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CONVERGENCE IN Lp FOR FEYNMAN PATH INTEGRALS

FABIO NICOLA

Abstract. We consider a class of Schrödinger equations with time-dependent
smooth magnetic and electric potentials having a growth at infinity at most
linear and quadratic, respectively. We study the convergence in Lp with loss of
derivatives, 1 < p <∞, of the time slicing approximations of the corresponding
Feynman path integral. The results are completely sharp and hold for long
time, where no smoothing effect is available. The techniques are based on the
decomposition and reconstruction of functions and operators with respect to
certain wave packets in phase space.

1. Introduction

Feynman path integrals were introduced in 1948 [20,21] to provide a new formu-
lation of Quantum Mechanics and nowadays represent a fundamental tool in most
branches of modern Physics. In particular, R. Feynman suggested the construction
of the integral kernel K(t, s, x, y) of the Schrödinger propagator as a suggestive
sum-over-histories, in the following sense. First of all the kernel K(t, s, x, y) itself
is interpreted as the probability amplitude for a particle to be at the point x at
time t provided it was at y at time s (x, y ∈ Rd). Now, in the computation of
this quantity every path γ joining y and x, therefore satisfying γ(s) = y, γ(t) = x,

carries a contribution which is proportional to ei~
−1S[γ], where S[γ] is the action

along the path γ:

S[γ] =

∫ t

s

L(γ(τ), γ̇(τ), τ) dτ,

L being the Lagrangian of the corresponding classical system. The total amplitude
is finally obtained by superposition and can be written symbolically as an integral

K(t, s, x, y) =

∫
ei~
−1S[γ]D[γ]

over the space of paths satisfying the above boundary conditions. Although a suit-
able measure on this space does not exist in the measure theoretic sense (cf. [7]), sev-
eral rigorous justifications have been proposed by many authors and from different
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2 FABIO NICOLA

viewpoints (analytic continuation of the parabolic propagator, infinite dimensional
oscillatory integrals, stochastic integrals, etc.). The literature is enormous and we
refer to the books [1,49,51,53] and the references therein. Instead here we focus on
the original approach by Feynman [20, 21] via time slicing approximations, which
was carried on in a rigorous way in the papers [22,23,26–30,32,33,38,39,43–47,57]
(see also [24, 25, 56]). Briefly one argues as follows. Suppose that for |t − s| small
enough there is only one classical path γ (i.e. a path satisfying the Euler-Lagrange
equation) satisfying the boundary condition γ(s) = y, γ(t) = x. Define then the
action

(1) S(t, s, x, y) =

∫ t

s

L(γ(τ), γ̇(τ), τ) dτ,

along that path.
Consider the operator E(0)(t, s) defined by

(2) E(0)(t, s)f(x) =
1

(2πi(t− s)~)d/2

∫
Rd

ei~
−1S(t,s,x,y)f(y) dy.

The idea is that this operator should represent a good approximation of the actual
propagator when |t − s| is small (in fact, for the free particle E(0)(t, s) coincides
with the exact propagator). In general one then considers a subdivision Ω : s =
t0 < t1 < . . . < tL = t of the interval [s, t] and the composition

(3) E(0)(Ω, t, s) = E(0)(t, tL−1)E(0)(tL−1, tL−2) . . . E(0)(t1, s),

which has integral kernel

(4) K(0)(Ω, t, s, x, y)

=
L∏
j=1

1

(2πi(tj − tj−1)~)d/2

∫
Rd(L−1)

exp
(
i~−1

L∑
j=1

S(tj, tj−1, xj, xj−1)
) L−1∏
j=1

dxj,

with x = xL and y = x0; see Figure 1.

s = t0 t1 t2 t = tL

y = x0

x1

x = xL

Figure 1. A piecewise classical path in spacetime.
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Feynman stated that the operator E(0)(Ω, t, s) converges (in some sense) to the
actual propagator as ω(Ω) := sup{tj−tj−1 : j = 1, . . . , L} → 0. In view of the semi-
classical approximation one also introduces higher order parametrices E(N)(t, s),
N = 1, 2 . . ., and the corresponding time slicing approximations E(N)(Ω, t, s) (see
Section 2 below), and set the same convergence problem. In the present note we
investigate this issue for the uniform topology of bounded operators on Lp-based
Sobolev spaces.

We consider the Schrödinger equation

(5) i~∂tu = −1

2
~2∆u+ V (t, x)u

where 0 < ~ ≤ 1 and the potential V (t, x), t ∈ R, x ∈ Rd, satisfies the following
hypothesis.

Assumption (A) V (t, x) is a real function of (t, x) ∈ R × Rd with ∂αxV (t, x)
continuous in (t, x) ∈ R× Rd, for every1 α ∈ Nd

0 and satisfying

|∂αxV (t, x)| ≤ Cα, |α| ≥ 2, (t, x) ∈ R× Rd.

Under this hypothesis the exact propagator U(t, s) was constructed in [22, 23]:
it turns out that, for |t− s| small enough, U(t, s) is an oscillatory integral operator
of the form

(6) U(t, s)f(x) =
1

(2πi(t− s)~)d/2

∫
Rd

ei~
−1S(t,s,x,y)b(~, t, s, x, y)f(y) dy

for some amplitude b such that ∂αx∂
β
y b(~, t, s, x, y) is bounded, for every α, β ∈ Nd

0,
0 < ~ ≤ 1. Instead, for |t− s| large, U(t, s) can be written as the composition of a
finite number of oscillatory integral operators as above.

Moreover E(N)(Ω, t, s) (for fixed N) was also shown to converge in a quite strong
topology to the actual propagator as ω(Ω)→ 0 when |t− s| is small enough, which
implies the convergence in the uniform topology of bounded operators on L2(Rd).
While we are not aware of similar results in Lp(Rd) for p 6= 2, it is clear that in that
case the propagator is in general not even bounded on Lp but a loss of derivatives
occurs. For example, for the free propagator we have

‖ei~∆f‖Lp ≤ C‖(1− ~∆)k/2f‖Lp , k = 2d|1/2− 1/p|, 1 < p <∞.
This estimate was proved in [50] in the case ~ = 1, whereas the general case follows
at once by a scaling argument. Generalizations to different classes of potentials
were proved, except for the endpoint, in [4,6,8,16,34,35], exploiting in an essential
way some smoothing effect (Gaussian estimates for the heat kernel). The above

1We set N0 = {0, 1, 2 . . .}, containing the number 0.



4 FABIO NICOLA

loss of derivatives is optimal [5] and is explained by the fact that the characteris-
tic manifold of the Schrödinger operator, that is a paraboloid, has non-vanishing
Gaussian curvature. For hyperbolic equations [18, 52, 54] we have instead the loss
k = (d− 1)|1/2− 1/p|, because there is one flat direction in that case.

