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Orthogonal polynomials in badly shaped polygonal
elements for the Virtual Element MethodI

S. Berronea,∗, A. Borioa

aDipartimento di Scienze Matematiche, Politecnico di Torino
Corso Duca degli Abruzzi 24, Torino, 10129, Italy

Abstract

In this paper we propose a modified construction for the polynomial basis on
polygons used in the Virtual Element Method (VEM). This construction is al-
ternative to the usual monomial basis used in the classical construction of the
VEM and is designed in order to improve numerical stability. For badly shaped
elements the construction of the projection matrices required for assembling the
local coefficients of the linear system within the VEM discretization of Partial
Differential Equations can result very ill conditioned. The proposed approach
can be easily implemented within an existing VEM code in order to reduce the
possible ill conditioning of the elemental projection matrices. Numerical results
applied to an hydro-geological flow simulation that often produces very badly
shaped elements show a clear improvement of the quality of the numerical solu-
tion, confirming the viability of the approach. The method can be conveniently
combined with a classical implementation of the VEM and applied element-wise,
thus requiring a rather moderate additional numerical cost.

Keywords: VEM, polygonal Galerkin methods, orthogonal polynomials on
polygons, Discrete Fracture Network simulations, badly shaped elements.
2010 MSC: 65N30, 65N50, 68U20, 86-08, 86A05

1. Introduction

In the recent years a large interest on polythopal methods for PDEs has
rapidly grown. In many fields of computational engineering and scientific com-
puting the geometrical complexity is often as relevant as the model complexity.
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In all these situations the introduction of polyhedral or polygonal methods can
introduce a great deal of flexibility that can play a relevant role in simulations.

This improved flexibility of the recently developed Virtual Element Method
(VEM) has been applied in the field of geological poro-fractured media [1–
5]. Geosciences very often produce applications with huge domains and terrific
geometrical complexities. Within this context, the Discrete Fracture Network
(DFN) model was developed for modeling the flow in geological fractured media
[6–9] and is object of a very large numerical bibliography [10–20]. Due to the
huge uncertainty in the definition of the underground fracture distribution, this
model instantiates a fracture distribution by a stochastic procedure starting
from probabilistic distributions of geometrical parameters: direction, dimension,
aspect ratio; and from probabilistic distributions of thickness and other hydro-
geological properties. The stochastic procedure that instantiates the fracture
distribution can create geometrical complexities arbitrarily demanding for a
numerical method; typically, these complexities are related, for example, to
very small angles between couples of fractures, to a huge variability in the
length of fracture intersections, and to disjoint fractures very close to each other
[21]. Several approaches were recently applied to the DFN flow problem [10–
14]. In some of these methods some geometrical simplification were required
in order to construct the mesh. In [1, 2, 21–28] an optimization approach was
developed in order to overcome these geometrical complexities by-passing the
constraints imposed on the mesh generation process. This optimization-based
approach was applied in conjunction to the classical Finite Element Method
(FEM) as well as with the eXtended Finite Element Method and the VEM [1].
The VEM applied to this problem has proved a good reliability in dealing with
these complexities, but, sometimes, some fracture configurations have lead to
unfeasible numerical solutions [2]. A possible solution, sometimes viable, is to
relax the mesh conformity requirement, resorting to a Mortar fracture matching
method [3] or applying a preliminary mesh smoothing process [3]. Nonetheless,
some very badly shaped configurations cannot be avoided, mainly on coarse
meshes.

The Virtual Element Method was recently developed as a generalization of
Mimetic Finite Differences,[29, 30], and has been applied to a wide number
of problems, such as plate bending problems [31], elasticity problems [32, 33],
Stokes problems [34] and the Steklov eigenvalue problem [35].

Starting from these observations, in this paper we propose a different basis
for assembling the local linear systems within the VEM, that, at a very small
additional cost with respect to a classical implementation based on monomials,
can largely improve the reliability of the method by limiting the condition num-
bers of local matrices in badly shaped elements. We remark that the proposed
method aims at improving the reliability of the computations performed in the
set up of the consistent part of the VEM formulation of the problem and is
completely independent of the VEM stabilization that is added to the consis-
tent part in order to get a well posed problem [36]. Moreover, our description is
organized in such a way that it can be easily plugged in a standard VEM code
based on scaled monomials.
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In Section 3 we introduce the computation of a quasi-orthogonal polyno-
mial basis for assembling the VEM linear system that is fully compatible with
the traditional monomial basis. The two bases can be mixed on elements in
the same mesh using the quasi-orthogonal basis on badly shaped elements and
the traditional monomial basis on all the other elements. In Section 4 we pro-
vide a brief validation of the modified VEM construction on a general reaction-
convection-diffusion problem with variable coefficients. In Section 5 we discuss
the behaviour of the new basis in reducing the condition number of the projec-
tion matrices and improving the numerical solution on a simple problem. In
Section 6 we compare the results provided by the classical monomial basis with
the presented quasi-orthogonal basis on two critical Discrete Fracture Networks.
In this Section we further discuss some simple criteria useful to determine in
which elements it is beneficial to resort to the new basis and in which elements
it is safe to use the monomial basis, as well as some limitations of the proposed
approach.

2. Virtual Element Spaces

The Virtual Element Method [37, 38] is a recently developed Galerkin ap-
proach to PDEs that aims at allowing the use of more generally shaped polygons
than the ones allowed in the FEM context.

Consider a bounded open set Ω ⊂ R2, partitioned by a mesh Th made
up of open star-shaped polygons having an arbitrary finite number of sides
(even different from one polygon to another). We make the following regularity
assumption: ∃γ > 0 such that ∀E ∈ Th, with diameter hE , E is star-shaped
with respect to a ball of radius larger than γhE ; more details on the regularity
assumptions can be found in [36].

We define Π∇k : H1
0 (Ω)→ Pk (Th) such that, ∀v ∈ H1

0 (Ω) and ∀E ∈ Th

(
∇
(
v −Π∇k v

)
,∇p

)
E

= 0 ,∀p ∈ Pk (E) and

{(
Π∇k v, 1

)
∂E

= (v, 1)∂E if k = 1 ,(
Π∇k v, 1

)
E

= (v, 1)E if k ≥ 1 ,

where, ∀E ∈ Th, Pk (E) is the space of polynomials of degree up to k; its

dimension is dim (Pk (E)) = nk = (k+1)(k+2)
2 .

