐
. 

The transverse strain 휀𝑧𝑧 is given by: 

휀𝑧𝑧 =
d𝑤

d𝑧
− 𝛼∆𝑇 = 0       (5.26) 

Integrating Eq. (5.26) over the thickness z leads to: 

𝑤 = 𝑊(𝑥2) + 𝛼∆𝑇𝑧       (5.27) 

where 𝑊 is the mid-plate deflection.  

By considering a differential element d𝑥1d𝑥2d𝑧 (as in Fig. 3.8), we can write 

equations for this differential element in equilibrium as: 

∑𝐹𝑥1 = 0 , ∑𝐹𝑥2 = 0 , ∑𝐹𝑧 = 0 .     (5.28) 

By neglecting body forces, the reduced equilibrium equations yield: 

d𝜎2

d𝑥2
+
d𝜎𝑧2

𝑑𝑧
= 0        (5.29a) 

d𝜎2𝑧

d𝑥2
+
d𝜎𝑧𝑧

d𝑧
= 0                      (5.29b) 
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In case of the beam type plate, the boundary conditions required to solve the 

equilibrium equations are [11, 98]: 

𝜎2𝑧 = 𝜎2𝑧(𝑥2, 𝑐) ,  𝜎𝑧𝑧 = 𝜎𝑧𝑧(𝑥2, 𝑐) , at  𝑧 =
ℎ

2
= 𝑐 .  (5.30a) 

𝜎2𝑧 = 𝜎2𝑧(𝑥2, −𝑐) ,  𝜎𝑧𝑧 = 𝜎𝑧𝑧(𝑥2, −𝑐) , at  𝑧 = −
ℎ

2
= −𝑐 . (5.30b) 

By integrating the reduced equilibrium equations w.r.t. z and applying the boundary 

conditions at 𝑧 = 𝑐 and 𝑧 = −𝑐, we obtain: 

𝜎2𝑧 =
𝐸

2(1−𝜐2)
[
d3𝑤

d𝑥2
3
(𝑧2 − 𝑐2) − 2

d2𝑈2

d𝑥2
2 (𝑧 − 𝑐)] + 𝜎2𝑧(𝑥2, 𝑐)  (5.31a) 

𝜎2𝑧 =
𝐸

2(1−𝜐2)
[
d3𝑤

d𝑥2
3
(𝑧2 − 𝑐2) − 2

d2𝑈2

d𝑥2
2 (𝑧 + 𝑐)] + 𝜎2𝑧(𝑥2, −𝑐)  (5.31b) 

Adding Eq. (5.31a) and (5.31b) and simplifying, we get: 

𝜎2𝑧 =
𝐸

2(1−𝜐2)

d3𝑤

d𝑥2
3
(𝑧2 − 𝑐2) −

𝐸

(1−𝜐2)

d2𝑈2

d𝑥2
2 𝑧 +

𝑚

2
    (5.32) 

where 𝑚 = 𝜎2𝑧,𝑐 + 𝜎2𝑧,−𝑐,  𝜎2𝑧,𝑐 = 𝜎2𝑧(𝑥2, 𝑐),  𝜎2𝑧,−𝑐 = 𝜎2𝑧(𝑥2, −𝑐). 

Similarly, by substituting Eq. (5.32) into (5.29b) and integrating with the boundary 

conditions in Eq. (5.30): 

𝜎𝑧𝑧 =
𝐸

6(1−𝜐2)

d4𝑤

d𝑥2
4
(−𝑧3 + 3𝑐2𝑧 − 2𝑐3) +

𝐸

2(1−𝜐2)

d3𝑈2

d𝑥2
3
(𝑧2 − 𝑐2) −

1

2

d𝑚

d𝑥2
(𝑧 −

𝑐) + 𝜎𝑧𝑧,𝑐                 (5.33a) 

𝜎𝑧𝑧 =
𝐸

6(1−𝜐2)

d4𝑤

d𝑥2
4
(−𝑧3 + 3𝑐2𝑧 + 2𝑐3) +

𝐸

2(1−𝜐2)

d3𝑈2

d𝑥2
3
(𝑧2 − 𝑐2) −

1

2

d𝑚

d𝑥2
(𝑧 +

𝑐) + 𝜎𝑧𝑧,−𝑐                 (5.33b) 

Adding Eq. (5.33a) and (5.33b) and simplifying, we get: 

𝜎𝑧𝑧 =
𝐸

6(1−𝜐2)

d4𝑤

d𝑥2
4
(−𝑧3 + 3𝑐2𝑧) +

𝐸

2(1−𝜐2)

d3𝑈2

d𝑥2
3
(𝑧2 − 𝑐2) −

1

2

d𝑚

d𝑥2
𝑧 +

𝑝

2
 (5.34) 
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where 𝑝 = 𝜎𝑧𝑧,𝑐 + 𝜎𝑧𝑧,−𝑐, 𝜎𝑧𝑧,𝑐 = 𝜎𝑧𝑧(𝑥2, 𝑐),  𝜎𝑧𝑧,−𝑐 = 𝜎𝑧𝑧(𝑥2, −𝑐). 

For a generic plate, the axial force, the shear force and the resultant bending 

moment (𝑁, 𝑄, 𝑀) are defined as: 

𝑁𝑖 = ∫ 𝜎𝑖
𝑐

−𝑐
d𝑧         (5.35a) 

𝑀𝑖 = ∫ 𝜎𝑖
𝑐

−𝑐
𝑧d𝑧        (5.35b) 

𝑄𝑖 = ∫ 𝜎𝑖𝑧
𝑐

−𝑐
d𝑧  (for 𝑖 = 1,2)              (5.35c) 

Substituting for 𝜎𝑖 and 𝜎𝑖𝑧 (for 𝑖 = 1, 2) in the resultant equations, we have for a 

generic ply, the resultant force as: 

𝑁1

ℎ
=

𝐸𝜐

1−𝜐2
[
d𝑈2

d𝑥2
− 𝛼∆𝑇�̅�]        (5.36a) 

𝑁2

ℎ
=

𝐸

1−𝜐2
[
d𝑈2

d𝑥2
− 𝛼∆𝑇(1 + 𝜐)]       (5.36b) 

The moment resultant is given as: 

𝑀1 = −
𝐸𝜐ℎ3

12(1−𝜐2)

d2𝑤

d𝑥2
2 = −

𝐸𝐼𝜐

(1−𝜐2)

d2𝑤

d𝑥2
2,                   (5.37a) 

𝑀2 = −
𝐸ℎ3

12(1−𝜐2)

d2𝑤

d𝑥2
2 = −

𝐸𝐼

(1−𝜐2)

d2𝑤

d𝑥2
2             (5.37b) 

Differentiating Eq. (5.27) twice and substituting into Eq. (5.37) we get: 

𝑀1 = −
𝐸𝜐ℎ3

12(1−𝜐2)

d2𝑊

d𝑥2
2 = −

𝐸𝐼𝜐

(1−𝜐2)

d2𝑊

d𝑥2
2,       (5.38a) 

𝑀2 = −
𝐸ℎ3

12(1−𝜐2)

d2𝑊

d𝑥2
2 = −

𝐸𝐼

(1−𝜐2)

d2𝑊

d𝑥2
2             (5.38b) 

Using Eq. (5.36) and (5.37), Eq. (5.24) for the normal stresses can be simplified as: 

𝜎𝑖 =
𝑁𝑖

ℎ
+
𝑀𝑖

𝐼
𝑧    (for 𝑖 = 1, 2)   (5.39) 
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Evaluating Eq. (5.35c) for 𝑄2 gives: 

𝑄2 = −
𝐸𝐼

(1−𝜐2)

d3𝑊

d𝑥2
3 +𝑚𝑐,                 (5.40a) 

d𝑀2

d𝑥2
+𝑚𝑐 − 𝑄2 = 0               (5.40b) 

By subtracting Eq. (5.31b) from (5.31a) for the top and bottom of the plate and 

simplifying, we obtain: 

 
𝐸ℎ

(1−𝜐2)

d2𝑈2

d𝑥2
2 + 𝜎2𝑧(𝑥2, 𝑐) − 𝜎2𝑧(𝑥2, −𝑐) = 0    (5.41) 

Taking 𝑛 = 𝜎2𝑧,𝑐 − 𝜎2𝑧,−𝑐 while noting that 
𝐸ℎ

(1−𝜐2)

d2𝑈2

d𝑥2
2 =

𝑑𝑁2

𝑑𝑥2
 leads to: 

d𝑁2

d𝑥2
+ 𝑛 = 0        (5.42) 

By similarly subtracting Eq. (5.33b) from (5.33a) for the top and bottom of the 

plate and simplifying, we get: 

−
4𝐸𝑐3

6(1−𝜐2)

d4𝑤

d𝑥2
4 +

d𝑚

d𝑥2
𝑐 + 𝜎𝑧𝑧,𝑐 − 𝜎𝑧𝑧,−𝑐 = 0    (5.43) 

Taking 𝑞 = 𝜎𝑧𝑧,𝑐 − 𝜎𝑧𝑧,−𝑐 while noting that −
4𝐸𝑐3

6(1−𝜐2)

d4𝑤

d𝑥2
4 +

d𝑚

d𝑥2
𝑐 =

d𝑄2

d𝑥2
 leads to: 

d𝑄2

d𝑥2
+ 𝑞 = 0        (5.44) 

The overall equilibrium equations for the beam type plate are now expressed as: 

d𝑀2

d𝑥2
+𝑚𝑐 − 𝑄2 = 0,        (5.45a) 

d𝑁2

d𝑥2
+ 𝑛 = 0,         (5.45b) 

d𝑄2

d𝑥2
+ 𝑞 = 0                (5.45c) 
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Eq. (5.45a) and (5.45c) can be further combined to give: 

d2𝑀2

d𝑥2
2 +

d𝑚

d𝑥2
𝑐 + 𝑞 = 0       (5.46) 

In the sequel, 𝜎𝑧𝑧 and 𝜎2𝑧 will henceforth be denoted respectively by 𝜎 and 𝜏. 

The rotation variable Ψ in the 𝑥2 direction can be obtained from Eq. (5.22b) 

Ψ =
d𝑢2

d𝑧
= −

d𝑤

d𝑥2
       (5.47) 

By combining Eq. (5.27) and (5.47), we get: 

 Ψ = −
d𝑊

d𝑥2
        (5.48) 

 

5.4 Numerical Examples 

 For a 3 layer module as in Fig. 5.2 represented by a beam type plate, there are six 

equilibrium equations in total which are stated as: 

d2𝑀2
(𝑘)

d𝑥2
2 +

d𝑚(𝑘)

d𝑥2
𝑐(𝑘) + 𝑞(𝑘) = 0,       (5.49a) 

 
d𝑁2

(𝑘)

d𝑥2
+ 𝑛(𝑘) = 0  for 𝑘 = 1,2,3            (5.49b) 

where 𝑘 is the number of layers. 

 The behaviour of the EVA interfaces modelled as deformable linear elastic springs 

is mathematically given as: 

𝑢2
(𝑖) − 𝑢2

(𝑖+1) =
𝜏(𝑖)

Kx
(𝑖)        (5.50a) 

𝑤(𝑖+1) −𝑤(𝑖) =
𝜎(𝑖)

Ky
(𝑖)   for 𝑖 = 1, 2                            (5.50b) 
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where Kx
(𝑖)  and Ky

(𝑖)  are the longitudinal and transverse compliances at the 

interface 𝑖. In this work, we assume the same value for Kx
(𝑖) and Ky

(𝑖) which are 

given by: 

Kx
(𝑖) = Ky

(𝑖) =
𝐸𝐸

ℎ𝐸
𝜔       (5.51) 

where 𝐸𝐸 and ℎ𝐸 are the relaxation modulus and thickness of the EVA adhesive 

layer, and 𝜔 is the out of plane thickness. 

Altogether there are 10 governing equations consisting of 6 equilibrium and 4 

continuity equations. By substituting for the constitutive terms in these equations 

and further simplification, we have a system of 6 higher order ordinary differential 

equations which has to be solved to obtain the variables 𝑈(𝑘) , 𝑊(𝑘)  and their 

derivatives (for 𝑘 = 1,2,3) while 𝜏(𝑖) and 𝜎(𝑖)  (for 𝑖 = 1, 2) are calculated from 

the continuity equations, i.e., Eq. (5.50). 

The solution of the problem can be achieved by converting the system of higher 

order ordinary differential equations to a system of first order ordinary differential 

equations which can then be solved to determine the stress distribution in the beam 

plate. For this case, we can write:  

𝑑𝒗(𝑥2)

𝑑𝑥2
= 𝑩𝒗(𝑥2) + 𝑭       (5.52) 

𝒗 = 𝑓(𝑈𝑘 , 𝑈𝑘
′,𝑊𝑘 ,𝑊𝑘

′,𝑊𝑘
′′,𝑊𝑘

′′′),   for 𝑘 = 1, 2, 3   

𝑭 = 𝑓(Kx
(𝑖), Ky

(𝑖), ∆𝑇,  𝛼𝑘) = constant,   for 𝑖 = 1, 2  

where 𝑩  is an 18 × 18  sparse coefficient matrix which contains constant 

coefficients of the variables and their derivatives and 𝑭  is 18 × 1  vector (see 

appendix A). The set of boundary conditions for this system of ODEs are (for 𝑖 =

1, 2 and 𝑘 = 1, 2, 3): 
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𝑈𝑘 = 0  ,  𝑄2
(𝑘) = 0,  𝜏(𝑖) = 0, 𝜎(𝑖) = 0, at 𝑥2 = 0   (5.53a) 

𝑀2
(𝑘) = 0, 𝑁2

(𝑘) = 0,  at  𝑥2 = 𝐿,     (5.53b) 

 

5.4.1 Modelling viscoelasticity of the encapsulant and transient thermo-

elastic analysis 

To account for the visco-elastic behaviour of the EVA, the rheological model 

described in Chapter 3 based on fractional calculus is herein considered in which 

the constitutive equation of the simplest fractional element (also known as Scott-

Blair element) is recalled as: 

𝜎(𝑡) = 𝑎
d𝛼𝜀(𝑡)

d𝑡𝛼
  𝛼 ∈ (0,1)     (5.54) 

and the relaxation modulus assumes the power law form: 

𝐸(𝑡) = 𝑎
𝑡−𝛼

Γ(1−𝛼)
        (5.55) 

𝑎 has the SI unit of MPa 𝑠𝛼  and its mechanical meaning varies with 𝛼  from a 

stiffness (𝛼 = 0) to a viscosity (𝛼 = 1). Time 𝑡 is measured in seconds. 

As pointed out in Chapter 3, only two parameters (𝑎 and 𝛼) are required to model 

the viscoelastic behaviour of the EVA accurately and due to modification in the 

material microstructure of EVA at ∆𝑇~84 ℃, two different correlations are used 

each for 𝑎 and 𝛼 to accurately fit the experimental data. Therefore, a total of four 

different correlations are required to predict the viscoelastic response of the EVA. 

By using the mathematical correlations (3.38) for the model fitting of 𝑎 and 𝛼 (see 

Fig. 3.6), the temperature-dependent values of 𝑎 and 𝛼 for EVA during lamination 

can be determined. Consequently, the temperature distribution history of the 

module computed during cooling after lamination can be used to evaluate the 
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temperature- and time-dependent properties of the EVA adhesive layer. After 

cooling of the PV laminate, the temperature of the layers varies along the 

longitudinal coordinate for each layer and along the transverse coordinate for the 

whole module. Thus, the interfacial compliance to be inserted in the shear lag 

constitutive equations now varies with temperature and time as well along the 

longitudinal axis of the module, which is a novelty with respect to standard shear 

lag theories that assume constant compliances. Hence, this leads to a non-

homogeneous system of ordinary differential equations with time-dependent 

coefficients:  

d𝒗(𝑥2,𝑡)

d𝑥2
= 𝑩(𝑥2, 𝑡)𝒗(𝑥2, 𝑡) + 𝑭(𝑥2, 𝑡)     (5.57) 

where 𝑭 = 𝑓(Kx(𝑥2, 𝑡), Ky(𝑥2, 𝑡), ∆𝑇(𝑥2, 𝑡), 𝛼). 

For non-uniform temperature simulations, a model with only the longitudinal 

compliance is considered. The compressive stresses in Silicon are computed at 

some relevant time intervals. 

5.4.2 Numerical solution 

An exact solution (as in Sec. 4.1) of the system of ordinary differential equations 

(5.57) can be achieved for the special case of a uniform temperature profile for the 

entire PV module after cooling. In the case of a non-uniform temperature analysis, 

the coefficients in the 𝑩 matrix vary with time and space, so a numerical method 

is required. Specifically, for the non-uniform temperature case study, an integration 

scheme using a trapezium rule method (an average of forward and backward Euler 

method) is used as described in Sec. 4.5.2. To verify the accuracy of this numerical 

scheme for this analysis, a comparison was made between the exact solution of the 

uniform temperature analysis and the numerical solution using trapezium rule 
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method and a good agreement was achieved. The results of this comparison are 

shown in Sec. 5.7. 

 

5.5 3D coupled thermo-visco-elastic shear-lag formulation 

So far in the previous sections, a 2D formulation for thermo-visco-elastic stress 

analysis of a single Silicon solar cell has been developed leading to a quasi-static 

thermo-mechanical investigation of residual stresses in PV laminate. Typically, a 

PV module contains several Silicon cells which may experience stress fields 

varying from one position to the other due to interaction between mechanical, 

electrical and thermal fields in the laminate. On this basis therefore, prediction of 

stress field variations in the cells across the PV module deems important. And as 

mentioned earlier in Chapter 1, transient regimes which take place in accelerated 

environmental tests within climate chambers, or under operating conditions, have 

only marginally been investigated due to the inherent complexity related to the 

different thicknesses of the layers composing a PV module. In the sequel, a novel 

3D coupled shear-lag formulation is developed to estimate residual stresses 

induced in Silicon cells during cooling after lamination. The prediction of stress 

distribution is enhanced by accounting for the viscoelastic response of the EVA 

encapsulant using an asymptotic model presented in [39]. A full dynamic analysis 

is proposed in this work to obtain an accurate estimate of the induced residual 

stresses during the lamination of the PV module. 

 

5.5.1 3D shear-lag formulation for mechanical system 

The model problem consists of 4 Silicon cells separated by a thin strip of EVA 

embedded in a stack composed of glass and Backsheet. The sectional view is as 
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shown in Fig. 5.6. The EVA layer is considered as an adhesive with zero thickness. 

The governing equations of linear elasticity for a solid in the absence of body forces 

consist of: 

 Equilibrium equations: 

𝜕𝜎1

𝜕𝑥1
+
𝜕𝜎12

𝜕𝑥2
+
𝜕𝜎𝑧1

𝜕𝑧
= 𝜌

𝜕2𝑢1

𝜕𝑡2
      (5.58a) 

𝜕𝜎12

𝜕𝑥1
+
𝜕𝜎2

𝜕𝑥2
+
𝜕𝜎𝑧2

𝜕𝑧
= 𝜌

𝜕2𝑢2

𝜕𝑡2
      (5.58b) 

𝜕𝜎1𝑧

𝜕𝑥1
+
𝜕𝜎2𝑧

𝜕𝑥2
+
𝜕𝜎𝑧𝑧

𝜕𝑧
= 𝜌

𝜕2𝑤

𝜕𝑡2
      (5.58c) 

where 𝜎𝑖 (for 𝑖 = 1, 2 𝑎𝑛𝑑 𝑧), 𝜎𝑖𝑧 = 𝜎𝑧𝑖 (for 𝑖 = 1, 2), and 𝜎12 = 𝜎21 are the axial 

stresses and shear stresses according to Fig. 3.8. 𝜎𝑧𝑧 is the surface normal stress. 

 

Figure 5.6. A sectional view of the PV module for stress analysis. 

𝑢1, 𝑢2 and 𝑤 are, respectively, displacements in 1, 2 and z directions. 

 Displacement relations, which according to relaxed Kirchhoff’s hypothesis for 

a thin plate having axes 𝑥1 , 𝑥2  and 𝑧 , are given for the 1 and 2 directions 

respectively as: 

𝑢1 = −
𝜕𝑤

𝜕𝑥1
𝑧 + 𝑈1       (5.59a) 
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𝑢2 = −
𝜕𝑤

𝜕𝑥2
𝑧 + 𝑈2       (5.59b) 

where 𝑈1  and 𝑈2  are the longitudinal mid-plane displacements in the 1 and 2 

directions. 

 Plane stress constitutive equations of linear thermoelasticity [97]:  

𝜎1 =
𝐸

1−𝜐2
[−𝑧

𝜕2𝑤

𝜕𝑥1
2 +

𝜕𝑈1

𝜕𝑥1
− 𝜐𝑧

𝜕2𝑤

𝜕𝑥2
2 + 𝜐

𝜕𝑈2

𝜕𝑥2
− 𝛼𝜃(1 + 𝜐)]  (5.60a) 

𝜎2 =
𝐸

1−𝜐2
[−𝑧

𝜕2𝑤

𝜕𝑥2
2 +

𝜕𝑈2

𝜕𝑥2
− 𝑣𝑧

𝜕2𝑤

𝜕𝑥1
2 + 𝑣

𝜕𝑈1

𝜕𝑥1
− 𝛼𝜃(1 + 𝜐)]  (5.60b) 

𝜎12 =
𝐸

2(1+𝑣)
[−2𝑧

𝜕2𝑤

𝜕𝑥1𝜕𝑥2
+ 𝑈1,2 + 𝑈2,1]     (5.60b) 

where 𝜃(𝑥1, 𝑥2, 𝑧, 𝑡) is the excess temperature distribution of the plate. 

By integrating the Eq. (5.58c) over the plate thickness with surface loads 𝜎𝑧𝑧,𝑐 and 

𝜎𝑧𝑧,−𝑐 imposed at the upper and lower parts of the plate, we have: 

𝑎1,1 + 𝑎2,2 + [𝜎𝑧𝑧]−𝑐
𝑐 = 𝜌

𝜕2�̅�

𝜕𝑡2
      (5.61) 

where 𝑎𝑖 = ∫ 𝜎𝑖𝑧
𝑐

−𝑐
d𝑧 ,  �̅� = ∫ 𝑤

𝑐

−𝑐
d𝑧 , for 𝑖 = 1, 2 

𝑐 is half of the plate’s thickness. 

