
10 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

SeLINA: a Self-Learning Insightful Network Analyzer / Apiletti, Daniele; Baralis, ELENA MARIA; Cerquitelli, Tania; Garza,
Paolo; Giordano, Danilo; Mellia, Marco; Venturini, Luca. - In: IEEE TRANSACTIONS ON NETWORK AND SERVICE
MANAGEMENT. - ISSN 1932-4537. - ELETTRONICO. - 13:3(2016), pp. 696-710. [10.1109/TNSM.2016.2597443]

Original

SeLINA: a Self-Learning Insightful Network Analyzer

Publisher:

Published
DOI:10.1109/TNSM.2016.2597443

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2649842 since: 2016-11-09T08:53:44Z

IEEE

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. X, MM YYYY 1

SeLINA: a Self-Learning Insightful Network

Analyzer
Daniele Apiletti, Elena Baralis, Member, IEEE, Tania Cerquitelli, Member, IEEE, Paolo Garza, Member, IEEE,

Danilo Giordano, Marco Mellia, Senior Member, IEEE, and Luca Venturini

Abstract—Understanding the behavior of a network from a
large scale traffic dataset is a challenging problem. Big data
frameworks offer scalable algorithms to extract information from
raw data, but often require a sophisticated fine-tuning and a
detailed knowledge of machine learning algorithms. To stream-
line this process, we propose SeLINA (Self-Learning Insightful
Network Analyzer), a self-tuning tool to extract knowledge
from network traffic measurements. SeLINA includes different
data analytics techniques providing self-learning capabilities to
state-of-the-art scalable approaches, jointly with parameter auto-
selection to off-load the network expert from tuning. We combine
both unsupervised and supervised approaches to mine data with
a scalable approach. SeLINA embeds mechanisms to check if the
new data fits the model, to detect possible changes in the traffic,
and to, possibly automatically, trigger model rebuilding.

The result is a system that offers human-readable models of the
data with minimal user intervention, supporting domain experts
in extracting actionable knowledge and highlighting possibly
meaningful interpretations. SeLINA’s current implementation
runs on Apache Spark. We tested it on large collections of real-
world passive network measurements from a nationwide ISP,
investigating YouTube and P2P traffic. The experimental results
confirmed the ability of SeLINA to provide insights and detect
changes in the data that suggest further analyses.

Index Terms—Mining and statistical methods; Machine learn-
ing; Network data analysis

I. INTRODUCTION

Internet monitoring has always played a fundamental role

in understanding how the network is performing, how users

are accessing resources, and how to properly control and

manage the infrastructure. The growth of traffic, users, services

and applications running in the internet challenges everyday

the network administrators and analysts to cope with system

complexity and in the understanding of how it works. Big

data and machine learning approaches have emerged to build

systems that aim at automatically extracting information from

the raw data that the monitoring infrastructures offer, and a

significant effort has been devoted to apply them to network

traffic analysis. Most of the proposed systems target a specific

problem, e.g., monitoring of a CDN [1], [2], [3], detecting

anomalies [4], [5], or simply offering scalable platforms [6].

However, few works have targeted the general-purpose

extraction of useful information from the raw data exposed by

the system, i.e., the application of the data mining approach

D. Apiletti, E. Baralis, T. Cerquitelli, P. Garza, and L. Venturini are
with the Dipartimento di Automatica e Informatica, Politecnico di Torino,
Corso Duca degli Abruzzi 24, Torino, Italy, email: {name.surname}@polito.it.
D. Giordano and M. Mellia are with the Dipartimento di Elettronica e
Telecomunicazioni, Politecnico di Torino, Corso Duca degli Abruzzi 24,
Torino, Italy, email: {name.surname}@polito.it.

to information discovery, a classic application of unsupervised

machine learning approaches. While methodologies exist, to

the best of our knowledge, they require non-trivial skills

and the domain expert needs to be able to fine tune the

underlying algorithms. In this work, we target the design of

an unsupervised machine learning tool that allows the network

administrator to discover properties of the traffic, without

requiring her to be a machine learning expert. We identified

the following requirements.

• Scalability, as the ability to (i) process very large datasets,

but (ii) provide compact representations of the traffic,

independently of the data size.

• Auto-configuration, as the capability to (i) self-adapt to

different data (e.g., data densities, cluster shapes), and to

(ii) self-tune the algorithm parameters to avoid human

intervention.

• Human-readability of both results and underlying mod-

els, to make the knowledge better exploitable and more

actionable.

• Self-assessment and self-evolution, to autonomously eval-

uate the model quality and trigger a rebuilding when the

model fitting to new data degrades.

The above-mentioned design guidelines led to the design of

SeLINA (Self-Learning Insightful Network Analyzer), which

exploits both supervised and unsupervised data-mining tech-

niques by combining their strengths. Specifically, unsupervised

approaches are used to autonomously identify clusters of

homogeneous traffic flows, thus reducing the granularity of

objects to observe from millions of single flows to few tens

of clusters, and generating a model of traffic. Human-readable

and fast supervised approaches are used then to classify flows

on the fly and assign them to clusters, and to offer valuable

information about the main characteristics of each class. The

system computes internal quality indices to check whether the

new data does not fit anymore the historical model, suggesting

to the analyst changes in the underlying network traffic, and,

possibly automatically, triggering a new clustering phase to

update the model.

SeLINA has been implemented in a state-of-the-art Big

Data framework, Apache Spark, and has been applied to

two real-world large use cases: a YouTube video streaming

dataset and a peer-to-peer traffic dataset. Experimental results

show that SeLINA is able to provide insightful network traffic

models, e.g., pinpoint different groups of YouTube servers with

different properties, and suggest the presence of changes in

the infrastructure that have caused well-known issues to end-

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. X, MM YYYY 2

Fig. 1. SeLINA building blocks.

users [3].

This paper is organized as follows. Section II provides an

overview of the proposed methodology, while Sections III-

IV describe its main building blocks. Section V provides

and overview of the experimental evaluation campaign, while

Sections VI-VII thoroughly discuss the experiments performed

on two real use cases based on real traffic datasets. Finally,

Section VIII compares our approach with previous work, while

Section IX draws conclusions and presents future develop-

ments of this work.

II. METHODOLOGY OVERVIEW

Figure 1 depicts the main components of the proposed

methodology.

Offline self-learning model building. This component, which

analyzes historical network traffic flows, aims at building a

self-learning data characterization model, and consists of three

phases: (1) a self-tuning clustering phase, (2) a cluster and data

characterization phase, and (3) a classification model training

phase.

Online model update. This component analyzes new net-

work data in real-time by applying the model built in the

previous block to detect changes in the network traffic char-

acterization. It consists of two phases: (4) a real-time data

labeling phase, and (5) an online quality index computation

phase.

In details, step (1) consists of a self-tuning clustering

algorithm, which is run over historical data to discover homo-

geneous groups of flows without prior knowledge, in a fully

autonomous and unsupervised fashion. Effectively applying

cluster analysis on real datasets requires the non-trivial choice

of algorithm-specific parameters, a typically difficult task for

domain experts exploiting data mining techniques. To this

aim, SeLINA includes strategies to automatically tune the

clustering parameter values. In step (2), the resulting cluster

set is then enriched by both general-purpose and domain-

specific statistics, whose aim is to support network analysts

in understanding the semantics of the identified clusters.

The cluster set is also given as input to the model training

phase of step (3), where a classification model is built by

exploiting clusters as classification labels. The model is able

to self-learn how to assign each network flow to the proper

cluster. Different classification techniques could be exploited,

depending on the preference towards pure performance (e.g.,

accuracy) or human-readability of the model. For SeLINA

we choice a decision tree algorithm, which is among the

most popular classification techniques and provides an easily

readable model in the form of classification rules. The latter

feature supports the network analyst in getting more meaning-

ful insights on the reasons for the classifier underlying choices.

The classification model is exploited in the real-time data

labeling phase at step (4), where each observed network flow

is assigned a label. Then, at step (5) the quality index compu-

tation is executed, by exploiting different quality indicators to

self-assess the model fitting and its results over time. When the

quality index falls below a given threshold, the offline model

building can be automatically triggered to rebuild a new model

better fitting the new data, thus providing self-evolutionary

features.

SeLINA is a general-purpose methodology which can be

easily exploited to analyze large collections of network data

(e.g., network traffic headers, network flow characteristics,

statistical measurements of traffic flows). As a case study, in

the paper we apply SeLINA to analyze network measurements

collected through Tstat [7].

III. OFFLINE SELF-LEARNING MODEL BUILDING

The core of the SeLINA approach is the offline self-learning

model building component, which consists of (1) a self-tuning

clustering phase, (2) a cluster and data characterization phase,

and (3) a classification model training phase. Details on each

phase are provided in the following.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. X, MM YYYY 3

A. Self-tuning clustering phase

SeLINA exploits clustering to autonomously identify homo-

geneous groups of network traffic flows without prior knowl-

edge. This phase performs a preliminary data normalization

step, by means of the standard z-score technique [8], followed

by a clustering algorithm applied to the normalized data.

Among the many clustering algorithms available to this aim,

SeLINA adopts an advanced DBScan-based [9] algorithm [10]

providing high-quality clusters on very-large real data collec-

tions. Since the clustering phase is at the core of the SeLINA

self-learning feature, in the following subsections its building

blocks are presented.