Let us define the scaled monomials mα ∈Mk (E) up to the order k, defined
as

∀x = (x, y) ∈ E, mα(x, y) :=
(x− xE)α1(y − yE)α2

hα1+α2

E

, (1)

with α = (α1, α2), |α| = α1 +α2 ≤ k. Moreover, letM∗r(E) be the set of scaled
monomials of order exactly r.

Following [38, 39], we introduce the local finite dimensional space

V Eh :=
{
v ∈ H1 (E) : ∆v ∈ Pk (E) , v ∈ Pk (e) ∀e ⊂ ∂E, γ∂E (v) ∈ C0(∂E)

(v, p)E =
(
Π∇k v, p

)
E
∀p ∈ Pk (E) /Pk−2 (E)

}
,
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where the space Pk (E) /Pk−2 (E) is defined as M∗k−1(E) ∪M∗k(E). We then
define the global Virtual Element Space on Th by gluing local spaces asking for
continuity:

Vh :=
{
v ∈ C0(Ω) ∩H1

0 (Ω) : v ∈ V Eh ∀E ∈ Th
}
.

The following degrees of freedom are unisolvent for Vh (see [37, 38]):

1. the values at the vertices of the polygon;

2. if k ≥ 2, for each edge e ⊂ ∂E, the value of v ∈ Vh at k− 1 internal points
of e. For practical purposes, we choose these points to be the internal
Gauss – Lobatto quadrature nodes;

3. if k ≥ 2, the scaled moments 1
|E| (v,mα)E , for all the scaled monomials

mα ∈Mk−2 (E) up to the order k − 2.

The above degrees of freedom are enough to build projection matrices in order
to obtain local polynomial orthogonal projections from Vh to Pk (Th), see [40].

2.1. Example: VEM for advection-diffusion-reaction equations

Following [38], we consider the general second order problem{
−∇ · (µ∇u) + β · ∇u+ γu = f in Ω,

u = 0 on ∂Ω,

whose variational formulation reads

(µ∇u,∇v) + (β · ∇u, v) + (γu, v) = (f, v) . (2)

The VEM discretization of (2) consists in defining a discrete counterpart of the
bilinear form which is computable from the VEM degrees of freedom. Let

ah (uh, vh) :=
(
µΠk−1

0 ∇uh,Πk−1
0 ∇vh

)
+ S

((
I −Πk

∇
)
uh,
(
I −Πk

∇
)
vh
)
, (3)

bh (uh, vh) :=
(
β ·Πk−1

0 ∇uh,Πk−1
0 vh

)
,

ch (uh, vh) :=
(
Πk−1

0 uh,Π
k−1
0 vh

)
,

Bh (uh, vh) := ah (uh, vh) + bh (uh, vh) + ch (uh, vh) ,

where S is the VEM stabilization [36, 37] such that

∃c∗, c∗ > 0: ∀vh ∈ ker
(
Πk
∇
)
, c∗ ‖∇vh‖2 ≤ S (vh, vh) ≤ c∗ ‖∇vh‖2 ,

and all the other terms of the operator Bh (., .) provide the consistent part of
the operator. Within these terms, the operator Πk−1

0 is the elementwise L2(E)
projection on Pk−1 (E), for any E ∈ Th. For the ease of notation, we will use
the same symbol also for the application of the projection operator to vectors,
such as gradients, meaning a component-wise application.

Using the above definitions, we define the discrete VEM solution as the
function uh ∈ Vh satisfying

Bh (uh, vh) =
(
f,Πk−1

0 vh
)
∀vh ∈ Vh .
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This problem is well-posed and satisfies optimal a priori error estimates [38].
In the following we focus on the construction of the local projection matrices
and the local matrices and vectors required for the set up of the global discrete
problem.

In the presentation given here we have considered the minimal requirement in
the projections in order to preserve the expected polynomial rate of convergence
(k in the energy norm) of the numerical solution [4, 38].

3. Orthogonal polynomials on the generic element

All the computations performed in order to set up the VEM linear system
providing the solution are based on operations between polynomial functions
representing the projection of functions appearing in the consistent part of the
operator and in the right-hand-side. A key issue in performing all the computa-
tions is a suitable basis for the polynomial spaces on general polygonal elements.
Among the several possible options the classical and more simple choice is the
scaled monomial basis [37, 38]. In the following we describe the construction
of a suitable different almost orthogonal basis. A key issue to be considered in
this construction process is that we need a basis for the space of polynomials
of order k − 1 for the construction of the Πk−1

0 projector, largely used in the
consistent part of the discretization of the problem. This is the first step of our
construction. Moreover, we also need a basis for the full space of polynomials
of order k for the computations involved by the Πk

∇ construction required in
the VEM stabilization considered in [37, 38]. For this reason we need a basis
for the space Pk (E) obtained by the chosen basis functions for Pk−1 (E) and
by a set of additional linearly independent basis functions. We remark that the
proposed construction of a polynomial basis aims at improving the reliability of
the projector operator and is not dependent on the VEM stabilization chosen
[36].

3.1. Basis construction on the generic element

In the following we introduce a number of vector of basis functions, mass
matrices and projectors; for all of them we adopt the following common notation:
we use a right superscript to denote the polynomial order, and we indicate
the polynomial basis used for the construction of the mass matrices and the
projectors as the left superscript. For the mass matrices we also introduce the
right superscript k/k−1 to indicate that monomilas of order exactly k are used
in the construction.

Let mk be the column vector of the nk scaled monomial basis functions of
the space of polynomials up to degree k usually used in the VEM definition,
pk and pk are the column vectors of two suitable sets of linearly independent
polynomials of degree k, whose construction will be discussed in the following.
The construction of the target basis pk of Pk (E) is split in two steps: first we
construct the orthonormal basis pk−1 of Pk−1 (E) used for the construction of
the projectors pΠk−1

0 and then we complete the basis for Pk (E) adding suitable
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basis functions, this basis is required for the construction of the projection Πk
∇

needed for the computation of the stabilization in (3). In each of the two steps
intermediate bases pk−1 and pk are introduced to explain the construction.