Motivated by this model, we will focus on the convergence of the time slicing
approximations in the following Sobolev spaces.

For 1 < p <∞, k ∈ R, define the space

(7) L̃pk = L̃pk(R
d) = {f ∈ S ′(Rd) : ‖f‖L̃p

k
= ‖(1− ~∆)k/2f‖Lp <∞}.

Hence, L̃pk is the usual Sobolev space as a vector space, but with a rescaled norm
at the Planck scale. Here is our main result.

Theorem 1.1. Assume the condition in Assumption (A). Let 1 < p < ∞, k =
2d|1/2− 1/p|.

a) For every T0 > 0 there exists a constant C(T0) > 0 such that, for all
f ∈ S(Rd), |s− t| ≤ T0, 0 < ~ ≤ 1,

(8) ‖U(t, s)f‖Lp ≤ C(T0)‖f‖L̃p
k
, 1 < p ≤ 2,

(9) ‖U(t, s)f‖L̃p
−k
≤ C(T0)‖f‖Lp , 2 ≤ p <∞.

b) For every T0 > 0, N = 0, 1, 2, . . ., there exists a constant C(T0) > 0 such
that, for 0 < t−s ≤ T0 and any sufficiently fine subdivision Ω of the interval
[s, t], f ∈ S(Rd), 0 < ~ ≤ 1, we have

(10) ‖
(
E(N)(Ω, t, s)−U(t, s)

)
f‖Lp ≤ C(T0)~Nω(Ω)N+1(t− s)‖f‖L̃p

k
, 1 < p ≤ 2,

(11)

‖
(
E(N)(Ω, t, s) − U(t, s)

)
f‖L̃p

−k
≤ C(T0)~Nω(Ω)N+1(t − s)‖f‖Lp , 2 ≤ p < ∞.

We will show in the last section that these are, in general, all possible Lp-
estimates for Schrödinger propagators of the above type. Extensions to the case of
magnetic fields (cf. [26, 56,57]) or even rough potentials will be discussed below.

Let us now say a few words about the strategy of the proof. There are two main
issues. First, for long time the propagator does not have the integral representation
(6) anymore and in general no smoothing effect is available. For example, for the
quadratic potential V (t, x) = |x|2/2 (and ~ = 1 for simplicity), the propagator
U(t, 0) at time t = kπ, k ∈ Z, has distribution kernel e−ikπ/2δ((−1)kx − y) (see
e.g. [37]). Secondly, the space of bounded operators L̃pk → Lp is of course not an
algebra, and hence it does not behave nicely with respect to compositions as those
in (20). To overcome these problems we lift the whole analysis to the phase space,
using ideas originated by the seminal papers [19, 42, 48, 55] and developed by the
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author et al. in [9, 11] (see also [13]). The key tool is a space of operators highly
sparse with respect to certain wave packet decompositions. To be precise, consider
a fixed Schwartz function g 6≡ 0, and the wave packet

π(z)g(y) = eiyξg(y − x), z = (x, ξ) ∈ Rd × Rd

(yξ = y · ξ =
∑d

k=1 ykξk) which is highly concentrated, in phase space, near (x, ξ).
We will consider operators T satisfying (when ~ = 1)

|〈Tπ(z)g, π(w)g〉| ≤ Cm(1 + |w − χ(z)|)−m, z, w ∈ R2d,

for every m ∈ N0 and for some canonical transformation χ : R2d → R2d (〈·, ·〉
being the inner product in L2(Rd)). Composition of operators corresponds to the
composition of the corresponding maps χ’s. Moreover these operators are trivially
bounded on the so-called modulation spaces Mp, 1 ≤ p ≤ ∞ (see [17, 31] and
Section 3 below), which measure the phase space concentration of a function. We
finally come back to Lp spaces by means of a nontrivial embedding recently obtained
in [41] (see also [40]).

While endpoint continuity results for p 6= 2 typically require a painful analysis
in some version of the Hardy space (see e.g. [19, 50, 52, 54]), one of the novelties
of this approach is that such technicalities are hidden under the above mentioned
embedding and the analysis is focused on how the operators move the wave packets
in phase space, which makes matters remarkably simple and close to intuition.
Moreover, in view of the results in [10,14,48], we believe that the present approach
could also extend to the case of rough potentials (and degenerate operators), which
would provide an interesting low regularity version of the results of [23, 57]. We
plan to investigate these issues in a subsequent paper (see also the last section for
some partial result in this connection).

Briefly, the paper is organized as follows. In Section 2 we recall the short-time
analysis of [22,23,57]. Section 3 is devoted to the phase space methods used in the
following and, in particular, to the class of operators, closed under composition,
mentioned above. In Section 4 we will show that the short-time propagators U(t, s)
and approximations E(N)(Ω, t, s) belong to such operator class. Theorem 1.1 will
be proved in Section 5. Section 6 treats a generalization concerning the convergence
of EN(Ω, t, s) with N ≥ 1 in the presence of a magnetic field satisfying the same
assumptions as in [57]. Finally in Section 7 we show the sharpness of the results and
provide an extension of the first part of Theorem 1.1 to a class of rough potentials.

2. The Schrödinger flow: short time analysis

In this section we recall the main results obtained in [22, 23]; see also [57]. We
will always assume the hypothesis in Assumption (A) in Introduction.
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First of all we fix the following notation. We denote by S0
0,0 the class of smooth

function a(x, y) in R2d which are bounded together with their derivatives, endowed
with the seminorms

‖a‖m = sup
|α|+|β|≤m

‖∂αx∂βy a‖L∞(R2d), m ∈ N0 = {0, 1, . . .}.

Consider now the Hamiltonian

H(t, x, ξ) =
1

2
|ξ|2 + V (t, x).