1) Basic DBScan: DBScan is a density-based approach that

identifies clusters as dense areas of data points surrounded by

lower density spaces, whose points are marked as noise. The

identification of the dense areas is driven by two parameters:

epsilon and MinPoints. Given an arbitrary point p, the den-

sity of the area of radius epsilon centered in p is considered,

and the points in this area are counted. If the number of points

in the area is at least MinPoints then p is called core point,

the area is considered dense, and it is merged with adjacent

dense areas to form a cluster.

DBScan is a well-known clustering algorithm, fruitfully

exploited in a variety of application contexts. Its strength is the

ability to identify arbitrary-shaped clusters, and isolate noise

and outliers. The results provided by DBScan are usually better

than those provided by other popular clustering algorithms.

However DBScan requires longer execution times, due to

its quadratic complexity. To scale to very large datasets,

we exploit the Spark-based distributed implementation of

DBScan1 proposed by Aliaksei Litouka. The main difference

with respect to the original centralized version is an additional

partitioning step, performed at the beginning.

2) Self-tuning Multi-level DBScan (SMDBScan): SeLINA

improves the basic DBScan approach by addressing two main

issues: (i) parameter setting, and (ii) diverse data densities

within the same dataset. To offload domain experts from

the critical task of configuring DBScan-specific parameters,

SeLINA includes a self-tuning strategy to automatically set

proper values. Furthermore, very-large real datasets are often

characterized by diverse data distributions in different regions,

a situation hardly handled by the standard DBScan. To address

both issues, the SMDBScan algorithm in SeLINA builds upon

an advanced version of DBScan successfully proposed in [10].

SMDBScan features a multi-level iterative approach and a

smart automatic parameter-setting procedure.

Multi-level iterative approach. At each iteration, SMDB-

Scan considers the data points which have not been assigned

to a cluster yet (at the first iteration, the whole dataset is

considered). Then it (i) partitions them to allow parallel com-

putation, (ii) automatically selects the most appropriate values

of epsilon and MinPoints, and (iii) executes the standard

DBScan with such parameter settings. At the end of each

iteration, the newly found clusters are included in the global

set of clustering results, while the noise points become the

dataset for the next iteration.

1Downloaded from https://github.com/alitouka/spark dbscan

Automatic parameter setting: epsilon. To automatically

compute the values of epsilon and MinPoints at each itera-

tion, SMDBScan introduces a self-tuning procedure, consist-

ing of two heuristics. The two heuristics are very intertwined,

the second depending on the epsilon set by the first, and they

are designed to fit the scope of a multi-level strategy.

To determine epsilon, SMDBScan exploits the density-

based concept of cluster: “a dense area surrounded by a lower

density zone”. To this aim, a greedy approach is exploited,

selecting the best potential epsilon for each point separately.

A final decision is then taken globally given all the local best

epsilons.

In details, given an arbitrary point p, the algorithm identifies

the boundary of the dense area around p. To this aim, it

computes the density distribution in the hypersphere having

radius r and center in p, with increasing values of r. The

larger r, the higher the number of points inside the hypersphere

will be. We define dense areas when the number-of-point

increasing rate is higher than the growth in volume. At the

border of a dense area, this growth rate will show an inversion

of the trend, as soon as the volume starts growing faster than

the number of points. The proposed heuristics chooses the first

inversion point as the border. If many inversion points occur,

greedily choosing the first one reduces the computational time

and leaves margin for further exploration in the next levels of

SMDBScan. The final value of epsilon, actually used for each

run of DBScan, is selected by considering the first quartile of

the set of border values generated by applying the border-

detection procedure for all points p. The first quartile value

produces a set of dense clusters covering a representative

subset of our data: taking the first quartile leads to having

at least a quarter of all the points set as core points with high

probability, which will help covering a good portion of the

dataset in few levels.

The border-detection procedure increases the r value at

epsStep increments. This is the only parameter, whose main

impact is on the execution time: very small steps lead to many

iterations to converge. In our experiments, we found that a

value of 10−3 was reasonable for the hardware at our disposal.

The pseudo-code for the epsilon self-tuning is reported in

Figure 2. Since the data partitions are independent, the main

loop (Figure 2, lines (2)-(19)) is executed in a distributed

fashion by exploiting Spark (each data partition is associated

with an independent task).

Automatic parameter setting: MinPoints. Once epsilon

has been set, the value of MinPoints is automatically set

by selecting the value for which the product MinPoints ×

numberOfCorePoints(dataset,MinPoints,epsilon) is maxi-

mum. The approach stems from the following observa-

tions. MinPoints represents the minimum size of the gen-

erated clusters. Small clusters are not interesting, because

they represent a negligible part of our data. We are in-

terested in the main groups and their characterization and

we aim at setting high values of MinPoints: The higher

the value of MinPoints, the higher the minimum cardi-

nality of the generated clusters. However, the higher the

value of MinPoints, the lower the number of core points

will be. With lower values of numberO f CorePoints, the

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. X, MM YYYY 4

Algorithm 1: Epsilon setting

Input : Dataset partitions - dataPartitions

Input : Epsilon step - epsStep

Output: Estimate of best epsilon - bestEpsilon

1 List<Double> potentialEpsilons = {};

2 for partition in dataPartitions do

3 for p in partition do

/* Compute the density of the areas centred in p of a radius eps multiple of

epsStep */

4 Map<Double,Int> densities = {};

5 eps=epsStep;

6 density be f ore = 0;

7 f ound = False;

8 while (not f ound and eps <=distanceFromFarthestPoint(p,partition)) do

9 numNeighbours = numNeighboursRadiusEps(p, eps, partition);

10 density = numNeighbours/epsd ; /* d is the number of features */

11 if (density < density be f ore) then

12 f ound = True;

13 end

14 density be f ore = density

15 end

/* The potential value of epsilon for p is the one before the first density

decrease */

16 epsilonP = eps;

17 potentialEpsilons.add(epsilonP);

18 end

19 end

/* Among the potential values of epsilon, select the one corresponding to the first

quartile */

20 bestEpsilon=FirstQuartile(potentialEpsilons);

21 return bestEpsilon;

Fig. 2. Automatic setting of the epsilon parameter value.

amount of clustered data potentially decreases, while the

amount of noise points increases. Since we are interested in

clustering as many data points as possible, discarding only

the minimum amount of objects in lower-density areas, we

should consider high values of numberO f CorePoints. To

balance the two discussed trends, we set the MinPoints

trade-off to the value that maximizes MinPoints ×

numberOfCorePoints(dataset,MinPoints,epsilon). Figure 3

reports the pseudo-code of the algorithm that automatically

sets MinPoints given the value of epsilon. Also in this

case, the procedure can be parallelized by assigning each data

partition to a different Spark task.

B. Cluster and data characterization

Clusters are anonymous groups of network traffic flows;

but human-readable results are much more valuable to domain

experts. As such, SeLINA, as reported in block (2) of Figure 1,

is designed to enrich clusters with (i) general feature-based

statistics, and (ii) domain-specific knowledge, for each cluster

in the resulting set, as detailed in the following. The former

does not require user intervention, whereas the latter can

be guided by domain experts, by a-priori selecting specific

features of interest.

• Number of flows. It provides insights into the data dis-

tribution, by identifying clusters covering most of the

dataset and others identifying small “remote” groups

of traffic flows. For instance, some datasets present a

predominant cluster with regular traffic and many smaller

clusters identifying deviations. Other datasets may present

similarly-sized clusters, (i.e., with the same number of

flows) corresponding to different subnets or services.

• Top characterizing features. To offer the analyst the

most informative features, SeLINA uses the Variance

Reduction Ratio (VRR) index. Given the i-th feature

xi and an estimator for the variance σ̂2, the Variance

Reduction Ratio (VRR) for the j-th cluster is defined as

follows.

VRRj (xi) =
σ̂

2
D

(xi) − σ̂2
j
(xi)

σ̂
2
D

(xi)
(1)

where σ̂2
D

is the variance over the whole dataset and σ̂2
j

is

the variance over the j-th cluster. The rationale behind the

variance reduction is to quantify the information gain, for

a given feature, obtained by isolating some of the flows

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. X, MM YYYY 5

Algorithm 2: MinPoints setting

Input : Dataset partitions - dataPartitions

Input : Epsilon - epsilon

Output: Estimate of best MinPoints - bestMinPoints

1 Map<Int,Int> histogramNeighbours = {};

2 for partition in dataPartitions do

3 for p in partition do

/* p is a core point if MinPoints is lower than or equal to the number of its

neighbours */

4 numNeighbours = numNeighboursRadiusEps(p, epsilon, partition);

/* Update the statistics about the number of points with numNeighbours

neighbours */

5 histogramNeighbours[numNeighbours] = histogramNeighbours[numNeighbours] + 1;

6 end

7 end

8 Map<Int,Int> numO f CorePoints = {};

9 neighboursA f ter MinPoints = 0;

/* Given MinPoints, the number of core points is the number of points with more than

MinPoints neighbours */

10 for MinPoints in histogramNeighbours.keys().sort().reverse() do

11 numO f CorePoints[MinPoints] = histogramNeighbours[MinPoints] + neighboursA f ter MinPoints;

neighboursA f ter MinPoints = numO f CorePoints[MinPoints]
12 end

13 max=0;

/* Select the MinPoints value that maximizes MinPoints × number o f core points */

14 for MinPoints in histogramNeighbours.keys() do

15 numCorePoints = numO f CorePoints[MinPoints];

/* d is the number of features */

16 if (MinPoints > d and numCorePoints × MinPoints > max) then

17 max=numCorePoints × MinPoints;

18 bestMinPoints=MinPoints;

19 end

20 end

21 return bestMinPoints;

Fig. 3. Automatic setting of the MinPoints parameter value.

in a cluster; it is inherited from decision trees [11], where

the order of the features in the tree influences performance

and results. Together with the variance itself, VRR is a

strong indicator of the features that characterize a cluster

the most and their relative importance.