Let Rk be the matrix whose i-th row represents the coefficients of the i-th
polynomial pfki of the orthogonal basis in terms of the monomial basis mk:

pki =
∑

j=1,..nk

ri,jm
k
j = Rk

i,:m
k .

In a compact form we can write

pk = Rkmk.

Let us introduce the mass matrix mHk ∈ Rnk×nk defined as

mHk =

∫
E

mk
(
mk
)T

dΩ ,

and let us consider the principal sub-matrix of order nk−1, that is the mass
matrix of the monomials up to the order k − 1:

mHk−1 =

∫
E

mk−1 (mk−1)T dΩ .

Moreover, let us denote by mHk,k−1 the block of the mass matrix mHk with
the last nk−nk−1 rows and the first nk−1 columns, and by mHk/k−1 the block
matrix given by the intersection of the last nk − nk−1 rows and columns.

Orthonormal basis for Pk−1 (E). Let us define the matrix Rk−1 such that the
mass matrix pHk−1 with respect to the basis pk−1 is diagonal:

pHk−1 =

∫
E

pk−1
(
pk−1

)T
dΩ =

∫
E

Rk−1mk−1 (mk−1)T (Rk−1)T dΩ =

= Rk−1 mHk−1 (Rk−1)T = Λk−1.

Namely, the matrix
(
Rk−1)T is the matrix of the column-wise right-eigenvectors

of mHk−1 , and the diagonal matrix Λk−1 is the matrix of the eigenvalues of
mHk−1 .

We finally introduce the orthogonal matrix

Qk−1 =

√
(Λk−1)

−1
Rk−1 , (4)

and then define the set of L2(E)-orthonormal polynomials that is a basis of the
space Pk−1 (E):

pk−1 = Qk−1mk−1, (5)

with an identity mass matrix:

pHk−1 =

∫
E

pk−1
(
pk−1

)T
dΩ =

∫
E

Qk−1mk−1 (mk−1)T (Qk−1)T dΩ

= Qk−1 mHk−1 (Qk−1)T =

√
(Λk−1)

−1
Λk−1

(√
(Λk−1)

−1
)T

= Ik−1.
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Basis for Pk (E). In order to build a basis for the full space Pk (E) we add to
the basis functions pk−1 a set of suitable linearly independent basis functions
denoted by pk/k−1, and obtained removing from the monomials mk/k−1 of order
(exactly) k their components in the space of polynomials of order up k− 1. Let
us apply a Gram-Schmidt orthogonalization:

pk/k−1 = mk/k−1 −
(∫

E

mk/k−1 (pk−1)T dΩ

)
pk−1 =

= mk/k−1 −
(∫

E

mk/k−1 (mk−1)T dΩ

)
mk−1 =

= mk/k−1 − mHk,k−1 mk−1 =
[
−
(
mHk,k−1 )T Ik/k−1

]
mk.

Let us define the matrix

Rk/k−1
a =

[
−
(
mHk,k−1 )T Ik/k−1

]
∈ R(nk−nk−1)×nk−1 . (6)

Note that the set of functions pk/k−1 is obtained starting from the set of mono-
mials of order k, but they are general polynomials of order k orthogonal to the
polynomial basis functions of order k − 1.

Now, let us extract from these polynomials a set of linearly independent
L2(E) orthogonal functions pk/k−1. Let us consider the mass matrix relative to
the polynomials pk/k−1:

pk/k−1

Hk/k−1 =

∫
E

pk/k−1
(
pk/k−1

)T
dΩ =

= Rk/k−1
a

(∫
E

mk
(
mk
)T

dΩ

)(
Rk/k−1
a

)T
,

and let R
k/k−1
b be the orthogonal matrix of change of basis that leads to a

diagonal mass matrix starting from pk/k−1

Hk/k−1 :

Λk/k−1 =
(
R
k/k−1
b

)(
pk/k−1

Hk/k−1
)(

R
k/k−1
b

)T
=

=
(
R
k/k−1
b

)(
Rk/k−1
a

)
mHk

(
Rk/k−1
a

)T (
R
k/k−1
b

)T
.

We, finally, define the basis functions

pk/k−1 =

√(
Λk/k−1

)−1
R
k/k−1
b Rk/k−1

a mk = Qk/k−1mk , (7)

and the new full “almost L2(E)-othonormal” basis is

pk = Qkmk , (8)

where, defined the zero-matrix Ok−1,k ∈ Rnk−1×nk−nk−1 , the matrix Qk has the
following structure:

Qk =

[
Qk−1 Ok−1,k

Qk/k−1

]
, (9)
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and, in exact arithmetic, the resulting mass matrix is

pHk =

∫
E

pk
(
pk
)T

dΩ = Qk mHk
(
Qk
)T

=

=

[
Ik−1 pHk−1,k

pHk,k−1 Ik/k−1

]
. (10)

For badly shaped elements, the computation of the eigenvalues-eigenvectors can
be affected by a non negligible numerical error. When this happens, the diagonal
blocks of the matrix pHk are no longer identity matrices, and, for this reason,
in Section 6 we consider the following definitions:

pHk−1 = Qk−1 mHk−1 (Qk−1)T , (11)

pHk = Qk mHk
(
Qk
)T
, (12)

with the matrices Qk−1 and Qk given by (4) and (9), respectively.

3.2. Computation of the projector operator matrices pΠk−1
0,x and pΠk−1

0,y

In this section we describe how to obtain the L2(E) projection of the gradient
components of a VEM basis function following the description provided in [38,
40].