Integrating Eq. (5.58a) and (5.58b) over the plate thickness with surface loads 𝜎𝑧𝑖,𝑐 

and 𝜎𝑧𝑖,−𝑐, imposed at the upper and lower parts of the plate, we get: 

𝑔1,1 + 𝑒,2 + 𝑛1 = 𝜌
𝜕2�̂�1

𝜕𝑡2
       (5.62a) 

𝑒,1 + 𝑔2,2 + 𝑛2 = 𝜌
𝜕2�̂�2

𝜕𝑡2
      (5.62b)  
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where 𝑔𝑖 = ∫ 𝜎𝑖
𝑐

−𝑐
d𝑧, �̂�𝑖 = ∫ 𝑢𝑖

𝑐

−𝑐
d𝑧  and 𝑒 = ∫ 𝜎12

𝑐

−𝑐
d𝑧   𝑛𝑖 = 𝜎𝑧𝑖,𝑐 − 𝜎𝑧𝑖,−𝑐

 for 𝑖 = 1, 2 

Multiplying Eqs. (5.58a) and (5.58b) by 𝑧 and Integrating over the plate thickness, 

we obtain: 

𝑏1,1 + 𝑑,2 − 𝑓1 + 𝑐𝑚1 = 𝜌
𝜕2�̅�1

𝜕𝑡2
      (5.63a) 

𝑑,1 + 𝑏2,2 − 𝑓2 + 𝑐𝑚2 = 𝜌
𝜕2�̅�2

𝜕𝑡2
      (5.63b) 

where  

𝑏𝑖 = ∫ 𝜎𝑖
𝑐

−𝑐
𝑧d𝑧,  𝑓𝑖 = ∫ 𝜎𝑧𝑖

𝑐

−𝑐
d𝑧,  

�̅�𝑖 = ∫ 𝑢𝑖𝑧
𝑐

−𝑐
d𝑧,   𝑑 = ∫ 𝜎12

𝑐

−𝑐
𝑧d𝑧  

𝑚𝑖 = 𝜎𝑧𝑖,𝑐 + 𝜎𝑧𝑖,−𝑐 for 𝑖 = 1, 2 

Note: 𝑓𝑖 = 𝑎𝑖 

By substituting the constitutive Eq. (5.60) into Eq. (5.62) and evaluating we get:  

[𝑈1,11 + 𝜐𝑈2,21] +
(1−𝑣)

2
[𝑈1,22 + 𝑈2,12] − 𝐵𝜌ℎ

𝜕2𝑈1

𝜕𝑡2
+ 𝐵𝑛1 = 0  (5.64a) 

[𝑈2,22 + 𝜐𝑈1,12] +
(1−𝑣)

2
[𝑈1,21 + 𝑈2,11] − 𝐵𝜌ℎ

𝜕2𝑈2

𝜕𝑡2
+ 𝐵𝑛2 = 0  (5.64b) 

where 𝐵 =
1−𝜐2

𝐸ℎ
 and ℎ = 2𝑐 

Simplifying Eq. (5.64) by ignoring mixed differential terms since it is considered 

small with respect to 𝑈1,11, 𝑈1,22, 𝑈2,11 and 𝑈2,22, we obtain: 

𝑈1,11 +
(1−𝑣)

2
𝑈1,22 − 𝐵𝜌ℎ

𝜕2𝑈1

𝜕𝑡2
+𝐵𝑛1 = 0    (5.65a) 
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𝑈2,22 +
(1−𝑣)

2
𝑈2,11 − 𝐵𝜌ℎ

𝜕2𝑈2

𝜕𝑡2
+𝐵𝑛2 = 0    (5.65b) 

Differentiating Eq. (5.63a) w.r.t. 𝑥1  and (5.63b) w.r.t. 𝑥2, we get: 

𝑏1,11 + 𝑑,21 − 𝑓1,1 + 𝑐𝑚1,1 = −𝜌𝐼
𝜕2𝑤,11

𝜕𝑡2
     (5.66a) 

𝑑,12 + 𝑏2,22 − 𝑓2,2 + 𝑐𝑚2,2 = −𝜌𝐼
𝜕2𝑤,22

𝜕𝑡2
    (5.66b) 

Adding Eq. (5.66a) and (5.66b) together, we get: 

𝑏1,11 + 𝑑,21 + 𝑑,12 + 𝑏2,22 − (𝑓1,1 + 𝑓2,2) + 𝑐(𝑚1,1 +𝑚2,2) = −𝜌𝐼(
𝜕2𝑤,11

𝜕𝑡2
+

𝜕2𝑤,22

𝜕𝑡2
)         (5.67) 

Since 𝑓𝑖 = 𝑎𝑖 from Eq. (5.61), we can write: 

𝑓1,1 + 𝑓2,2 = 𝜌ℎ
𝜕2𝑤

𝜕𝑡2
− [𝜎𝑧𝑧]−𝑐

𝑐       (5.68) 

Therefore, Eq. (5.67) can be rewritten as: 

𝑏1,11 + 𝑑,21 + 𝑑,12 + 𝑏2,22 + 𝑐(𝑚1,1 +𝑚2,2) + [𝜎𝑧𝑧]−𝑐
𝑐 = 𝜌ℎ

𝜕2𝑤

𝜕𝑡2
− 𝜌𝐼(

𝜕2𝑤,11

𝜕𝑡2
+

𝜕2𝑤,22

𝜕𝑡2
)         (5.69) 

Since 𝐼 =
2𝑐3

3
  is small as compared to ℎ = 2𝑐, we can neglect the 

𝜕2𝑤,𝑖𝑖

𝜕𝑡2
 (𝑖 = 1, 2) 

so that Eq. (5.69) reduces to: 

𝑏1,11 + 𝑑,21 + 𝑑,12 + 𝑏2,22 + 𝑐(𝑚1,1 +𝑚2,2) − 𝜌ℎ
𝜕2𝑤

𝜕𝑡2
= −[𝜎𝑧𝑧]−𝑐

𝑐  (5.70) 

Evaluating 𝑏1, 𝑏2 and 𝑑 using Eq. (5.63a) and Eq. (5.63b), we obtain: 

𝑏1 =
𝐸𝐼

1−𝜐2
[−𝑤,11 − 𝑣𝑤,22 − 𝛼(1 + 𝑣)𝑇]    (5.71) 
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𝑏2 =
𝐸𝐼

1−𝜐2
[−𝑣𝑤,11 −𝑤,22 − 𝛼(1 + 𝑣)𝑇]    (5.72) 

𝑑 = −
𝐸𝐼

(1+𝑣)
𝑤,12       (5.73) 

where 𝜃 = 𝑇(𝑥1, 𝑥2, 𝑡)𝑧  assuming linear temperature variation along the plate’s 

transverse direction. Differentiating Eqs. (5.71–5.73) in accordance with the Eq. 

(5.70) and substituting, we get: 

𝑤,1111 + 2𝑤,2211 +𝑤,2222 + 𝛼(1 + 𝑣)(𝑇,11 + 𝑇,22) + 𝐷𝜌ℎ
𝜕2𝑤

𝜕𝑡2
= 𝐷[[𝜎𝑧𝑧]−𝑐

𝑐 +

𝑐(𝑚1,1 +𝑚2,2)]       (5.74) 

where 𝐷 =
1−𝑣2

𝐸𝐼
 

Eq. (5.74) can be rewritten as: 

∇4𝑤 + 𝛼(1 + 𝑣)∇2𝑇 + 𝐷𝜌ℎ
𝜕2𝑤

𝜕𝑡2
= 𝐷[𝑝 + 𝑐(𝑚1,1 +𝑚2,2)]  (5.75) 

where  ∇4𝑤 = 𝑤,1111 + 2𝑤,2211 +𝑤,2222, 𝑝 = [𝜎𝑧𝑧]−𝑐
𝑐  . 

 

5.5.2 Formulation for the thermal problem 

The general heat conduction equation for the plate neglecting the mechanical 

coupling and the heat source term is given as: 

λ∇2𝜃 − 𝜌𝐶
𝜕𝜃

𝜕𝑡
= 0       (5.76) 

where ∇2𝜃 =
𝜕2𝜃

𝜕𝑥1
2 +

𝜕2𝜃

𝜕𝑥2
2 +

𝜕2𝜃

𝜕𝑧2
  



110 
 

𝐶 is the specific heat per unit mass and λ is the thermal conductivity of the plate. 

Substituting for 𝜃 = 𝑇(𝑥1, 𝑥2, 𝑡)𝑧 in Eq. (5.76) and separating the derivative in the 

thickness direction from the longitudinal directions gives: 

λ∇2(𝑇𝑧) + λ𝑧
𝜕2𝜃

𝜕𝑧2
− 𝜌𝐶

𝜕(𝑇𝑧)

𝜕𝑡
= 0     (5.77) 

where λ𝑧 is the thermal conductivity in the z direction. 

Multiplying Eq. (5.77) by 𝑧 and integrating over the plate thickness leads to: 

λ∇ (
𝜕𝑇

𝜕𝑥1
+

𝜕𝑇

𝜕𝑥2
) 𝐼 + λ𝑧 ∫

𝜕2𝜃

𝜕𝑧2
𝑧d𝑧

𝑐

−𝑐
− 𝜌𝐶𝐼

𝜕𝑇

𝜕𝑡
= 0    (5.78) 

Evaluating the integral term of Eq. (5.78), 

∫ λ𝑧
𝜕2𝜃

𝜕𝑧2
𝑧d𝑧

𝑐

−𝑐
= λ𝑧 𝑧

𝜕𝜃

𝜕𝑧
|
−𝑐

𝑐
− ∫ λ𝑧

𝜕𝜃

𝜕𝑧
d𝑧

𝑐

−𝑐
    (5.79) 

Let 𝑞1 = λ𝑧
𝜕𝜃

𝜕𝑧
|
𝑐
 and 𝑞2 = λ𝑧

𝜕𝜃

𝜕𝑧
|
−𝑐

 

where 𝑞1 and 𝑞2 are the change in heat flow at upper and lower part for a generic 

layer. Therefore, the heat equation (5.78) becomes: 

λ∇ (
𝜕𝑇

𝜕𝑥1
+

𝜕𝑇

𝜕𝑥2
) 𝐼 + 𝑐(𝑞1 + 𝑞2) − λ𝑧ℎ𝑇 − 𝜌𝐶𝐼

𝜕𝑇

𝜕𝑡
= 0   (5.80) 

where ℎ = 2𝑐 

Dividing Eq. (5.80) by 𝐼 gives: 

λ∇2𝑇 −
λ𝑧ℎ𝑇

𝐼
− 𝜌𝐶

𝜕𝑇

𝜕𝑡
= −

𝑐

𝐼
(𝑞1 + 𝑞2)     (5.81) 

where ∇2𝑇 =
𝜕2𝑇

𝜕𝑥1
2 +

𝜕2𝑇

𝜕𝑥2
2 

For a generic layer 𝑛, the overall governing equations to be solved for the plate are: 
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∇4𝑤(𝑛) + 𝜂1
(𝑛)∇2𝑇(𝑛) + 𝜂2

(𝑛) 𝜕
2𝑤(𝑛)

𝜕𝑡2
− 𝜂3

(𝑛)[𝑝(𝑛) + 𝑐(𝑛)(𝑚1,1
(𝑛) +𝑚2,2

(𝑛))] =

0                      (5.82a) 

𝑈1,11
(𝑛) + 𝜇1

(𝑛)𝑈1,22
(𝑛) − 𝜇2

(𝑛) 𝜕
2𝑈1

(𝑛)

𝜕𝑡2
+ 𝜇3

(𝑛)𝑛1
(𝑛)
= 0   (5.82b) 

𝑈2,22
(𝑛) + 𝜇1

(𝑛)𝑈2,11
(𝑛) − 𝜇2

(𝑛) 𝜕
2𝑈2

(𝑛)

𝜕𝑡2
+ 𝜇3

(𝑛)𝑛2
(𝑛)
= 0   (5.82c) 

λ(𝑛)∇2𝑇(𝑛) − 𝜉1
(𝑛)𝑇(𝑛) − 𝜉2

(𝑛) 𝜕T
(𝑛)

𝜕𝑡
+ 𝜉3

(𝑛)(𝑞1
(𝑛) + 𝑞2

(𝑛)) = 0  (5.82d) 

where 

𝜂1
(𝑛) = 𝛼(𝑛)(1 + 𝑣𝑛) ,  𝜂2

(𝑛) = 𝐷(𝑛)𝜌(𝑛)ℎ(𝑛) ,  𝜂3
(𝑛) = 𝐷(𝑛) , 

𝜇1
(𝑛) =

(1−𝑣(𝑛))

2
  ,  𝜇2

(𝑛) = 𝐵(𝑛)𝜌(𝑛)ℎ(𝑛) ,  𝜇3
(𝑛) = 𝐵(𝑛) ,   

𝜉1
(𝑛) =

λ𝑧
(𝑛)ℎ(𝑛)

I(𝑛)
  , 𝜉2

(𝑛) = 𝜌(𝑛)𝐶(𝑛) ,  𝜉3
(𝑛) =

c(𝑛)

I(𝑛)
 . 

5.5.3 Continuity relations 

At the interface of the laminate are shear stresses 𝜎1𝑧, 𝜎2𝑧 and peeling stresses 𝜎𝑧𝑧 

for the mechanical field while there is heat flow 𝑞 for the thermal field. These 

interfacial loads which affect thermomechanical stress distribution of the PV 

laminate are governed by the relations: 

𝑤(𝑖+1) −𝑤(𝑖) =
𝜎𝑧𝑧

(𝑖)

Ky
(𝑖)                               (5.83a) 

𝑢1
(𝑖) − 𝑢1

(𝑖+1) =
𝜎1𝑧

(𝑖)

Kx
(𝑖)        (5.83b) 

𝑢2
(𝑖) − 𝑢2

(𝑖+1) =
𝜎2𝑧

(𝑖)

Kx
(𝑖)        (5.83c) 
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𝜃(𝑖+1) − 𝜃(𝑖) =
𝑞𝑖

𝐾𝑧
(𝑖)       (5.83d) 

where Ky
(𝑖) , Kx

(𝑖)  and 𝐾𝑧
(𝑖)  are, respectively, the transverse interfacial 

compliance, longitudinal interfacial compliance and thermal conductance in the 

thickness direction at the interface 𝑖. These interfacial parameters are evaluated 

according to: 

Kx = Ky =
Ee

he
        (5.84a) 

𝐾𝑧
(𝑖) =

𝑐𝑖
ℎ𝑖+1
2𝜆 𝑖+1

 + 
ℎ𝑖
2𝜆 𝑖

 + 𝑅𝑖,
        (5.84b) 

where Ee  and he  are the relaxation modulus and thickness of the EVA at the 

interface 𝑖. The term 𝑅 denotes the thermal resistance at the interface between two 

layers. 

 

5.6 Asymptotic viscoelastic model for the encapsulant 

The isotropic linear viscoelastic model described in Sec. 3.2 is considered here for 

the estimation of EVA viscoelastic behaviour. It will be recalled that the equivalent 

shear relaxation modulus for the evaluation of EVA properties in the PV laminate 

is given as: 

𝐺𝑣𝑖𝑠𝑐 = 𝐺[𝜇0 + ∑ 𝜇𝑖
𝑁
𝑖=1 Δℎ𝑖(∆𝑡)]     (5.85) 

where Δℎ𝑖 =
𝜆𝑖

Δt
[1 − exp

−(
Δt

𝜆𝑖
)
] 

And the equivalent modulus Ee of the EVA is now evaluated according to: 

Ee = 2(1 + 𝑣)𝐺𝑣𝑖𝑠𝑐       (5.86) 
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The relaxation parameters 𝐺𝑖 and 𝜆𝑖 to evaluate 𝐺𝑣𝑖𝑠𝑐 are extracted from Table 3.1. 

To obtain a good approximate, seven Maxwell arms are chosen from the fourth arm 

to the fourteenth arm according to Table 5.2: 

 

Table 5.2. Parameters from uniaxial relaxation test extracted from Table 3.1. 

Maxwell arm 𝜆𝑖 𝐺𝑖[MPa] 

𝐺∞  𝐺∞ = 0.02 

4 100 11 

6 102 4 

8 104 1.4 

10 106 0.8 

12 108 0.7 

14 1010 0.8 

 

 

Using the 𝐺𝑖 and 𝜆𝑖 data from Table 5.2, the instantaneous shear relaxation 

modulus 𝐺(𝑡 = 0) according to Eq. (3.16) is: 

𝐺(𝑡 = 0) = 0.02 + 11 + 4 + 1.4 + 0.8.+0.7 + 0.8 = 18.72 

By dividing 𝐺𝑖 (𝑖 = 0, 1,… . . , 6) by 𝐺, the parameters 𝜇𝑖 are obtained according 

to Eq. (3.16) and are presented in Table 5.3. The relaxation parameters in Tables 

5.2 and 5.3 can be substituted into Eq. (5.85) to obtain 𝐺𝑣𝑖𝑠𝑐 and in turn Ee can be 

determined. 

 

 

 

 

 



114 
 

Table 5.3. Secondary relaxation parameters.  

𝑖 𝜇𝑖 

0 0.002 

1 0.59 

2 0.21 

3 0.075 

4 0.043 

5 0.037 

6 0.043 

 

5.7 Numerical implementation 

An example of a laboratory test module consisting of a stack of glass, 4 Silicon 

solar cells (2 × 2 pieces separated by a thin EVA strip) and backsheet layers (see 

Fig. 5.6). The material properties of the layers composing the module are indicated 

in Table 5.1. The temperature of the topmost glass and bottom backsheet layers are 

fixed at the press temperature which is assumed to decrease during cooling of the 

laminate according to the exponential (cooling) function in Eq. (5.96). The cooling 

function is obtained by fitting the cooling data during lamination as presented in 

[2]. Consequently, this problem is defined by a total of 18 equations consisting of 

10 equilibrium equations (9 for mechanical system and 1 for thermal system) and 

8 compatibility equations at the interface. The load intensities for the three layers 

are derived according to Appendix B.3. 

With respect to Eq. (5.59), Eq. (5.83) can be rewritten in terms of mid-plane 

displacements and deflections of the layers which in turn can be used to express 

the relations for surface loads 𝑝, 𝑛 and 𝑚 (see Appendix B.3). Consequently, in 
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accordance with Eq. (5.82), the overall equilibrium equations for the layers in the 

PV laminate are expressed as: 

Layer 1 

∇4𝑤(1) + 𝜂2
(1) 𝜕

2𝑤(1)

𝜕𝑡2
− 𝜂3(1)Ky

(1)(𝑤(1) −𝑤(2)) − 𝜂3(1)[−𝑐1
2𝐾𝑥1∇

2𝑤(1) −

𝑐2𝑐1𝐾𝑥1∇
2𝑤(2) + 𝐾𝑥1𝑐1(𝑈1,1

(1) − 𝑈1,1
(2)) + 𝐾𝑥1𝑐1(𝑈2,2

(1) − 𝑈2,2
(2))] = 0  

                      (5.87a) 

𝑈1,11
(1) + 𝜇1

(1)𝑈1,22
(1) − 𝜇2

(1) 𝜕
2𝑈1

(1)

𝜕𝑡2
+ 𝜇3

(1)𝐾𝑥1(𝑐1𝑤,1
(1) + 𝑐2𝑤,1

(2) + 𝑈1
(2) −

𝑈1
(1)) = 0                (5.87b) 

𝑈2,22
(1) + 𝜇1

(1)𝑈2,11
(1) − 𝜇2

(1) 𝜕
2𝑈2

(1)

𝜕𝑡2
+ 𝜇3

(1)𝐾𝑥1(𝑐1𝑤,2
(1) + 𝑐2𝑤,2

(2) + 𝑈2
(2) −

𝑈2
(1)) = 0                (5.87c) 

Layer 2 

∇4𝑤(2) + 𝜂1
(2)∇2𝑇(2) + 𝜂2

(2) 𝜕
2𝑤(2)

𝜕𝑡2
+𝜂3(2)Ky

(2)𝑤(1) − (𝜂3(2)Ky
(1) +

𝜂3(2)Ky
(2))𝑤(2)+𝜂3(2)Ky,i,j

(2)𝑤(3) − 𝜂3(2)[−𝑐2𝑐1𝐾𝑥1∇
2𝑤(1) −

𝑐2𝑐3𝐾𝑥2∇
2𝑤(3) − (𝑐2

2𝐾𝑥1 + 𝑐2
2𝐾𝑥2)∇

2𝑤(2) + 𝐾𝑥1𝑐2(𝑈1,1
(1) − 𝑈1,1

(2)) +

𝐾𝑥2𝑐2(𝑈1,1
(2) − 𝑈1,1

(3)) + 𝐾𝑥1𝑐2(𝑈2,2
(1) − 𝑈2,2

(2)) + 𝐾𝑥2𝑐2(𝑈2,2
(2) −

𝑈2,2
(3))] = 0                (5.88a) 

𝑈1,11
(2) + 𝜇1

(2)𝑈1,22
(2) − 𝜇2

(2) 𝜕
2𝑈1

(2)

𝜕𝑡2
+ 𝜇3

(2)𝐾𝑥1(−𝑐1𝑤,1
(1) − 𝑐2𝑤,1

(2) +

𝑈1
(1) − 𝑈1

(2)) + 𝜇3
(2)𝐾𝑥2(𝑐2𝑤,1

(2) + 𝑐3𝑤,1
(3) + 𝑈1

(3) −𝑈1
(2)) = 0  

         (5.88b) 
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𝑈2,22
(2) + 𝜇1

(2)𝑈2,11
(2) − 𝜇2

(2) 𝜕
2𝑈2

(2)

𝜕𝑡2
+ 𝜇3

(2)𝐾𝑥1(−𝑐1𝑤,2
(1) − 𝑐2𝑤,2

(2) +

𝑈2
(1) − 𝑈2

(2)) + 𝜇3
(2)𝐾𝑥2(𝑐2𝑤,2

(2) + 𝑐3𝑤,2
(3) + 𝑈2

(3) − 𝑈2
(2)) = 0  

         (5.88c) 

Layer 3 

∇4𝑤(3) + 𝜂2
(3) 𝜕

2𝑤(3)

𝜕𝑡2
− 𝜂3(3)Ky

(2)(𝑤(3) −𝑤(2)) − 𝜂3(3)[−𝑐3𝑐2𝐾𝑥2∇
2𝑤(2) −

𝑐3
2𝐾𝑥2∇

2𝑤(3) +𝐾𝑥2𝑐3(𝑈1,1
(2) − 𝑈1,1

(3)) + 𝐾𝑥2𝑐3(𝑈2,2
(2) −𝑈2,2

(3))] = 0  

                     (5.89a) 

𝑈1,11
(3) + 𝜇1

(3)𝑈1,22
(3) − 𝜇2

(3) 𝜕
2𝑈1

(3)

𝜕𝑡2
+ 𝜇3

(3)𝐾𝑥2(−𝑐2𝑤,1
(2) − 𝑐3𝑤,1

(3) +

𝑈1
(2) − 𝑈1

(3)) = 0       (5.89b) 

𝑈2,22
(3) + 𝜇1

(3)𝑈2,11
(3) − 𝜇2

(3) 𝜕
2𝑈2

(3)

𝜕𝑡2
+ 𝜇3

(3)𝐾𝑥2(−𝑐2𝑤,2
(2) − 𝑐3𝑤,2

(3) +

𝑈2
(2) − 𝑈2

(3)) = 0               (5.89c) 

where 

∇2𝑤(𝑖) =
𝜕2𝑤(𝑖)

𝜕𝑥1
2 +

𝜕2𝑤(𝑖)

𝜕𝑥2
2 , ∇4𝑤(𝑖) =

𝜕4𝑤(𝑖)

𝜕𝑥1
4 + 2

𝜕4𝑤(𝑖)

𝜕𝑥1
2𝜕𝑥2

2 +
𝜕4𝑤(𝑖)

𝜕𝑥2
4  (5.90) 

for 𝑖 = 1,2,3 

It should be noted that ∇2𝑇(1) = ∇2𝑇(3) = 0 since temperature of the glass and 

backsheet layers are already determined according to the cooling function (5.96). 