Denote by (x(t, s, y, η), ξ(t, s, y, η)) (s, t ∈ R, y, η ∈ Rd), the solution of the corre-
sponding system

ẋ = ξ, ξ̇ = −∇xV (t, x)

with initial condition at time t = s given by x(s, s, y, η) = y, ξ(s, s, y, η) = η. The
flow

(12) (x(t, s, y, η), ξ(t, s, y, η)) = χ(t, s)(y, η)

defines a smooth canonical transformation χ(t, s) : R2d → R2d satisfying for every
T0 > 0 the estimates

(13) |∂αy ∂βη x(t, s, y, η)|+ |∂αy ∂βη ξ(t, s, y, η)| ≤ Cα,β(T0), y, η ∈ Rd

for some constant Cα,β(T0) > 0, if |t− s| ≤ T0 (see [23, Proposition 1.1]).
Moreover, there exists δ > 0 such that for 0 < |t − s| ≤ δ and every x, y ∈ Rd,

there exists only one classical path γ such that γ(s) = y, γ(t) = x. By computing
the action along this path γ, as in (1), we define the generating function S(t, s, x, y)
for 0 < |t− s| ≤ δ. It satisfies the estimates

(14) |t− s| |∂αx∂βyS(t, s, x, y)| ≤ Cα,β, |α|+ |β| ≥ 2

and

(15) |t− s|
∣∣∣det

(∂2S(t, s, x, y)

∂y2

)∣∣∣ ≥ δ̃,

for some δ̃ > 0 and every x, y ∈ Rd, always for 0 < |t− s| ≤ δ.
We now come to the construction of the parametrices. For 0 < |t−s| ≤ δ, define

the operator E(0)(t, s) as in (2).
For N = 1, 2, . . . we define E(N)(t, s) as

(16) E(N)(t, s)f(x) =
1

(2πi(t− s)~)d/2

∫
Rd

ei~
−1S(t,s,x,y)eN(~, t, s, x, y)f(y) dy,
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with eN(~, t, s, x, y) =
∑N

k=1(i~)k−1ak(t, s, x, y), where the amplitudes ak satisfy
the transport equations

∂ak
∂t

+
d∑
j=1

∂S

∂xj

∂ak
∂xj

+
1

2

(
∆xS −

d

t− s

)
ak =

1

2
∆xak−1,

with a0(t, s, x, y) ≡ 0 and the initial conditions a1(s, s, x, y) = 1 and ak(s, s, x, y) =
0 for k = 1, 2, . . .

We have, for every m ∈ N0,

(17) ‖ak(t, s, ·, ·)‖m ≤ Cm for 0 < |t− s| ≤ δ.

The operators E(N)(t, s) are parametrices in the sense that, for N = 0, 1, . . . ,(
i~∂t +

1

2
~2∆− V (t, x)

)
E(N)(t, s)f = G(N)(t, s)f

with

(18) G(N)(t, s)f =
1

(2πi(t− s)~)d/2

∫
Rd

ei~
−1S(t,s,x,y)gN(~, t, s, x, y)f(y) dy,

where gN satisfies the estimates [23, Propositions 1.5, 1.6]

(19) ‖gN(~, t, s, ·, ·)‖m ≤ Cm~N+1|t− s|N+1.

Moreover, for a subdivision Ω : s = t0 < t1 < . . . < tL = t we define

(20) E(N)(Ω, t, s) = E(N)(t, tL−1)E(N)(tL−1, tL−2) . . . E(N)(t1, s).

As already observed in the introduction, if δ is small enough, for 0 < |t − s| ≤ δ
the propagator has the form

(21) U(t, s)f(x) =
1

(2πi(t− s)~)d/2

∫
Rd

ei~
−1S(t,s,x,y)b(~, t, s, x, y)f(y) dy

for an amplitude b such that ∂αx∂
β
y b(~, t, s, x, y) is of class C1 in t, s and satisfying

(22) ‖b(~, t, s, ·, ·)‖m ≤ Cm

for 0 < |t− s| ≤ δ, 0 < ~ ≤ 1, m ∈ N0.
When |t− s| is large, U(t, s) is the composition of a finite number of such oscil-

latory integral operators.

3. Phase space methods

We recall here some basic facts of phase space analysis used in the sequel; see [31]
and especially [17] for a Mathematical Physics perspective. Then we report on some
results from [9,11,55].
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3.1. Phase space concepts. For a point z = (x, ξ) ∈ Rd × Rd and a function f
on Rd, we denote the phase-space shifts by

π(z)f(y) = eiyξf(y − x), where yξ = y · ξ =
d∑

k=1

ykξk .

The short-time Fourier transform (STFT), or Bargmann transform, or FBI
transform, of a function/distribution f on Rd with respect to a Schwartz window
function g ∈ S(Rd) \ {0} is defined by

(23) Vgf(z) = 〈f, π(z)g〉 =

∫
Rd

f(y)g(y − x)e−iyξ dy,

for z = (x, ξ) ∈ Rd × Rd. Its adjoint is given by

V ∗g F (y) =

∫
R2d

F (z)π(z)g(y) dz, y ∈ Rd,

and we have the inversion formula (see e.g. [31, Corollary 3.2.3])

(24) f =
1

(2π)d‖g‖2
L2

V ∗g Vgf =
1

(2π)d‖g‖2
L2

∫
R2d

Vgf(z)π(z)g dz.

For 1 ≤ p ≤ ∞ the modulation space Mp = Mp(Rd) is the space of distributions
f ∈ S ′(Rd) such that their STFTs belong to the space Lp(R2d) with norm

‖f‖Mp := ‖Vgf‖Lp(R2d).

This definition does not depend on the choice of the window g ∈ S(Rd), g 6= 0,
and different windows yield equivalent norms on Mp [31, Theorem 11.3.7]. We also
have

Vg : Mp(Rd)→ Lp(R2d), V ∗g : Lp(R2d)→Mp(Rd)

as bounded operators.
The following embedding results (see [41, Theorems 1.3, 1.4] and also [40]) are

crucial in the sequel.
For 1 < p <∞, k ∈ R, let Lpk = Lpk(Rd) be the space of distributions f ∈ S ′(Rd)

such that (1−∆)k/2f ∈ Lp, with the norm

‖f‖Lp
k

= ‖(1−∆)k/2f‖Lp .

Theorem 3.1. Let 1 < p <∞ and k = 2d|1/2− 1/p|. Then we have

(25) Mp ↪→ Lp, Lpk ↪→Mp, 1 < p ≤ 2

as well as

Lp ↪→Mp, Mp ↪→ Lp−k, 2 ≤ p <∞.
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3.2. Canonical transformations and the associated operators. We now in-
troduce a special class of operators, defined in terms of their sparsity with respect
to Gabor wave packets and a given canonical transformation.

A canonical transformation (x, ξ) = χ(y, η) will be called tame if it enjoys the
following two properties:

A1. χ : R2d → R2d is smooth, invertible, and preserves the symplectic form in R2d,
i.e., dx ∧ dξ = dy ∧ dη; χ is a symplectomorphism.

A2. We have

(26) |∂αy ∂βηχ(y, η)| ≤ Cα,β, |α|+ |β| ≥ 1, y, η ∈ Rd.

For example, the canonical transformation χ(t, s) in (12) satisfies A1 and A2,
with constants Cα,β = Cα,β(T0), provided |t− s| ≤ T0 (T0 > 0 being arbitrary), in
view of (13).