Let Πk−1
0 φi,x be the projection of the derivative with respect to the variable

x of the VEM basis function φi. This projection with respect to the scaled
monomial basis m and the basis p built in the previous section, respectively
can be written as follows:

mΠk−1
0 φi,x =

(
mk−1)T mΠk−1

0,x (:, i), pΠk−1
0 φi,x =

(
pk−1

)T pΠk−1
0,x (:, i), (13)

and similarly for the derivatives with respect to the variable y.
Let us start defining the matrix mEx of the L2(E) scalar product of the

x derivative of the VEM basis function φi with respect to the monomial basis
mk−1 and the matrix pEx with respect to the orthonormal basis pk−1, respec-
tively:

mEx (l, i) =

∫
E

mlφi,x,
pEx (l, i) =

∫
E

plφi,x,

the relation between the two matrices is: pEx = Qk−1 mEx . Moreover, the
L2(E) projections mΠk−1

0 φi,x and pΠk−1
0 φi,x are defined by the systems of

equations ∫
E

mk−1 (mΠk−1
0 φi,x

)
dΩ =

∫
E

mk−1φi,xdΩ, (14)∫
E

pk−1
(
pΠk−1

0 φi,x
)

dΩ =

∫
E

pk−1φi,xdΩ, (15)

8



respectively. Let us write the projections in (14), (15) by the matrix represen-
tations (13), we have∫

E

mk−1φi,xdΩ =

(∫
E

mk−1 (mk−1)T dΩ

)
mΠk−1

0,x (:, i),∫
E

pk−1φi,xdΩ =

(∫
E

pk−1
(
pk−1

)T
dΩ

)
pΠk−1

0,x (:, i),

that is

mEx (:, i) = mHk−1 mΠk−1
0,x (:, i), pEx (:, i) = pHk−1 pΠk−1

0,x (:, i),

mEx = mHk−1 mΠk−1
0,x , pEx = pHk−1 pΠk−1

0,x ,

and
mΠk−1

0,x =
(
mHk−1 )−1 mEx ,

pΠk−1
0,x =

(
pHk−1 )−1 pEx . (16)

In exact arithmetic we have

pΠk−1
0,x = pEx = Qk−1 mEx , (17)

and proceeding in a similar way we get pΠk−1
0,y = pEy . For the computation of

the matrices mEx and mEy resorting to the VEM-dofs we refer to [37, 38] and
remark that, by the Green formula, all these computations can be written in
terms of integrals on the elements of polynomials of order k − 2 that are VEM
dofs and integrals on the boundary of VEM basis functions and polynomials
of order k − 1. In the computations performed in the following we use the
expressions

pΠk−1
0,x =

(
pHk−1 )−1 Qk−1 mEx = Qk−1 mΠk−1

0,x , (18)

pΠk−1
0,y =

(
pHk−1 )−1 Qk−1 mEy = Qk−1 mΠk−1

0,y . (19)

We remark that the matrix Qk−1 acts as a preconditioner for the projection
matrices pΠk−1

0,x and pΠk−1
0,y .

3.3. Stiffness matrix computation

Let us denote by Φ the column vector of the VEM basis functions φi, i =
1, .., nk, and by∇ΦT the matrix with two rows and nk columns with the gradient
∇φi in the column i. Let us assume that µ is a positive scalar function, following

9



the formulation provided in (3), the element stiffness matrix is given by

pKµ =

∫
E

∇TΦµ∇ΦT =

∫
E

µ

(
pΠk−1

0

∂Φ

∂x

)(
pΠk−1

0

∂Φ

∂x

)T
dΩ

+

∫
E

µ

(
pΠk−1

0

∂Φ

∂y

)(
pΠk−1

0

∂Φ

∂y

)T
dΩ

=

∫
E

µ
(
pΠk−1

0,x

)T
pk−1

(
pk−1

)T pΠk−1
0,x dΩ

+

∫
E

µ
(
pΠk−1

0,y

)T
pk−1

(
pk−1

)T pΠk−1
0,y dΩ

=
(
pΠk−1

0,x

)T pHk−1
µ

pΠk−1
0,x +

(
pΠk−1

0,y

)T pHk−1
µ

pΠk−1
0,y ,

where we have defined

pHk−1
µ =

∫
E

µpk−1
(
pk−1

)T
dΩ,

and we can write

pKµ =
[(

pΠk−1
0,x

)T (
pΠk−1

0,y

)T ] [ pHk−1
µ 0
0 pHk−1

µ

] [
pΠk−1

0,x
pΠk−1

0,y

]
. (20)

If µ is constant in the element E, in exact arithmetic, we have pKµ = µ Ik−1.
In case µ is a symmetric positive definite tensor whose components are de-

noted by µxixj
with i, j = 1, 2 and the usual convention x1 = x and x2 = y, we

define

mHk−1
µxixj

=

∫
E

µxixjm
k−1 (mk−1)T dΩ,

pHk−1
µxixj

=

∫
E

µxixj
pk−1

(
pk−1

)T
dΩ = Qk−1 mHk−1

µxixj

(
Qk−1)T ,

and proceeding in a similar way we finally get

pKµ =
[(

pΠk−1
0,x

)T (
pΠk−1

0,y

)T ] [ pHk−1
µx1x1

pHk−1
µx1x2

pHk−1
µx2x1

pHk−1
µx2x2

] [
pΠk−1

0,x
pΠk−1

0,y

]
(21)

3.4. Computation of the projector operator Πk
∇ : Vk(E)→ Pk(E)

First let us recall the definition of the Πk
∇ operator [37, 40, 41]:(

∇Πk
∇vh,∇qk

)
= (∇vh,∇qk) , ∀qk ∈ Pk(E). (22)

Equation (22) defines the projection Πk
∇vh of the VEM function vh up to a

constant that can be fixed prescribing a projector operator onto constants such
that P0 : Vk(E)→ Pk(E) :

P0Πk
∇vh = P0vh.
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Several options for this operator are possible. As in [37, 40] we choose{
(P0vh, 1)∂E = (vh, 1)∂E , for k = 1,

(P0vh, 1)E = (vh, 1)E , for k ≥ 2.
(23)

Since Πk
∇φi ∈ Pk (E) we can represent it with respect to the bases m and p,

with coefficients mΠk
∇(:, i) and pΠk

∇(:, i), respectively

Πk
∇φi =

(
mk
)T mΠk

∇(:, i) =
(
mk
)T (

Qk
)T pΠk

∇(:, i).

Let us define the Rnk−1,nk−1 matrix

mG̃ =

∫
E

∇Tmk∇mkdΩ,

and
mB̃(:, i) =

∫
E

∇Tmk∇ΦdΩ.