Therefore, only the thermal equation for the Silicon layer remains to be solved. 

Accordingly, the thermal equation is evaluated by substituting for heat flow at the 

upper and lower interface of the Silicon layer to obtain: 
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λ(2)∇2𝑇(2) − 𝜉1
(2)𝑇(2) − 𝜉2

(2) 𝜕T
(2)

𝜕𝑡
+ 𝜉3

(2)(𝐾𝑧
(2)𝜃(3) − 𝐾𝑧

(2)𝑐(2)𝑇(2)) +

𝜉3
(2)(𝐾𝑧

(1)𝜃(1) − 𝐾𝑧
(1)𝑐(2)𝑇(2)) = 0     (5.91) 

The temperature change in the glass and Backsheet layers are assumed to be equal 

to the press temperature i.e., 𝜃(3) = 𝜃(1) = 𝑇𝑝(𝑡). 𝐾2
(1) and 𝐾2

(2) are the thermal 

conductance at the lower and upper interfaces of the Silicon layer. 

where 𝑇𝑝 is the press temperature. 

Therefore, a total of 10 equations have to be solved to obtain 10 unknowns namely 

𝑤(1), 𝑤(2), 𝑤(3), 𝑈1
(1), 𝑈1

(2), 𝑈1
(3), 𝑈2

(1), 𝑈2
(2), 𝑈2

(3) and 𝑇(2). 

 

5.7.1 Boundary conditions 

The boundary condition for the mechanical system is a simply supported condition 

at all the edges of the laminate. Therefore, all displacements, moments and axial 

forces at the edges vanishes. This is mathematically expressed as: 

𝑤(𝑖)(𝑥1, 𝑥2) = 0  for 𝑥1 = 0, 𝐿1 and 𝑥2 = 0, 𝐿2         (5.92a) 

𝑢2
(𝑖)(𝑧, 𝑥1, 𝑥2) = 0  for 𝑥1 = 0, 𝐿1                    (5.92b) 

𝑢1
(𝑖)(𝑧, 𝑥1, 𝑥2) = 0  for 𝑥2 = 0, 𝐿2            (5.92c) 

𝑀1
(𝑖)(𝑥1, 𝑥2) = 0  for 𝑥2 = 0, 𝐿2            (5.92d) 

𝑀2
(𝑖)(𝑥1, 𝑥2) = 0  for 𝑥1 = 0, 𝐿1            (5.92e) 

𝑁1
(𝑖)(𝑥1, 𝑥2) = 0  for 𝑥1 = 0, 𝐿1            (5.92f) 

𝑁2
(𝑖)(𝑥1, 𝑥2) = 0  for 𝑥2 = 0, 𝐿2            (5.92g) 

The boundary conditions for the thermal system is expressed as: 
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𝜆
𝜕𝑇(𝑋,𝑥2,𝑡)

𝜕𝑥1
+ ℎ𝑇(𝑋, 𝑥2, 𝑡) = ℎ𝑇𝑝              (5.93a) 

𝜆
𝜕𝑇(0,𝑥2,𝑡)

𝜕𝑥1
+ ℎ𝑇(0, 𝑥2, 𝑡) = −ℎ𝑇𝑝             (5.93b) 

𝜆
𝜕𝑇(𝑥1,𝑌,𝑡)

𝜕𝑥2
+ ℎ𝑇(𝑥1, 𝑌, 𝑡) = ℎ𝑇𝑝              (5.93c) 

𝜆
𝜕𝑇(𝑥1,0,𝑡)

𝜕𝑥2
+ ℎ𝑇(𝑥1, 0, 𝑡) = −ℎ𝑇𝑝                   (5.93d) 

5.7.2 Finite difference discretization 

To obtain the solution for the system equations, a centred divided difference is used 

for space discretization of the system of coupled higher order PDEs. The procedure 

to obtain the finite difference weights of derivatives of functions has been discussed 

extensively in Chapter 3 and it is hereby noted that, 

𝑤,𝑥𝑥𝑥𝑥 =
𝑤𝑖+2,𝑗−4𝑤𝑖+1,𝑗+6𝑤𝑖,𝑗−4𝑤𝑖−1,𝑗+𝑤𝑖−2,𝑗

∆𝑥4
             (5.94a) 

𝑤,𝑥𝑥𝑦𝑦 =
𝑤𝑖+1,𝑗+1−2𝑤𝑖+1,𝑗+𝑤𝑖+1,𝑗−1−2𝑤𝑖,𝑗+1+4𝑤𝑖,𝑗−2𝑤𝑖,𝑗−1+𝑤𝑖−1,𝑗+1−2𝑤𝑖−1,𝑗+𝑤𝑖−1,𝑗−1

∆𝑥2∆𝑦2 
    

                 (5.94b) 

𝑤,𝑥𝑥 =
𝑤𝑖+1,𝑗−2𝑤𝑖,𝑗+𝑤𝑖−1,𝑗

∆𝑥2
              (5.94c) 

A backward difference approximation is applied for the first derivative as: 

𝑤,𝑥 =
𝑤𝑖,𝑗−𝑤𝑖−1,𝑗

∆𝑥
                (5.94d) 

There is material discontinuity in the Silicon layer due to the presence of the thin 

EVA strip between Silicon solar cells. On this basis, a non-uniform mesh size is 

adapted for the region of discontinuity. To obtain the finite difference formula of 

the differentials in this region, Lagrangian polynomials are used to estimate the 

finite difference weights by interpolation as shown in Table 3.4 (see Appendix B). 
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The compact system equations after finite difference discretization becomes: 

𝑴𝑤
d2𝒘

d𝑡2
+𝑲𝑤𝒘+𝑲𝑢𝑼1 +𝑲𝑣𝑼2 + 𝑪𝑇𝑻 = 𝑭1𝑖(𝑡)            

(5.95a) 

𝑴𝑢
d2𝑼1

d𝑡2
+ �̅�𝑢𝑼1 + �̅�𝑤1𝒘 = 𝑭2𝑖(𝑡)              

(5.95b) 

𝑴𝑣
d2𝑼2

d𝑡2
+ �̅�𝑣𝑼2 + �̅�𝑤2𝒘 = 𝑭3𝑖(𝑡)              

(5.95c) 

𝑺
𝜕𝑻

𝜕𝑡
+𝑯𝑻 = 𝑭4𝑖(𝑡)               

(5.95d) 

In Eq. (5.95), 𝑖(𝑡) is the cooling function which is obtained by exponential fitting 

of the cooling data during lamination as presented in [2]. The correlation for the fit 

in Fig. 5.7 is expressed mathematically as: 

𝑖(𝑡) = 𝑎exp(𝑏×𝑡) + 𝑐exp(𝑑×𝑡)            

(5.96) 

where 

𝑎 = −227.8 , 𝑏 = −0.0004404  , 𝑐 = 227.8 , 𝑑 = −0.002476 . 

For this analysis, it is assumed that the press temperature 𝑇𝑝 = 𝑖(𝑡). 
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Figure 5.7. Exponential fit for the cooling data during lamination. 

 

The global system matrix becomes: 

[

𝑴𝒘 𝟎 𝟎 𝟎
𝟎 𝑴𝑢 𝟎 𝟎
𝟎 𝟎 𝑴𝑣 𝟎
𝟎 𝟎 𝟎 𝟎

]{

�̈�
�̈�1
�̈�2
�̈�

} + [

𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝑺

]{

�̇�
�̇�1
�̇�2
�̇�

} + [

𝑲𝑤 𝑲𝑢 𝑲𝑣 𝑪𝑇
�̅�𝑤1 𝑲𝑢1 𝟎 𝟎

�̅�𝑤2 𝟎 𝑲𝑣1 𝟎
𝟎 𝟎 𝟎 𝑯

]{

𝒘
𝑼1
𝑼2
𝑻

} =

{

𝑭1
𝑭2
𝑭3
𝑭4

}  𝑖(𝑡)        (5.97) 

 

5.7.3 Newmark time integration 

Since there is no feedback coupling from the thermal system to the mechanical 

system in Eq. (5.97), the thermal system can be solved independently of the 

mechanical system and the predetermined temperature field can be used as an input 

to obtain the transient response of the mechanical system. Accordingly, Eq. (5.97) 

can be rewritten in a compact form as: 
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[
𝑴1 𝟎
𝟎 𝟎

] {
�̈�

�̈�
} + [

𝟎 𝟎
𝟎 𝑺

] {
�̇�

�̇�
} + [

𝑲1 𝑪1
𝟎 𝐇

] {
𝝌
𝑻
} = {

�̅�1
𝑭4
} 𝑖(𝑡)   (5.98) 

where  

𝑴1 = [

𝑴𝒘 𝟎 𝟎
𝟎 𝑴𝒖 𝟎
𝟎 𝟎 𝑴𝒗

]  , 𝑲1 = [

𝑲𝒘 𝑲𝑢 𝑲𝑣
�̅�𝑤1 𝑲𝑢1 𝟎

�̅�𝑤2 𝟎 𝑲𝑣1

] , 𝝌 = {

𝒘
𝑼1
𝑼2
} , 𝑪1 = {

𝑪𝑇
𝟎
𝟎
} , 

�̅�1 = {

𝑭1
𝑭2
𝑭3

} , 𝑴1, 𝑲1 ∈ ℝ
N1×N1 , 𝑪1 ∈ ℝN1×N𝑇 , N1 = 3𝑁 . 

To solve this system of coupled differential equations, general Newmark algorithm 

described in [82] is used. For approximation of variable 𝝌 that occurs in second 

order at time 𝑡𝑛+1, 

𝝌𝑛+1 = 𝝌𝑛 + ∆𝑡�̇�𝑛 +
1

2
∆𝑡2�̈�𝑛 +

1

2
𝛽2∆𝑡

2∆�̈�𝑛+1    (5.99a) 

𝝌𝑛+1 = 𝝌
𝑝
𝑛+1 +

1

2
𝛽2∆𝑡

2∆�̈�𝑛+1      (5.99b) 

𝝌𝑝 denotes predetermined parameter. 

The first-order time derivative �̇� is approximated at time 𝑡𝑛+1 as: 

�̇�𝑛+1 = �̇�𝑛 + ∆𝑡�̈�𝑛 + 𝛽1∆𝑡∆�̈�𝑛+1      (5.100a) 

�̇�𝑛+1 = �̇�
𝑝
𝑛+1 + 𝛽1∆𝑡∆�̈�𝑛+1      (5.100b) 

Approximation of variable 𝑻 that occurs in first order at time 𝑡𝑛+1 gives: 

𝑻𝑛+1 = 𝑻𝑛 + ∆𝑡�̇�𝑛 + 𝜗∆𝑡∆�̇�𝑛+1     (5.101a) 

𝑻𝑛+1 = 𝑻
𝑝
𝑛+1 + 𝜗∆𝑡∆�̇�𝑛+1      (5.101b) 

where  
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∆�̈�𝑛+1 = �̈�𝑛+1 − �̈�𝑛       (5.102a) 

∆�̇�𝑛+1 = �̇�𝑛+1 − �̇�𝑛       (5.102b) 

∆�̇�𝑛+1 = �̇�𝑛+1 − �̇�𝑛       (5.102c) 

By substituting Eqs. (5.99–5.101) into Eq. (5.98), we obtain: 

𝑴1(∆�̈�𝑛+1 + �̈�𝑛) + 𝑲1 (𝝌
𝑝
𝑛+1 +

1

2
𝛽2∆𝑡

2∆�̈�𝑛+1) + 𝑪1(𝑻
𝑝
𝑛+1 + 𝜗∆𝑡∆�̇�𝑛+1) =

�̅�1𝑖(𝑡)                   (5.103a) 

𝑺(∆�̇�𝑛+1 + �̇�𝑛) + 𝑯(𝑻
𝑝
𝑛+1 + 𝜗∆𝑡∆�̇�𝑛+1) = 𝑭4𝑖(𝑡)   (5.103b) 

Eq. (5.103) can be rewritten by collecting like terms to get: 

(𝑴1 +
1

2
𝛽2∆𝑡

2𝑲1)⏟            
�̅�1

∆�̈�𝑛+1 + 𝑪1𝜗∆𝑡⏟  
�̅�1

∆�̇�𝑛+1 = �̅�1𝑖(𝑡) − 𝑴1�̈�𝑛 − 𝑲1𝝌
𝑝
𝑛+1 − 𝑪1𝑻

𝑝
𝑛+1⏟                        

𝑹1

 

         (5.104a)  

(𝑺 + 𝑯𝜗∆𝑡)⏟        
�̅�

∆�̇�𝑛+1 = 𝑭4𝑖(𝑡) − 𝑺�̇�𝑛 −𝑯𝑻
𝑝
𝑛+1⏟                

𝑹2

    (5.104b) 

∆�̇�𝑛+1 determined from Eq. (5.104b) can be substituted into Eq. (5.104a) so that 

∆�̈�𝑛+1 is obtained from the following relation: 

�̅�1∆�̈�𝑛+1 = 𝑹1 − �̅�1∆�̇�𝑛+1      (5.105) 

To achieve unconditional numerical stability, the integration parameters 𝜗, 𝛽1, and 

𝛽2 are chosen as 𝜗 = 0.5, 𝛽1 = 0.5, 𝛽2 = 0.5 and a time step ∆𝑡 = 1s is specified. 
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5.8 Numerical results 

All mathematical formulations (for 2D and 3D) presented in the previous sections 

are implemented in MATLAB computational software. For the 2D case, the results 

are subdivided into uniform temperature case in which results for exact solution 

are computed and non-uniform temperature case in which results for numerical 

solution are presented. For results in the 3D category, numerical solutions for 

(axial, shear and peeling) stress distributions at different regions of the module are 

computed and observed transient stress evolution are also presented. 

 

5.8.1 Uniform temperature across the PV module (2D case) 

The module is considered to cool down inside the laminator from 150 oC to the 

room temperature (25 oC) in 30 minutes. At this final temperature, the EVA 

equivalent relaxation modulus 𝐸(𝑡) is calculated to be 6 MPa.  

 

(a)        (b) 

Figure. 5.8 (a) Stress and (b) strain distributions for a perfect interface 

configuration of uniform temperature analysis. 
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In the case of perfectly bonded interfaces and EVA layers treated as continuum 

layers with their thicknesses, the axial stress and strain are plotted in Fig. 5.8. The 

Silicon layer results to be in a compressive stress state above 60 MPa. The thermal 

strain and the mechanical strain almost counteract each other, which makes the 

total strain to be almost zero in the entire module.  

For the shear deformable interface configuration with 3 real layers and 2 shear-lag 

interfaces (glass-Silicon interface 1 and Silicon-backsheet interface 2), 2 models 

are examined thus: 

(1) Shear deformable interfaces with longitudinal compliance only. 

(2) Shear deformable interfaces with longitudinal and transverse compliances 

of equal magnitude. 

 

  

(a)       (b) 

Figure. 5.9 Shear stress at (a) interface 2 (b) interface 1 for a uniform temperature 

analysis. 

It can be deduced from the results shown in Fig. 5.9 that the interfacial stress 

distribution for model 1 and model 2 are almost the same. This result is not 

unexpected, since isotropic adhesive layers at the interfaces for model 1 and model 

2 (i.e., Kx = Ky ) are assumed. The effect of the transverse compliance will 
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obviously be significant when an orthotropic adhesive (i.e. Kx ≠ Ky) interface is 

considered.    

The results of the interfacial stress distribution pinpoint that the magnitude of the 

shear stresses and the peeling stresses increases towards the edge of the laminate. 

Therefore, those points are critical locations for possible delamination. It is 

observed in Fig. 5.10 that the mean compressive stress in the silicon layer is 

reduced for the shear deformable interface configuration with respect to the perfect 

interface configuration, due to the finite compliance of the interfaces, which is a 

more realistic situation in practice.  

  

(a)      (b) 

Figure. 5.10 (a) Peeling stress along interfaces 1 and 2; (b) Silicon compressive 

stress for model 2.  

 

5.8.2 Non-uniform temperature (2D case) 

The stress formulation for this analysis involves a shear deformable interface with 

only longitudinal compliance, since the effect of the transverse compliance was 

already found to be negligible. The solution for this problem is achieved by using 

the trapezium rule method for time integration. As highlighted in Sec. 5.3.2, the 

accuracy of the numerical scheme is tested against the result from the exact solution 
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that can be determined for the uniform temperature boundary conditions. A very 

good agreement was found, see Fig. 5.11, proving the accuracy of the method. 

   

(a)      (b) 

Figure. 5.11 exact and numerical solution for uniform temperature analysis at (a) 

interface 1 (b) interface 2. 

 

   

(a)          (b) 

Figure. 5.12 Shear stresses at: (a) interface 1, and (b) interface 2, after a cooling 

period of 30 minutes. 

The numerical results for the non-uniform temperature analysis show that the 

magnitude of the interfacial stresses at the Glass-Silicon interface is reduced with 

respect to the uniform temperature analysis, as we move away from the core to the 

edge of the laminate. This may be attributed to the temperature variation from the 

core to the edge of the laminate, see Fig. 5.12(a). On the other hand, there is no 
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significant change in the stress distribution at the Silicon-backsheet interface, see 

Fig. 5.12(b). 

Results in Fig. 5.13 show that the mean compressive stress in the Silicon cell 

increases along the longitudinal coordinate in the Silicon layer as the cooling time 

increases.  

 

Figure. 5.13. Mean residual compresssive stresses in the Silicon layer vs.  

longitudinal coordinate, for  different time intervals. 

 

As shown in Fig. 5.14, the mean residual axial stress in the Silicon layer at the end 

of the lamination process after cooling is considerably lower by assuming a time- 

space-dependent temperature field instead of a uniform temperature across the 

whole module, i.e., about 45 MPa instead of about 60 MPa. A detailed comparison 

of numerical results for the different models is presented in Tables 5.4-5.6. 
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Figure. 5.14 Mean axial stress distribution in the module for non-uniform 

temperature analysis. 

Table 5.4: mean axial stress in Silicon for different models and different thickness 

of Silicon cell. 

Normalized 

Thickness 

Mean axial stress in Silicon (MPa) 

Uniform temperature Non-uniform 

temperature 

Perfect 

interface 

Shear-lag Shear-lag 

0.01 -66.452 -56.363 -44.005 

0.10 -66.332 -56.184 -43.974 

0.20 -66.212 -55.996 -43.938 

0.30 -66.092 -55.817 -43.901 

0.40 -65.973 -55.629 -43.865 

0.50 -65.853 -55.450 -43.828 

0.60 -65.733 -55.272 -43.792 

0.70 -65.573 -55.084 -43.755 

0.80 -65.453 -54.905 -43.719 

0.90 -65.333 -54.717 -43.682 

1.00 -65.213 -54.547 -43.648 
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Tabe 5.5: interlaminar stresses at the interface 1 between glass and Silicon for 

uniform and non-uniform temperatures. 

Normalized 

length 

Interfacial stresses, interface 1 (MPa) 

Shear stresses  Peeling stresses 

Uniform 

temperature 

Non uniform 

temperature 

Uniform 

temperature 

Non-uniform 

temperature 

0.00 0.00000 0.00000 0.00000 0.00000 

0.10 0.00077 -0.00037 0.00285 0.00074 

0.20 0.00145 -0.00090 0.00011 0.00117 

0.30 0.00209 -0.00160 0.00024 -0.00301 

0.40 0.00246 -0.00302 0.00042 -0.00561 

0.50 0.00214 -0.00571 0.00064 -0.01248 

0.60 -0.00025 -0.01153 0.00085 -0.02231 

0.70 -0.01043 -0.02557 0.00094 -0.03551 

0.80 -0.04275 -0.05874 0.00048 -0.06022 

0.90 -0.16236 -0.16024 -0.00222 -0.09496 

1.00 -0.52913 -0.45058 -0.01645 -0.13839 
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Table 5.6: Interlaminar stress distribution at the interface 2 between Silicon and 

backsheet for uniform and non-uniform temperatures. 

Normalized 

length 

Interfacial stresses, interface 2 (MPa) 

Shear stresses Peeling stresses 

Uniform 

temperature 

Non uniform 

temperature 

Uniform 

temperature 

Non uniform 

temperature 

0.00 0.00000 0.00000 0.00000 0.00000 

0.10 0.02870 0.00832 0.00034 -0.00052 

0.20 0.05564 0.01579 0.00130 0.00047 

0.30 0.08580 0.02502 0.00290 -0.00055 

0.40 0.11500 0.03579 0.00480 0.00042 

0.50 0.14866 0.05236 0.00713 -0.00067 

0.60 0.18211 0.07454 0.00936 0.00053 

0.70 0.22163 0.11093 0.01162 -0.00019 

0.80 0.26196 0.16174 0.01322 -0.00128 

0.90 0.31138 0.24590 0.01370 -0.00194 

1.00 0.36520 0.36719 0.01919 -0.00378 

 

 

5.8.3 Residual stress distributions (3D case) 

Residual stresses at the end of lamination i.e., after 15 min of the simulation are 

examined to analyse the response of the coupled thermo-mechanical system. With 

interface 1 between Silicon and glass and the interface 2 between backsheet and 

Silicon, interfacial stresses in the longitudinal directions are shown in specific 

points in the plane. Peeling stresses along one of the longitudinal axes are also 
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evaluated. To obtain the normal stresses over the thickness in 𝑥1 and 𝑥2 directions, 

the PV module is divided into 4 regions as in Fig. 5.15a. To investigate the stress 

variation in the PV module, mean normal stresses are also computed over the 

laminate thickness for different points in the region 1 as shown in Fig. 5.15b since 

the stress condition of region 1 is the same for other regions due to the same 

boundary conditions imposed on all the sides. 

 

(a)       (b) 

Figure 5.15. Regions indicating Silicon solar cells. 

 

Figure 5.16 shows the interfacial stress 2 for interfaces 1 and 2 along the 𝑥2 

coordinate. A typical trend with a peak at the edges is observed due to stress 

concentrations. Specifically, a maximum of 0.4 MPa of the shear stress component 

2 are obtained at the edges of the Silicon-backsheet interface while 0.1 MPa is 

attained at the edges of the Glass-Silicon interface. A similar trend characterizes 

the shear stress component 1 (see Fig. 5.17) since similar boundary conditions are 

imposed at the 𝑥1 and 𝑥2 edges of the laminate. 
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(a)      (b) 

    

      (c)       (d) 

Figure 5.16. Shear stress 2 along the 𝑥2 direction at specific points in 𝑥1 

direction. 
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   (c)      (d) 

Figure 5.17. Shear stress 1 along the 𝑥1 direction at specific points in 𝑥2 

direction. 