Let us observe that A1 and A2 imply that χ and χ−1 are globally Lipschitz.
With the notation 〈z〉 = (1+ |z|2)1/2 (Japanese bracket), this property implies that

C−1〈w − χ(z)〉 ≤ 〈χ−1(w)− z〉 ≤ C〈w − χ(z)〉 w, z ∈ R2d ,

for some constant C > 0 depending only on an upper bound for the first derivatives
of χ.

The following class of operators was introduced in [55].

Definition 3.2. Let χ be a tame canonical transformation. Let g ∈ S(Rd) \ {0}.
We denote by FIO(χ) the class of operators T : S(Rd) → S ′(Rd) such that, for
every2 m ≥ 0,

(27) |〈Tπ(z)g, π(w)g〉| ≤ Cm〈w − χ(z)〉−m, z, w ∈ R2d.

We endow this space with the seminorms

‖T‖m,χ = sup
z,w∈R2d

〈w − χ(z)〉m|〈Tπ(z)g, π(w)g〉|.

It is proved in [9] that the definition of FIO(χ) does not depend on the window
g ∈ S(Rd) \ {0}.

The following two theorems can also be found in [9], but we provide here the
proof for the benefit of the reader, because they were proved there in a discrete
framework; moreover here we need some further information on the uniformity of
the constants.

2In this definition we could of course take m integer; we take m real in view of possible
extensions to the case of rough potentials, where the propagators should satisfy the same estimates
as in (27) but for a fixed m > 2d. In that case it is important to allow m to be as small as possible,
in order to reach minimal regularity.
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Theorem 3.3. Let T ∈ FIO(χ). Then T extends to a bounded operator on
Mp(Rd), 1 ≤ p ≤ ∞ (and in particular on L2(Rd) = M2(Rd)). Moreover, for
every m > 2d there exists a constant C > 0 depending only on m and the dimen-
sion d such that

‖T‖Mp→Mp ≤ C‖T‖m,χ.

Proof. By the inversion formula for the STFT in (24) we have, if ‖g‖L2 = (2π)−d/2,

T = V ∗g VgTV
∗
g Vg.

Since Vg : Mp(Rd) → Lp(R2d) and V ∗g : Lp(R2d) → Mp(Rd), it suffices to prove

that the operator VgTV
∗
g is bounded on Lp(R2d). Now, this in an integral operator

in R2d with integral kernel

K(w, z) = 〈Tπ(z)g, π(w)g〉.
Since T ∈ FIO(χ) we have, for every m ∈ N0,

|VgTV ∗g F (w)| ≤ ‖T‖m,χ
∫
R2d

〈w − χ(z)〉−m|F (z)| dz.

If we take m > 2d, the desired continuity on Lp(R2d) follows at once from Schur’s
test and the fact that the Jacobian determinant of χ is = 1, χ being symplectic.

Theorem 3.4. If T (i) ∈ FIO(χi), i = 1, 2, then the composition T (1)T (2) is in
FIO(χ1 ◦χ2). Moreover for every m > 2d there exists a constant C > 0 depending
only on m, the dimension d, and upper bounds for the first derivatives of χ1 such
that

‖T (1)T (2)‖m,χ1◦χ2 ≤ C‖T (1)‖m,χ1‖T (2)‖m,χ2 .

Proof. We have to estimate the integral kernel of VgT
(1)T (2)V ∗g . We write

VgT
(1)T (2)V ∗g = VgT

(1)V ∗g VgT
(2)V ∗g ,

so that for m > 2d

|〈T (1)T (2)π(z)g, π(w)g〉| ≤ ‖T (1)‖m,χ1‖T (2)‖m,χ2

∫
R2d

〈w − χ1(ζ)〉−m〈ζ − χ2(z)〉−mdζ

≤ C‖T (1)‖m,χ1‖T (2)‖m,χ2

∫
R2d

〈w − χ1(ζ)〉−m〈χ1(ζ)− χ1 ◦ χ2(z)〉−mdζ.

The change of variable ζ̃ = χ1(ζ)− χ1 ◦ χ2(z) and the convolution property∫
R2d

〈w − ζ〉−m〈ζ〉−m dζ ≤ Cm,d〈w〉−m

(valid for m > 2d, see e.g. [31, Formula (11.5)]) then give the desired estimate.

The reader may want to compare the simplicity of this result with the similar com-
position formula obtained in [23, Theorem A.2] for oscillatory integral operators,
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whose proof represented really a tour de force and moreover was limited to short
time.

We now show that a familiar class of Fourier integral operators is in fact contained
in FIO(χ) for a suitable χ.

A real phase function Φ on R2d will be called tame if the following three properties
are satisfied:

B1. Φ ∈ C∞(R2d);

B2. We have

(28) |∂αx∂βηΦ(x, η)| ≤ Cα,β, |α|+ |β| ≥ 2, x, η ∈ Rd;

B3. There exists δ̃ > 0 such that

(29) | det ∂2
x,ηΦ(x, η)| ≥ δ̃, x, η ∈ Rd.

If we set

(30)

{
y = ∇ηΦ(x, η)

ξ = ∇xΦ(x, η),

we can solve with respect to (x, ξ) by the global inverse function theorem and
obtain a mapping χ defined by (x, ξ) = χ(y, η) and satisfying A1, A2 above as well
as the following property:

A3 There exists δ̃ > 0 such that,

(31) | det
∂x

∂y
(y, η)| ≥ δ̃, y, η ∈ Rd.

Conversely, to every transformation χ satisfying A1, A2 and A3 corresponds a tame
phase Φ, uniquely determined up to a constant (see e.g. [9]).

The following result was proved in [11, Theorem 3.3].

Theorem 3.5. Let Φ(x, η) be a tame phase, and let χ be the corresponding canon-
ical transformation. Let a(x, η) be a function in S0

0,0. The Fourier integral operator

Tf(x) = (2π)−d
∫
Rd

eiΦ(x,η)a(x, η)f̂(η) dη

belongs to FIO(χ). Moreover for every m ∈ N0 there exists m′ ∈ N0 such that

‖T‖m,χ ≤ C‖a‖m′

for some constant C depending only on m, the dimension d, upper bounds for a
certain number of the derivatives of Φ in (28) and the lower bound constant δ̃ in
(29) (recall ‖a‖m′ = sup|α|+|β|≤m′ ‖∂αx∂βη a‖L∞(R2d)).
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3.3. Semiclassical phase space methods. Here we rephrase in the semiclassical
regime the concepts appeared above in this section. Basically we have to rescale
function spaces and operators with the dilation operators (unitary on L2(Rd))

D~−1/2f(x) = ~d/4f(~1/2x), D~1/2f(x) = ~−d/4f(~−1/2x).