Using the monomial basis we get∫
E

∇Tmk∇Πk
∇φidΩ =

∫
E

∇Tmk∇mkTdΩ mΠk
∇(:, i) = mG̃mΠk

∇(:, i) =

=

∫
E

∇Tmk∇φidΩ = mB̃(:, i),

whereas, using the polynomial basis pk

pG̃ pΠk
∇(:, i) = Qk mG̃

(
Qk
)T pΠk

∇(:, i) = pB̃(:, i) = Qk mB̃(:, i). (24)

The first row and first column of the matrix mG̃ are trivially vanishing appearing
in the integrals the gradient of constants. The matrix pG̃ is singular as well.
For this reason we define the matrices mG and pG in the following way. As
in [40], let us consider the matrix mG̃ and replace its first row with the vector

P0

(
mk
)T

obtaining the matrix mG, and replace the first row of mB̃ with

P0 (Φ)
T

, obtaining mB. The undetermined linear system mG̃mΠk
∇ = mB̃ is

replaced by
mGmΠk

∇ = mB. (25)

Instead of computing pG by the transformation pG = Qk mG
(
Qk
)T

we
could directly compute the matrix pG by performing a QR-rank-revealing fac-

torization of the matrix pG̃ = Qk mG̃
(
Qk
)T

, and then by replacing the row of

the matrix corresponding to the lowest singular value with the vector P0

(
pk
)T

=

P0

(
mk
)T (

Qk
)T

and the corresponding element of the right hand side pB̃ =

Qk mB̃ with P0ΦT , we get
pG pΠk

∇ = pB. (26)

11



3.5. Computation of the projector operator matrices pΠk−1
0 : Vk(E)→ Pk(E)

In this section we describe how to obtain the L2(E) projection of a VEM
basis function following the description provided in [38, 41].

Let Πk−1
0 φi be the projection of the VEM basis function φi. Let us write

this projection with respect to the scaled monomial basis m and the basis p,
respectively:

mΠk−1
0 φi =

(
mk−1)T mΠk−1

0 (:, i), pΠk−1
0 φi =

(
pk−1

)T pΠk−1
0 (:, i). (27)

Let us define the matrix mC of the L2(E) scalar product of the VEM basis
function φi, i = 1 . . . nk−1, with respect to the monomial basis mk−1 and the
matrix pC with respect to the basis pk−1, respectively:

mC (l, i) =

∫
E

mlφi,
pC (l, i) =

∫
E

plφi, l = 1, . . . nk−1

the relation between the two matrices is pC = Qk−1 mC . In the definition of
the VEM space we ask that (q, φi)E = (q,Πk

∇φi)E , ∀q ∈ Pk (E) /Pk−2 (E) =
M∗k−1(E) ∪M∗k(E); this way, we can compute the last row of the matrix mC
and consequently the matrix pC [40, 41]. Moreover, the L2(E) projections
mΠk−1

0 φi and pΠk−1
0 φi are defined by the systems of equations∫
E

mk−1 mΠk−1
0 φidΩ =

∫
E

mk−1φidΩ, (28)∫
E

pk−1 pΠk−1
0 φidΩ =

∫
E

pk−1φidΩ, (29)

respectively. Let us write the projections in (28), (29) by (27), we have

mC (:, i) = mHk−1 mΠk−1
0 (:, i), pC (:, i) = pHk−1 pΠk−1

0 (:, i),

mC = mHk−1 mΠk−1
0 , pC = pHk−1 pΠk−1

0 ,

and

mΠk−1
0 =

(
mHk−1 )−1 mC ,

pΠk−1
0 =

(
pHk−1 )−1 pC = pC = Qk−1 mC .

From a numerical point of view, in the following, we prefer to use

pΠk−1
0 =

(
pHk−1 )−1 pC =

(
pHk−1 )−1 Qk−1 mC . (30)

12



3.6. Advection matrix computation

Let us consider the elemental matrix of the advection term

pKβ =

∫
E

ΦβT∇ΦTdΩ =

∫
E

βx
(
pΠk−1

0 Φ
)(

pΠk−1
0

∂Φ

∂x

)T
dΩ

+

∫
E

βy
(
pΠk−1

0 Φ
)(

pΠk−1
0

∂Φ

∂y

)T
dΩ =

=

∫
E

βx
(
pΠk−1

0

)T
pk−1

(
pk−1

)T pΠk−1
0,x dΩ

+

∫
E

βy
(
pΠk−1

0

)T
pk−1

(
pk−1

)T pΠk−1
0,y dΩ =

=
(
pΠk−1

0

)T pHk−1
βx

pΠk−1
0,x +

(
pΠk−1

0

)T pHk−1
βy

pΠk−1
0,y

where, with i = 1, 2, we have defined

mHk−1
βxi

=

∫
E

βxi
mk−1 (mk−1)T dΩ,

pHk−1
βxi

=

∫
E

βxip
k−1 (pk−1)T dΩ = Qk−1 mHk−1

βxi

(
Qk−1)T .

3.7. Reaction matrix computation

Let us consider the elemental matrix of the reaction term

pKγ =

∫
E

γ
(
pΠk−1

0 Φ
) (

pΠk−1
0 Φ

)T
dΩ =

=

∫
E

γ
(
pΠk−1

0

)T
pk−1

(
pk−1

)T pΠk−1
0 dΩ =

=
(
pΠk−1

0

)T pHk−1
γ

pΠk−1
0 ,

where we have defined

mHk−1
γ =

∫
E

γmk−1 (mk−1)T dΩ,

pHk−1
γ =

∫
E

γpk−1
(
pk−1

)T
dΩ = Qk−1 mHk−1

γ

(
Qk−1)T .

k = 1 k = 2 k = 3 k = 4 k=5 k=6
L2(Ω) 2.08 3.14 4.29 5.25 6.60 7.53
H1

0 (Ω) 1.03 2.12 3.20 4.25 5.55 6.40

Table 1: Validation. Rates of convergence on triangular mesh
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Figure 1: Validation Highly distorted Voronoi mesh
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Figure 2: Validation, order 6. Mean condition number of the matrix representation of Πk−1
0 ∇.
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Figure 3: Validation, order 6. Mean condition number of the matrix representation of Πk
∇.
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Figure 4: Validation, order 6. Mean conditioning number of the matrix representation of

Πk−1
0 .
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Figure 5: Interface The mesh used for the test on the unity square.
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Figure 6: Interface Results for standard VEM of order 6 and VEM with orthogonal polyno-
mials.