• Network domain statistics. Network-oriented features of

interest provided by SeLINA are the number of different

source IP addresses, ports, and service types per cluster.

Furthermore, the current implementation of SeLINA com-

putes and plots the Cumulative Density Function (CDF)

of selected dataset features (see Table II and Sec. V

for details). For instance, per-cluster statistics of server

IP addresses, server L4-ports, L7-application protocols,

etc., are provided. Such features, despite being discarded

during the clustering, are often crucial to allow domain

experts to correctly extract meaning from the results.

C. Classification model training

All flows processed by the clustering algorithm (excluding

the final iteration noise points) are labelled according to their

cluster (e.g., cluster 1, 2, 3), and form a labeled dataset (i.e., a

training set), which can be exploited for supervised learning.

Thus, the goal of this phase, depicted in block (3) of Figure 1,

is to build a classifier to efficiently label new unseen flows as

they are captured.

Even if the cluster set could be directly exploited for label-

ing unseen data, a new ad-hoc classifier is trained separately

to reach two design goals: (i) to provide a real-time high-

performance classifier, and (ii) to build a human-readable

model that can harness the knowledge inside the data.

To this aim, SeLINA exploits decision trees [12] to build

the classification model. They are a well-known popular and

mature techniques able to reach both good accuracy and easy

model interpretability, with the latter being a highly-valued

feature for domain experts. To provide the intuition of how

a decision tree works, we describe a toy example in the

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. X, MM YYYY 6

TABLE I
A TOY DATASET

Id RTT [ms] DataByte Class

1 3 2M Cl. 1

2 20 900k Cl. 2

3 12 1.5M Cl. 1

4 15 500k Cl. 2

5 12 3M Cl. 1

following.

Tree example. Table I shows a simple training set with

5 records, each characterized by two features. Two clus-

ters/classes are present (Cl. 1 and Cl. 2). A possible decision

tree is reported in Figure 4. The node labels represent a feature

(e.g., the size of the flow in bytes), while each branch is

labelled with a possible value, or a range of values, for the

feature within the node. In our example, the split from the

root node is done on a range of values of the minimum

round trip time. Each path from the root node to a leaf

node represents a rule characterizing a class (a cluster in our

case). The path within the dotted box models the simple rule

RTT < 5ms → cluster1, thus this leaf can be interpreted by

the analyst as a set of flows served by nearby servers, with

cluster 1 partly served by those nodes. This kind of information

is human-readable and provides a good characterization of how

the traffic labeling is performed.

Knowledge model. The output tree provides an easy-to-read

overview of the features that best split the dataset according

to the labels: for each node of the tree the split criterion

can be written as an if/else condition over a single feature

and a splitting value, and few levels of the tree are usually

sufficient to show the most significant splits for the purpose

of the classification.

Split criterion. In the current work, the Gini index impurity-

based criterion has been used to grow the tree. The Gini

index is among the most popular choices and typically yields

high-quality results. We exploited the Spark decision-tree

implementation, which provides both the Gini and the entropy

criteria. We performed some experiments, not reported here for

the sake of space, to compare the accuracy of the classification

models based on the Gini and the entropy indices and their

results are very similar. We defer the reader to [13] for details

about the Gini and the entropy indices.

IV. ONLINE MODEL UPDATE

This component analyzes new network data in real-time by

applying the model built in the previous block. As depicted in

Figure 1, it consists of two phases: a real-time data labeling

phase (4), and an online characterization phase (5).

The classification model is exploited in the real-time data

labeling phase of step (4), where each new network flow is

assigned a label.

Then, at step (5) the quality index computation is executed

to self-assess the model fitting over time. When the quality

index falls below a given threshold, the offline model building

can be automatically triggered to rebuild a model better fitting

the new data, thus providing self-evolutionary features. While

the online data labeling phase (4) is straightforward, as it

Fig. 4. A toy example of a decision tree.

consists of a classification model application, in the following

we provide details on the quality index computation in step

(5) and the self-evolution policy stemming from such quality

evaluation.

A. Quality index

When no external information is provided (e.g., ground-

truth class labels), the clustering results are evaluated on the

shape of the clusters themselves. To this purpose, SeLINA ex-

ploits a well-known quality index, named Silhouette [14]. This

index measures both intra-cluster cohesion and inter-cluster

separation to evaluate the appropriateness of the assignment

of a data object to a cluster rather than to another one.

Let C = {C1, . . . ,Cn } be a set of clusters. The Silhouette

value for a given data object ri in a cluster Ck ∈ C, given a

distance measure d, is computed as

s(ri) =
b(ri) − a(ri)

max{a(ri),b(ri)}
, (2)

where a(ri) is the average distance of object ri from all other

objects in cluster Ck , i.e.

a(ri) =
1

|Ck |
Σr j ∈Ck

d (r j ,ri) (3)

and b(ri) is the lowest average distance from all other clusters,

i.e.

b(ri) = min
Cl ∈C

(

1

|Cl |
Σr j ∈Cl

d (r j ,ri)

)

,∀Cl , Ck . (4)

The Silhouette value for an arbitrary cluster Ck ∈ C is the

average Silhouette value on all objects in Ck . It is computed

as

s(Ck) =
1

|Ck |
Σri ∈Ck

s(ri) (5)

Lastly, the average s(ri) over all data of the entire dataset

is a measure of how appropriately the data has been clustered.

The distance measure d must be the same used for clustering,

thus the Euclidean distance in our case.

The Silhouette coefficients take values in [−1,1]. Negative

and positive Silhouette values represent wrong and good object

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. X, MM YYYY 7

placements, respectively. Hence, the ideal clustering algorithm

splits the data in a set of clusters C such that all clusters in

C have a Silhouette value equal to 1. However, Silhouette

values around 0.5 are already considered very high values

representing a strong clustering result [14].

B. Characterization and self-evolution policy

As the quality of the network traffic model is subject to

ageing, SeLINA continuously evaluates the degradation of

the model itself, with a two-fold objective: (i) highlighting

substantial changes in the traffic and (ii) triggering the regen-

eration of the model as soon as the quality index falls below

a threshold.

Since SeLINA computes the Silhouette for each new flow

against the ones seen during the training phase, this quality

index indicates how well the new flow fits the old clusters. A

Silhouette close to 1 would indeed mean that the intra-cluster

distances are negligible compared to the inter-cluster ones. The

Silhouette values for the clusters (s(Cj)) are recomputed every

N new records, where N is set by the user. The Silhouette

index for the clusters significantly changes as soon as new

kinds of data (not seen during the training) are added to

the input (see Section VII-B for an example). Unseen values

should indeed get a Silhouette close to 0, while mispredictions,

i.e., assignments to the wrong cluster, would have a negative

value.

Besides the Silhouette indicator, SeLINA also tracks the

number (percentage) of new flows assigned to each cluster

over time. This helps in detecting changes in the traffic

characterization due to (i) degradation in the clustering quality

and (ii) shift in the distribution of the traffic flows among

different clusters, as discussed in the experiments.

The final goals of the real time evaluation are to keep track

of the state of the network, to identify changes and react. The

reaction strongly depends on the use case and on the type

of change. When SeLINA is trained on a standard behaviour,

e.g., a usual working day without interruptions of service or

congestion, a change is a strong hint of an anomaly, a strong

congestion or an attack. The identification can be performed

by looking at the current clusters and their cardinality in recent

time frames. If the Silhouette value is unchanged, the current

clusters do still model well the traffic, and the anomaly occurs

only in the distribution of the flows among the clusters. If the

Silhouette value of one or more clusters decreases, instead,

the change is way more significant: the current model cannot

describe the traffic anymore. The inspection in this case needs

a new clustering, which can also be automatically triggered by

the system. The new clustering can be executed on the whole

historical dataset or on the most recent flows only. The latter

option generates a more specific up-to-date model, that could

be less general due to fewer training data.

V. EXPERIMENTS AND DATASETS

We experimentally evaluated SeLINA on two real network

traffic datasets, associated with two different use cases. Our

goal is to show how SeLINA (i) effectively characterizes

network traffic, and (ii) supports the analyst in understanding

changes of the traffic mix. We focused on two real-world use

cases. The first one consists of a dataset of YouTube flows

in which we know the CDN had changed over time, causing

possible issues to both end-users and ISPs [3]. The second

case deals with the understanding of P2P traffic, for which,

instead, little knowledge is available. In both cases, SeLINA

autonomously extracts information from the automatic analysis

of the traffic summaries, and presents results to domain experts

in an interpretable format.