 

   

(a)       (b) 

 

   (c)      (d) 

Figure 5.18. Peeling stresses along the 𝑥2 direction. 
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The peeling stresses along the longitudinal axis in the 𝑥1-direction is shown in Fig. 

5.18. They are quite low in magnitude except at the edges, potential sites for 

delamination. 

    

(a)      (b) 

   

   (c)        (d) 

Figure 5.19. Mean axial stress 2 at specific regions in the PV laminate. 

 

The mean normal stresses in the laminate are computed in accordance with Fig. 

(5.15). Figure 5.19 shows the computed normal stresses at different points in region 

1 of the laminate and they clearly depend on the position in the Silicon cell. At the 

edges of the laminate (points 1-3), the Silicon layer experiences a compressive 

stress magnitude in the range of 40-65 MPa while at the mid-portion of the laminate 

(point 4), a compressive stress of about 140 MPa is obtained. The average normal 

stress averaged over the whole region 1 shows a peak of 60 MPa in compression 
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(see Fig. 5.20). This result corroborates the 2D uniform temperature analysis 

reported in [97].   

The backsheet is generally in tension due to its low coefficient of thermal expansion 

and low bending moment while the glass is largely in tension due high thermal 

stresses in excess of mechanical stresses. 

 

Figure 5.20. Normal stress component 2 averaged over the whole region 1 in the 

PV laminate. 

 

The stress evolution profiles for the normal stress components in Silicon along the 

𝑥2-directions at the points specified in Fig. 5.15b are shown in Fig. (5.11) versus 

time. The transient stress response evolves exponentially similarly to the input 

cooling function 𝑖(𝑡). This observation highlights the importance of the choice of 

the cooling function that governs the transient regime of the coupled 

thermomechanical system. 
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Figure 11. Stress component 2 evolution at specific regions in the laminate. The 

values at the last time step correspond to 𝑡 = 15 minutes at the end of the cooling 

stage. 
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CHAPTER 6 

MODEL ORDER REDUCTION OF 

STRUCTURAL MODELS FOR 

PHOTOVOLTAIC APPLICATIONS 

6.1 Introduction  

Modelling of physical systems may be a challenging task when it requires solving 

large sets of numerical equations. This is the case of photovoltaic (PV) systems 

which contain many PV modules, each module containing several silicon cells. The 

determination of the temperature and stress fields in the modules leads to large 

scale systems, which may be computationally expensive to solve. As demonstrated 

in chapter 5, discretization of the 3D coupled shear-lag system equations leads to 

more than 16,000 active (mechanical and thermal) degrees of freedom to be 

determined and to obtain a full solution of the discretized system becomes an 

expensive task.  Model Order Reduction (MOR) techniques can be used to 

approximate the full system dynamics with a compact model that is much faster to 

solve. In this chapter, the techniques to reduce thermomechanical system equations 

for PV modules are described. Since it is believed that this is the first attempt to 

apply MOR techniques to reduce PV system equations, the procedure described 

here is implemented in two stages in order to examine, hierarchically, the 
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application of MOR techniques to PV system. The first stage describes the MOR 

approach to reduce a thermal (first-order) system of PV module during service 

while the second stage involves techniques to reduce large scale dynamic coupled 

thermomechanical (second-order) system equations for PV module during 

lamination.  

Among the several available MOR approaches, in this work, a Proper Orthogonal 

Decomposition (POD) projection based approach together with Discrete Empirical 

Interpolation Method (DEIM) has been applied to the first-order thermal system, 

with a suitably modified formulation that is specifically designed for handling the 

nonlinear terms that are present in the equations governing the thermal behaviour 

of PV modules during service. The results show that the proposed DEIM technique 

is able to reduce significantly the system size, by retaining a full control on the 

accuracy of the solution. The second-order coupled thermomechanical system is 

efficiently reduced by using the second-order Krylov based method described in 

chapter 4. A detail comparison between state-space approach and the second-order 

Krylov method is herein presented. Due to the thermal coupling of the 

thermomechanical system, a structure preserving scheme is desired. Despite the 

fact that there is no standard approach in the literature for treating a second-order 

coupled system for structure preservation, a new structure preserving formulation 

for coupled system is proposed in this work and the results show good agreement 

with original system outputs. 

 

6.2 Model order reduction of heat conduction problem in PV 

module 

A 2D thermal model of a PV module is proposed here based on the work by Jones 

[79]. We consider a PV module containing 12 silicon cells embedded in a 
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composite made of glass, EVA, Silicon, EVA, backsheet and tedlar layers with the 

properties described in Table 6.1 [80]. Although solar cells are separated from each 

other by a small amount of EVA in their plane, in this work, a slightly simplified 

structure is considered by assuming all layers as uniform in the x and y directions, 

see Fig. 6.1. Further, it is considered that the y direction is infinite. 

 

Figure 6.1. A sketch of a cross-section of a PV module, not in scale. For the actual 

value of the thicknesses, see the labels in the figure. 

 

6.2.1 Formulation of the thermal problem and finite difference 

approximation  

Under the above assumptions in Sec. 6.1, the following general 2D heat equation 

for the composite PV panel holds: 

𝐶
𝜕𝑇

𝜕𝑡
= 𝜆𝑥

𝜕2𝑇

𝜕𝑥2
+ 𝜆𝑧

𝜕2𝑇

𝜕𝑧2
+𝐻 − 𝐺      (6.1) 

where 𝑇 (𝑥, 𝑧, 𝑡) represents the space and time dependent temperature profile of the 

module. 𝐶 (𝑥, 𝑧) is an equivalent volumetric heat capacity (J/m3K), which is equal 

to an equivalent mass density times the equivalent specific heat capacity (C =𝜌. 𝑐𝑝). 

The function 𝐻 (𝑥, 𝑧, 𝑡)  represents the heat losses by radiation and convection 

taking place at any place within the PV module, and 𝐺(𝑥, 𝑧, 𝑡) is the electrical 
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energy generated by the cell layer. The coefficients 𝜆𝑥(𝑥, 𝑧) and 𝜆𝑧(𝑥, 𝑧) are the 

thermal conductivities in the x and z directions respectively.  According to 

Fourier’s law of heat conduction, the heat flows in the x and z direction are related 

to these thermal conductivities by: 

𝑞𝑧 = −𝜆𝑧
𝜕𝑇

𝜕𝑧
 , 𝑞𝑥 = −𝜆𝑥

𝜕𝑇

𝜕𝑥
     (6.2) 

Substituting (6.2) into (6.1) gives: 

𝐶
𝜕𝑇

𝜕𝑡
= −

𝜕𝑞𝑥

𝜕𝑥
−
𝜕𝑞𝑧

𝜕𝑧
+𝐻 − 𝐺      (6.3) 

Using now a finite difference (FD) discretization scheme defined by grid spacing 

∆𝑥𝑖 and ∆𝑧𝑗 in the x and z-direction, respectively, with associated discretization 

indices 𝑖  for 1 ≤ 𝑖 ≤ 𝑙  and 𝑗  for 1 ≤ 𝑗 ≤ 𝑠   (see Fig. 6.2), Eq. (6.3) can be 

rephrased as:  

𝐶𝑖,𝑗
𝑑𝑇𝑖,𝑗

𝑑𝑡
=
𝑞
𝑖−
1
2
,𝑗
−𝑞

𝑖+
1
2
,𝑗

∆𝑥𝑖
+
𝑞
𝑖,𝑗−

1
2
−𝑞

𝑖,𝑗+
1
2

∆𝑧𝑗
+𝐻𝑖,𝑗 − 𝐺𝑖,𝑗    (6.4) 

 

Table 6.1. Material properties of the layers of the PV module [80]. 

Layer Thickness 

(mm) 

Thermal 

conductivity 

(W/moK) 

Density 

(Kg/m3) 

Specific heat 

capacity 

(J/KgoK) 

Glass 4 1.8 3000 500 

EVA 0.5 0.35 960 2090 

PV Cells 0.166 148 2330 677 

EVA 0.5 0.35 960 2090 

Back contact  0.1 237 2700 900 

Tedlar 0.1 0.2 1200 1250 
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Figure 6.2. Finite difference discretization of the PV module in its plane. 

 

where 𝑞
𝑖−
1

2
,𝑗

 and 𝑞
𝑖+
1

2
,𝑗

 are the heat flows through the left and right boundaries of 

element (𝑖, 𝑗), and 𝑞
𝑖,𝑗−

1

2

 and  𝑞
𝑖,𝑗+

1

2

 are the heat flows through the upper and lower 

boundaries of the element in its plane. Multiplying (6.4) by the area 𝐴𝑖,𝑗 =

∆𝑥𝑖∆𝑧𝑗of each grid element in the FD discretization leads to:  

𝐶𝑖,𝑗𝐴𝑖,𝑗
𝜕𝑇𝑖,𝑗

𝜕𝑡
= 𝑄

𝑖−
1

2
,𝑗
− 𝑄

𝑖+
1

2
,𝑗
+ 𝑄

𝑖,𝑗−
1

2

− 𝑄
𝑖,𝑗+

1

2

+ 𝐴𝑖,𝑗𝐻𝑖,𝑗 − 𝐴𝑖,𝑗𝐺𝑖,𝑗  (6.5) 

 

where 𝑄 represents, consistently with energy conservation principles, the heat flow 

between adjacent cells, which can be further expressed as 𝑄 = 𝐾Δ𝑇 [80], where  

Δ𝑇 is the temperature change between the two cells, and 𝐾 is the corresponding 

thermal conductance. The latter is a function of the equivalent thermal 

conductivities of the two cells and the width and length of the elements, i.e. ∆𝑧𝑗 

and ∆𝑥𝑖. 

 

 

 

𝑇𝑖,𝑗 𝑇𝑖+1,𝑗 𝑇𝑖−1,𝑗 

𝑇𝑖,𝑗+1 

𝑇𝑖,𝑗−1 z-direction 

x-direction 
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6.2.2 Thermal conductances and heat flows 

The discretized thermal conductances 𝐾𝑖,𝑗  (W/mK) provide information on the 

thermal coupling between the elements in the discretization of the PV module. 

Assuming perfect bonding at the various interfaces between the layers, the thermal 

conductance per unit length in the x-direction between cells (𝑖 − 1, 𝑗) and (𝑖, 𝑗) is 

given by [16, 81]: 

𝐾
𝑖−
1

2
,𝑗
=

∆𝑧𝑗

∆𝑥𝑖−1 2𝜆𝑥 𝑖−1,𝑗⁄ +Δ𝑥𝑖 2𝜆𝑥 𝑖,𝑗⁄ +𝑅
𝑖−
1
2
,𝑗

     (6.6) 

where R is the thermal resistance at the interface between the elements. Since in 

the present approximation, the PV layers are uniform in the x-direction, the thermal 

conductivity 𝜆𝑥  does not change in the x direction and we have 𝑅
𝑖−
1

2
,𝑗
= 0 and 

notation can be simplified as 𝜆𝑥 𝑖−1,𝑗 = 𝜆𝑥 𝑖,𝑗 = 𝜆𝑗 . This assumption is still 

reasonable for the silicon cell layer, since the cells are separated from each other 

by a small amount of EVA (2mm), much smaller than the lateral size of each silicon 

cell (125mm). Grid spacing ∆𝑥 is also considered to be constant in the x direction. 

Therefore, Eq. (6.6) becomes: 

𝐾
𝑖−
1

2
,𝑗
=

∆𝑧𝑗

∆𝑥 2𝜆𝑗⁄ +∆𝑥 2𝜆𝑗⁄
= 𝜆𝑗

∆𝑧𝑗

∆𝑥
      (6.7) 

 

and 𝐾
𝑖−
1

2
,𝑗
= 𝐾

𝑖+
1

2
,𝑗
= 𝐾𝑗 due to material homogeneity in the x-direction.  

In the z-direction, 

𝐾
𝑗−

1

2

=
∆𝑥

∆𝑧𝑗−1 2𝜆𝑧 𝑗−1⁄ +∆𝑧𝑗 2𝜆𝑧 𝑗⁄ +𝑅
𝑗−
1
2

     (6.8) 

𝐾
𝑗+

1

2

=
∆𝑥

∆𝑧𝑗+1 2𝜆𝑧 𝑗+1⁄ +∆𝑧𝑗 2𝜆𝑧 𝑗⁄ +𝑅
𝑗+
1
2

  

 

 

 



143 
 

and at the top and bottom boundary elements of the PV module, (𝑖, 1) and (𝑖, 𝑠), 

𝐾1
2

=
∆𝑥

∆𝑧1 2𝜆𝑧 1⁄ +𝑅1
2

        (6.9) 

𝐾
𝑠−

1

2

=
∆𝑥

∆𝑧𝑠 2𝜆𝑧 𝑠⁄ +𝑅
𝑠−
1
2

                   (6.10) 

where 𝑅1
2

 and 𝑅
𝑠−

1

2

 are the thermal resistances between the top and bottom 

elements and the free surfaces. 

From Eq. (6.5), the heat flows through the left and the right boundaries of the 

element (𝑖, 𝑗) are thus defined as: 

𝑄
𝑖−
1

2
,𝑗
= 𝐾𝑗(𝑇𝑖−1,𝑗 − 𝑇𝑖,𝑗)                (6.11) 

𝑄
𝑖+
1

2
,𝑗
= 𝐾𝑗(𝑇𝑖,𝑗 − 𝑇𝑖+1,𝑗)                (6.12) 

whereas the heat flows through the lower and upper boundary of the element (𝑖, 𝑗) 

are: 

𝑄
𝑖,𝑗−

1

2

= 𝐾
𝑗−

1

2

(𝑇𝑖,𝑗−1 − 𝑇𝑖,𝑗)                (6.13) 

𝑄
𝑖,𝑗+

1

2

= 𝐾
𝑗+

1

2

(𝑇𝑖,𝑗 − 𝑇𝑖,𝑗+1)                (6.14) 

 

6.2.3 Boundary conditions 

In this study, a constant (Dirichlet) temperature is applied to the right and left 

boundary of the module. Thus, the heat flow at the left and right boundary elements 

of the PV module (1, 𝑗) and (𝑙, 𝑗) are: 
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𝑄1
2
,𝑗
= 𝐾𝑗(𝑇𝑏1 − 𝑇1,𝑗)                 (6.15) 

𝑄
𝑙−
1

2
,𝑗
= 𝐾𝑗(𝑇𝑙,𝑗 − 𝑇𝑏2)                 (6.16) 

Where 𝑇𝑏1 and 𝑇𝑏2 are the fixed temperatures imposed at the right and left of the 

module. In all subsequent simulations, the boundary temperature value will set 

equal to 343 K and 313 K in order to simulate a distinct differential temperature 

profile from one end of the PV module to the other. 

The heat flow at the top and bottom boundary elements of the PV module (𝑖, 1) and 

(𝑖, 𝑠) are instead: 

𝑄
𝑖,
1

2

= 𝐾1
2

(𝑇𝑠𝑘𝑦 − 𝑇𝑖,1)       (6.17) 

𝑄
𝑖,𝑠−

1

2

= 𝐾
𝑠−

1

2

(𝑇𝑖,𝑠 − 𝑇𝑠𝑘𝑦)      (6.18) 

where 𝑇𝑠𝑘𝑦 is the temperature of the sky. 

 

6.2.4 Heat loss  

The heat loss, which varies through the layer thickness of the module, is given by 

the sum of the following contributions [79]: 

𝐻(𝑥, 𝑧, 𝑡) = 𝑞𝑙𝑤(𝑥, 𝑧, 𝑡) + 𝑞𝑠𝑤(𝑥, 𝑧, 𝑡) + 𝑞𝑐𝑜𝑛𝑣(𝑥, 𝑧, 𝑡)   (6.19) 

where the short wave, long wave and convection heat transfers are denoted by 𝑞𝑠𝑤, 

𝑞𝑙𝑤 and 𝑞𝑐𝑜𝑛𝑣 respectively. 

The short wave radiation heat transfer of a body of area A is given by: 

𝑞𝑠𝑤 = 𝐴𝛼Φ        (6.20) 
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where 𝛼 and Φ are the absorptivity of the material and the total incident irradiance 

input to the module surface, respectively. The long wave radiation heat transfer is 

given by the Stefan Boltzmann law: 

𝑞𝑙𝑤 = 𝜎ε𝑇
4        (6.21) 

where 𝜎  is the Boltzmann’s constant (5.607 × 10−8  Js-1m-2K-4) and  ε  is the 

emissivity of the body. It is assumed that the net long wave exchange is negligible 

for the rear of the module. Thus, it is only necessary to calculate the long wave 

exchange from the surface of the module. The net long wave radiation exchange 

between two surfaces x and y is given by [79]: 

 𝑞𝑙𝑤𝑥𝑦 = 𝐴𝑥𝐹𝑥𝑦(𝐿𝑥 − 𝐿𝑦) = 𝐴𝑦𝐹𝑥𝑦(𝐿𝑦 − 𝐿𝑥)    (6.22) 

Here 𝐿𝑥  and 𝐿𝑦  are long wave irradiance per unit area for surface x and y 

respectively which are given by: 

𝐿𝑥 = 𝜎ε𝑥𝑇𝑥
4and 𝐿𝑦 = 𝜎 ε𝑦𝑇𝑦

4 

where 𝐹𝑥𝑦  is the view factor, a  fraction of the radiation leaving surface x that 

reaches surface y. 

A tilted module surface not overlooked by adjacent buildings at an angle 𝜃 from 

the horizontal has a view factor of  
(𝟏+𝐜𝐨𝐬𝜃)

𝟐
  for the sky and  

(𝟏−𝐜𝐨𝐬𝜃)

𝟐
  for the 

horizontal ground [79]. Thus, inserting the view factor coefficient for sky and 

ground into 𝐿𝑥 leads to: 

𝐿𝑥 = 𝜎
(𝟏+𝐜𝐨𝐬𝜃)

𝟐
ε𝑠𝑘𝑦𝑇𝑠𝑘𝑦

4 + 𝜎
(𝟏−𝐜𝐨𝐬𝜃)

𝟐
ε𝑔𝑟𝑜𝑢𝑛𝑑𝑇𝑔𝑟𝑜𝑢𝑛𝑑

4   (6.23) 

𝐿𝑦 = 𝜎ε𝑚𝑜𝑑𝑇
4        (6.24) 

where ε𝑚𝑜𝑑 is the module emissivity. 
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Substituting Eqs. (6.23) and (6.24) into (6.22) produces: 

𝑞𝑙𝑤 = 𝐴𝜎 (
(1+cos𝜃)

2
휀𝑠𝑘𝑦𝑇𝑠𝑘𝑦

4 +
(1−cos𝜃)

2
휀𝑔𝑟𝑜𝑢𝑛𝑑𝑇𝑔𝑟𝑜𝑢𝑛𝑑

4 − 휀𝑚𝑜𝑑𝑇
4) (6.25) 

Further, 𝑇𝑠𝑘𝑦 = 𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡 − 𝛿𝑇  for clear sky condition in which 𝛿𝑇 = 20K and 

𝑇𝑠𝑘𝑦 = 𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡 for overcast condition. 

The convection heat transfer is related to the temperature gap between the upper 

part of the solar panel and the ambient [79]: 

𝑞𝑐𝑜𝑛𝑣 = −𝐴(ℎ𝑐,𝑓𝑜𝑟𝑐𝑒𝑑 + ℎ𝑐,𝑓𝑟𝑒𝑒)(𝑇 − 𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡)   (6.26) 

where ℎ𝑐,𝑓𝑜𝑟𝑐𝑒𝑑 and ℎ𝑐,𝑓𝑟𝑒𝑒    in W/m2 K are the forced and free convection heat 

transfer coefficients which depend on the wind speed. 

Collecting all the heat loss contributions together now leads to: 

𝐻𝒊,𝑗 = 𝐴𝑖,𝑗[𝛼𝑖,𝑗Φ+ 𝜎 (
(1+cos𝜃)

2
휀𝑠𝑘𝑦𝑇𝑠𝑘𝑦

4 +
(1−cos𝜃)

2
휀𝑔𝑟𝑜𝑢𝑛𝑑𝑇𝑔𝑟𝑜𝑢𝑛𝑑

4 −

휀𝑖,𝑗𝑇 𝑖,𝑗
4) − (ℎ𝑐,𝑓𝑜𝑟𝑐𝑒𝑑 + ℎ𝑐,𝑓𝑟𝑒𝑒)(𝑇𝑖,𝑗

4 − 𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡)]    

 (6.27) 

where 𝛼𝑖,𝑗  and 휀𝑖,𝑗  denote the absorptivity and emissivity coefficients of the 

discretized cells in the different layers. 

 

6.2.5 Power generated by the PV Cell  

The power generated by the PV cell at location (𝑖, 𝑗) can be estimated as [79]: 

𝐺𝑖,𝑗 = 𝐶𝐹𝐹
𝐸 𝑙𝑛(𝛾𝐸)

𝑇 𝑖,𝑗
       (6.28) 
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where 𝐶𝐹𝐹  is the fill factor model constant (1.22 K m2) and 𝐸(𝑡) in 𝑊/𝑚2
 is the 

incident irradiance input through the thickness of the PV module. The constant 𝛾 

is equal to 106 m2/W. It should be noted that the power generated by the discretized 

PV cells in (6.28) is non-zero only for the silicon cell layer. 

The incident irradiance input into the system is obtained from experimental data 

[79]. To obtain a validated result of the reduced order model to be derived in Sec. 

6.2, a minute by minute irradiance input obtained from the solar resource and 

meteorological assessment project website 

(http://www.nrel.gov/midc/kalaeloa_oahu/) will be used. The plots for irradiance 

for a period of 30 minutes are shown below in Fig. 6.3. 