16



k = 1 k = 2 k = 3 k = 4 k=5 k=6
L2(Ω) 1.98 3.01 3.97 4.95 6.05 6.98
H1

0 (Ω) 1.00 1.97 2.98 3.96 5.06 6.00

Table 2: Validation. Rates of convergence on hexagonal mesh

4. Validation on a reaction-advection-diffusion problem

Before proceeding to a detailed analysis of the effects of the basis p in pre-
venting instabilities on badly shaped elements, we report some numerical results
for a validation of the method. In particular, we aim at showing that the use of
the new basis yields a discretization displaying rates of convergence for the error
which correspond to the theoretical ones. Let Ω = (0, 1) × (0, 1) and consider
the reaction-convection-diffusion problem:{

−∇ · (µ∇u) + β · ∇u+ γu = f in Ω,

u = 0 on ∂Ω,

where µ(x, y) =
(

1+y2 0

0 1+x2

)
is a non-constant tensor diffusivity parameter,

β(x, y) = (x,−y) is the convection velocity, γ(x, y) = xy is the reaction param-
eter and f is the right-hand-side chosen such that the solution is

u(x, y) = −200
√

sin(1− x/π) cos(πx)(1− x)(1− y)xy2 .

The computed rates of convergence for the norms L2(Ω) and H1
0 (Ω) are

reported in Tables 1 and 2 and are very close to the expected ones. Being the
mesh a good quality mesh we have that the errors display the same values both
with the basis m and p. The rates of convergence in Table 1 are obtained on
a triangular mesh with elements of area equal to 0.1, 0.01, 0.001 and 0.0001 for
k = 1, . . . , 4, and with area equal to 0.1, 0.05, 0.01, 0.005 for k = 5, 6, while
the results in Table 2 are obtained on progressively refined meshes of mildly
distorted hexagons, with diameters spanning from 0.219 to 0.0266 for orders 1
up to 5, and from 0.219 to 0.071 for order 6.

In order to describe the effect of the use of the basis p we compare the
condition numbers of the projection matrices computed solving the previous
problem on an highly distorted Voronoi mesh displayed in Figure 1. Figures 2,
3 and 4 display the condition numbers of the projection matrices ∗Πk−1

0,x and
∗Πk−1

0,y (mixed in Figure 2), ∗Πk
∇ and ∗Πk−1

0 , for the basis m and the basis p
with respect to the aspect ratio. We can observe a very strong reduction of their
condition numbers when p is used. In order to draw these plots we define the
aspect ratio, as the ratio between the largest distance and the smallest distance
between couples of vertices of the polygon. For each element in the mesh we
compute the aspect ratio and we partition the full range of aspect ratios in 100
uniform intervals. In the plots we report the mean condition numbers computed
on all the elements with an aspect ratio in each of these intervals. We remark
that the effect of the use of the basis p is local, and that the global condition
number of the final matrix is not significantly reduced by the process.
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5. Interface problem with highly anisotropic mesh

To show the capability of the described change of basis in providing a more
accurate solution also with very bad shaped meshes, we consider here a case
where oscillations are observed due to very badly shaped elements. Let

µ(x, y) =

{
10 if (x, y) ∈ (0, 0.5)2 ∪ (0.5, 1)2 ,

1 otherwise ,

and let

ψ(x) = − 1

µ


x2

2 + cx if (x, y) ∈ (0, 0.5)2,
x2

2 + cx− c− 1
2 if (x, y) ∈ (0.5, 1)× (0, 0.5),

(1−x)2
2 + c(1− x) if (x, y) ∈ (0.5, 1)2,

(1−x)2
2 + c(1− x)− c− 1

2 if (x, y) ∈ (0, 0.5)× (0.5, 1),

where c = −31/44 is chosen in such a way that the co-normal derivative of ψ

is continuous. Furthermore, let Y (y) = y (1 − y)
(
y − 1

2

)2
. We consider the

problem {
−∇ · (µ∇u) = f in Ω,

u = 0 on ∂Ω,

with f chosen in such a way that the solution is u(x, y) = ψ(x)Y (y). First, we
solve the problem using standard Virtual Elements on the mesh in Figure 5a,
that is obtained from a regular 10 × 10 square mesh by moving the edges in
the region (0.25, 0.75) × (0, 1) towards the axis x = 0.5 in such a way that the
resulting aspect ratio of the central polygons is 104 (see the detail of the central
band in Figure 5b).

As we can see from Figure 6, the use of badly shaped elements in conjunction
with high order VEM (k = 6) causes large errors in the discrete solution, on
the badly shaped elements, where we witness a wrong behaviour in the discrete
solution (note the different behaviours in the region {x ∼ 0.5, 0 ≤ y ≤ 0.5} in
Figure 6b compared to Figures 6a and 6c). These errors are remarkably reduced
by the change of basis (Figure 6c). In this test, the orthogonal basis was used
on all polygons.

6. Numerical results on Discrete Fracture Networks

In this section we consider a computational framework where instabilities
arise when performing high order simulations in complex geometries, namely
the computation of the hydraulic head inside Discrete Fracture Networks. These
kind of domains are used in geomechanics to model fractured media in those
cases where the rock matrix can be considered fully impervious: fractures are
seen as planar polygons that intersect in the three-dimensional space, and the
intersections are commonly called traces (see Figure 7 for a visualization of the
DFNs that are considered in the following).

18



(a) DFN 27 (b) DFN 36

Figure 7: The DFNs considered for numerical tests
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Figure 8: DFN 27, order 6. Mean condition number of the matrix representation of Πk−1
0 ∇.

In practical applications, DFNs are generated randomly to respect the prop-
erties of the medium, which can be estimated experimentally, and are then
used, for example, to determine certain quantities of interest through uncer-
tainty quantification techniques [26, 28].