We collected network traffic data through a passive probe

located on the access link (vantage point) connecting an

ISP Point of Presence (PoP) to the Internet. The passive

probe sniffs all packets flowing on the link. The probe runs

Tstat [15], a passive monitoring tool that extracts flow level

logs. Tstat rebuilds each TCP (and UDP) stream by matching

incoming and outgoing segments (and messages). A flow-level

analysis is performed, and for each flow a set of metrics is

logged [7]. Tstat offers advanced classification mechanisms

that we leveraged to split traffic according to the application

that generated it.

In this work, we focus on two datasets, collected during

two different time periods. The first one consists of flows

carrying YouTube videos. The second one collects all TCP

flows excluding web traffic, i.e., it consists of mostly P2P

traffic. We refer to each dataset as “YouTube” and “P2P” in

the following.

The YouTube dataset consists of TCP flows collected during

May 2013 by a probe placed on a PoP of a nation-wide ISP

in Italy where the traffic aggregate from more than 10,000

customers is monitored. We use data from May 1st, 2013 to

let SeLINA build the offline model. Datasets from May 2nd

to May 31st are used instead to run the online model update

phase and highlight traffic changes possibly suggesting the

automatic model rebuilding. For this dataset, we know that

during the second part of May 2013 the YouTube CDN had

relevant changes affecting end-user quality of experience [3],

[1]. Hence, we consider this as ground-truth information that

allows us to verify if SeLINA correctly identifies interesting

events.

The P2P dataset refers to April 17, 2012. From it we extract

all TCP flows whose application protocol is neither HTTP nor

HTTPS, i.e., where the majority of the traffic is due to P2P

applications [16]. Traffic comes again from a backbone link

of a nation-wide ISP in Italy.

Among the measurements exposed by Tstat, we consider

the metrics reported in Table II. We selected them since

they are correlated to both system configuration and possible

performance issues. For instance, the measure of the Round

Trip Time (RTT) is related to both the distance from the

server, and possible congestion on the path. Similarly, both

reordering and duplicate probabilities increase during periods

of congestion. Finally, duration and amount of carried data

are possibly linked to the type of service the flow carries,

e.g., short-lived signaling flows carrying little data rather than

long lived data flows carrying a large amount of data. Since

SeLINA model building is based on unsupervised clustering,

we expect the system to automatically leverage information

offered by these features to identify proper classes of flows.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. X, MM YYYY 8

TABLE II
FEATURES USED BY SELINA AS INPUT.

Metric Description Intuition

L7 − Data Amount of application payload transferred Identifies possible different type of flows, e.g., data vs signaling

Durat ion Time since the first SYN to the last segment Related to performance issues, and type of flow, e.g., bulk transfer or persistent connections

RTTMin Per-flow minimum RTT Estimate of the “distance” between client and server, and of possible congestion

Pr eor d Per-flow reordering probability Identifies possible packet losses occurred before the probe

Pdup Per-flow duplicate probability Identifies possible packet losses occurred after the probe

The metrics are computed by observing the TCP headers,

and correlating them with information in the corresponding

TCP ACKs. For instance, Preord and Pdup are computed by

keeping track of TCP sequence number evolution over time,

while RTT Min is the minimum delay observed between a data

segment and the corresponding acknowledgement. Since TCP

offers a bidirectional service, we consider measurements for

each half-flow, i.e., segments from the client to the server,

and vice versa. We denote them in the following by adding

a subscript C or S for client or server side, respectively.

For instance RTT MinS is the minimum delay observed at

the probe between segments sent by the server and ACKs

sent by the client, i.e., it is the delay between the probe and

the customer client – the access network delay. Conversely,

RTT MinC measures the time since the probe observes the

client segment and the server ACK, i.e., it is the minimum

RTT between the probe and the server – the backbone network

delay.

Additional features and measures are included in the final

results flows aggregated in the same cluster. Clusters are

annotated by SeLINA before being presented to the domain

experts. The additional features are not considered during the

model building phase. For instance, once the cluster is built,

the system computes Cumulative Density Functions (CDF),

average, percentiles, etc. of the per-metric distribution of

information extracted directly from features.

The datasets have been stored in a cluster at our University

running Cloudera Distribution of Apache Hadoop (CDH5.3.1).

All experiments have been performed on our cluster, which has

30 worker nodes, and runs Spark 1.2.0, HDFS 2.5.0, and Yarn

2.5.0. The cluster has a total of 2.5TB of RAM, 324 cores, and

773TB of secondary memory. The current implementation of

SeLINA is a project developed in Scala exploiting the Apache

Spark framework.

VI. YOUTUBE USE CASE

In this section we discuss the network traffic characteriza-

tion of the YouTube dataset first, as a result of the offline

SeLINA component, and then we present an evaluation of

the online part. The default values of EpsStep=0.001 and 3

clustering levels led to meaningful results for this experiment.

Increasing the number of levels brings no improvement. After

the third iteration, new clusters become very small and have

very low Silhouette values, a clear sign that the system is

artificially aggregating data that are actually very fragmented.

A. Offline cluster and model characterization

Clustering results provide meaningful insights into network

traffic when enriched by means of relevant statistics and

features. As such, we present traffic analyses provided by both

the cluster statistics and the classification model.
1) Cluster statistics: Table III reports the clusters obtained

by running SMDBScan on the YouTube dataset of May 1st,

2013. For each cluster, SeLINA returns the top-3 features

according to VRR, i.e., it presents to the network analyst

those features that best represent the data inside the cluster

itself. For instance, consider the cluster number 1. It is the

biggest one, collecting approximately 60,000 (36%) flows.

It is primarily characterized by a rather low Pdup value

(0.65%±0.71%), and clients requesting 4kB of data on average

(L7 − DataC=3992±2422.4 bytes), a rather sizable HTTP

request size. RTT MinS is 33.7±16.1 ms, which suggests quite

standard and not congested DSL lines. The cluster thus collects

the most common flows. This is the only cluster identified

during the first iteration of the multi-level clustering. During

iteration 2 and 3, more clusters emerge (one in step 2, and

two in step 3), each with several thousands of flows. This

confirms the ability of SMDBScan to identify large clusters,

despite different densities, thanks to the multi-level approach.

At the end of the whole clustering process, the noise cluster

aggregates all remaining points. There are 40,000 of them

(23%), which are very sparse, as proven by the high variance

in their characterizing features.

Clusters 2 and 3 represent a sizable part of the traffic, with

16% and 22% of the flows, respectively. Interestingly, those are

characterized by two very different RTT MinC values. Recall

that RTT MinC represents the distance of the YouTube CDN

server to the probe. Servers in Cluster 2 are 25.3±1.4 ms far,

while servers in Cluster 3 are much closer (5.4±4 ms). Pdup is

significantly different too, with Cluster 2 Pdup being one order

of magnitude smaller than cluster 3. This probably reflects

higher congestion in the path from the probe to the client in

cluster 2.

Cluster 4 collects fewer points (5,500, 4%). Pdup and

RTT MinC are similar to Cluster 2, but here duration (51±32 s)

is very large. This possibly hints for TCP flows of long lived

video sessions. We will get back to this when observing the

video resolution distribution in the following.

Besides the top-3 features selected for each cluster, SeLINA

offers to the analyst a further characterization of the network

traffic by presenting CDFs of features and additional measure-

ments collected by the probe. In this use case, we consider the

distribution of the RTT, of the throughput, and of the type of

video format and resolution.2

Fig. 5 and Fig. 6 report the CDF of the RTT MinC and the

average download throughput for each cluster. Cluster 2 and

2Tstat has a DPI engine specialized in extracting metadata from YouTube
flows.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. X, MM YYYY 9

TABLE III
YOUTUBE DATASET. CLUSTER CHARACTERIZATION.

Lev. Cl. Num. Top-3 representative features
id flows ranked by highest

variance reduction ratio
Feature Avg. value Std. dev

1 1 59846
Pdup 0.65% 7.12E-03

L7 − DataC 3992.1 2422.4
RTTMinS 33.7 16.1

2 2 27158
RTTMinC 25.3 1.4

Pdup 0.55% 6.42E-03
L7 − DataC 5357.8 2916.9

3

3 37964
Pdup 2.97% 2.31E-02

RTTMinC 5.4 4.0
RTTMinS 52.6 42.2

4 5569
RTTMinC 25.5 1.2

Pdup 4.11% 1.28E-02
Durat ion 51464.0 31969.4

40318
Pr eor d 0.000002% 3.12E-06

noise L7 − DataS 14465449.3 30919388.4
RTTMinS 78.7 160.6

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40

C
D

F

RTTMinc [ms]

Cluster 1
Cluster 2
Cluster 3
Cluster 4

Fig. 5. YouTube dataset. RTTMinC distribution for each cluster.

4 show similar distributions of the RTT MinC , as previously

discussed, which are significantly different from the clusters

1 and 3, whose flows, instead, are characterized by generally

low values of RTT MinC (i.e., they represent requests served

by nearby CDN servers). On the contrary, the flows of clusters

2 and 4 are associated with video requests that are served by

relatively far CDN servers. Figure 6 shows that cluster 4 is also

characterized by worse performance in terms of throughput,

and it probably represents flows with possible performance

issues.