 

Figure 6.3. Experimental and simulated irradiance input (from 09:52-10:22, 

11/01/2011) 

 

6.2.6 System of nonlinear ODEs for the PV module 

Considering all the relations established so far in Sec. 6.2, the discretized thermal 

equation (6.5) can be rewritten after substituting the corresponding expressions for 

Q,  𝐻 and 𝐺 as: 
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𝐶𝑖,𝑗𝐴𝑖,𝑗
𝜕𝑇𝑖,𝑗

𝜕𝑡
− 𝐾𝑗𝑇𝑖+1,𝑗 −𝐾𝑗𝑇𝑖−1,𝑗 + 𝑇𝑖,𝑗 (2𝐾𝑗 + 𝐾𝑖,𝑗+1

2

+𝐾
𝑖,𝑗−

1

2

) − 𝐾
𝑗+

1

2

𝑇𝑖,𝑗+1 −

𝐾
𝑗−

1

2

𝑇𝑖,𝑗−1 − 𝐴𝑖,𝑗[𝛼𝑖,𝑗Φ+ 𝜎 (
(1+cos𝜃)

2
휀𝑠𝑘𝑦𝑇𝑠𝑘𝑦

4 +
(1−cos𝜃)

2
휀𝑔𝑟𝑜𝑢𝑛𝑑𝑇𝑔𝑟𝑜𝑢𝑛𝑑

4 −

휀𝑖,𝑗𝑇 𝑖,𝑗
4) − (ℎ𝑐,𝑓𝑜𝑟𝑐𝑒𝑑 + ℎ𝑐,𝑓𝑟𝑒𝑒)(𝑇𝑖,𝑗 − 𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡)] = −𝐴𝑖,𝑗𝐶𝐹𝐹

𝐸 𝑙𝑛(𝑎𝐸)

𝑇𝑖,𝑗
  (6.29) 

At the left and right boundaries of the PV module, 𝑄
𝑖−
1

2
,𝑗

 and 𝑄
𝑖+
1

2
,𝑗

  from (6.5) are 

replaced by 𝑄1
2
,𝑗

 and 𝑄
𝑙−
1

2
,𝑗

 respectively from Eq. (6.15) and Eq. (6.16), while at 

the top and bottom boundaries of the PV module, 𝑄
𝑖,𝑗−

1

2

 and 𝑄
𝑖,𝑗+

1

2

 are replaced by 

𝑄
𝑖,
1

2

 and 𝑄
𝑖,𝑠−

1

2

 respectively from Eq. (6.17) and Eq. (6.18). 

The discretized thermal equation (6.29) can finally be written in a compact matrix 

form: 

𝑪𝑨
𝑑𝑻(𝒕)

𝑑𝑡
= �̅�𝑻(𝑡) + 𝑨𝑰(𝑻(𝑡), 𝐸(𝑡))     (6.30) 

or, in explicit form, as 

𝑑𝑻(𝒕)

𝑑𝑡
= 𝑲𝑻(𝑡)⏟  
linear term

+ 𝑭(𝑻(𝑡), 𝐸(𝑡))⏟        
Non−linear term

     (6.31) 

where 𝑲 = (𝑪𝑨)−𝟏. (�̅�)  and 𝑭 = 𝑪−𝟏𝑰 .  The independent variable 𝑡 ∈

[0, ℎ] denotes time, and 𝑻(𝑡) = [𝑇1(𝑡), … . , 𝑇𝑛(𝑡)]
𝑇 ∈ ℝ𝑛  is the unknown 

temperature vector for all the cells in the FD discretization, where we use a single 

subscript with n denoting the total number of nodes. 𝐸(𝑡) is the time-varying 

irradiance input to the system, the matrix 𝑲 ∈ ℝ𝑛×𝑛  contains constants and 

𝑭(𝑻(𝑡), 𝐸(𝑡)) is a nonlinear function evaluated at 𝑻(𝑡) component-wise i.e. 

𝑭 = [𝐹1, … . . , 𝐹𝑛]
𝑇       (6.32) 
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6.2.7 Reference solution for the complete thermal system 

Before applying the proposed model order reduction approach, a reference solution 

is derived for Eq. (6.31) by direct time discretization. A backward Euler finite 

difference scheme is selected to solve the thermal problem to avoid any 

convergence issues associated with explicit methods in terms of choice of time step. 

The numerical method is implemented in Matlab software. A uniform 

discretization of the module in the x-direction is adopted with 𝑙=361 grid points, 

while there are 𝑠=6 strips in the z-direction with different thicknesses so that 𝑛 =

𝑠 × 𝑙 = 2166. The solution of this problem is performed for 𝑛𝑠=186 time steps, 

each step representing 10 s of physical time. Figure 6.4(a) shows the temperature 

profile for node 741 in the silicon layer for all the 186 time steps. The temperature 

along the silicon layer vs. position at the last time step is shown in Fig. 6.4(b). As 

it can be seen, the transient regime is quite evident and the temperature in the silicon 

cell layers is significantly different from cell to cell. 

  

   

                               (a)          (b)  

Figure 6.4. Temperature profile of the full system for (a) a node within the silicon 

layer vs. time step and (b) along the silicon layer at the last time step of the 

simulation. 
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6.3 Model order reduction of thermal system via POD/DEIM 

The direct numerical simulation of Eq. (6.31) may be quite demanding in terms of 

computing resources, especially in view of its extension to a full 3D geometry. For 

this reason, a MOR technique is investigated in this section, with the objective of 

approximating the large-scale system (6.31) with a lower order compact dynamical 

model, that is able however to preserve accuracy in its input/output transient 

response. The two key aspects of proposed MOR approach are: i) a massive 

reduction in the degrees of freedom (states), and ii) an accurate representation of 

the nonlinear terms that influence the heat exchange of the structure. These two 

aspects are analysed in detail subsequently. 

 

6.3.1 System projection 

The reduction in the degrees of freedom is here performed through a standard 

projection approach. The vector 𝑻  collecting all 𝑛  cell temperatures is 

approximated as a linear superposition of a small number of 𝑘 “basis vectors”, 

which span a reduced order subspace. More precisely, lets consider the 

representation 𝑻 ≈ 𝑽𝑘�̃� , where �̃� ∈ ℝ𝑘 is a reduced temperature vector collecting 

the coefficients of 𝑻 into a reduced basis, defined by the columns of matrix  𝑽𝑘 ∈

ℝ𝑛×𝑘. An orthonormal basis is considered, so that  𝑽𝑘
𝑻𝑽𝑘 = 𝕀 ∈ ℝ

𝑘×𝑘 (𝑘 ≪ 𝑛) 

with 𝕀  an identity matrix. Introducing the above reduced expression for 𝑻 into 

(6.31), we have: 

𝑽𝑘
𝑑�̃�(𝑡)

𝑑𝑡
≈ 𝑲𝑽𝑘�̃�(𝑡) + 𝑭(𝑽𝑘�̃�(𝑡), 𝐸(𝑡))     (6.33) 

Projecting now these equations onto the subspace generated by 𝑽𝑘 leads to: 

𝑑�̃�(𝑡)

𝑑𝑡
≈ 𝑽𝑘

𝑇𝑲𝑽𝑘⏟    �̃�(𝑡) + 𝑽𝑘
𝑇𝑭(𝑽𝑘�̃�(𝑡), 𝐸(𝑡))  
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with 𝑽𝑘
𝑇𝑲𝑽𝑘 = �̃� and where �̃� ∈ ℝ𝑘×𝑘 

The reduced form of the thermal equation (6.31) reads: 

𝑑�̃�(𝑡)

𝑑𝑡
= �̃��̃�(𝑡) + 𝑽𝑘

𝑇𝑭(𝑽𝑘�̃�(𝑡), 𝐸(𝑡))      (6.34) 

The above system represents a reduced order model, since its main variables are 

the coefficients of a reduced basis. In order to determine 𝑽𝑘, a Proper Orthogonal 

Decomposition (POD) is considered, which extracts the basis vectors from the 

actual transient solution of the full system by means of a truncated singular value 

decomposition.  In particular, a collection of 𝑛𝑠  snapshots 𝑻(𝑡ℎ)  is performed 

which is obtained from the full solution of the system at discrete time steps of size 

ℎ in the following snapshot matrix:  

𝑺 = [𝑻(𝑡1),… . , 𝑻(𝑡𝑛𝑠)]       (6.35) 

and the POD algorithm is applied as follows: 

 

Algorithm 6.1 

INPUT: 𝑺 = [𝑻(𝑡1), … . , 𝑻(𝑡𝑛𝑠)] ⊂ ℝ
𝑛×𝑛𝑠 

OUTPUT: 𝑽𝑘 = [𝒗𝟏, … . . , 𝑣𝑘]  ∈ ℝ
𝒏×𝒌 

1. Form the shapshot matrix 𝑺 = {𝑻(𝑡1),… . , 𝑻(𝑡𝑛𝑠)} 

2. Perform the singular value decomposition 𝑻 = 𝑽𝚺𝑾𝑇  to produce 

orthogonal matrices 𝑽 = [𝒗𝟏, … . , 𝒗𝒓]  ∈ ℝ
𝒏×𝒓  and 𝑾 = [𝒘1, … . . 𝒘𝑟]  ∈

ℝ𝑛𝑠×𝑟  and diagonal matrix 𝚺 = diag (𝜎1, … . , 𝜎𝑟) ∈ ℝ
𝒓×𝒓  where r is the 

rank of 𝑺. 

3. Set a threshold to pick the 𝑘 highest modes from the diagonal matrix 𝚺  

4.  Pick the columns in matrix 𝑽 which correspond to the modes selected in 

3 to generate the POD basis 𝑽𝑘 = [𝒗1, … . . , 𝒗𝑘]  ∈ ℝ
𝑛×𝑘 
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Note that in the present case we choose 𝑛𝑠 = 186, as the total number of time steps 

in the full solution. The choice of 𝑛𝑠 should be carefully considered since it can 

strongly influence the accuracy of the approximation and the computational cost, 

as shown later. 

 

6.3.2 Discrete Empirical Interpolation Method (DEIM) 

System (6.34) is a reduced order model, but the evaluation of the nonlinear term 

still requires the mapping 𝑽𝑘 to the full-size space. The DEIM approach is used 

here to further approximate the nonlinear terms, thus reducing the computational 

cost associated with the simulation of the reduced model.  According to [54], the 

nonlinear term of (6.34) can be written in the form: 

𝑵(�̃�) = 𝑽𝒌
𝑇

⏟
𝑘×𝑛

𝑭(𝑽𝒌�̃�(𝑡), 𝐸(𝑡))⏟          
𝑛×1

      (6.36) 

and define the nonlinear term as: 

𝒇(𝑡) =  𝑭(𝑽𝒌�̃�(𝑡), 𝐸(𝑡))      (6.37) 

The basic idea is to approximate 𝒇(𝑡) by projecting it onto the subspace spanned 

by a suitable set of 𝑚 ≪ 𝑛 basis vectors 𝐮1, … . , 𝐮𝑚 via 

𝒇(𝑡) ≈ 𝐔𝐜(t)        (6.38) 

where 𝐔 = [𝐮1, … . , 𝐮𝑚]  ∈ ℝ
𝑛×𝑚 . The corresponding coefficient vector 𝐜(t) is 

determined by selecting 𝑚  significant rows from the overdetermined system 

(6.38). This can be achieved by considering the mapping matrix: 

𝐏 = [𝐞𝜚1 , … . , 𝐞𝜚𝑚]  ∈ ℝ
𝑛×𝑚      (6.39) 
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Where 𝐞𝜚𝑖 = [0,… . ,0,1,0, … . ,0]
𝑻 ∈ ℝ𝑛 is the 𝜚𝑖th column of the identity matrix  

𝕀 ∈ ℝ𝑛×𝑛  for 𝑖 = 1,… . ,𝑚 . The coefficient 𝐜(t)  can thus be determined by 

inverting system: 

𝐏𝐓𝒇(𝑡) = (𝐏𝐓𝐔)𝐜(t)       (6.40) 

 

Provided 𝐏𝐓𝐔 is non-singular, the final approximation of (6.38) is: 

𝒇(𝑡) ≈ 𝐔𝐜(t) = 𝐔(𝐏𝐓𝐔)−𝟏𝐏𝐓𝒇(𝑡)     (6.41) 

Since 𝒇(𝑡) =  𝑭(𝑽𝒌�̃�(𝑡), 𝐸(𝑡)), Eq. (6.41) can thus be written as: 

𝑭(𝑽𝒌�̃�(𝑡), 𝐸(𝑡)) ≈ 𝐔(𝐏
𝐓𝐔)−𝟏𝐏𝐓𝑭(𝑽𝒌�̃�(𝑡), 𝐸(𝑡))   (6.42) 

Eq. (6.42) ensures that the nonlinear function 𝑭 is evaluated for the full system and 

then interpolated by matrix 𝐏, an operation which still shows the dependence of the 

reduced system on the complete system size. To avoid this dependence, DEIM 

interpolates the input vector of the nonlinear function 𝑭  and then evaluates 𝑭 

component-wise at its interpolated input vector. Based on this, (6.42) can be written 

as: 

𝑭(𝑽𝒌�̃�(𝑡)𝐸(𝑡)) ≈ 𝐔(𝐏
𝐓𝐔)−𝟏�̃�(𝐏𝐓𝑽𝒌�̃�(𝑡), 𝐸(𝑡))   (6.43) 

Where �̃� denotes the selected components of 𝑭.This approximation is particularly 

effective when the full nonlinear function 𝑭 is evaluated independently for each 

component of its vector argument, as in present FD formulation.  The nonlinear 

term in Eq. (6.36) can now be represented as: 

𝑵(�̃�(𝑡)) = 𝑽𝒌
𝑇𝐔(𝐏𝐓𝐔)−𝟏⏟        
𝑘×𝑚

�̃�(𝐏𝐓𝑽𝒌�̃�(𝑡), 𝐸(𝑡))⏟            
𝑚×1

    (6.44) 

Now, to evaluate 𝑵(�̃�) in (6.44), we must specify the projection basis [𝐮1, … . , 𝐮𝑚] 

and the interpolation indices[ 𝝔1, … . , 𝝔𝑚]. We can obtain the basis [𝐮1, … . , 𝐮𝑚] by 

applying the above described POD scheme to the matrix collecting the nonlinear 

snapshots  𝑭 = {𝐹(𝑻(𝑡1)),… . . , 𝐹(𝑻(𝑡𝑛𝑠))} resulting from a direct evaluation of 

the nonlinear function of the full system at different time steps, and then using the 



154 
 

DEIM algorithm described in [66]. The following implementation is used to 

iteratively construct the basis vectors and the set of interpolation indices. 

 

Algorithm 6.2 

INPUT: {𝒖𝒊}𝑖=1
𝑚 ⊂ ℝ𝑛 linearly independent 

OUTPUT: �⃗⃗� = [ 𝝔1, … . , 𝝔𝑚]  ∈ ℝ
𝑚 

1. [|𝝆|, 𝝔𝟏] = 𝐦𝐚𝐱{|𝐮1|} 

2. 𝐔 = |𝐮1|, 𝐏 = [𝐞𝝔𝟏], �⃗⃗� = [ 𝝔𝟏]  

3. for 𝑖 = 2 to m do 

4. Solve (𝐏𝐓𝐔)𝐜 = 𝐏𝐓𝒖𝒊 for 𝐜  

5. 𝐫 = 𝒖𝒊 −  𝐔𝐜  

6. [|𝝆|, 𝝔𝒊] = 𝐦𝐚𝐱{|𝐫|} 

7. 𝐔 ← [𝐔 𝒖𝒊], 𝐏 = [𝐏 𝐞𝝔𝒊], �⃗⃗� = [
�⃗⃗� 
𝝔𝒊
]  

end for 

 

6.3.3 Modification of DEIM formulation 

To control the accuracy of the reduced system more efficiently, it is noticed that: i) 

there are two nonlinear terms with different characteristics in the thermal 

formulation of the PV module, and that ii) these two terms influence different 

layers of the PV module. In fact, since it is assumed that the net long wave exchange 

for the rear of the module is negligible (see Sec. 6.1.4), the heat loss term in the 

thermal system formulation has most impact on the surface of the PV module. On 

the other hand, the power output is generated only by the silicon cell (third layer). 

On this note, the DEIM operation is here performed separately for the two 
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nonlinear terms using two different sets of snapshots. Accordingly, Eq. (6.43) is 

respectively expressed for the two nonlinear terms in the reduced system as: 

𝑭𝟏(𝑽𝒌�̃�(𝑡), 𝐸(𝑡)) ≈ 𝐔𝟏(𝐏𝟏
𝐓𝐔𝟏)

−𝟏�̃�𝟏(𝐏𝟏
𝐓𝑽𝒌�̃�(𝑡), 𝐸(𝑡))  (6.45) 

𝑭𝟐(𝑽𝒌�̃�(𝑡), 𝐸(𝑡)) ≈ 𝐔𝟐(𝐏𝟐
𝐓𝐔𝟐)

−𝟏�̃�𝟐(𝐏𝟐
𝐓𝑽𝒌�̃�(𝑡), 𝐸(𝑡))  (6.46) 

Finally, the nonlinear term in (6.36) can now be represented as: 

𝑵(�̃�) = 𝑽𝒌
𝑇𝐔𝟏(𝐏𝟏

𝐓𝐔𝟏)
−𝟏⏟          

𝑘×𝑚1

�̃�𝟏(𝐏𝟏
𝐓𝑽𝒌�̃�(𝑡)𝐸(𝑡))⏟            
𝑚1×1

+

𝑽𝒌
𝑇𝐔𝟐(𝐏𝟐

𝐓𝐔𝟐)
−𝟏⏟          

𝑘×𝑚2

�̃�𝟐(𝐏𝟐
𝐓𝑽𝒌�̃�(𝑡), 𝐸(𝑡))⏟              
𝑚2×1

    (6.47) 

 

With this modification, the interpolation of the nonlinear terms can be handled  

independently, enabling a finer control on reduced system complexity and 

efficiency. 

 

6.4 Numerical results of thermal system modelling 

In this section, the accuracy of the proposed reduced modelling scheme is assessed 

by comparing the responses of the compact model and the original system. In 

particular, investigation of the convergence of the reduced system is performed as 

a function of the three parameters that measure its complexity, namely the size 𝑘 

of the reduced basis used in the state-space (linear) projection, and the two orders 

m1, m2 of the nonlinear interpolations. 
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(a)     (b) 

Figure 6.5. Convergence of reduced solution to the full solution with increasing 

order of k and fixed interpolation points m1=m2= 3 for (a) a specific point in the 

silicon layer, and (b) for the entire silicon layer. 

As shown in Fig. 6.5, the cell temperatures at the last time step of the iterative 

solution of the full system and of the reduced system are in fair good agreement by 

increasing the order k of the reduced system. As the order of the reduced system 

increases from k=1 to k=7, the approximation of the reduced system approaches 

the exact value of the complete system. At k=7, the reduced system approximation 

fits well the complete system such that further increasing the order of the reduced 

system does not change the result significantly.  

It is noticed that the number of snapshots 𝑛𝑠 used to construct the compact model 

also affects its convergence to the full solution. Convergence is achieved more 

efficiently using a high number of samples in the snapshots matrix 𝑺 than using a 

small number of samples. The plots in Fig. 6.6 illustrate the convergence of the 

reduced solution using 185, 100, 70 and 40 snapshots while fixing the order of k = 

7 and interpolation order m1=m2 = 5. 
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Figure 6.6. Convergence of the reduced solution by increasing the number of 

snapshots for order of basis k=7 and interpolation points with m1=m2 = 5. 

 

6.4.1 Validation of the reduced model using simulated irradiance data 

In this section, investigation of the sensitivity of the reduced model to the input 

irradiance signal is performed. To this end, the reduced model is first constructed 

based on snapshots derived from experimental irradiance data, see Fig. 6.3. Then, 

simulated irradiance data is used to excite the model, and the corresponding 

response is compared to the full system response computed by direct time 

discretization. The irradiance data for this validation was carefully selected to have 

different environmental characteristics with the identification experimental data. 

On this basis, a day is chosen in autumn of November, 2011 with average air 

temperature of 22oC and average wind speed of 3 m/s. It is verified that the reduced 

model approximates the full system to a reasonable degree of accuracy also under 

this different excitation, as shown in Fig. 6.7.  
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(a)      (b) 

Figure 6.7. Convergence of reduced solution to the full solution with increasing 

order of k and fixed interpolation points m1=m2 = 3 for (a) a specific point in the 

silicon layer, and (b) for the entire silicon layer. 

 

6.4.2 Error Analysis 

To demonstrate the efficiency and accuracy of the nonlinear order reduction, an 

error plot is deemed necessary to observe the convergence of the responses by 

varying the interpolation points m1, m2 and the dynamical order 𝑘. To do this, the 

normalized error 휀(𝑘,𝑚1,𝑚2) is computed as: 

휀 =
‖𝑻−�̃�‖

2

‖𝑻‖2
        (6.48) 

where the norm is defined either in time domain by fixing the cell location, or in 

the space domain by fixing time step. 

In order to observe the rate of convergence of the reduced system as its dynamical 

order k is increased with a fixed number of interpolation points m1=m2=m, the error 

at specific time steps representative of the beginning, middle and end of simulation 
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is now computed. A time variation error plot is also obtained for a selected node in 

the PV module for all the time steps. The results are shown in Fig. 6.8. 

  

(a)      (b) 

 

(c)      (d) 

Figure 6.8. Error plot for the topmost layer for fixed m1=m2=m at (a) 50th time step 

(b) 150th time step (c) 186th time step, and for (d) node number 150 in the 

discretized module for all 186 time steps. 

 

A clear lower error bound can be observed from the error plots, which is an 

indication that the reduced system response converges, as the order of the system 

is increased, only to the extent allowed by the representation of the nonlinear terms. 
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point (i.e. an equivalent of a linear system) is in the range of 10-5 to 10-6, an 

indication that the nonlinearity in the system is not at all strong. Increasing the 

number of interpolation points further shifts the error bound from 10-5 to less than 

10-8 which confirms the excellent suitability of the DEIM algorithm for this thermal 

modelling task. 

 

  

        (a)      (b) 

 

       (c)      (d) 

Figure 6.9. Error plot for the third layer for (a) m1=m2=m (b) m1=1 (c) m1=5 (d) 

m1=7. 
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In order to verify the improved efficiency that can be achieved by using different 

interpolation points for the two nonlinear terms, as against using the same 

interpolation order for the two nonlinear terms, various numerical experiments are 

performed by independently varying m1 and m2. The results are shown in Fig. 6.9. 

The plots shown in Fig. 6.9 confirm that by independently varying m1 and m2, a 

better control of the accuracy of the reduced model can be achieved. In Fig. 6.9a 

where the same interpolation order is used for the two nonlinear terms, the reduced 

model becomes efficient as order 𝑘 is increased above 50 when the lower bound 

error becomes more stable. By varying m1 and m2 independently, the stability of 

the lower error bound is attained with a smaller order 𝑘 . It can be clearly observed 

in Fig. 6.9b-6.9d that there is a reduction in the lower bound error from less than 

10-6 to less than 10-8 as m1 is increased from 1 to 7 while m2 is varied for each fixed 

m1. Furthermore with independent variation of m1 and m2, a lower order 𝑘 (< 50) 

of the linear subspace projection is required to attain a stable error bound. This 

observation proves that, a better approximation of the full system can be achieved 

by independent variation of the interpolation of the nonlinear terms.  

 

6.4.3 Computation time 

Finally, the advantages of proposed MOR technique is emphasized by reporting 

the runtime required for the various simulations on the same commodity laptop. A 

transient analysis of the full system requires 61.40 seconds. Based on available 

snapshots, the construction of the reduced model via the proposed POD/DEIM 

requires as few as 0.86 seconds, whereas the transient simulation of the reduced 

model (k=7 and m1=m2=3) takes only 1.40 seconds. Excluding model setup and 

construction, the overall speedup is almost 44X. Considering that the proposed 
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model is a quite simplified and 2D structure, more dramatic speedup is expected 

when applying this process to a full 3D geometry. 