In [2, 3, 5], the use of polygonal meshes in the VEM framework is exploited
to obtain meshes which are conforming to traces, starting from an independent
triangulation whose elements are then cut along the traces. Since these cuts
are in fact random, the resulting polygons are convex but are likely to be very
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Figure 9: DFN 27, order 6. Mean condition number of the matrix representation of Π∇k .
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Figure 10: DFN 27, order 6. Mean conditioning number of the matrix representation of Πk−1
0 .

badly shaped.
In order to circumvent the mesh generation problem an optimization ap-

proach working on totally non-conforming meshes was developed [21–25, 42].
In this section we show that the use of “orthogonal” polynomials p as described
in the previous sections can prevent instabilities caused by a very large condi-
tion number of the projector matrices arising from the use of high order VEM
on badly shaped polygons.

6.1. Mesh Generation process on the DFN fractures

In this subsection we briefly recall the process described in [2]: we refer the
reader to this reference for a detailed description. A starting triangular mesh is
generated on each fracture independently of traces (fracture intersections) posi-
tion. The next process of polygonal mesh generation consists of the generation
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Figure 11: DFN 27. Reference solutions with low order VEM.

of a fracture-local mesh conforming to the traces, obtained splitting the trian-
gles of the baseline mesh into polygons conforming to the traces, iteratively for
all the traces. In this step if a trace ends within an original triangle or in one
of the children polygons we extend the cut segment of this trace up to the next
edge. In this operation the trace is unchanged: only the segment that is cutting
the polygons is extended. All the points generated by intersections between cut
segments and mesh edges are added to the mesh as new vertices. At the end of
this step we have a polygonal mesh on each fracture that is locally conforming
with the traces. Finally, for each couple of intersecting fractures Fi and Fj ,
generating the trace Tl, we consider on the trace the union of the mesh points
coming from at least one of the two fractures that are on Tl. On each fracture,
polygon edges lying on Tl are accordingly split in several aligned edges at the
newly added points. In such a process we, first, generate a forest of polygons
with roots in the original triangles. Then, we modify the leaves polygons with
edges on the traces converting the edges on the traces with the aligned edges
generated by the mesh points on the trace of the twin fracture.

We remark that applying a preliminary mesh smoothing step as described
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(a) Order 5 (b) Order 5, orthogonal polynomials

(c) Order 6 (d) Order 6, orthogonal polynomials

Figure 12: DFN 27, Fracture 3. Solutions with increasing VEM order using standard VEM
and behaviour of orthogonal polynomials in correcting the instabilities

in [3] the aspect ratio of many elements can be strongly reduced; nevertheless,
in these kind of applications the geometry can unavoidably produce very badly
shaped elements whatever is the conforming mesh generation and smoothing
process performed. In order to consider the worst possible cases, in the presented
simulations we decide not to apply any mesh smoothing step.

6.2. Problem formulation on the DFN

The computation of the hydraulic head on the DFN is provided by the
solution of coupled problems on each fracture. The model we are considering
is a simple Darcy model for the flow. Let I be the set of the indices of all the
fractures in the DFN. The hydraulic head is given by the following equations
∀i ∈ I: 

−∇ · (µ∇h) = 0 in Fi,

h = hD on ∂Fi,D,

∇h · n̂ = 0 on ∂Fi,N ,

where ∂Fi,D is the subset of the boundary of the fracture Fi with Dirichlet
boundary conditions and ∂Fi,N is the subset of the boundary of the fracture Fi
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Figure 13: DFN 27, Fracture 4. Solutions with increasing VEM order using standard VEM
and behaviour of orthogonal polynomials in correcting the instabilities

with Neumann boundary conditions.
Continuity matching conditions for the solution h are imposed at the traces

as in [2]. We set a non-homogeneous Dirichlet boundary condition on one side
of a source fracture and a homogeneous Dirichlet condition on one side of a
sink fracture and homogeneous Neumann boundary conditions on all the other
fracture-sides of the DFN.

6.3. DFN 27

We first consider a DFN composed by 27 fractures and displaying 57 traces
(see Figure 7a). Starting from a mesh of triangular elements with area smaller
than 60, we have created the globally conforming VEM polygonal mesh and
assembled the linear system. We first focus on the condition numbers of the
several projection matrices needed for the solution of the problem.

In Figures 8-10 we report the behaviour of the condition numbers of the
projectors mΠk−1

0 ∇, mΠk
∇, mΠk−1

0 , pΠk−1
0 ∇, pΠk

∇, pΠk−1
0 , for different

aspect ratios of the VEM polygonal elements using VEM of order 6, following
the same procedure as in the plots of Figure 2. In Figure 8 we compare the
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order

minimum as-

pect ratio m polygons

ill-conditioned

polygons

badly shaped

polygons both causes

5 150 4256 124 66 9
5 50 4177 115 145 18
5 10 3775 60 547 73
6 150 3193 1187 43 32
6 50 3143 1149 93 70
6 10 2888 947 348 272

Table 3: DFN 27. Number of polygons where orthogonal polynomials were used and the
motivations for their use.

order
minimum as-

pect ratio
m polygons

ill-conditioned

polygons

badly shaped

polygons
both causes

4 150 4465 22 49 3
4 50 4373 15 141 10
4 10 3874 1 640 24
5 150 4322 165 38 14
5 50 4234 154 126 25
5 10 3795 80 565 99

Table 4: DFN 36. Number of polygons where orthogonal polynomials were used and the
motivations for their use.

conditioning of mΠk−1
0 ∇ (left) and pΠk−1

0 ∇ (right), and we can appreciate a
strong reduction of the condition numbers induced by the use of the basis p.
The same conclusion can be driven observing Figure 9, concerning the projector
used in the VEM stabilization, as well as Figure 10. Again, we remark that the
effect of the change of basis is purely local, and the condition number of the
global system is not significantly reduced. However, this process improves the
quality of the local projections needed to build the final system, and this results
to be sufficient to correct the instabilities.