We already defined in Introduction the spaces L̃pk, which are a rescaled version of
the Sobolev spaces Lpk. For 1 ≤ p ≤ ∞, consider also the modulation spaces

Mp
~ = Mp

~ (Rd) = {f ∈ S ′(Rd) : ‖f‖Mp
~

= ‖D~−1/2f‖Mp < +∞}.

We have the following embeddings.

Theorem 3.6. Let 1 < p < ∞ and k = 2d|1/2 − 1/p|. There exists a constant
C > 0 such that

(32) ‖f‖Lp ≤ C~d(1/p−1/2)/2‖f‖Mp
~
, ‖f‖Mp

~
≤ C~d(1/2−1/p)/2‖f‖L̃p

k
, 1 < p ≤ 2

as well as
(33)
‖f‖Mp

~
≤ C~d(1/2−1/p)/2‖f‖Lp , ‖f‖L̃p

−k
≤ C~d(1/p−1/2)/2‖f‖Mp

~
, 2 ≤ p <∞.

Proof. By (25) we have, for 1 < p ≤ 2 and k = 2d|1/p− 1/2|,

‖f‖Lp ≤ C‖f‖Mp , ‖f‖Mp ≤ C‖f‖Lp
k
.

Now we replace f by D~−1/2f and we obtain (32), because

‖D~−1/2f‖Lp = ~d(1/2−1/p)/2‖f‖Lp and ‖D~−1/2f‖Lp
k

= ~d(1/2−1/p)/2‖f‖L̃p
k
.

Similarly one deduces (33).

Definition 3.7. Let χ be a tame canonical transformation. We denote by FIO~(χ)
the space of linear operators T : S(Rd) → S ′(Rd) such that D~−1/2TD~1/2 ∈
FIO(χ), endowed with the seminorms

‖T‖~m,χ = ‖D~−1/2TD~1/2‖m,χ.

From Theorems 3.3 we obtain at once the following result.

Theorem 3.8. Let T ∈ FIO~(χ). Then T extends to a bounded operator on
Mp

~ (Rd), 1 ≤ p ≤ ∞. Moreover, for every m > 2d there exists a constant C > 0
depending only on m and the dimension d such that

‖T‖Mp
~→M

p
~
≤ C‖T‖~m,χ.
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Corollary 3.9. Let T ∈ FIO~(χ), 1 < p < ∞ and k = 2d|1/p − 1/2|. Then T
extends to a bounded operator T : L̃pk → Lp if 1 < p ≤ 2 and T : L̃p → L̃p−k for
2 ≤ p < ∞. Moreover for every m > 2d there exists a constant C > 0 depending
on m, d, p such that

‖T‖L̃p
k→Lp ≤ C‖T‖~m,χ for 1 < p ≤ 2

and

‖T‖Lp→L̃p
−k
≤ C‖T‖~m,χ for 2 ≤ p <∞.

Proof. The results follow at once from Theorem 3.8 and Theorem 3.6. For example,
for 1 < p ≤ 2 we have

‖Tf‖Lp ≤ C1~d(1/p−1/2)/2‖Tf‖Mp
~
≤ C1C2~d(1/p−1/2)/2‖T‖~m,χ‖f‖Mp

~

≤ C1C2C3‖T‖~m,χ‖f‖L̃p
k
.

The following result will be crucial in the sequel.

Theorem 3.10. If T (i) ∈ FIO~(χi), i = 1, 2, then the composition T (1)T (2) is in
FIO~(χ1◦χ2). Moreover for every m > 2d there exists a constant C > 0 depending
only on m, the dimension d, and upper bounds for the first derivatives of χ1 such
that

‖T (1)T (2)‖~m,χ1◦χ2
≤ C‖T (1)‖~m,χ1

‖T (2)‖~m,χ2

Proof. We write

D~−1/2T (1)T (2)D~1/2 = D~−1/2T (1)D~1/2D~−1/2T (2)D~1/2

and apply Theorem 3.4.

4. The Schrödinger flow: wave packet analysis

In this section we prove that the oscillatory integral operators appearing in Sec-
tion 2 belong to the class FIO~(χ

~(t, s)) for a suitable canonical transformation
χ~ defined in Corollary 4.2 below. Then we will use Theorem 3.10 to treat their
composition for large time.

We adopt the notation of Section 2. In particular the oscillatory integral opera-
tors are well defined for 0 < |t− s| ≤ δ.

Proposition 4.1. Let 0 < |t− s| ≤ δ and a ∈ S0
0,0. Consider the operator

Tf(x) =
1

(2πi(t− s)~)d/2

∫
Rd

ei~
−1S(t,s,x,y)a(x, y)f(y) dy.
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Then T can be written as a Fourier integral operators

(34) Tf(x) = (2π)−d
∫
Rd

ei~
−1Φ(t,s,x,~η)b(~, t, s, x, ~η)f̂(η) dη

where

Φ(t, s, x, η) = yη + S(t, s, x, y)

is the generating function in the coordinates3 x, η, and a ∈ S0
0,0. Moreover for every

m ∈ N0 there exists m′ ∈ N0 such that

‖b(~, t, s, ·, ·)‖m ≤ C‖a‖m′

for some constant C > 0, depending only on m, the dimension d, upper bounds
for a certain number of the derivatives of (t− s)S(t, s, x, y) in (14) and the lower

bound constant δ̃ in (15).

Proof. Set S̃(t, s, x, y) = (t − s)S(t, s, x, y) and η̃ = ~(t − s)η. By the Plancherel
theorem we can write T in the form

Tf(x)

=
1

(2πi(t− s)~)d/2

∫
Rd

(∫
Rd

exp
(
i(~(t− s))−1[yη̃ + S̃(t, s, x, y)]

)
a(x, y) dy

)
f̂(η) dη.

We now apply the stationary phase principle in the form proved in [2, page 320
and Lemma 3.2]; the assumptions are satisfied because for 0 < |t− s| ≤ δ we have,
by (14) and (15),

|∂αx∂βy S̃(t, s, x, y)| ≤ Cα,β, |α|+ |β| ≥ 2,

and ∣∣∣det
(∂2S̃(t, s, x, y)

∂y2

)∣∣∣ ≥ δ̃ > 0.

Moreover, since y = y(t, s, x, η) is the unique solution of −η = ∂S(t, s, x, y)/∂y, the
function y = y(t, s, x, η̃/(t−s)) will be the unique solution to−η̃ = ∂S̃(t, s, x, y)/∂y,
and we obtain

1

(2πi(t− s)~)d/2

∫
Rd

exp
(
i(~(t− s))−1[yη̃ + S̃(t, s, x, y)]

)
a(x, y) dy

= exp
(
i(~(t− s))−1[y(t, s, x, η̃/(t− s))η̃ + S̃(t, s, x, y(t, s, x, η̃/(t− s)))]

)
× b(~, t, s, x, η̃))

3Namely, here y = y(t, s, x, η) is the unique solution to −η = ∂S(t, s, x, y)/∂y.
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for some amplitude b(~, t, s, ·, ·) belonging to some bounded subset of S0
0,0, when

0 < |t− s| ≤ δ, 0 < ~ ≤ 1. Again, we can write the last expression as

exp
(
i~−1[y(t, s, x, ~η)~η + S(t, s, x, y(t, s, x, ~η))]

)
b(~, t, s, x, (t− s)~η),

which gives the desired expression for Tf .
The estimates of the seminorms of b in terms of those of a follow from the proof

of the stationary phase principle.