This reflects the typical scenario of the YouTube CDN [3],

and proves the ability of SeLINA to provide insights on the

traffic mix. The analyst is offered few and consistent clusters,

instead of thousands of single measurements.

To investigate further the characteristics of each cluster,

Table IV details the percentage of flows per cluster for each

video resolution format. For each cluster, the 3 most frequent

formats are reported. Each format is characterized by the

quality of the video, mainly in terms of resolution (e.g., 240p,

720p), and it is identified by an integer value.3 Some formats

are shared by all clusters (i.e., format id 34 and 134), whereas

others are peculiar for specific clusters, such as format 25 for

3Video Resolution information at
https://en.wikipedia.org/wiki/YouTube.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000

C
D

F

Throughput [kbits/s]

Cluster 1
Cluster 2
Cluster 3
Cluster 4

Fig. 6. YouTube dataset. Throughput distribution for each cluster.

TABLE IV
YOUTUBE DATASET. CLUSTERS’ CHARACTERIZATION BASED ON VIDEO

FORMAT

Lev. Cl. Top-3 format
id ranked by number of flows

Format id (resolution) Num. of flows (%)

1 1
25 63.71%

34 (360p) 10.29%
134 (360p [DASH]) 7.36%

2 2
34 (360p) 60.67%

134 (360p [DASH]) 9.02%
35 (480p) 8.35%

3

3
34 (360p) 55.12%
35 (480p) 9.34%

134 (360p [DASH]) 9.22%

4
34 (360p) 50.26%

140 (AAC 128) 10.56%
134 (360p [DASH]) 9.43%

TABLE V
QUALITY OF THE CLASSIFICATION ALGORITHM. 3-FOLD

CROSS-VALIDATION

Cluster id Precision Recall

1 96.28% 80.17%

2 97.73% 93.02%

3 97.91% 99.25%

4 88.93% 98.22%

cluster 1, and format 140 for cluster 4. It is interesting to notice

that neither the format id, nor any other video information was

exploited during the clustering phase, nevertheless the clusters

are correlated to a set of video formats. For cluster 4, for

instance, the longer Duration is due to higher presence of

high quality audio stream server in format 140 (AAC 128kbps)

that is not found in other clusters.

2) Classification rules: The decision-tree described in Sec-

tion III-C and trained with a maximal depth of 4 levels has

been evaluated with a 3-fold cross-validation scheme on the

training data. The average accuracy over the three cross-

validation runs is 93%, and results for precision and recall for

each class are shown in Table V. All clusters are extremely

well represented by the model for both precision and recall

(93% to 99%), apart from a lower value in Cluster 1 recall

(80%).

Being the model so accurate, rules that form the decision

tree can be used to understand how the different clusters split

the network traffic. Each path from the root to one leaf of the

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. X, MM YYYY 10

decision tree is translated into a rule for the class of that leaf.

Each rule characterizes the data of its class (i.e., a cluster

in our case). Rule-based modeling provides further insights

into correlations among features. Analying the rules of such

classifier, we observe the following:

• {(RTT MinC > 15.7ms) and (Pdup > 2.5%)} →

Cluster4. This is the only rule associated with cluster

4. It states that all flows of cluster 4 are simultaneously

characterized by a high RTT MinC and a high Pdup .

• {(RTT MinC > 21.5ms) AN D (Pdup ≤ 2.5%)} →

Cluster2. This rule provides a characterization of cluster

2, where flows have an even higher RTT MinC but a lower

Pdup with respect to cluster 4.

Insights provided by such rules are relevant since we would

not have been able to distinguish the differences between

clusters 2 and 4 by considering only the CDF of RTT MinC
reported in Figure 5. The rules, which simultaneously consider

more than one measure, allow supporting domain experts to

more easily characterize the content of the clusters and also

perform comparisons among them by considering at the same

time many facets.

B. Online data characterization and model update

The decision tree model is exploited to assign new flows,

in real time, to the most appropriate class (which is one of the

clusters). Every N assignments, SeLINA evaluates the quality

of the current cluster set, by means of the Silhouette quality

index and the distribution in number of flows assigned to

each cluster. These two indicators provide the self-evolution

feature to SeLINA, which is able to trigger a model rebuilding

phase. The analysis of the Silhouette index indicates whether

the classifier model does not fit the current data anymore,

and the distribution of the flows among the clusters indicates

whether the traffic patterns are changing. This information is

also valuable for the analyst since it reflects changes in the

traffic mix.

The upper part of Figure 7 reports the value of the Silhouette

index for three different days (May 2nd, May 3rd, and May

29th from left to right). The lower part reports the percentage

of flows assigned to each cluster over time. The values are

computed every N = 10,000 flows, which corresponds to 2-3

hours at night, and approximately 1 hour during peak traffic

hours. Recall that the model had been trained on the May

1st dataset. Traffic from following days is assigned to clusters

based on the classifier, but without re-running the clustering

itself.

As discussed by domain experts in [3], network traffic in the

first part of May is very similar to May 1st. On the contrary,

in the second part of May, a change in the YouTube CDN

occurred. As such, we would expect the Silhouette to reflect

this situation, especially during peak time when the traffic is

more significant. This is indeed the case. The Silhouette value

is rather stable for all clusters during the first days of May,

of whom we reported here May 2nd and May 3rd, meaning

that there are no important changes in the traffic with respect

to the May 1st model. It still fits the new data. Only cluster 2

and 4 show temporary and limited drops in Silhouette values

from 10am to 12am, but at that time, they only account for

very low percentages of the traffic (less than 10% each).

The Silhouette values of clusters 2 and 4 during May 29th,

when the significant change in the YouTube CDN already

occurred, drop suddenly from 12pm to 8pm of May 29th.

At that time, a sizable amount of traffic is assigned to these

two clusters (≈ 20% each), but the clusters 2 and 4 do not

fit the data anymore, so that new flows present un-modeled

characteristics, and they fall into the low-Silhouette clusters.

Interestingly, cluster 1 still has a high Silhouette value (and

counts for 30-40% of the traffic), reflecting that not all traffic

is affected by the change.

A detailed analysis of May 29th highlights a significant

increase of the RTT MinC values for cluster 2 and cluster

4 flows. While in May 1st and May 2nd, almost all flows

have an RTT MinC lower than 25ms, in May 29th there are

many flows with RTT MinC from 80ms to 100ms. The increase

of the RTT MinC values is associated with changes in the

YouTube’s CDN previously identified in [3]. In the model built

by SeLINA on May 1st data, there are no clusters representing

this traffic pattern. Thus, the sudden drop of the Silhouette

values automatically highlights the changes and can be used

to raise an alarm.

To better highlight the difference in SeLINA results, we

ran a set of experiments considering the first and last five

days of May. We aim at identifying groups of similar traffic

days, by means of the Silhouette pattern. Fig. 8 shows the

correlation matrix of the per-day Silhouette indexes, i.e., for

each pair of days, we measure how similar the Silhouette

trends are. We use the Pearson correlation coefficient [13]

among the Silhouette values during two days: when close

to 1, the Pearson correlation depicts a strong positive linear

correlation; when the coefficient is close to -1, it highlights

a negative correlation, and when it is close to 0, negligible

correlation is found. Left plot of Fig. 8 clearly highlights

that Cluster 1 Silhouette is always very similar among those

days, and stable over time. Cluster 1 consistently represents

the part of traffic not affected by the CDN change, and the

model always fits the new data. Right plot of Fig. 8, instead,

clearly shows that Cluster 4 exhibits two patterns over time:

during the beginning of May, it is consistent with the model.

But during the last part of May (after the CDN change), its

Silhouette daily pattern becomes very different from before.

These results prove the strong link between the change in the

Silhouette trends and the change in the traffic patterns, and the

validity of using the drop of the Silhouette as a trigger for the

generation of a new model of the network.

Focusing on the percentage of new flows assigned to each

cluster (bottom plots in Fig. 7), we can detect changes related

to the CDN allocation policy. For all days, the distribution

of the flows changes from the late morning till evening. In

particular, Cluster 1 traffic, which is characterized by low

RTT Minc values, decreases from 60-70% (at night) to 30-

40% in the 10am-9pm period. On the contrary, the number of

flows assigned to Clusters 2 and 4 increases from less than 5%

to 20-30% each. Clusters 2 and 4 are characterized by higher

RTT Minc values, i.e., traffic is now being served by far-away

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. X, MM YYYY 11

-1

-0.5

 0

 0.5

 1

04 08 12 16 20 00

S
ilh

o
u

e
tt

e

Time

May 2

cluster 1
cluster 3
cluster 2
cluster 4

-1

-0.5

 0

 0.5

 1

04 08 12 16 20 00

Time

May 3

cluster 1
cluster 3
cluster 2
cluster 4

00 04 08 12 16 20 00
-1

-0.5

 0

 0.5

 1

Time

May 29

cluster 1
cluster 3
cluster 2
cluster 4

 0

 20

 40

 60

 80

 100

04 08 12 16 20 00

C
a

rd
in

a
lit

y
 (

%
)

Time

May 2

 0

 20

 40

 60

 80

 100

04 08 12 16 20 00

Time

May 3

00 04 08 12 16 20 00
 0

 20

 40

 60

 80

 100

Time

May 29

Fig. 7. YouTube dataset. Real-time data labeling: Silhouette and percentage of new flows assigned to each cluster.

servers. The difference between the two days is that in May

2nd and May 3rd the Silhouette values are high and stable,

hence the changes in the distribution of the flows among the

clusters are meaningful. On the contrary, on May 29th the drop

in Silhouette values means that clusters cannot be trusted, and

thus a model rebuilding is required.