 

6.5 Model order reduction of coupled thermo-mechanical 

photovoltaic systems 

The problem description entails a PV module containing 4 Silicon cells sandwiched 

between glass and Backsheet layers while the encapsulant EVA is represented by 

a zero thickness shear-lag interface as illustrated in chapter 5 (see Fig. 5.6). 

Discretization of the system equations leads to numerous mechanical and thermal 

degrees of freedom. Although the full system solution, using a Matlab solver, is 

presented in chapter 5, it is worthy to note that computation of these degrees of 

freedom is an expensive computational task. And taking into consideration that a 

centred finite difference scheme is used for the space discretization of the system 

with an error order 𝒪(ℎ2) where ℎ is the mesh size, computation of the full solution 

with many degrees of freedom can introduce significant errors in final result. On 

this basis, a reduction scheme is desired, where the full system can be approximated 

with few degrees of freedom with a good control of the system accuracy. Given 

that the state equation representing the thermomechanical PV system is of coupled 

type, there is no standard approach in the literature for the treatment of second order 

system of this nature for structure preservation and some proposed methods are 

subject of current research in advanced model order reduction. Therefore, the 

procedure described in this section provides a means to make a detail comparison 

between the classical state-space approach for general first-order system and the 

recently introduced second-order reduction method in [76]. Finally, a proposed 

approach for structure preservation of the coupled second-order system is herein 

presented and it is shown that this approach can reduce satisfactorily coupled 

thermomechanical equations of the PV system. 
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6.5.1 Classical state-space approach (first-order system) 

The original system formulation is recalled here according to Eq. (5.97). We are 

interested to output the displacements for the Silicon layer.  

[

𝑴𝒘 𝟎 𝟎 𝟎
𝟎 𝑴𝑢 𝟎 𝟎
𝟎 𝟎 𝑴𝑣 𝟎
𝟎 𝟎 𝟎 𝟎

]{

�̈�
�̈�
�̈�
�̈�

} + [

𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝑺

]{

�̇�
�̇�
�̇�
�̇�

} + [

𝑲𝑤 𝑲𝑢 𝑲𝑣 𝑪𝑇
�̅�𝑤1 𝑲𝑢1 𝟎 𝟎

�̅�𝑤2 𝟎 𝑲𝑣1 𝟎
𝟎 𝟎 𝟎 𝑯

]{

𝐰
𝐔
𝐕
𝐓

} = {

𝑭1
𝑭2
𝑭3
𝑭4

} 𝑖(𝑡)

                                                                                                                                                                  

 

         (6.49) 

In Eq. (5.97), 𝑼1 and 𝑼2 are replaced with  𝐔 and  𝐕 respectively in Eq. (6.49) for 

convenience of notation. 

𝐰,  𝐔,  𝐕, ∈ ℝN×1, 𝐓 ∈ ℝN𝑇×1, 𝑭1,  𝑭2,  𝑭3, ∈ ℝ𝑁×1, 𝑭4, ∈ ℝN𝑇×1, 

𝑴𝑤,  𝑴𝑢,   𝑴𝑣,  𝑲𝑤, 𝑲𝑢,  𝑲𝑣,  𝑲𝑢1,  𝑲𝑣1,  �̅�𝑤1,  �̅�𝑤2, ∈ ℝ
N×N, 

𝑪𝑇 ∈ ℝN×N𝑇, 𝑯, 𝑺 ∈ ℝN𝑇×N𝑇 . 

and the compact form according to Eq. (5.98) is recalled as: 

[
𝑴1 𝟎
𝟎 𝟎

] {
�̈�

�̈�
} + [

𝟎 𝟎
𝟎 𝑺

] {
�̇�

�̇�
} + [𝑲1 �̅�𝑇

𝟎 𝐇
] {
𝝌
𝑻
} = {

�̅�1
𝑭4
} 𝑖(𝑡)

                                                                                    
  (6.50)  

where  

𝑴1 = [

𝑴𝒘 𝟎 𝟎
𝟎 𝑴𝒖 𝟎
𝟎 𝟎 𝑴𝒗

] , 𝑲1 = [

𝑲𝒘 𝑲𝑢 𝑲𝑣
�̅�𝑤1 𝑲𝑢1 𝟎

�̅�𝑤2 𝟎 𝑲𝑣1

], 𝑪𝑇 = {
𝑪𝑇
𝟎

𝟎

}, �̅�1 = {

𝑭1
𝑭2
𝑭3

} 

𝑴1, 𝑲1 ∈ ℝ
N1×N1, �̅�𝑇 ∈ ℝN1×N𝑇, N1 = 3N.  

For this investigation, we use a discretization mesh with N1 = 14400 and N𝑇 =

1600. 
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𝑖(𝑡) is the given the input function recalled from Eq. (5.96) as: 

𝑖(𝑡) = 𝑎exp(𝑏×𝑡) + 𝑐exp(𝑑×𝑡) 

where 

𝑎 = −227.8, 𝑏 = −0.0004404,  𝑐 = 227.8, 𝑑 = −0.002476. 

The state-space representation of the system Eq. (6.50) is written in first-order form 

as: 

𝑬�̇� = 𝑨𝚽+ 𝒃𝑖(𝑡)       (6.51) 

where  

𝑬 = [
𝑰 𝟎 𝟎
𝟎 𝑴1 𝟎
𝟎 𝟎 𝑺

], 𝐀 = [
𝟎 𝑰 𝟎
−𝑲1 𝟎 −�̅�𝑇
𝟎 𝟎 −𝑯

], 𝚽 = [
𝛘
�̇�
𝐓
], 𝒃 = [

𝟎
�̅�1
𝑭4

]. 

𝐄 , 𝑨, ∈ ℝ(2N1+N𝑇)×(2N1+N𝑇),  𝚽, 𝒃 ∈ ℝ(2N1+N𝑇)×1.  

If a projection matrix of the state-space Eq. (6.51) is defined by 𝑽1 =

(𝒗1, … . . , 𝒗𝑟), the reduced version of Eq. (6.51) can be obtained (as in Sec. 4.7.3) 

by applying the mapping 𝚽 = 𝑽1𝚽𝑟 to the system Eq. (6.51) and the state equation 

multiplied by the transpose of the projection matrix 𝑽1. Accordingly, we get: 

𝑽1
𝑇𝐄𝑽1�̇�𝑟 = 𝑽1

𝑇𝑨𝑽1𝚽𝑟 + 𝑽1
𝑇𝒃𝑖(𝑡)     (6.52) 

𝑽1 ∈ ℝ
(2N1+N𝑇)×𝑟, 𝚽𝑟 ∈ ℝ

𝑟×1,  with  𝑟 < 2N1 + N𝑇 

𝚽𝑟 is the reduced state variable. The reduced state equation of order 𝑟 can now be 

written as: 

𝑬𝑟�̇�𝑟 = 𝑨𝑟𝚽𝑟 + 𝒃𝑟𝑖(𝑡)      (6.53a) 

where  
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𝑬𝑟 = 𝑽1
𝑇𝑬𝑽1, 𝑨𝑟 = 𝑽1

𝑇𝑨𝑽1 ,  𝒃𝑟 = 𝑽1
𝑇𝒃, 

𝑬𝑟, 𝑨𝑟 ∈ ℝ
𝑟×𝑟, 𝒃𝑟 ∈ ℝ

𝑟×1. 

The task now is to determine the projection matrix 𝑽1 which can be constructed 

with the POD method as described in section 6.2 since the full system solution has 

been obtained in chapter 5. The efficiency of the POD scheme for reduction of 

thermal system equations has been established in section 6.2. So, the method is 

hereby extended to coupled thermomechanical system. In this case, the snapshots 

collection consists of augmented vectors of displacement, velocity and temperature 

at discrete times 𝑡𝑖. Mathematically,  

𝑺 = [[
𝛘
�̇�
𝐓
]

1

, … . , [
𝛘
�̇�
𝐓
]

𝑛𝑠

]       (6.54) 

By performing SVD on the snapshot matrix 𝑺, the dominant modes can be selected 

as the basis of the projection matrix 𝑽1. With 𝑽1 computed, the reduced system 

matrices 𝑬𝑟, 𝑨𝑟 and the vector 𝒃𝑟 in Eq. (6.53) can be evaluated. Consequently, 

Eq. (6.53) is now solved for the approximate system output variable 𝒚 by using 

modified Euler method as presented in chapter 4. The result are analysed in Sec. 

6.5. 

 

6.5.2 Second-order based reduction by projection 

It is noted that the reduction of the coupled system by state-space representation 

described above does not preserve the second order structure of the global system 

Eq. (6.50). To preserve the second order structure of the global system, Eq. (6.50) 

is rewritten in another compact form as: 

𝑴�̈� + 𝑫�̇� + 𝑲𝒖 = 𝑭𝑖(𝑡)      (6.55) 
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𝑴,𝑫,𝑲 ∈ ℝ(N1+N𝑇)×(N1+N𝑇),  𝑭, 𝒖 ∈ ℝ(N1+N𝑇)×1, 

where  

𝑴 = [
𝑴1 𝟎
𝟎 𝟎

],  𝑫 = [
𝟎 𝟎
𝟎 𝑺

],  𝑲 = [𝑲1 �̅�𝑇
𝟎 𝐇

],  𝑭 = {
�̅�1
𝑭4
},  𝒖 = {

𝛘
𝐓
}. 

If a projection matrix is defined as 𝑽2 = (𝐯1, … . . , 𝐯q) with 𝑞 ≪ (N1 +N𝑇), the 

reduced state vector 𝒖𝑞 can be constrained to the column space of 𝑽2 to obtain an 

approximation of the system state 𝒖 as: 

𝒖 = 𝑽2𝒖𝑞,  𝑽2 ∈ ℝ
(N1+N𝑇)×𝑞, 𝒖𝑞 ∈ ℝ

𝑞×1.     (6.56) 

By mapping the reduced states onto the projection matrix 𝑽2 and multiplying by 

the transpose of the projection matrix 𝑾 as for one-sided Krylov method i.e., 𝑾 =

𝑽2, the reduced system of order 𝑞 is obtained thus: 

𝑴𝑞�̈�𝑞 +𝑫𝑞�̇�𝑞 +𝑲𝑞𝒖𝑞 = 𝑭𝑞𝑖(𝑡)     (6.57) 

𝑴𝑞 , 𝑫𝑞 , 𝑲𝑞  ∈ ℝ
𝑞×𝑞, 𝑭𝑞 ∈ ℝ

𝑞×1 

where  

𝑴𝑞 = 𝑽2
𝑇(𝑴𝑽2),  𝑫𝑞 = 𝑽2

𝑇(𝑫𝑽2),  𝑲𝑞 = 𝑽2
𝑇(𝑲𝑽2),  𝑭𝑞 = 𝑽2

𝑇𝑭. 

To determine the projection matrix 𝑽2, two approaches are considered in this work 

namely a POD based approach and second order Krylov based approach. The 

efficiency of the POD technique has been established in Sec. 6.2 and since the full 

system solution has been performed in chapter 5, it is possible to collect a sample 

snapshots of the system full solution at discrete times 𝑡𝑖 and apply Algorithm 6.1 

to extract the bases which span the column space of the projection matrix 𝑽2. In 

this case, the snapshots are collected as augmented vectors of displacement and 

thermal degrees of freedom at discrete times 𝑡𝑖: 
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𝑺 = [[
𝝌
𝑻
]
1
, … . , [

𝝌
𝑻
]
𝑛𝑠

] ,       (6.58) 

𝑛𝑠  is the number of snapshots and for efficient computation of the projection 

matrix, 𝑛𝑠  should be sufficient. Consequently, the reduced system matrices is 

obtained according to Eq. (6.57) and approximation of the system output is 

computed as reported in Sec. 6.5. 

An alternative approach to obtaining the second order projection matrix 𝑽2 is to 

consider theorem 1 stated in chapter 4; if the matrix 𝑽2 is the basis of the second-

order input Krylov subspace 𝒦𝑞(−𝑲
−1𝑫,−𝑲−1𝑴,−𝑲−1𝑭)  and a projection 

matrix 𝑾 is chosen such that 𝑾𝑇𝑽2 = 𝕀, the first 𝑞 moments of the original and 

reduced models match. The columns of the matrix 𝑽2  which are the basis of 

second-order Krylov subspace 𝒦𝑞(−𝑲
−1𝑫,−𝑲−1𝑴,−𝑲−1𝑭)  are orthonormal 

i.e., 𝑽2
𝑇𝑽2 = 𝕀, and can be obtained by implementing modified Gram Schmidt 

algorithm described in [71] where it is assumed that in each iteration step an 

orthogonal vector exists. Otherwise, the algorithm is terminated and the number of 

iteration 𝑞 is reduced. Computing the inverse of matrix 𝑲 which is quite large can 

be computationally expensive by direct inverse procedure. By performing LU 

decomposition of 𝑲  and solving a system of linear equations, the recursive 

procedure becomes efficient computationally than using a direct inverse procedure. 

To improve the system output approximation, a rational interpolation of the 

second-order Krylov subspace at 𝑠𝑣 = 0, 1,… , 𝑘 is considered so that few moments 

can be matched at different expansion points 𝑠𝑣  and the projection matrix is 

generated as a union of multiple second-order Krylov subspaces. Instead of a local 

error approximation of the system outputs, this procedure will allow the 

approximation error to spread across the various expansion points. According to 

[71], this implies that second-order Krylov matrices 𝑲, and 𝑫  are substituted, 

respectively, with 𝑲+ 𝑠𝑣𝑫+ 𝑠𝑣
2𝑴 and 𝑫 + 2𝑠𝑣𝑴. Although this increases the 
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computational cost of this reduction scheme but a better and more stable 

approximation is obtained as discussed later in Sec. 6.5. The modified Gram 

Schmidt scheme for rational interpolation of second-order Krylov subspace is 

presented in Algorithm 6.4: 

Algorithm 6.4 (Modified Gram Schmidt for second-order rational Arnoldi 

iteration) 

Input: matrices 𝑲, 𝑫, 𝑴, 𝑭, vector of repeated expansion points 𝒮. 

Solve  −(𝑲+ 𝑠0𝑫+ 𝑠0
2𝑴)𝐛1 = 𝑭  

1. Set 𝐯1 =
𝐛1 

‖𝐛1 ‖2
  and 𝐈1 = 𝟎 

2. for 𝑖 = 2, 3, ……, do 

a. Calculate the next vector 

if 𝑠𝑖+1 = 𝑠𝑖 then 

solve  −(𝑲+ 𝑠𝑖𝑫+ 𝑠𝑖
2𝑴)�̅�i = (𝑫 + 2𝑠𝑖𝑴)𝐯i−1 +𝑴𝐈i−1 �̂�i =

𝐯i−1 

 else 

 solve −(𝑲+ 𝑠𝑖𝑫+ 𝑠𝑖
2𝑴)�̅�i = 𝑭    �̂�i =

𝐯i−1 

 end if 

b. Orthogonalization: For 𝑗 = 1 to 𝑖 − 1 do: 

ℎ = �̅�i
𝑇𝐯𝑗  

�̅�i = �̅�i − ℎ𝐯𝑗  �̂�i = �̂�i − 𝑗𝐈i 
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c. Normalization: if the vector ‖�̅�𝑖‖2 < 𝜖 break the loop. Otherwise, the 

𝑖th column of the projection matrices are: 

𝐯𝑖 =
�̅�i 

‖�̅�i ‖2
  𝐈𝑖 =

�̂�i 

‖�̅�i ‖2
 

3. end for 

4. Output 𝑽2 = (𝐯1, … . . , 𝐯q) 

In step 3b of algorithm 6.4 to get sufficient orthogonality, the orthogonalization is 

iterated twice due to loss of linear independence as the iteration progresses. 𝜖 is a 

small positive number denoting the limit below which linear dependence of 

successive vectors is critical and sufficient orthogonality is not guaranteed. After 

implementing Algorithm 6.4 to obtain 𝑽2 , the reduced system matrices are 

computed according to Eq. (6.59) and consequently, a solution of the reduced 

equation is performed by using Newmark algorithm described in chapter 4. Again, 

the results for the reduced system output for this formulation are discussed in Sec. 

6.5. 

 

6.5.3 Structure-preserving reduced-order for coupled second-order system 

The reduced-order formulation in Sec. 6.5.2 preserves only the second-order 

structure of the global system equation but not the individual structure of the 

mechanical and thermal system. it is noted here that the mechanical system 

equation is undamped i.e., damping matrix is zero and the system oscillates at its 

natural resonant frequency, so a reduced-order of the global system with a damping 

matrix 𝑫 (as performed in Sec. 6.4.2) can introduce some undesirable effects into 

the system dynamics of the reduced-order model which may eventually impair the 

stability of the reduced system. This is indeed the reason why rational Krylov 

method is applied in Sec. 6.4.2 as there is quick loss of orthogonality as the iteration 

proceeds for different expansion points so that only few stable moments are 
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matched at each point. Hence the need for a structure-preserving approach to 

reduce the coupled system. Structure-preserving techniques for coupled state-space 

systems have been discussed extensively in [99, 100]. The basic idea involves 

applying basic Arnoldi algorithm for standard state-space Krylov subspace of the 

global system to generate projection bases separately for the individual systems. 

To achieve this, the global projection matrix, say �̃�, is partitioned into sub-blocks 

of row size of each sub-system as:  

�̃� = [
�̅�1
�̅�2
]        (6.59) 

By using the sub-blocks �̅�𝑖 to build a block diagonal reduction matrices, 

�̅� = [
�̅�1 𝟎

𝟎 �̅�2
]        (6.60) 

a structure-preserving reduced-order system can be obtained as: 

𝑴𝑟�̈�𝑟 +𝑲𝑟𝝌𝑟 + 𝑪𝑟𝑻𝑟 = 𝑭1𝑟𝑖(𝑡)     (6.61a) 

𝑺𝑟�̇�𝑟 +𝑯𝑟𝑻𝑟 = 𝑭4𝑟𝑖(𝑡)      (6.61b) 

where  

𝑴𝑟 = �̅�1
𝑇
𝑴1�̅�1 ,  𝑲𝑟 = �̅�1

𝑇
𝑲1�̅�1 ,  𝑪𝑟 = �̅�1

𝑇
�̅�𝑇�̅�2 ,  𝛘𝑟 = �̅�1𝛘 , 

𝑺𝑟 = �̅�2
𝑇
𝑺�̅�2 ,  𝑯𝑟 = �̅�2

𝑇
𝑯�̅�2 ,  𝑭4𝑟 = �̅�2

𝑇
𝑭4 ,  𝑻 = �̅�2𝑻𝑟 . 

To generate a linearly dependent columns for the sub-blocks �̅�𝑖 as there is loss of 

independence after partitioning of �̃� into sub-blocks �̅�𝑖, a re-orthogonalization of 

�̅�𝑖 is required to remove every possible linear dependence. This can be achieved 

by performing a singular value decomposition (SVD) on the blocks separately 

based on which the dominant modes can be selected as bases of the projection 

matrices for individual sub-systems. The drawback of this structure-preserving 
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approach is that the calculation of the projection matrices of the sub-system 

requires solving systems with the entire coupled system’s coefficient matrix. So 

this approach is expensive in some sense, at least, to the extent of the computation 

of the projection basis of the original coupled system. 

As a way to circumvent this computational cost, it is remarked that while the 

undamped mechanical system equation is coupled to the thermal system, there is 

no feedback coupling from the mechanical to the thermal system i.e., one-sided 

coupling. Therefore, the thermal system can be reduced independently using any 

of the general MOR techniques for state-space system and then use the transient 

solution of the reduced temperature state as an input to the mechanical system to 

obtain the unknown displacement degrees of freedom. Let the reduced thermal 

system be represented as: 

𝑺𝑡�̇�𝑡 +𝑯𝑡𝑻𝑡 = 𝑭4𝑡𝑖(𝑡)       (6.62) 

where  

𝑺𝑡 = 𝑽𝑡
𝑇𝑺𝑽𝑡 ,   𝑯𝑡 = 𝑽𝑡

𝑇𝑯𝑽𝑡 ,  𝑭4𝑡 = 𝑽𝑡
𝑇𝑭4 ,  T= 𝑽𝑡𝑻𝑡 , 

𝑽𝑡 ∈ ℝ
N𝑇×𝑞1 ,   𝑻𝑡 ∈ ℝ

𝑞1×1 ,  𝑺𝑡 , 𝑯𝑡 ∈ ℝ
𝑞1×𝑞1. 

By considering a first-order Krylov subspace 𝒦𝑞(−𝑯
−1𝑺, −𝑯−1𝑭4) , the 

projection basis 𝑽𝑡  for the thermal system can be obtained by using the basic 

Arnoldi scheme as described in chapter 4. This is followed by applying the 

mapping 𝑻 = 𝑽𝑡𝑻𝑡 and then projection according to Eq. (6.62) and by solving Eq. 

(6.62) using the modified Euler method, the reduced temperature states 𝑻𝑡 can be 

determined at various time steps. Figure 6.10 shows the error plot for the reduced 

thermal system at the beginning (100th time step) and last time (900th time step) 

steps and it can be seen that the thermal system is reduced efficiently to the tune of 

10−13 relative error and a stable error bound is attained with a reduced order as 
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small as 10. This realization is used as a clue in the optimal selection of reduced 

temperature states for the thermal coupling term in the undamped mechanical 

system. 

 

Figure 6.10 Error plot for reduced-order thermal system at times 100 and 900 

seconds. 

 

Let us define the projection matrix for the thermally coupled mechanical system as 

𝑽𝑚 = (𝛎1, … . . , 𝛎q) which can be used as a change-of-coordinate basis for the 

displacement degrees of freedom as 𝝌 = 𝑽𝑚𝝌𝑟  to produce the reduced-order 

coupled system after projection: 

𝑴𝑟𝝌�̈� +𝑲𝑟𝝌𝑟 + 𝑪𝑟𝑻𝑟 = 𝑭𝑟𝑖(𝑡)     (6.63) 

where 

𝑴𝑟 = 𝑽𝑚
𝑇𝑴1𝑽𝑚,  𝑲𝑟 = 𝑽𝑚

𝑇𝑲1𝑽𝑚,  𝑪𝑟 = 𝑽𝑚
𝑇𝑪1𝑽𝑡,  𝑭𝑟 = 𝑽𝑚

𝑇𝑭1 . 