Corollary 4.2. With the notation of Proposition 4.1, we have T ∈ FIO~(χ
~(t, s)),

with

χ~(t, s)(y, η) = ~−1/2χ(t, s)(~1/2y, ~1/2η).

Moreover, for every m ∈ N0 there exists m′ ∈ N0 such that, for 0 < |t− s| ≤ δ,

‖T‖~m,χ~(t,s) ≤ C‖a‖m′

for some constant C > 0 independent of a and ~, t, s (0 < ~ ≤ 1, 0 < |t− s| ≤ δ).

Proof. We have to prove that D~−1/2TD~1/2 ∈ FIO(χ~(t, s)). Using (34) and a
scaling argument we can write

D~−1/2TD~1/2f(x) = (2π)−d
∫
Rd

ei~
−1Φ(~1/2x,~1/2η)b(~, t, s, ~1/2x, ~1/2η)f̂(η) dη.

Now, the phase ~−1Φ(t, s, ~1/2x, ~1/2η) generates the canonical transformation χ~(t, s)
as in the statement. Moreover ~−1Φ(t, s, ~1/2x, ~1/2η) is tame uniformly with re-
spect to ~ and t, s, for 0 < ~ ≤ 1 and 0 < |t − s| ≤ δ, in the sense that the
required bounds hold with constants independent of these parameters, or equiva-
lently χ~(t, s) satisfies the properties A1,A2,A3 in Section 3.2 above, with uniform
bounds. This is clear, because χ(t, s) satisfies A1,A2,A3 uniformly with respect to
t, s for 0 < |t− s| ≤ δ (possibly for a smaller value of δ): A1,A2 follow from (13),
whereas A3 holds (even in the presence of a magnetic field as in Section 6 below)
by [57, Proposition 2.3’] applied with α = β = 0.

Finally, the symbol b(~, t, s, ~1/2x, ~1/2η) has seminorms in S0
0,0 dominated by

those of b(~, t, s, ·, ·). Hence the desired result follows from Theorem 3.5.

Remark 4.3. With the notation of the previous corollary, notice that for any
s, τ, t ∈ R we have

χ~(t, s) = χ~(t, τ) ◦ χ~(τ, s).

Indeed, this follows at once from the case ~ = 1 and the definition of χ~.
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5. Proof of the main result (Theorem 1.1)

Let us first prove (8) and (9). We know from Section 2 that the propagator U(t, s)
is an oscillatory integral operator of the form (21) for 0 < |t− s| ≤ δ, and therefore
by Corollary 4.2 we have U(t, s) ∈ FIO~(χ

~(t, s)), with seminorms ‖U(t, s)‖~m,χ~(t,s),

m ∈ N0, uniformly bounded with respect to ~, t, s for 0 < |t − s| ≤ δ. Using the
evolution properties of the propagator, Remark 4.3 and Theorem 3.10 we see that,
for any T0 > 0 we have U(t, s) ∈ FIO~(χ

~(t, s)) with seminorms

(35) ‖U(t, s)‖~m,χ~(t,s) ≤ C0

for a constant C0 independent of ~, t, s, for |t − s| ≤ T0 (but depending on T0);
here we are using the fact that the constant C in Theorem 3.10 can be chosen
independent of such parameters, being χ~(t, s) uniformly tame. We then deduce
(8) and (9) from Corollary 3.9.

We now prove (10) and (11). By arguing as above it suffices to prove that

(36) ‖E(N)(Ω, t, s)− U(t, s)‖~m,χ~(t,s) ≤ C(T0)~Nω(Ω)N+1(t− s)
for 0 < t− s ≤ T0 and for some m > 2d.

Now, by Corollary 4.2 and (19) the operator G(N)(t, s) defined in (18) belongs
to FIO~(χ

~(t, s)), with seminorms

(37) ‖G(N)(t, s)‖~m,χ~(t,s) ≤ Cm~N+1(t− s)N+1

for a constant Cm independent of ~, t, s, for 0 < |t− s| ≤ δ. On the other hand we
have

R(N)(t, s)f := E(N)(t, s)f − U(t, s)f = −i~−1

∫ t

s

U(t, τ)G(N)(τ, s)f dτ

so that by (35), (37) and Theorem 3.10 we obtain

(38) ‖R(N)(t, s)‖~m,χ~(t,s) ≤ Cm~N(t− s)N+2.

We then can write

E(N)(Ω, t, s)−U(t, s) =
(
U(t, tL−1)+R(N)(t, tL−1)

)
. . .
(
U(t1, s)+R

(N)(t1, s)
)
−U(t, s)

and argue as in [23, Lemma 3.2], applying the composition estimate in Theorem
3.10. We sketch the argument for the benefit of the reader.

One expands the above product and obtains a sum of ordered products of opera-
tors, where each product has the following structure: from right to left we have, say,
q1 factors of type U , p1 factors of type R(N), q2 factors of type U , p2 factors of type
R(N), etc., up to qk factors of type U , pk factors of type R(N), to finish with qk+1

factors of type U . Here p1, . . . , pk, q1, . . . qk, qk+1 are non negative integers whose
sum is L, with pj > 0 and we can of course group together the consecutive factors
of type U , using the evolution property of the propagator. Now, we estimate the
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seminorm ‖ · ‖~m,χ~(t,s) of such an ordered product, for some fixed m > 2d, using

Theorem 3.10 combined with the known estimates for each factor, namely (35) and
(38), which we rephrase here as

(39) ‖R(N)(tj, tj−1)‖~m,χ~(tj ,tj−1) ≤ C̃m~N(tj − tj−1)N+2.

If C denotes the constant in Theorem 3.10 we then dominate the seminorm ‖ ·
‖~m,χ~(t,s) of the above ordered product by

Cp1+...+pk+kCk+1
0

k∏
j=1

pj∏
i=1

C̃m~N(tJj+i − tJj+i−1)N+2

with C0 of (35), where Jj = p1 + . . . + pj−1 + q1 + . . . + qj for j ≥ 2 and J1 = q1.
Now, it was proved in the last part of the proof of [23, Lemma 3.2] that the sum
over p1, . . . , pk, q1, . . . , qk+1 of these terms is in turn dominated by

C(T0)~Nω(Ω)N+1(t− s)

for 0 < t− s ≤ T0. This gives (36) and concludes the proof.