We let then SeLINA rebuild the whole model (clustering

and classifier) on the flows of May 29th from 10am to 9pm.

This leads to a new characterization of the network traffic,

not shown here due to lack of space. 10 clusters (instead of

4) are identified, with very different characterizing features,

both in terms of number of flows and statistical distribution of

values. The new model includes some clusters with very high

RTT MinC values, which means that the presence of new CDN

servers that were not properly represented by the previous

clusters are now covered. For example, one of the new clusters,

which contains about 12,000 flows, is characterized by an

average RTT MinC value of 99ms±11ms, a significantly higher

value than those of the former clusters (see Fig. 5). These

results are consistent with those in [3], and confirm the ability

of SeLINA to automatically identify changes in traffic pattern.

Moreover, SeLINA extracts clusters which fit the new data and

provide insightful analyses of the network traffic evolution.

Fig. 8. YouTube dataset. Per-day correlation matrices of silhouettes for cluster
1 and 4.

VII. P2P USE CASE

In this section we show how SeLINA can help characterize

the flows of the P2P dataset. We recall that this dataset

contains all the TCP flows captured by Tstat, except the

HTTP and HTTPS ones. Also in this case, we executed

the offline self-learning phase by using the default values of

EpsStep=0.001 and the first 3 levels of clustering. Differently

from the YouTube use case, here we have no ground truth at

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. X, MM YYYY 12

TABLE VI
P2P DATASET. CLUSTER CHARACTERIZATION. CLUSTERS OBTAINED BY

USING SMDBSCAN AND SETTING EpsStep=0.001

Lev. Cl. Num. Top-3 representative features
id flows Ranking by highest

variance reduction ratio
Feature Avg. value Std. dev

1 1 98186
RTTMinS 33.5 38.6
RTTMinC 35.0 45.7
Durat ion 33154.1 43104.8

2

2 15090
Pdup 3.30E-06 2.04E-04

RTTMinS 235.5 74.8
RTTMinC 9.4 22.2

3 12152
Pdup 2.37E-05 5.44E-04

RTTMinS 14.6 22.9
RTTMinC 295.3 72.9

4 4530
Pdup 4.44E-01 1.34E-03

RTTMinS 11.2 16.2
RTTMinC 18.5 12.9

3

5 3302
Pdup 1.31E-05 5.07E-04

RTTMinS 542.0 103.6
RTTMinC 5.2 13.6

6 2524
Pdup 2.80E-01 2.49E-02

RTTMinS 6.9 15.0
RTTMinC 32.5 37.9

7 1993
Pdup 1.05E-05 3.65E-04

RTTMinS 16.9 28.9
RTTMinC 608.1 101.5

8 1892
Pdup 1.60E-01 1.88E-02

RTTMinS 14.7 29.6
RTTMinC 35.6 42.1

13647
Durat ion 560334.5 4671692.5

noise L7 − DataS 3585728.2 27938244.0
Pr eor d 5.05E-03 2.90E-02

our disposal, and thus SeLINA is used as a data exploration

tool.

A. Offline cluster and model characterization

Table VI reports the main characteristics of the extracted

clusters and their top-3 characterizing features. We immedi-

ately notice a cluster with approximately 64% of the flows

(Cluster 1, 98186 flows) that is significantly larger than any

other cluster. Cluster 1 represents “standard” flows which are

characterized by a similar average value of RTT MI NC and

RTT MI NS (i.e. the communication time is similar in both

directions of the flow). This balancing between RTT MI NC

and RTT MI NS values is normal when no congestions are

present. Indeed, P2P traffic is exchanged between residential

clients, therefore, we can expect the distance between the

probe and the peers to be somewhat equal, and so the RTT.

Other clusters provide interesting knowledge to domain

experts as well. For instance, Cluster 2 has an average

RTT MinS (235.5ms) that is two orders of magnitude higher

than RTT MinC (9.4ms). These values highlight a significant

asymmetry between the server side and the client side. The

RTT MinS is very high (the average RTT MinS value of

the ‘standard” flows in Cluster 1 is 33.5ms). This situation

describes a possible congestion in one direction of the com-

munication flow. We recall that we are analyzing P2P flows

among ISP customers where many users are connected through

an ADSL connection, with uplink capacity limited to 1Mbps.

When a remote peer downloads a large amount of data from

a local peer, the uplink of the latter may saturate, causing

congestion (i.e., the average RTT MinS increases). On the

contrary, the small RTT MinC suggests that the remote peer

is connected via high speed FTTH technology (where access

delay is much smaller being the upling capacity >10Mbps).

A similar situation is valid also for the flows of Cluster 7.

However, in Cluster 7 the RTT MinC is very high (608ms)

and the RTT MinS is low (16.9ms). This second case reflects

a simmetric scenario: high-speed local client downloading a

lot of data from ADSL remote peers, whose uplink results

congested.

B. Online data characterization and model update

For the P2P dataset we applied the evolving part of the

framework to analyze how new flows are assigned to the

clusters and identify possible changes in the type of traffic.

Results present no significant changes in the Silhouette. This

trend, that is confirmed by further statistics computed on the

flows, highlights that there are no anomalies or changes in

the traffic for the P2P dataset. The clusters identified by the

clustering phase are still representative of the network flows,

also of the future traffic. Since the day we analyzed is a

“normal” one, SeLINA correctly identifies no changes and

hence the re-execution of the clustering phase is not triggered.

VIII. RELATED WORK

A significant effort has been devoted to the application of

data mining techniques and statistical methods to network

traffic analysis. The application domains include studying

correlations among network data (e.g., association rule extrac-

tion for network traffic characterization [17], [18]; for router

misconfiguration detection [19]; interesting correlations from

web-based e-business system [20]), extracting information

for prediction (e.g., multilevel traffic classification [21], Naive

Bayes classification [22], throughput prediction [23], analytics

and statistical models for LTE Network Performance [24], one-

class SVM [25] for intrusion detection), grouping network

data with similar properties (e.g., clustering algorithms for

intrusion detection [26], [27], [28], [4], [5], for deriving node

topological information [29], for automatically identifying

classes of traffic [30], [31], [32], [33], for unveiling YouTube

CDN changes [3]), and context specific applications (e.g.,

multi-level association rules in spatial databases [34]).

However, in most cases no approach offloads the user from

arbitrary parameter choices, and can be easily adapted to

domain-specific requirements and semantics as the method-

ology proposed in this paper. Differently from analytics

approaches tailored to a specific network application [3],

[26], [27], [29], [28], [4], [5], SeLINA is a general pur-

pose methodology that can be easily exploited to analyze

different and transversal network data (e.g., network traffic

headers, network flow characteristics, statistical measurements

of traffic flows). In the experimental section we considered

Youlighter [3]. Youlighter is a system that detects very specific

macro-changes in the YouTube traffic pattern involving the

CDN spatial distribution. It is not distributed nor scalable.

SeLINA, instead, introduces a general-purpose, distributed,

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. X, MM YYYY 13

and fully autonomous engine exploiting a completely different

methodology and addressing a more general research issue in

the network traffic analysis than the Youlighter system.

The performance of most state-of-the-art general purpose

approaches [17], [18], [30], [31], [32], [33] depends on the

choice of different parameters, and the optimal trade-off be-

tween execution time and accuracy must be handpicked for

a given application. On the contrary, focusing itself on self-

learning capabilities of state-of-the-art scalable approaches,

SeLINA is able to build a model of the data with minimal

user intervention by offloading the user from the non trivial

task of configuring the miner system and highlighting possibly

meaningful interpretations to domain experts.

Some research effort has been devoted to automatic setting

of data mining algorithm parameters (e.g., clustering algo-

rithms [35], [36], itemset mining [37]). Authors in [35], [36]

proposed a hierarchical strategy to aggregate lower density

regions discovered through DBSCAN. Different from [35],

[36], SMDBScan automatically sets DBScan parameters at

each iteration level when DBScan is exploited in a multiple-

level fashion. Furthermore, the SeLINA clustering results

include clusters with a diverse degree of density, because each

subset of clusters with a similar density is discovered at a

given iteration level. The method in [35], [36] instead gets a

flat partition composed of clusters extracted from local cuts

through the cluster tree.

An intensive research activity has been devoted to designing

innovative algorithms and methodologies to support large scale

analytics based on MapReduce, such as [38], [39], [40].

A step further has been proposed in [41]. Apache Spark

with its Resilient Distributed Datasets and its smart APIs,

outperforms Hadoop MapReduce in terms of performance and

overcomes its limitations, with particular focus on iterative in-

memory computation, which is a common characteristic of

many data mining algorithms. Its machine learning library

MLlib [42] provides a broad range of analytics algorithms.