To obtain the projection matrix for the mechanical system 𝑽𝑚 , the first-order 

equivalent of the global system is recalled as:  

𝑬�̇� = 𝑨𝚽+ 𝒃𝑖(𝑡)       (6.64) 

where matrices 𝑬, 𝑨 and vector 𝒃 are as defined in Eq. (6.51). 
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The moment and the input Krylov subspace for the first-order system (6.64) are 

defined as: 

𝒎𝑖 = 𝒄
𝑇(𝑨−1𝑬)𝑖𝑨−1𝒃b ,  𝒦𝑟(𝑨

−1𝑬,𝑨−1𝒃) , 𝑖 = 0, 1, ….  (6.65) 

By using a block inverse procedure, It is noted that: 

𝑨−1 = [
𝟎 𝑰 𝟎
−𝑲1 𝟎 −�̅�𝑇
𝟎 𝟎 −𝑯

]

−1

= [
𝟎 −𝑲1

−1 𝑲1
−1�̅�𝑇𝑯

−1

𝑰 𝟎 𝟎
𝟎 𝟎 −𝑯−1

]  (6.66) 

With this realization, the moment for the first-order system is expressed as: 

 𝒎𝑖 = 𝒄
𝑇 ([

𝟎 −𝑲1
−1𝑴1 𝑲1

−1�̅�𝑇𝑯
−1𝑺

𝑰 𝟎 𝟎
𝟎 𝟎 −𝑯−1𝑺

])

𝑖

[
−𝑲1

−1�̅�1 +𝑲1
−1�̅�𝑇𝑯

−1𝑭4
𝟎

−𝑯−1𝑭4

] 

      (6.67) 

With respect to Eq. (6.67), the Krylov subspace for the thermal and the coupled 

mechanical system are 𝒦𝑟1(−𝑯
−1𝑺,−𝑯−1𝑭4)  and 

𝒦𝑟2(−𝑲1
−1𝑴1, 𝑲1

−1�̅�𝑇𝑯
−1𝑺,−𝑲1

−1�̅�1 +𝑲1
−1�̅�𝑇𝑯

−1𝑭4) . It is evident that 

𝒦𝑟1(−𝑯
−1𝑺,−𝑯−1𝑭4)  exactly corresponds to the Krylov subspace for the 

uncoupled thermal system (6.49) while 𝒦𝑟2(−𝑲1
−1𝑴1, 𝑲1

−1�̅�𝑇𝑯
−1𝑺,−𝑲1

−1�̅�1 +

𝑲1
−1�̅�𝑇𝑯

−1𝑭4)  is considered as the equivalent input Krylov subspace for the 

undamped mechanical system. More appropriately, let us denote the Krylov subspace 

for the thermal and coupled mechanical systems as 𝒦𝑟1(𝑮, 𝒃2) and  𝒦𝑟2(�̃�, 𝒀, 𝒃1) 

with 

 �̃� = −𝑲1
−1𝑴1,   𝒀 = 𝑲1

−1�̅�𝑇𝑯
−1𝑺,  𝒃1 = −𝑲1

−1�̅�1 +𝑲1
−1�̅�𝑇𝑯

−1𝑭4 

𝑮 = −𝑯−1𝑺,   𝒃2 = −𝑯
−1𝑭4  

At this point, it is remarked that the input second-order Krylov subspace for 

moment matching about zero for an uncoupled, undamped mechanical system 
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(6.68) with input vector 𝑭1 is 𝒦𝑞2(𝟎,−𝑲1
−1𝑴1, −𝑲1

−1𝑭1) which results in the 

following projection matrix [83]: 

𝑴1�̈� + 𝑲1𝝌 = 𝑭1𝑖(𝑡)       (6.68) 

colspan(𝑽𝑥) = colspan {−𝑲1
−1𝑭1, 𝟎, −𝑲1

−1𝑴1𝑲1
−1
𝑭1, 𝟎, … } =

𝒦𝑞2(−𝑲1
−1𝑴1, −𝑲1

−1𝑭1)       

  (6.69) 

Eq. (6.69) implies that the basic blocks of the Krylov subspace corresponding to 

odd numbers are zero. Indeed, this fact is clear by stating the moment for the 

undamped mechanical system as: 

𝒎𝑖 = [𝑳 𝟎] ([
𝟎 𝑰
−𝑲1 𝟎

]
−1

[
𝑰 𝟎
𝟎 𝑴1

])

𝒊

[
𝟎 𝑰
−𝑲1 𝟎

]
−1

[
𝟎
𝑭1
] 𝑖 = 0, 1, … 

(6.70a) 

𝒎𝑖 = [𝑳 𝟎] [𝟎 −𝑲1
−1𝑴1

𝑰 𝟎
]
𝒊

[−𝑲1
−1𝑭1
𝟎

]    (6.70b) 

It is clear from Eq. (6.70b) that the odd moments 𝒎𝑖 are zeros. Therefore, the basis 

of the Krylov subspace 𝒦𝑞2(−𝑲1
−1𝑴1, −𝑲1

−1𝑭1) constitute the columns of the 

projection matrix 𝑽𝑥  which are orthonormal. With this idea noted, moment 

expansion of thermal Krylov subspace 𝒦𝑟1(𝑮, 𝒃2)  and coupled second-order 

Krylov subspace 𝒦𝑟2(�̃�, 𝒀, 𝒃1)  in accordance with (6.67) about zero yields 

matrices 𝑽𝑠 and 𝑽𝑛 respectively for 𝑖 = 0, 1, … 

𝑐𝑜𝑙𝑠𝑝𝑎𝑛(𝑽𝑛) = 𝑐𝑜𝑙𝑠𝑝𝑎𝑛{𝒃1, 𝒀𝒃2, �̃�𝒃1 + 𝒀𝑮𝒃2, �̃�𝒀𝒃2 + 𝒀𝑮
2𝒃2, �̃�

2𝒃1 +

�̃�𝒀𝑮𝒃2 + 𝒀𝑮
3𝒃2, … }       

 (6.71a) 

colspan(𝑽𝑠) = colspan{𝒃2, 𝑮𝒃2, 𝑮
2𝒃2, 𝑮

3𝒃2, … }   (6.71b) 
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From Eq. (6.71), our objective is to extract the so called coupled moments that 

grows in the expansion with the starting vectors 𝒃1 and 𝒃2 since the mechanical 

system is coupled with the thermal system. It is observed that the odd moments of 

𝑐𝑜𝑙𝑠𝑝𝑎𝑛(𝑽𝑛) grows in the moment expansion with only 𝒃2, the starting vector for 

the thermal system, so these moments can be neglected. In addition, it is noted that 

the even moments of 𝑐𝑜𝑙𝑠𝑝𝑎𝑛(𝑽𝑛) appears to grow with the odd moments of 

𝑐𝑜𝑙𝑠𝑝𝑎𝑛(𝑽𝑠)  while the odd moments of 𝑐𝑜𝑙𝑠𝑝𝑎𝑛(𝑽𝑛)  grows with the even 

moments of 𝑐𝑜𝑙𝑠𝑝𝑎𝑛(𝑽𝑠). Note that 𝒃1 = −𝑲1
−1�̅�1 −𝑲1

−1�̅�𝑇𝒃2, so the starting 

vector 𝒃1 constitutes a coupled moment since it depends on 𝒃2. On this basis, we 

can pick the even (coupled) moments of 𝑐𝑜𝑙𝑠𝑝𝑎𝑛(𝑽𝑛) and the odd moments of 

𝑐𝑜𝑙𝑠𝑝𝑎𝑛(𝑽𝑠)  to form a new coupled Krylov subspaces 𝒦𝑟2(�̃�, 𝒀, 𝒃1)  and 

𝒦𝑟1(𝑮
2, 𝑮𝒃2) with a new projection matrix 𝑽𝑚  defined as: 

𝑐𝑜𝑙𝑠𝑝𝑎𝑛(𝑽𝑚) = 𝑐𝑜𝑙𝑠𝑝𝑎𝑛{𝒃1, �̃�𝒃1 + 𝒀𝑮𝒃2, �̃�
2𝒃1 + �̃�𝒀𝑮𝒃2 + 𝒀𝑮

3𝒃2, … }  (6.72) 

In (6.72), the coupled term of 𝒦𝑟2(�̃�, 𝒀, 𝒃1) is 𝒀 and it is recursively iterated with 

𝒦𝑟1(𝑮
2, 𝑮𝒃2) . 𝑽𝑚  constitutes a column space where the coupled undamped 

system state evolves. The next task is numerical computation of 𝑽𝑚 and this can 

be achieved with the modified Arnoldi algorithm for coupled second-order system 

developed in Algorithm 6.5. Numerical issues associated with the construction of 

the projection basis 𝑽𝑚 is constituted by the computation of the inverse of 𝑲1 and 

𝑯  which is expensive by direct inverse approach. By performing LU 

decomposition of 𝑲1 and 𝑯 and solving a system of linear equations, the recursive 

procedure becomes efficient computationally than using a direct inverse procedure. 

Since the coupled moments are not picked successively from the moment 

expansion of the Krylov subspace of the global system, there is possibility of weak 

linear independence in the Arnoldi iteration, so a re-orthogonalization is applied 

through singular value decomposition (SVD) based on which singular values are 
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retained for the system projection. In Algorithm 6.5, the modified Arnoldi 

algorithm for the coupled second-order Krylov subspace is outlined. 

 

Algorithm 6.5 (Coupled second-order Arnoldi algorithm) 

Input: matrices �̃�, 𝒀, 𝑮, 𝒃1, 𝒃2, dimension of Krylov subspace 𝑞2 

1. Set �̃�1 =
𝒃1

‖𝒃1‖2
 �̅�1 =

𝑮𝒃2

‖𝑮𝒃2‖2
 

2. for 𝑘 = 1, 2, … . . , 𝑞2 do 

a. 𝒖1 = �̃��̃�𝑘 + 𝒀�̅�k; 𝒖2 = 𝑮
2�̅�k 

Orthogonalization  

b. for 𝑗 = 1,… , 𝑘 do 

 ℎ1 = �̃�𝑗
𝑇𝒖1; ℎ2 = �̅�𝑗

𝑇𝒖2 

 𝒖1 ← 𝒖1 − ℎ1�̃�𝑗; 𝒖2 ← 𝒖2 − ℎ2�̅�𝑗 

        end for 

c. Normalization: if the vector ‖𝒖1‖2 < 𝜖  break the loop. 

Otherwise, the 𝑖th column of the projection matrices are: 

�̃�𝑘+1 =
𝒖1 

‖𝒖1 ‖2
  �̅�𝑘+1 =

𝒖2 

‖𝒖2 ‖2
 

  end for 

3. output �̃�𝑚 = (�̃�1, … , �̃�q2)  

4. compute SVD �̃�𝑚 ≈ 𝑼𝑞𝚺𝑞𝑽𝑞
𝑇 and pick 𝑞 ≪ N1 singular values 

5. return 𝑽𝑚 = (𝛎1, … , 𝛎q)  

Finally, computation of the reduced system matrices 𝑴𝑟 , 𝑲𝑟 , 𝑪𝑟  and 𝑭𝑟  can be 

performed according to Eq. (6.63). The solution of the reduced-order model is 
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obtained based on Newmark time integration scheme and the results are analysed 

in details in Sec. 6.6. 

6.6 Numerical results 

The system configuration considered here is shown in Fig. 5.6. A total of 15 min 

or 900 sec of cooling is specified for the PV system after the system had been raised 

to a homogeneous temperature of 150℃ . We are mainly interested in the 

thermomechanical response of the Silicon layer, so the displacements of the second 

layer are output for the reduced system. Model results for various formulations are 

analysed and discussed in this section based on the relative error between the 

original system outputs (displacements) and the reduced order outputs as well as 

the computational time required to obtain the reduced system solutions. The results 

are divided into three categories namely, state-space model, second-order based 

model and coupled second-order structure preserving model. In the sequel, the error 

plots and displacement plots for the original and reduced system are presented. 

Plots of displacements are presented in accordance with Fig. 5.15. In the 

displacement plots 𝑉1 is the projection matrix of the global system except in section 

6.5.3 where 𝑉1 represents the projection matrix of the coupled mechanical system 

while 𝑉2 represents the projection matrix of the thermal system. w, U and V denote 

deflection and mid-plane displacements of the layers in the 𝑥1 and 𝑥2 directions 

respectively. 

 

6.6.1 State-space model 

Figure 6.11 (a–c) shows the error plots for the three displacement variables at times 

representative of the beginning, middle and end of the simulation. The efficiency 

of the POD scheme for the state-space representation of the thermomechanical 

system is observed. In Fig. 6.11 (d), the reduced-order output displacements at node 
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2885 in the Silicon layer show good approximation as the relative error of about 

10−6 is attained for V displacement while less than 10−8 error is achieved for w 

and U displacements. It is evident from the error plots that the system dynamic 

response is characterized by low inertial forces since the error attained with order 

1 is about 10−4  for V , w  and U  displacements. In order words, the 

thermomechanical system response of the PV module is largely quasi-static.  

 
(a)                                                           (b) 

 
 (c)                                                       (d) 

Figure 6.11 Error plots for reduced-order State-space model at times (a) 100 sec 

(b) 400 sec (c) 900 sec and node (d) 1800. 

 

A stable error bound is attained for all the displacement outputs in time and space 

domain with order 5. To ensure low computational cost, the POD scheme is applied 

to the state-space representation of the system by collecting few snapshots (about 

10) which strongly characterize the system dynamic response. Specifically, the first 

10 snapshots of the full system solution are collected for the POD scheme and as 
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remarked in Sec. 6.3, the collection of more snapshots may improve the result by 

ensuring that the POD modes are better approximated and in turn improve the 

reduced system outputs. However, observations from numerical experiments 

indicate that collection of too many snapshots may lead to high computational cost 

of the POD scheme and poor approximation of the POD modes which may strongly 

impair the accuracy and stability of the reduced system solution. In essence, only 

necessary snapshots which ensure accuracy and numerical stability of the reduced 

system at low computational cost are collected. 

Displacement versus normalized longitudinal direction plots at the last time step 

for the Silicon layer are output for the reduced-order solution as shown in Fig. 6.12 

and it is observed  that the complete solution is well approximated by the reduced 

solution with order as low as 3.  
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(b) 

 

(c) 

Figure 6.12 (a) w (b) V (c) U Displacement variables for the reduced solution and 

full solution. 

6.6.2 Second-order preserving model 

To preserve the second-order structure of the global system, a second-order based 

reduction is implemented and the results are shown in Figs. (6.13 – 6.16). Two 

different approaches are considered, a POD based approach and a rational second-

order Krylov method. The requirement for collection of snapshots for the second-

order POD method is as described in Sec. 6.6.1 except that the snapshots in this 
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case consist of augmented vectors of displacement and temperature at discrete 

times. As shown in Fig. 6.13, a good approximation of the system output is 

obtained with a relative error magnitude of 10−6 for the V displacement and more 

than 10−7 for w and U displacement variables in time and space domains. In case 

of the second-order POD scheme, a stable error bound is attained with less than 

order 5 at the last time step. These results confirm the suitability of the POD scheme 

for preservation of the second-order structure of the coupled thermomechanical 

system. 

 

 (a)                                                             (b) 

   

(c)                                                              (d) 

Figure 6.13 Error plots for POD-based second-order preserving reduced-order 

system at times (a) 100 sec (b) 400 sec (c) 900 sec and node (d) 1800. 

A good approximation of the system outputs is obtained as shown in Fig. 6.14 with 

reduced order 3. This outcome supports the previously remarked statement that the 
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coupled mechanical system is of very low inertial such that the system dynamic 

response is very close to a quasi-static case.  
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(c) 

Figure 6.14 (a) w (b) V (c) U Displacement variables for the POD second-order 

preserving reduced solution and full solution. 

   

(a)                                                               (b) 

   

(c)                                                        (d) 

Figure 6.15 Error plots for Krylov-based second-order preserving reduced-order 

system at times (a) 100 sec (b) 400 sec (c) 900 sec and node (d) 2885. 
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An alternative second-order model is also considered based on rational Krylov 

method. Four expansion points (0, 0.01, 0.02, 0.03) are chosen to enhance the 

system outputs as it is observed that expansion about 0 leads to quick loss of 

orthogonality as the iteration proceeds. Few moments are matched at each 

expansion point such that the error is spread across the expansion points. This 

ensures more stable and reduced model outputs with better accuracy as shown in 

Figs. 6.15-6.16. In the time domain, an error of about 10−9  is achieved for w and 

U  displacements while an error magnitude of about 10−8  is achieved for V 

displacement. In the space domain, an error magnitude of about 10−8  is achieved 

for w and U displacements while an absolute error magnitude of more than 10−6 

is achieved for V displacement. With a reduced order of 3, a good system output 

approximation is achieved for the displacement variables (see Fig. 6.16).  
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(b) 

 

 

(c) 

Figure 6.16 (a) w (b) V (c) U Displacement variables for the Krylov second-order 

preserving reduced solution and full solution. 

 

6.6.3 Coupled second-order structure preserving model 
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flexibility in the choice of order of reduction for each sub-system. While the 

uncoupled thermal system is well reduced by applying basic Krylov method as 

shown in Fig. 6.10, a new structure preserving formulation is applied to the 

mechanical system with the order of the thermal system fixed at 10 and the results 

show good approximation of original system outputs (see Figs. 6.17–6.18).   

 

 (a)                                                             (b) 

 

(c)                                                              (d) 

Figure 6.17 Error plots for Krylov-based coupled second-order structure preserving 

reduced-order system at times (a) 100 sec (b) 400 sec (c) 900 sec and node (d) 1800 

for thermal order V2 = 10. 
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the tune of 10−7 relative error. It is remarked from Fig. 6.17-6.18 that the coupled 

mechanical system attains a stable error bound at a reduced order of about 10. 

 

(a) 

 

(b) 

Normalized coordinate in 2 direction 

0 0.2 0.4 0.6 0.8 1

D
e

fl
e

c
ti

o
n

 o
f 

L
a

y
e

r 
2

 (
m

)

10
-4

-1

0

1

2

3
x

1
 = 0.094 m

V
1
 = 1

V
1
 = 3

V
1
 = 10

Full

Normalized coordinate in 1 direction 

0 0.2 0.4 0.6 0.8 1

V
 d

is
p

la
c

e
m

e
n

t 
o

f 
L

a
y
e

r 
2

 (
m

) 10
-5

-2

0

2

4

6
x

2
 = 0.094 m

V
1
 = 1

V
1
 = 3

V
1
 = 10

Full



188 
 

 

(c) 

Figure 6.18 (a) w  (b) V  (c) U  Displacement variables for the Krylov coupled 

second-order structure preserving reduced solution and full solution for thermal 

order V2 = 10. 

With reduced model of order of 3, the displacement outputs of the reduced-order 

model adequately approximate the outputs of the original system.  

 

6.6.4 Computation time for the reduced models 

Finally the computational time for the various models is reported in Table 6.1. This 

comparison is important to highlight the significant gain in computational cost of 

the reduced solutions. It is evident from Table 6.1 that there is a huge computational 

gain in the solution of the reduced solution. This gain will be a great advantage in 

situation where repeated simulations are required as the input function only needs 

be changed to investigate the system response. 
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Table 6.1. Computational time for solution of reduced models and full solution.  

Model Order Computational 

time 

Coupled second-order 

structure preserving 

reduction 

V1 = 3 

V2 = 10 

0.522 sec 

 

V1 = 5 

V2 = 10 

0.851 sec 

 

Second-order preserving 

reduction 

V1 = 3 0.420 sec 

V1 = 5 0.50 sec 

State-space reduction V1 = 4 0.681 sec 

V1 = 5 1.024 sec 

Full solution 16000 838 sec 

 

6.6.5 Validation of the coupled second-order structure preserving model 

The proposed structure preserving model is validated by using another input 

function (6.73) to excite the thermo-mechanical system. The new cooling function 

is plotted against time as shown in Fig. 6.19. 

𝑖(𝑡) = 25 + (0 − 25)exp(0.002𝑡)     (6.73) 

In the error plots for the validated model in Fig. 6.20, order of the thermal system 

is fixed at 10 and order of the mechanical system is varied up to 50. It is observed 

that the reduced-order model derived using the coupled second-order Krylov 

approach satisfactorily approximates the original system outputs to the tune of 

10−7 relative error in time and space domains. It is evident that a stable error bound 

occurs at a reduced model of an order of 10, the thermal system order. In Fig. 6.21, 
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it is shown that validated system outputs is well approximated by the reduced 

solution with order of 5 which shows efficiency of the proposed coupled second-

order Krylov approach for reduction of coupled thermo-mechanical systems. 

 

Figure 6.19. Input function for validation of coupled structure preserving model. 
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Figure 6.20 Error plots for validation of Krylov-based coupled second-order 

structure preserving reduced-order model at times (a) 100 sec (b) 400 sec (c) 900 

sec and node (d) 1800 for thermal order V2 = 5. 

 

(a) 

 

 

(b) 

 

Normalized coordinate in 2 direction 

0 0.2 0.4 0.6 0.8 1

D
e
fl

e
c

ti
o

n
 o

f 
L

a
y
e

r 
2

 (
m

)
10

-4

-1

0

1

2

3
x

1
 = 0.094 m

V
1
 = 1

V
1
 = 3

V
1
 = 5

Full

Normalized coordinate in 1 direction 

0 0.2 0.4 0.6 0.8 1

V
 d

is
p

la
c

e
m

e
n

t 
o

f 
L

a
y
e

r 
2

 (
m

) 10
-5

-2

0

2

4

6
x

2
 = 0.094 m

V
1
 = 1

V
1
 = 3

V
1
 = 5

Full



192 
 

 

(c) 

Figure 6.21 (a) w (b) V (c) U Displacement variables for validated model of the 

coupled second-order structure preserving reduced solution and full solution for 

thermal order V2 = 5. 
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CHAPTER 7 

CONCLUSIONS 

Advanced beam formulations (2D and 3D) based on shear-lag theory are presented 

and implemented in this work with the aim to investigate thermo-mechanical stress 

distribution inside a PV module during lamination. With respect to the 2D case, a 

detailed analysis is conducted by comparing a spatially uniform temperature 

distribution dependent on time and a non-uniform temperature distribution 

obtained by numerically solving the heat conduction equation in space and time. A 

semi-analytic approach is proposed in this work by taking into account the 

viscoelastic behaviour of the EVA layer, based on fractional calculus 

considerations. The predictions of this shear-lag model have been compared with 

another classical structural model where the EVA layer is considered as a 

continuum, as in linear elastic finite element analyses of PV laminates. The results 

of the stress analysis show that Silicon is subjected to a residual mean compressive 

stress of about 60 MPa if uniform temperature is considered. On the other hand, if 

a non-uniform temperature distribution is accounted for in the analysis, as it 

happens during the simulation of the transient heat conduction regime, the stress 

field reduces to 40 MPa after lamination.  

To further refine the present semi-analytical predictions, an extension to 3D 

coupled thermo-visco-elastic shear-lag model is considered in which a laboratory 
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test PV module of geometric size 250 × 250 mm with 4 Silicon cells is used for 

this analysis. Viscoelastic properties of EVA is taken into account to enhance the 

residual stress prediction and this is achieved by using an asymptotic viscoelastic 

model which is stable for small and large time steps of strain increments. The result 

of the investigation shows that the PV module experiences small magnitude of 

interfacial stresses at the laminate edges while at the mid-portion, magnitude of the 

interfacial stresses are negligible. Examination of the mean axial residual stresses 

at different regions in the laminate shows that the Silicon cells experience 

compressive stress state of higher magnitude at the laminate centre with respect to 

the laminate edges. The backsheet and the glass layers are largely in tension. Study 

of the transient stress evolution indicates that the transient response of the coupled 

system imitate the cooling function during lamination, an observation which 

highlights the importance of the cooling function. 