6. The case of magnetic fields

In this section we extend some of the previous results in the presence of a mag-
netic field. Hence, consider the Schrödinger equation

(40) i~∂tu =
1

2

(
− i~∇− A(t, x)

)2
u+ V (t, x)u

where V (t, x) and A(t, x) = (A1(t, x), . . . , Ad(t, x)) are electric scalar and magnetic
vector potential of the field, t ∈ R, x ∈ Rd.

Assume the following hypothesis (cf. [26, 56,57]).

Assumption (B)

a) For j = 1, . . . , d, Aj(t, x) is a real function of (t, x) ∈ R×Rd and ∂αxAj(t, x)
is C1 in (t, x) ∈ R×Rd, for every α ∈ Nd

0. Moreover there exists ε > 0 such
that

|∂αxB(t, x)| ≤ Cα(1 + |x|)−1−ε, |α| ≥ 1,

|∂αxA(t, x)|+ |∂αx∂tA(t, x)| ≤ Cα, |α| ≥ 1,

for (t, x) ∈ R × Rd, where B(t, x) is the magnetic field, i.e. the skew-
symmetric matrix with entries Bj,k(t, x) = (∂Ak/∂xj − ∂Aj/∂xk)(t, x).

b) V (t, x) is a real function of (t, x) ∈ R × Rd with ∂αxV (t, x) continuous in
(t, x) ∈ R× Rd, for every α ∈ Nd

0 and satisfying

|∂αxV (t, x)| ≤ Cα, |α| ≥ 2, (t, x) ∈ R× Rd.
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It was proved in [57, Sections 2,3] that if V = 0, under Assumption (B), all the
short time results about the propagator, as well as the construction of the operators
E(N)(t, s), G(N)(t, s) summarized in Section 2 continue to hold if N ≥ 1. To be
precise, the same formulas for E(N)(t, s), G(N)(t, s) and E(N)(Ω, t, s) hold, where
now the amplitudes ak satisfy the transport equations

(41)
∂ak
∂t

+
d∑
j=1

( ∂S
∂xj

(t, s, x, y)− Aj(t, x)
)∂ak
∂xj

+
1

2

(
∆xS(t, s, x, y)− d

t− s
− divxA(t, x)

)
ak =

1

2
∆xak−1,

with a0(t, s, x, y) ≡ 0 and the initial conditions a1(s, s, x, y) = 1 and ak(s, s, x, y) =
0 for k = 1, 2, . . . (these transport equations hold even when the electric potential
is present4). The key estimates (17)–(22) are valid too, for N ≥ 1.

We have therefore the following result.

Theorem 6.1. Under the above Assumption (B), the conclusions of Theorem 1.1
still hold, at least for N ≥ 1.

Proof. As we have already observed, the results in Section 2 keep valid under the
Assumption (B), if V = 0 and N ≥ 1, therefore the whole subsequent analysis
applies, giving the desired result if V = 0.

Consider now the case when a potential V (t, x) is present. Let us prove just
part b) of Theorem 1.1 (the first part is similar and easier). We apply the gauge
transformation

G(t)u(t, x) = exp(i~−1G(t, x))u(t, x)

which maps the solution of the equation with potentials A, V into the solution of
the equation with potentials A + ∇xG, V − ∂tG, cf. [57]. More precisely, if we
denote by U(t, s) and U ′(t, s) the propagators, with the prime denoting that of the
new equation, we have

U(t, s) = G(t)−1U ′(t, s)G(s).

In particular if we choose G(t, x) =
∫ t

0
V (τ, x) dτ , in the new equation the electric

potential is absent and and magnetic potential is A′ = A +
∫ t

0
∂xV (τ, x)dτ , still

satisfying the above Assumption (B). Since the Lagrangian function L(x, v, t) =

4Indeed, since S satisfies the Hamilton-Jacobi equation ∂tS + 1
2 (∇xS −A)2 + V = 0, we have(

i~∂t −
1

2
(−i~∇x −A)2 − V (t, x)

) 1

(2πi~(t− s))d/2

∫
Rd

ei~
−1S(t,s,x,y)a(x, y) dy

=
1

(2πi~(t− s))d/2

∫
Rd

ei~
−1S(t,s,x,y)i~

[
∂ta+(∇xS−A)·∇xa+

1

2
(∆xS−

d

t− s
−divxA)− i~

2
∆xa

]
dy.
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1
2
|v|2 +A(t, x) · v−V (t, x) changes to L′ = L+dG(t, x(t))/dt, the flow remains the

same and the new generating function is

S ′(t, s, x, y) = S(t, s, x, y) +

∫ t

0

V (τ, x) dτ −
∫ s

0

V (τ, y) dτ

where S(t, s, x, y) is the generating function for the original equation. The am-
plitudes ak for the new equation are the same as those for the original one, be-
cause the transport equations (41) do not change under the substitution A →
A+

∫ t
0
∇xV (τ, x) dτ , S → S ′, V → 0. As a consequence we have

E(N)(t, s) = G−1(t)E(N)′(t, s)G(s)

and therefore

E(N)(Ω, t, s) = G−1(t)E(N)′(Ω, t, s)G(s)

where the the primes denote the corresponding operators for the new equation. As
a consequence

E(N)(Ω, t, s)− U(t, s) = G−1(t)
(
E(N)′(t, s)− U ′(t, s)

)
G(s).

Now, we know that (36) holds for the difference E(N)′(Ω, t, s) − U ′(t, s) and we
want to prove that the same is true for E(N)(Ω, t, s) − U(t, s). Using Theorem
3.10, it is then sufficient to prove that G(t) ∈ FIO~(χ̃

~) for some tame canonical
transformation χ̃. This follows by Corollary 4.2, because G(t) can be written in

the form (34) with Φ(t, x, η) = xη +
∫ t

0
V (τ, x) dτ , b ≡ 1, and

χ̃(y, η) =
(
y, η +

∫ t

0

∇xV (τ, x) dτ
)
.

Remark 6.2. We do not know whether the conclusion of Theorem 1.1 holds for
N = 0 in the presence of a magnetic field as above (in fact, in [57, Theorem 5]
the case N = 0 is excluded as well). Indeed, the approach in [23] requires very
precise estimates on the generating function S(t, s, x, y), which seem to be quite
tricky when a magnetic field is present.