SeLINA exploits the computational advantages of distributed

computing frameworks, as the current implementation runs

on Spark. Applications of this techniques to network traffic

analysis becomes natural, given the volume of traffic [6], [43],

[44], [45]. These works adopt Hadoop or Spark, and apply

either standard machine learning algorithms, or design specific

solutions to their problem.

The idea of defining a generic framework and of tightly

integrating self-learning capability in a scalable data mining

engine tailored to traffic data was first introduced by ourselves

in [46]. However, SeLINA significantly enhances the method-

ology proposed in [46]. The SeLINA data mining engine

(named SaFe-Nec in [46]) provides an innovative and more

accurate explorative approach coupled with self-configuring

strategies (i.e., the SMDBScan algorithm). Thus, SeLINA

allows exploiting cluster analysis on real datasets in a fully au-

tonomous fashion. The SMDBScan algorithm is characterized

by configuration parameters whose setting is rather difficult.

In [46] the less effective, but easier to configure, K-means

algorithm was used. SeLINA also includes ad-hoc strategies

to automatically tune the clustering parameter values, which

is a typically difficult task also for domain experts. The

exploitation of a multilevel DBScan-like algorithm jointly

with self-configuring strategies allowed for better clustering

results than the ones produced by the K-means based approach

proposed in [46]. Moreover, SeLINA integrates innovative

self-assessment features and a new set of network domain

statistics that are often vital to let the domain expert interpret

the results. Finally, with respect to [46], in this paper we added

a new interesting case study on YouTube traffic analysis and

a thorough analysis of the results from a networking point of

view.

IX. CONCLUSION

This paper presents a self-learning data analytics system

that effectively mines network traffic data. The proposed

methodology is based on a two-phase approach that

1) builds a self-evolving human-readable traffic model by

autonomously splitting traffic data into homogeneous

groups;

2) classifies new data in real-time and identifies the pres-

ence of changes in the traffic mix.

The SeLINA methodology features a distributed implemen-

tation in Apache Spark. It is a general purpose approach,

which can be easily exploited to analyze network traffic data

in different conditions. The approach has been tested in two

real-world use cases. The performed experiments highlighted

its ability to autonomously identify evolutions in the network

and support the analyst by selecting characterizing features.

Possible extensions of the current work are (i) the inclusion

of further cluster characterization measures, (ii) the evaluation

of pre-processing feature selection techniques, and (iii) the

design and integration of different analysis techniques, more

appropriate for outlier detection.

ACKNOWLEDGMENT

The authors would like to thank Luigi Celona and Marco

Gaido for implementing portions of the SeLINA system. The

research leading to these results has received funding from the

European Union under the FP7 Grant Agreement n. 619633

(“ONTIC” Project).

REFERENCES

[1] P. Casas, A. D’Alconzo, P. Fiadino, A. Bär, A. Finamore, and T. Zseby,
“When youtube does not work - analysis of qoe-relevant degradation
in google CDN traffic,” IEEE Transactions on Network and Service

Management, vol. 11, no. 4, pp. 441–457, 2014.
[2] A. Bär, A. Finamore, P. Casas, L. Golab, and M. Mellia, “Large-scale

network traffic monitoring with dbstream, a system for rolling big data
analysis,” in 2014 IEEE International Conference on Big Data, Big Data

2014, Washington, DC, USA, October 27-30, 2014, 2014, pp. 165–170.
[3] D. Giordano, S. Traverso, L. Grimaudo, M. Mellia, E. Baralis, A. Ton-

gaonkar, and S. Saha, “Youlighter: A cognitive approach to unveil
youtube cdn and changes,” IEEE Transactions on Cognitive Commu-
nications and Networking, vol. 1, no. 2, pp. 161–174, June 2015.

[4] P. Casas, J. Mazel, and P. Owezarski, “Unsupervised network intrusion
detection systems: Detecting the unknown without knowledge,” Com-

puter Communications, vol. 35, no. 7, pp. 772–783, 2012.
[5] J. Dromard, G. Roudiere, and P. Owezarski, “Unsupervised network

anomaly detection in real-time on big data,” in New Trends in Databases
and Information Systems - ADBIS 2015 Short Papers and Workshops,

BigDap, DCSA, GID, MEBIS, OAIS, SW4CH, WISARD, Poitiers, France,

September 8-11, 2015. Proceedings, 2015, pp. 197–206.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. X, MM YYYY 14

[6] Y. Lee and Y. Lee, “Toward scalable internet traffic measurement and
analysis with hadoop,” ACM SIGCOMM Computer Communication
Review, vol. 43, no. 1, pp. 5–13, 2013.

[7] M. Mellia, M. Meo, L. Muscariello, and D. Rossi, “Passive analysis of
tcp anomalies,” Computer Networks, vol. 52, no. 14, pp. 2663–2676,
2008.

[8] J. Han, Data Mining: Concepts and Techniques. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 2005.

[9] M. Ester, H. Kriegel, J. Sander, and X. Xu, “A density-based algo-
rithm for discovering clusters in large spatial databases with noise,”
in Proceedings of the Second International Conference on Knowledge

Discovery and Data Mining (KDD-96), Portland, Oregon, USA, 1996,
pp. 226–231.

[10] D. Antonelli, E. Baralis, G. Bruno, T. Cerquitelli, S. Chiusano, and
N. A. Mahoto, “Analysis of diabetic patients through their examination
history,” Expert Syst. Appl., vol. 40, no. 11, pp. 4672–4678, 2013.
[Online]. Available: http://dx.doi.org/10.1016/j.eswa.2013.02.006

[11] L. Rokach and O. Maimon, Data Mining with Decision Trees: Theroy

and Applications. River Edge, NJ, USA: World Scientific Publishing
Co., Inc., 2008.

[12] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classification

and regression trees. CRC press, 1984.

[13] Pang-Ning T. and Steinbach M. and Kumar V., Introduction to Data
Mining. Addison-Wesley, 2006.

[14] P. J. Rousseeuw, “Silhouettes: A graphical aid to the interpretation
and validation of cluster analysis,” Journal of Computational and

Applied Mathematics, vol. 20, pp. 53 – 65, 1987. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0377042787901257

[15] A. Finamore, M. Mellia, M. Meo, M. Munafò, and D. Rossi, “Experi-
ences of internet traffic monitoring with Tstat,” IEEE Network, vol. 25,
no. 3, pp. 8–14, 2011.

[16] J. L. Garcia-Dorado, A. Finamore, M. Mellia, M. Meo, and M. Munafo,
“Characterization of isp traffic: Trends, user habits, and access technol-
ogy impact,” IEEE Transactions on Network and Service Management,
vol. 9, no. 2, pp. 142–155, June 2012.

[17] D. Apiletti, E. Baralis, T. Cerquitelli, and V. D’Elia, “Characterizing net-
work traffic by means of the netmine framework,” Computer Networks,
vol. 53, no. 6, pp. 774–789, 2009.

[18] M. Hossain, S. Bridges, and R. Vaughn Jr, “Adaptive intrusion detection
with data mining,” IEEE Internation Conference on Systems, Man and

Cybernetics, vol. 4, 2003.

[19] F. Le, S. Lee, T. Wong, H. S. Kim, and D. Newcomb, “Minerals: using
data mining to detect router misconfigurations,” in MineNet ’06. New
York, NY, USA: ACM Press, 2006, pp. 293–298.

[20] M. K. Agarwal, M. Gupta, G. Kar, A. Neogi, and A. Sailer, “Mining
activity data for dynamic dependency discovery in e-business systems,”
IEEE Transactions on Network and Service Management, vol. 1, no. 2,
pp. 49–58, 2004.

[21] T. Karagiannis, K. Papagiannaki, and M. Faloutsos, “Blinc: multilevel
traffic classification in the dark.” in SIGCOMM, 2005, pp. 229–240.

[22] A. W. Moore and D. Zuev, “Internet traffic classification using bayesian
analysis techniques,” in SIGMETRICS ’05. New York, NY, USA: ACM
Press, 2005, pp. 50–60.

[23] J. E. B. Maia et al., “Network traffic prediction using pca and k-means,”
in Network Operations and Management Symposium (NOMS), 2010

IEEE. IEEE, 2010, pp. 938–941.

[24] Y. Ouyang, M. H. Fallah, S. Hu, Y. R. Yong, Y. Hu, Z. Lai, M. Guan,
and W. Lu, “A novel methodology of data analytics and modeling to
evaluate LTE network performance,” in 2014 Wireless Telecommunica-

tions Symposium, WTS 2014, Washington, DC, USA, April 9-11, 2014,
2014, pp. 1–10.

[25] M. Amer, M. Goldstein, and S. Abdennadher, “Enhancing one-class
support vector machines for unsupervised anomaly detection,” in Pro-

ceedings of the ACM SIGKDD Workshop on Outlier Detection and

Description, ser. ODD ’13, 2013, pp. 8–15.

[26] L. Portnoy, E. Eskin, and S. Stolfo, “Intrusion detection with unlabeled
data using clustering,” Proceedings of ACM CSS Workshop on Data

Mining Applied to Security, PA,, November, 2001.

[27] Q. Wang and V. Megalooikonomu, “A clustering algorithm for intrusion
detection,” Proc. SPIE, vol. 5812, pp. 31–38, 2005.