 

As the numerical solution of the 3D coupled shear-lag model is characterized by 

many degrees of freedom after finite difference discretization with a high 

computational cost, model order reduction is considered to circumvent this hurdle. 

To hierarchically examine the suitability of model order reduction to PV systems, 

a formulation for heat conduction within a 2D photovoltaic system is first derived 

and a numerical solution based on a finite difference scheme is implemented. 

POD/DEIM order reduction technique with a modified formulation is identified as 

suitable and efficient to reduce the thermal system through a combination of linear 

subspace projection and interpolation of nonlinear terms. It is shown that the heat 

conduction of a PV system discretized into 2166 nodes along the module span is 

successfully reduced to a compact model with dynamical order k=7, based on 

interpolation with only m1=m2=3 points. Investigation shows that the efficiency 

and accuracy of the numerical solution can be fine- tuned by carefully selecting a 

different interpolation order for individual nonlinear terms and from the validation 
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results, it is concluded that the reduced solution is not very sensitive to the input 

function as it approximates well the simulated irradiance data much the same way 

as the experimental irradiance data used in the construction of the compact model. 

 

Having established a suitable order reduction for a thermal system of PV module 

during service, the efficient POD technique is extended to model order reduction 

of the proposed 3D coupled thermo-mechanical model.  Due to the coupled second-

order structure of the system equation, 3 difference model order reduction 

procedures are examined. The classical state-space approach, a first-order based 

method is implemented using a POD technique to derive the projection basis and 

the results of reduced system outputs show good approximation of the original 

system outputs with a reduced system order of 10 and relative error of 10−7 

attained. A second-order based approach is also considered to preserve the second-

order structure of the global system. This procedure is investigated by 

implementing 2 different techniques, a POD based method and a second-order 

Krylov based method. It is shown that the POD technique is also suitable to 

preserve the second-order structure of the global system with good accuracy of the 

reduced system approximation of the original system outputs to the tune of above 

10−7 error and with reduced system order of 5. The second-order Krylov based 

method on the other hand is implemented based on rational second-order Krylov 

method in order to obtain improved reduced system outputs. A good approximation 

of the original system outputs is obtained with reduced system order of 3 and a 

relative error of about 10−9  is achieved. Finally, a new coupled second-order 

Krylov based formulation is proposed to preserve the coupled second-order 

structure of the thermo-mechanical system and to allow for more control in the 

choice of the order of individual system. To obtain a stable reduced order model 

with a reasonable degree of accuracy, the projection basis of the coupled Krylov 

subspaces is derived based on a combination of modified Gram-Schmidt algorithm 
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for second-order system and singular value decomposition method (SVD). With a 

fixed order of 10 for the thermal system, the outputs of the reduced mechanical 

system approximate well the original system outputs to the tune of 10−8 error and 

with reduced system order of 10. An important observation in the reduction of the 

coupled thermo-mechanical system shows that the mechanical system response 

during lamination is close to a quasi-static case as a system with reduced order of 

1 leads to fairly satisfactory approximation of the original system outputs with 

relative error of about 10−4. Finally, the coupled second-order Krylov model is 

validated by using another input function and it is shown that the reduced solution 

of the validated model approximates well the outputs of the full model, thus 

confirming the efficiency of the proposed coupled second-order Krylov method.  

 

It is believed that the current coupled formulation which is derived based on shear-

lag theory and discretization by finite difference method can be improved upon by 

considering a formulation based on finite element method using shell theory that 

takes into account the rotational degrees of freedom of the system. In addition, 

finite element models enjoy widespread use in structural engineering with 

discretization in space leading to high dimensional system of ODEs whose 

transient analysis takes much computational effort. Therefore, application of model 

order reduction to produce a compact representation of the system with low 

dimension but accurate approximation of the large-scale system is desirable. In the 

case of PV module where coupling between many fields is well established, 

advanced model order reduction techniques are available for structure preservation 

of the reduced model which can guarantee better control in the analysis of the 

system response. Consequently, this procedure can offer opportunity to investigate 

failures such as thermomechanically induced degradation phenomena examples of 

which are delamination and fracture of Silicon solar cell in photovoltaic laminates. 

The computational requirements of such simulation can efficiently be economized 
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by using model order reduction techniques and in particular, computational 

complexities associated with phenomena such as crack propagation and fatigue 

degradation which are often characterized by fine mesh of the area of discontinuity 

and repeated application of load can be effectively minimized. 
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APPENDIX 

APPENDIX A.  

A.1 Elements of 𝒗 vector 

The vector of unknowns  𝒗 in Eqs. (5.52) and (5.57) is defined as:  

𝒗

= [𝑈1 𝑈1
′ 𝑈2 𝑈2

′ 𝑈3 𝑈3
′ 𝑊1 𝑊1

′ 𝑊1
′′ 𝑊1

′′′ 𝑊2 𝑊2
′ 𝑊2

′′ 𝑊2
′′′ 𝑊3 𝑊3

′ 𝑊3
′′ 𝑊3

′′′]𝑇 

A.2 Coefficients of B matrix 

The matrix operator 𝑩 entering Eqs. (5.52) and (5.56) is given by: 
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𝑩

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0 1 0 0 0 0 0 0 0
𝜅1 0 𝜅2 0 0 0 0 𝜅3 0
0 0 0 1 0 0 0 0 0
𝜉1 0 𝜉2 0 𝜉3 0 0 𝜉4 0
0 0 0 0 0 1 0 0 0
0 0 𝜚2 0 𝜚3 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0
𝜆7 𝜆1 𝜆8 𝜆2 0 0 𝜆5 𝜆9 𝜆3
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
𝛾10 𝛾1 𝛾11 𝛾2 𝛾12 𝛾3 𝛾7 𝛾13 𝛾4
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 𝛿7 𝛿1 𝛿8 𝛿2 0 0 0

    

0 0 0 0 0 0 0 0 0
0 0 𝜅4 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 𝜉5 0 0 0 𝜉6 0 0
0 0 0 0 0 0 0 0 0
0 0 𝜚5 0 0 0 𝜚6 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 𝜆6 𝜆10 𝜆4 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 𝛾8 𝛾14 𝛾5 0 𝛾9 𝛾15 𝛾6 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 𝛿5 𝛿9 𝛿3 0 𝛿6 𝛿10 𝛿4 0]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

where the entries of the 𝑩 matrix are defined as: 

Λ𝑖 = −
(1−𝜈𝑖

2)

𝐸𝑖ℎ𝑖
,  

Υ𝑖 =
(1−𝜈𝑖

2)

𝐸𝑖𝐼𝑖
 , 𝑖 = 1, 2, 3 

𝜅1 = −Λ1Kx1,  𝜅2 = Λ1Kx1,  𝜅3 = Λ1Kx1c1,  𝜅4 = Λ1Kx1c2,   

𝜉1 = Λ2Kx1,   𝜉2 = −Λ2(Kx1 + Kx2),   𝜉3 = Λ2Kx2, 

𝜉4 = −Λ2Kx1c1,  𝜉5 = Λ2c2(Kx1 − Kx2),   𝜉6 = Λ2Kx2c3, 

𝜚1 = Λ3Kx2,    𝜚2 = −Λ3Kx2,   𝜚3 = −Λ3Kx2c2,    𝜚4 = −Λ3Kx2c3, 

𝜆1 = Υ1Kx1c1,  𝜆2 = −Υ1Kx1c1,    𝜆3 = −Υ1Kx1c1
2,  𝜆4 = −Υ1Kx1c1c2, 

𝜆5 = Υ1Ky1,  𝜆6 = −Υ1Ky1,     𝜆7 =
Υ1c1

Kx1

∂Kx1

𝜕𝑥2
,        𝜆8 = −

Υ1c1

Kx1

∂Kx1

𝜕𝑥2
, 
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𝜆9 = −
Υ1c1

2

Kx1

∂Kx1

𝜕𝑥2
,  𝜆10 = −

Υ1c1c2

Kx1

∂Kx1

𝜕𝑥2
.   

 

𝛾1 = Υ2Kx1c2,  𝛾2 = Υ2c2(Kx2 − Kx1),  𝛾3 = −Υ2Kx2c2,  𝛾4 = −Υ2Kx1c1c2, 

𝛾5 = −Υ2c2
2(Kx2 + Kx1),  𝛾6 = −Υ2Kx2c3c2, 𝛾7 = −Υ2Ky1,    

𝛾8 = Υ2(Ky1 + Ky2),  𝛾9 = −Υ2Ky2,   𝛾10 =
Υ2c2

Kx1

∂Kx1

𝜕𝑥2
,   

𝛾11 = Υ2c2 (
1

Kx2

∂Kx2

𝜕𝑥2
−

1

Kx1

∂Kx1

𝜕𝑥2
),  𝛾12 = −

Υ2c2

Kx2

∂Kx2

𝜕𝑥2
, 𝛾13 = −

Υ2c1c2

Kx1

∂Kx1

𝜕𝑥2
,  

𝛾14 = −Υ2c2
2 (

1

Kx2

∂Kx2

𝜕𝑥2
+

1

Kx1

∂Kx1

𝜕𝑥2
),  𝛾15 = −

Υ2c3c2

Kx2

∂Kx2

𝜕𝑥2
. 

 

𝛿1 = Υ3Kx2c3,     𝛿2 = −Υ3Kx2c3,     𝛿3 = −Υ3Kx2c3c2,     𝛿4 = −Υ3Kx2c3
2 

𝛿5 = −Υ3Ky2,    𝛿6 = Υ3Ky2,           𝛿7 =
Υ1c1

Kx1

∂Kx1

𝜕𝑥2
,      𝛿8 = −

Υ1c1

Kx1

∂Kx1

𝜕𝑥2
 

𝛿9 = −
Υ1c1

2

Kx1

∂Kx1

𝜕𝑥2
,  𝛿10 = −

Υ1c1c2

Kx1

∂Kx1

𝜕𝑥2
.   

  



213 
 

A.3 Coefficients of F vector 

𝑭 =

{
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
0
0
0
0
0
0
0
0
0
𝜆11
0
0
0
𝛾16
0
0
0
𝛿11}
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 

where the entries of the 𝑭 vector are defined as: 

𝜆11 = Υ1Ky1(∆𝑇2α2c2+∆𝑇1α1c1), 

𝛾16 = −Υ2[Ky1∆𝑇1α1c1 + ∆𝑇2α2c2(Ky1 − Ky2) − Ky2∆𝑇3α3c3], 

𝛿11 = Υ1Ky1(∆𝑇2α2c2+∆𝑇1α1c1). 
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APPENDIX B. 

B.1 Fourth derivative approximation for non-uniform finite difference 

 

 

Figure B.1 points with non-uniform grid spacing. 

Let 𝑟 =
ℎ1

ℎ2
 . 

To evaluate the fourth derivative at point 2 (in Fig. B.1) for a five point stencil and 

centred divided difference approximation, the fourth order polynomial is 

considered: 

𝑃4(𝑥2) = ∑ 𝐹(𝑥𝑗)𝑙𝑗(𝑥)
4
𝑗=0   (B.1) 

with grid spacing, 

𝑥0 = 𝑥 − 2ℎ2,  𝑥1 = 𝑥 − ℎ2,  𝑥2 = 𝑥,   

𝑥3 = 𝑥 + ℎ2,  𝑥4 = 𝑥 + (1 + 𝑟)ℎ2, 

And the Lagrange polynomials 𝑙𝑗(𝑥) are expressed as: 

𝑙0(𝑥) =
𝑥 − 𝑥1
𝑥0 − 𝑥1

𝑥 − 𝑥2
𝑥0 − 𝑥2

𝑥 − 𝑥3
𝑥0 − 𝑥3

𝑥 − 𝑥4
𝑥0 − 𝑥4

 

𝑙1(𝑥) =
𝑥 − 𝑥0
𝑥1 − 𝑥0

𝑥 − 𝑥2
𝑥1 − 𝑥2

𝑥 − 𝑥3
𝑥1 − 𝑥3

𝑥 − 𝑥4
𝑥1 − 𝑥4
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𝑙2(𝑥) =
𝑥 − 𝑥0
𝑥2 − 𝑥0

𝑥 − 𝑥1
𝑥2 − 𝑥1

𝑥 − 𝑥3
𝑥2 − 𝑥3

𝑥 − 𝑥4
𝑥2 − 𝑥4

 

𝑙3(𝑥) =
𝑥 − 𝑥0
𝑥3 − 𝑥0

𝑥 − 𝑥1
𝑥3 − 𝑥1

𝑥 − 𝑥2
𝑥3 − 𝑥2

𝑥 − 𝑥4
𝑥3 − 𝑥4

 

𝑙4(𝑥) =
𝑥 − 𝑥0
𝑥4 − 𝑥0

𝑥 − 𝑥1
𝑥4 − 𝑥1

𝑥 − 𝑥2
𝑥4 − 𝑥2

𝑥 − 𝑥3
𝑥4 − 𝑥3

 

           

By differentiating Eq. (B.1) four times, we have: 

𝑃4(𝑥2)
iv = ∑ 𝐹(𝑥𝑗)𝑙𝑗(𝑥)

iv4
𝑗=0       (B.2) 

where 

𝑙0(𝑥)
iv =

24

6(3+𝑟)ℎ2
4, 𝑙1(𝑥)

iv = −
24

2(2+𝑟)ℎ2
4 ,       𝑙2(𝑥)

iv =
24

2(1+𝑟)ℎ2
4 , 

𝑙3(𝑥)
iv = −

24

6𝑟ℎ2
4 ,  𝑙4(𝑥)

iv =
24

𝑟(3+𝑟)(2+𝑟)(1+𝑟)ℎ2
4 

Eq. (B.2) can now be expressed as: 

𝑃4(𝑥2)
iv =

24

6(3+𝑟)ℎ2
4 𝐹(𝑥0) −

24

2(2+𝑟)ℎ2
4 𝐹(𝑥1) +

24

2(1+𝑟)ℎ2
4 𝐹(𝑥2) −

24

6𝑟ℎ2
4 𝐹(𝑥3) +

24

𝑟(3+𝑟)(2+𝑟)(1+𝑟)ℎ2
4 𝐹(𝑥4)       (B.3) 

By rationalizing Eq. (B.3), we obtain: 

𝑃4(𝑥2)
iv =

4𝑟(2+𝑟)(1+𝑟)

𝑠1
𝐹(𝑥0) −

12𝑟(3+𝑟)(1+𝑟)

𝑠1
𝐹(𝑥1) +

12𝑟(3+𝑟)(2+𝑟)

𝑠1
𝐹(𝑥2) −

4𝑟(3+𝑟)(𝑟2+3𝑟+2)

𝑠1
𝐹(𝑥3) +

24

𝑠1
𝐹(𝑥4)     (B.4) 

where 𝑠1 = 𝑟(3 + 𝑟)(2 + 𝑟)(1 + 𝑟)ℎ2
4
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Similar procedure can be used to obtain the fourth derivative approximation of 

points 3, 4, 5. 

 

B.2 Second derivative approximation for non-uniform finite difference  

To evaluate the formula for second derivative of point 3 based on three point stencil 

and centred divided difference approximation, a second order polynomial is 

considered: 

𝑃2(𝑥3) = ∑ 𝐹(𝑥𝑗)𝑙𝑗(𝑥)
4
𝑗=2  (B.5) 

with grid spacing, 

𝑥2 = 𝑥 − ℎ2 ,  𝑥3 = 𝑥 ,      𝑥4 = 𝑥 + 𝑟ℎ2 .   

and  

𝑙2(𝑥) =
𝑥 − 𝑥3
𝑥2 − 𝑥3

𝑥 − 𝑥4
𝑥2 − 𝑥4

 

𝑙3(𝑥) =
𝑥 − 𝑥2
𝑥3 − 𝑥2

𝑥 − 𝑥4
𝑥3 − 𝑥4

 

𝑙4(𝑥) =
𝑥 − 𝑥2
𝑥4 − 𝑥2

𝑥 − 𝑥3
𝑥4 − 𝑥3

 

By differentiating Eq. (B.5) twice, we have: 

𝑃2(𝑥3)
′′ = ∑ 𝐹(𝑥𝑗)𝑙𝑗(𝑥)

′′2
𝑗=2       (B.6) 

where 

𝑙2(𝑥)
′′ =

2

(1+𝑟)ℎ2
2 ,  𝑙3(𝑥)

′′ = −
2

𝑟ℎ2
2 ,       𝑙2(𝑥)

′′ =
2

𝑟(1+𝑟)ℎ2
2 .  

Eq. (B.6) can now be expressed as: 



217 
 

𝑃2(𝑥3)𝑠
′′ =

2

(1+𝑟)ℎ2
2 𝐹(𝑥2) −

2

𝑟ℎ2
2 𝐹(𝑥3) +

2

𝑟(1+𝑟)ℎ2
2 𝐹(𝑥4)  (B.7) 

By rationalizing (B.7), we get: 

𝑃2(𝑥3)
′′ =

2𝑟

𝑠2
𝐹(𝑥2) −

2(1+𝑟)

𝑠2
𝐹(𝑥3) +

2

𝑠2
𝐹(𝑥4)    (B.8) 

where 𝑠2 = 𝑟(1 + 𝑟)ℎ2
2
 

This procedure can be repeated to obtain the second derivative approximation of 

point 4. 

 

B.3 Surface loads  

Interfacial stresses are derived based on the following formulations: 

Interface 1 

𝜎𝑧1
(1) = Kx(𝑢1

(1) − 𝑢1
(2)) = Kx(−𝑐1𝑤,1

(1) − 𝑐2𝑤,1
(2) + 𝑈1

(1) − 𝑈1
(2))  (B.9a) 

𝜎𝑧2
(1) = Kx(𝑢2

(1) − 𝑢2
(2)) = Kx(−𝑐1𝑤,2

(1) − 𝑐2𝑤,2
(2) + 𝑈2

(1) − 𝑈2
(2)) (B.9b) 

𝜎𝑧𝑧
(1) = Ky(𝑤

(2) −𝑤(1))       (B.9c) 

Interface 2 

𝜎𝑧1
(2) = Kx(𝑢1

(2) − 𝑢1
(3)) = Kx(−𝑐1𝑤,1

(2) − 𝑐2𝑤,1
(3) + 𝑈1

(2) − 𝑈1
(3))  

(B.10a) 

𝜎𝑧2
(2) = Kx(𝑢2

(2) − 𝑢2
(3)) = Kx(−𝑐1𝑤,2

(2) − 𝑐2𝑤,2
(3) + 𝑈2

(2) − 𝑈2
(3)) 

(B.10b) 

𝜎𝑧𝑧
(2) = Ky(𝑤

(3) −𝑤(2))       (B.10c) 

With respect to Eqs. (B.9) and (B.10), the surface loads are specified as follows: 
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𝑛1
(1) = −𝜎1𝑧

(1) = Kx(𝑐1𝑤,1
(1) + 𝑐2𝑤,1

(2) − 𝑈1
(1) + 𝑈1

(2))     (B.11a) 

𝑛1
(2) = 𝜎1𝑧

(1) − 𝜎1𝑧
(2) = Kx(−𝑐1𝑤,1

(1) − 𝑐2𝑤,1
(2) + 𝑈1

(1) − 𝑈1
(2)) +

Kx(𝑐1𝑤,1
(2) + 𝑐2𝑤,1

(3) − 𝑈1
(2) + 𝑈1

(3))     (B.11b) 

𝑛1
(3) = 𝜎1𝑧

(2) = Kx(−𝑐1𝑤,1
(2) − 𝑐2𝑤,1

(3) + 𝑈1
(2) − 𝑈1

(3))   (B.11c) 

 

𝑛2
(1) = −𝜎2𝑧

(1) = Kx(𝑐1𝑤,2
(1) + 𝑐2𝑤,2

(2) − 𝑈2
(1) + 𝑈2

(2))     (B.12a) 

𝑛2
(2) = 𝜎2𝑧

(1) − 𝜎2𝑧
(2) = Kx(−𝑐1𝑤,2

(1) − 𝑐2𝑤,2
(2) + 𝑈2

(1) − 𝑈2
(2)) +

Kx(𝑐1𝑤,2
(2) + 𝑐2𝑤,2

(3) − 𝑈2
(2) +𝑈2

(3))    (B.12b) 

𝑛2
(3) = 𝜎2𝑧

(2) = Kx(−𝑐1𝑤,2
(2) − 𝑐2𝑤,2

(3) + 𝑈2
(2) − 𝑈2

(3))   (B.12c) 

 

𝑚1
(1) = 𝜎𝑧1

(1) = Kx(−𝑐1𝑤,1
(1) − 𝑐2𝑤,1

(2) +𝑈1
(1) − 𝑈1

(2))   (B.13a)  

𝑚1
(2) = 𝜎𝑧1

(1) + 𝜎𝑧1
(2) = Kx(−𝑐1𝑤,1

(1) − 𝑐2𝑤,1
(2) +𝑈1

(1) − 𝑈1
(2)) +

Kx(−𝑐1𝑤,1
(2) − 𝑐2𝑤,1

(3) + 𝑈1
(2) − 𝑈1

(3))     (B.13b)  

𝑚1
(3) = 𝜎𝑧1

(2) = Kx(−𝑐1𝑤,1
(2) − 𝑐2𝑤,1

(3) +𝑈1
(2) − 𝑈1

(3))   (B.13c)  

 

𝑚2
(1) = 𝜎𝑧2

(1) = Kx(−𝑐1𝑤,2
(1) − 𝑐2𝑤,2

(2) + 𝑈2
(1) −𝑈2

(2))  (B.14a)  

𝑚2
(2) = 𝜎𝑧2

(1) + 𝜎𝑧2
(2) = Kx(−𝑐1𝑤,2

(1) − 𝑐2𝑤,2
(2) + 𝑈2

(1) −𝑈2
(2)) +

Kx(−𝑐1𝑤,2
(2) − 𝑐2𝑤,2

(3) + 𝑈2
(2) − 𝑈2

(3))     (B.14b)  

𝑚2
(3) = 𝜎𝑧2

(2) = Kx(−𝑐1𝑤,2
(2) − 𝑐2𝑤,2

(3) + 𝑈2
(2) −𝑈2

(3))   (B.14c)  
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𝑝(1) = −𝜎𝑧𝑧
(1) = Ky(𝑤

(2) −𝑤(3))     (B.15a) 

𝑝(2) = 𝜎𝑧𝑧
(1) − 𝜎𝑧𝑧

(2) = Ky(𝑤
(2) −𝑤(1)) − Ky(𝑤

(2) −𝑤(3))  (B.15b) 

𝑝(3) = 𝜎𝑧𝑧
(2) = Ky(𝑤

(3) −𝑤(2))     (B.15c) 

 

 

 