7. Concluding remarks

7.1. Sharpness of the results. In general we cannot avoid the dichotomy p > 2,
p < 2 in Theorem 1.1. Consider, for example, the case of the harmonic oscillator,

(42) i∂tu = −1

2
∆u+

1

2
|x|2u
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(we take ~ = 1 for simplicity, so that L̃pk = Lpk). By the Mehler formula (see
e.g. [37, formula (5a)]), the propagator U(t, 0) at t = π/2 is (up to constant factor)

just the Fourier transform f 7→ f̂ . Now, we have the following result.

Proposition 7.1. Let 1 < p < ∞, k1, k2 ∈ R. The Fourier transform maps
Lpk1 → Lpk2 continuously if and only if

k1 ≥ 2d(1/p− 1/2) and k2 ≤ 0, 1 < p ≤ 2

k1 ≥ 0 and k2 ≤ −2d(1/2− 1/p), 2 ≤ p <∞.

Proof. Sufficient conditions. The desired estimates follow by the inclusion relations
of Sobolev spaces and duality if we prove the continuity of the Fourier transform
Lpk → Lp with k = 2d(1/p− 1/2), for 1 < p ≤ 2. This is equivalent to the estimate

‖(1 + |ξ|2)−k/2f̂(ξ)‖Lp ≤ C‖f‖Lp ,

which in turn is a consequence of the Hardy-Littlewood-Paley inequality [3, The-
orem 1.4.1] (that is the same estimate with (1 + |ξ|2)−k/2 replaced by |ξ|−k in the
left-hand side).

Of course the result also follows from Theorem 1.1 applied to the equation (42),
with s = 0, t = π/2 (~ = 1).

Necessary conditions. Let us first prove the condition on k2 when 2 ≤ p < ∞.
By duality this will give the condition on k1 for 1 < p ≤ 2 as well.

Consider the space

A = {f ∈ S(Rd) : f̂(ξ) = 0 for |ξ| ≥ 1}.

By Bernstein inequalities (see e.g. [58, Proposition 5.3]) there exists a constant
C > 0 such that

‖f‖Lp
k1
≤ C‖f‖Lp , ∀f ∈ A,

even for k1 < 0 (for k1 ≥ 0 this is trivially true for every f ∈ S(Rd)).
Hence, if the Fourier transform is bounded Lpk1 → Lpk2 , we have

(43) ‖f̂‖Lp
k2
≤ C‖f‖Lp , ∀f ∈ A.

Now, suppose by contradiction that k2 > −2d(1/2−1/p). Fix f ∈ A\{0} and test
this estimate on f(x/λ), with λ ≥ 1, so that f(x/λ) belongs to A too. We have

(44) ‖(1−∆)k2/2f̂(·/λ)‖Lp ≤ C‖f(·/λ)‖Lp

where

(1−∆)k2/2f̂(·/λ) = λd+k2 [(λ−2 −∆)k2/2f̂ ](λ·).
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By the dominated convergence theorem (|x|k2 is locally integrable, because k2 >

−d) we have [(λ−2 − ∆)k2/2f̂ ](x) → |D|k2 f̂(x) for every x ∈ Rd, and therefore by
the Fatou lemma,

0 6= ‖|D|k2 f̂‖Lp ≤ lim inf
λ→+∞

‖(λ−2 −∆)k2/2f̂‖Lp .

Hence, letting λ→ +∞ in (44) we obtain k2 ≤ −2d(1/2− 1/p), which is a contra-
diction.

Let us now prove that k2 ≤ 0 if 1 < p ≤ 2. This will give the condition on k1 for
2 ≤ p <∞ as well.

Fix f ∈ S(Rd) \ {0}, and let fλ(x) = f(x1 − λ, x2, . . . , xd), λ > 0. Suppose the
following estimate holds:

(45) ‖f̂λ‖Lp
k2
≤ C‖fλ‖Lp

k1
= C‖f‖Lp .

We have

(1−∆)k2/2f̂λ(ξ) = (1−∆)k2/2[e−iλξ1 f̂(ξ)]

=

∫
Rd

eixξ(1 + |x|2)k2/2f(−(x1 + λ),−x2, . . . ,−xd) dx

= λk2e−iλξ1
∫
Rd

e−iyξ(λ−2 + |1 + λ−1y1|2 + λ−2|y2|2 + . . .+ λ−2|yd|2)k2/2f(y) dy.

As λ→ +∞ the last integral converges to f̂(ξ), for every ξ ∈ Rd, by the dominated
convergence theorem. One can then conclude as above, by letting λ→ +∞ in (45)
and using the Fatou lemma.

7.2. The case of rough potentials. Here we present an extension of the first
part of Theorem 1.1 to a class of potentials in the so-called Sjöstrand class

M∞,1(Rd) = {f ∈ S ′(Rd) : ‖f‖M∞,1(Rd) :=

∫
Rd

‖Vgf(·, ξ)‖L∞ dξ < +∞}

where, as usual, g ∈ S(Rd) \ {0}.
Functions in this space are bounded in Rd and locally have the mild regularity of

a function whose Fourier transform is in L1. Hence, it is not required the existence
of any derivative. We refer to the books [17, 31] for a detailed analysis of this
function space and its role in Time-frequency Analysis and Mathematical Physics.
Here we just need the notion of narrow continuity for a one-parameter family t 7→ ft
of functions in this space. In fact, it is quite a weak notion of continuity.

Definition 7.2. Let I ⊂ R be an interval. We say that a map I 3 t 7→ ft ∈
M∞,1(Rd) is continuous for the narrow convergence if it is continuous in S ′(Rd)
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(weakly) and if there exists a function H ∈ L1(Rd) such that supx∈Rd |Vgft(x, ξ)| ≤
H(ξ) for every t ∈ I and almost every ξ ∈ Rd.

Consider now the equation (with ~ = 1, for simplicity)

i∂tu = (−∆)κ/2u+ V2(t, x)u+ V1(t, x)u+ V0(t, x)u

with 0 < κ ≤ 2, t ∈ R, x ∈ Rd. Suppose

∂αxVj(t, ·) ∈M∞,1(Rd) for |α| = j, j = 0, 1, 2,

with V2 and V1 real-valued. Assume moreover that the map R 3 t 7→ ∂αxVj(t, ·) ∈
M∞,1(Rd) for |α| = j, j = 0, 1, 2, are continuous in the sense of the narrow conver-
gence.

Under this assumption the propagator U(t, s) was constructed in [14] (see also
[10, 12] and [1, 36] for classes of potentials having Fourier transform in L1) and
shown to be bounded Mp → Mp for every 1 ≤ p ≤ ∞. As a consequence of
Theorem 3.1 we then see that U(t, s) enjoys the continuity property

U(t, s) : Lpk → Lp, 1 < p ≤ 2, U(t, s) : Lp → Lp−k, 2 ≤ p <∞
with k = 2d|1/2− 1/p|.
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