[28] P. Owezarski, “Unsupervised classification and characterization of hon-
eypot attacks,” in 10th International Conference on Network and Ser-
vice Management, CNSM 2014 and Workshop, Rio de Janeiro, Brazil,

November 17-21, 2014, 2014, pp. 10–18.

[29] E. Baralis, A. Bianco, T. Cerquitelli, L. Chiaraviglio, and M. Mellia,
“Netcluster: A clustering-based framework to analyze internet passive

measurements data,” Computer Networks, vol. 57, no. 17, pp. 3300–
3315, 2013.

[30] L. Grimaudo, M. Mellia, E. Baralis, and R. Keralapura, “Select: Self-
learning classifier for internet traffic,” IEEE Transactions on Network

and Service Management, vol. 11, no. 2, pp. 144–157, 2014.
[31] J. Erman, M. Arlitt, and A. Mahanti, “Traffic classification using

clustering algorithms,” in MineNet ’06. New York, NY, USA: ACM
Press, 2006, pp. 281–286.

[32] J. Y. Chung, B. Park, Y. J. Won, J. Strassner, and J. W. Hong,
“An effective similarity metric for application traffic classification,” in
Network Operations and Management Symposium (NOMS), 2010 IEEE.
IEEE, 2010, pp. 286–292.

[33] M. F. F. d. Carmo, J. E. B. Maia, G. Siqueira et al., “An internet
traffic classification methodology based on statistical discriminators,” in
Network Operations and Management Symposium, 2008. NOMS 2008.

IEEE. IEEE, 2008, pp. 907–910.
[34] F. Lisi and D. Malerba, “Inducing multi-level association rules from

multiple relations,” Machine Learning, vol. 55, no. 2, pp. 175–210, 2004.
[35] R. J. G. B. Campello, D. Moulavi, and J. Sander, “Density-based

clustering based on hierarchical density estimates,” in Advances in
Knowledge Discovery and Data Mining, 17th Pacific-Asia Conference,

PAKDD 2013, Gold Coast, Australia, April 14-17, 2013, Proceedings,

Part II, 2013, pp. 160–172.
[36] R. J. G. B. Campello, D. Moulavi, A. Zimek, and J. Sander, “Hier-

archical density estimates for data clustering, visualization, and outlier
detection,” TKDD, vol. 10, no. 1, p. 5, 2015.

[37] G. Buehrer, R. L. de Oliveira Jr., D. Fuhry, and S. Parthasarathy,
“Towards a parameter-free and parallel itemset mining algorithm in
linearithmic time,” in 31st IEEE International Conference on Data

Engineering, ICDE 2015, Seoul, South Korea, April 13-17, 2015, 2015,
pp. 1071–1082.

[38] Y. He, H. Tan, W. Luo, S. Feng, and J. Fan, “MR-DBSCAN: a
scalable mapreduce-based DBSCAN algorithm for heavily skewed data,”
Frontiers of Computer Science, vol. 8, no. 1, pp. 83–99, 2014.

[39] S. Moens, E. Aksehirli, and B. Goethals, “Frequent itemset mining for
big data,” in Proceedings of the 2013 IEEE International Conference on

Big Data, 6-9 October 2013, Santa Clara, CA, USA, 2013, pp. 111–118.
[40] B. Panda, J. Herbach, S. Basu, and R. J. Bayardo, “PLANET: massively

parallel learning of tree ensembles with mapreduce,” PVLDB, vol. 2,
no. 2, pp. 1426–1437, 2009.

[41] D. Dahiphale, R. Karve, A. V. Vasilakos, H. Liu, Z. Yu, A. Chhajer,
J. Wang, and C. Wang, “An advanced mapreduce: Cloud mapreduce,
enhancements and applications,” IEEE Transactions on Network and

Service Management, vol. 11, no. 1, pp. 101–115, 2014.
[42] A. Spark, “The Apache Spark scalable machine learning library. Avail-

able: https://spark.apache.org/mllib/,” 2015.
[43] V. K. Bumgardner and V. W. Marek, “Scalable hybrid stream and

hadoop network analysis system,” in Proceedings of the 5th ACM/SPEC

international conference on Performance engineering. ACM, 2014, pp.
219–224.

[44] Y. Jeong, “Big Telco Real-Time Network Analytics Available:
https://spark-summit.org/eu-2015/events/big-telco-real-time-network-
analytics/,” Spark summit, Amsterdam, Netherland, October 27-29,
2015.

[45] K. Swetha, S. Sathyadevan, and P. Bilna, “Network data analysis using
spark,” in Software Engineering in Intelligent Systems. Springer, 2015,
pp. 253–259.

[46] D. Apiletti, E. Baralis, T. Cerquitelli, P. Garza, and L. Venturini, “SaFe-
NeC: a Scalable and Flexible system for Network data Characterization,”
in NOMS, 2016.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. X, MM YYYY 15

Daniele Apiletti is an assistant researcher of the
Database and Data Mining Group at the Diparti-
mento di Automatica e Informatica of the Politec-
nico di Torino since January 2009. He holds a
Master degree (2005) and a PhD (2008) in Com-
puter Engineering from Politecnico di Torino. He is
also adjunct professor for the Database Management
Systems course at Politecnico di Torino, and Chief
Data Scientist at Ooros (Turin, Italy). His research
interests are in the field of NoSQL databases, large-
scale data mining techniques, and Big Data machine

learning, with specific focus on network-traffic, sensor-data, and social-
business distributed analyses.

Elena Baralis has been a full professor at the
Dipartimento di Automatica e Informatica of the
Politecnico di Torino since January 2005. She holds
a Master degree in Electrical Engineering and a
Ph.D. in Computer Engineering, both from Politec-
nico di Torino. Her current research interests are in
the field of database systems and data mining, more
specifically on mining algorithms for very large
databases and sensor/stream data analysis. She has
published over 100 papers in international journals
and conference proceedings. She has served on the

program committees or as area chair of several international conferences and
workshops, among which VLDB, IEEE ICDM, ACM SAC, DaWak, ACM
CIKM, PKDD.

Tania Cerquitelli has been an assistant professor at
the Dipartimento di Automatica e Informatica of the
Politecnico di Torino, Italy, since October 2011. Her
research interests include self-learning methodolo-
gies, the design of innovative algorithms to perform
large-scale data mining, novel and efficient data
mining techniques for IoT applications. Tania has
published more than 70 scientific publications and
has served as referee for many international journals.
She has been involved in many research projects
addressing different topics (e.g., energy efficiency,

network traffic analysis, IoT) in the data mining research area. Tania got
the master degree in Computer Engineering (in 2003) and the PhD degree (in
2007) from the Politecnico di Torino, Italy, and the master degree in Computer
Science (in 2003) from the Universidad De Las Amricas Puebla.

Paolo Garza received the master’s and PhD degrees
in computer engineering from the Politecnico di
Torino. He has been an assistant professor (with non-
tenure track position) at the Dipartimento di Auto-
matica e Informatica, Politecnico di Torino, since
December 2010. His current research interests are in
the fields of data mining, database systems, and big
data analytics. He has worked on the classification
of structured and unstructured data, clustering, and
itemset mining algorithms.

Danilo Giordano received his M.Sc. Degree in
Computer Engineering from Politecnico di Torino,
Italy, in 2013. In 2014, he joined the Telecommu-
nication Networks Group of Politecnico di Torino
as Ph.D.candidate. During Summer 2014, he was a
research intern at Narus Inc., now part of Symantec,
to work on anomaly detection techniques. During the
first 6 months of 2016, he was a visiting student at
CAIDA research centre to extend the BGPStream
tool, and to perform Big Data analysis of BGP
traffic by using Apache Spark. His research interests

cover several aspects of network traffic characterization, monitoring, anomaly
detection, Big Data, and security on the Internet.

Marco Mellia (SM’08) graduated from the Po-
litecnico di Torino with Ph.D. in Electronic and
Telecommunication Engineering in 2001, where he
held a position as Associate Professor. In 2002 he
visited the Sprint Advanced Technology Laborato-
ries working at the IP Monitoring Project (IPMON).
In 2011, 2012, 2013 he collaborated with Narus
Inc, CA, working on traffic monitoring and cyber-
security system design. Since 2015 he is collabo-
rating with Cisco Systems for the design of cloud
monitoring platforms. He has co-authored over 250

papers published in international journals and presented in leading interna-
tional conferences, all of them in the area of communication networks. He won
the IRTF ANR Prize at IETF-88, and best paper award at IEEE P2P’12, ACM
CoNEXT’13, IEEE ICDCS’15. He participated in the program committees of
several conferences including ACM SIGCOMM, ACM CoNEXT, ACM IMC,
IEEE Infocom, IEEE Globecom and IEEE ICC. He is Area Editor of ACM
CCR, ACM/IEEE Transactions on Networking, and IEEE Transactions on
Network and Service Management. His research interests are in area of traffic
monitoring and big data analysis, with applications to traffic classification,
management and security.

Luca Venturini is a PhD student at Politecnico di
Torino. He holds a master’s degree from both Tele-
com Paristech, France, and Politecnico di Torino,
Italy. While still studying, he spent several months
in research institutes as Bell Labs, CERN and
EURECOM. His current research interests are in
applications of machine learning on societal issues
and very large datasets.