In the following figures we report some examples of the instabilities due to
the ill conditioned projectors obtained using the monomial basis m and the
improved solution obtained with the new basis. In Figure 11 we show the low
order solutions on two fractures in the DFN (Fracture 3 and Fracture 4) obtained

order 2 3 4 5 6
error > 1e− 4 0 6 98 1105 4124

error > 1 0 0 8 29 352
error > 10 0 0 1 5 48

error > 100 0 0 0 1 6
max. orthog. error 1.59 · 10−10 9.92 · 10−01 1.18 · 10 1.77 · 103 5.28 · 102

Table 5: DFN 36. Counts of the elements with large orthogonalization error and maximum
orthogonalization error for different orders.
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Figure 14: DFN 36, Fracture 27. Solutions with increasing VEM order using standard VEM
and behaviour of orthogonal polynomials in correcting the instabilities

with k = 1 and 4. Comparing these pictures we can appreciate an improvement
in the quality of the solution using k = 4. In Figure 12 we report the solution
obtained on Fracture 3 with k = 5 and 6. Observing Figures 12a and 12c
compared with Figures 11a and 11b, we can appreciate the instabilities arising
due to the ill conditioning of the local matrices with respect to the monomial
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Figure 15: DFN 36, Fracture 29. Solutions with increasing VEM order using standard VEM
and behaviour of orthogonal polynomials in correcting the instabilities

basis, that gets higher as the VEM order increases. We can see that both the
shape of the solution and the values are completely wrong. In Figures 12b and
12d we can see that the use of the basis p has a clear stabilizing effect. The
same conclusion can be driven observing Figure 13 compared with Figures 11c
and 11d.
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(a) Fracture 27, standard basis (b) Fracture 27, orthogonal polynomials

50

-0.5

0

20

40

0

0

0.5

(c) Fracture 29, standard basis

50

0

-15

20

-10

40 0

-5

0

5

(d) Fracture 29, orthogonal polynomials

Figure 16: DFN 36, order 6. Solutions using standard VEM polynomial basis and orthogonal
polynomials

For these results, orthogonal polynomials are used only on those polygons
such that the conditioning number of the local mHk−1 is larger than 1010 or
such that the aspect ratio is larger than 150.

In Table 3 we report the number of polygons for which orthogonal polyno-
mials are used for different threshold values on the aspect ratio, ranging from 10
to 150. The third column reports the number of polygons of the mesh where the
monomial basis m is used, the fourth column reports the number of polygons on
which the basis p is introduced only due to the large conditioning of the mass
matrix mHk−1 , in the fifth column the number of polygons on which p is used
only due to the large aspect ratio of the element. In the last column we report
the number of polygons that require p for both the previous reasons.

6.4. DFN 36

Our second test considers a 36 fracture network with 65 traces. We focus
on two particular fractures, where instabilities arise on high order VEM and
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Figure 17: DFN 36: error of orthogonalization of mHk−1 vs. aspect ratio

observe, in Figures 14 and 15, how the use of the proposed basis for the space
of polynomials in the construction of the projectors prevents the generation of
non-physical oscillations. We notice that, although using the monomial basis
the shape of the solution seems correct, its values are completely wrong (see
Figures 14c, 14e, 15c and 15e). Again, the figures refer to the choice of applying
the change of basis only on those polygons where mHk−1 displays a condition
number larger than 1010 or with an aspect ratio greater than or equal to 150. In
Table 4 we show how the condition number of the matrix mHk−1 is influenced
by the shape of the polygons and the VEM order, and the number of elements
on which the change of basis is applied. We notice again that it is sufficient
to apply the change of basis only locally on certain polygons to cure global
instabilities.

The proposed approach is effective for this DFN up to the VEM order 5, but
it fails to stabilize the solution for VEM of order 6. Indeed, in Figure 16 we see
that instabilities are still present even using orthogonal polynomials on all the
elements (compare Figures 16a-16b with Figures 14a-14b and Figures 16c-16d
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Figure 18: DFN 36: error of orthogonalization of mHk−1 vs. its condition number

with Figures 15a-15b). This behaviour is related to the ill conditioning of some
of the mass matrices mHk−1 that induces a large approximation error in the
computation of the eigenvectors, that leads to a largely polluted polynomial
basis. We remark that these situations can be easily detected by an evaluation
of the orthogonalization error on each element:∥∥∥Qk−1 mHk−1 Qk−1T − Ik−1

∥∥∥
∞
. (31)

In Figure 17 we report the orthogonalization error with respect to the aspect
ratio of the elements, and in Figure 18 the orthogonalization error is plot with
respect to the condition number of mHk−1 . As expected, we can notice an
evident correlation between them. We can remark that when these orthogonal-
ization errors become large the generation of the orthogonal basis is not reliable
and the method should be applied prudently. We can notice that for order 5 the
orthogonalization error is large, but the method provides a basis for the space of
polynomials that is still better than the scaled monomial basis. This is because
only few elements are affected by a large error. In Table 5, we report the number
of elements in the DFN with an orthogonalization error larger than 1.0E− 4, 1,
10, 100 for k = 1, ..., 6, and in the last row the largest orthogonalization error.
In order to be more accurate also on problematic elements, in the computations
we use equation (11) for the computation of pHk−1 instead of the identity ma-
trix in order to take advantage from all that situations in which the basis pk−1

is no longer orthogonal, but provides a better conditioned mass matrix. As a
rule of thumb we can say that when the largest orthogonalization error is not
large or large orthogonalization errors occur on very few elements the method
can be used, otherwise the computations cannot be considered reliable.

Finally, to further assess the behaviour of the method, we show in Figure 19
the effect of the change of basis on the conditioning of the matrices representing
the projectors Πk−1

0 ∇, Πk
∇ and Πk−1

0 , respectively. These graphs show the
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Figure 19: DFN 36, order 5. Mean condition number and standard deviation of Πk−1
0 ∇,

Πk−1
0 ∇ and Πk−1

0 .

mean condition number with respect to the aspect ratio of all the elements of
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the DFN. We see how the use of orthogonal polynomials strongly mitigates the
dependence of the condition number on the aspect ratio.

7. Conclusions

Dealing with problems with very complex geometries can easily lead to very
strong mesh generation problems. In these situations the use of more flexible
polygonal methods is very helpful. The VEM is a suitable and effective approach
for the discretization of Partial Differential Equations. Nevertheless, in some of
these applications the polygonal mesh generated for the VEM applications can
suffer from very low quality elements. An applicative example in which these
situations are likely to happen is in geophysical simulations following the DFN
model. For the most badly shaped elements the use of the classical monomial
basis for the construction of the local matrices can yield serious problems due
to the large condition number of the local matrices.

In this paper, for high order VEM, we have presented the construction of
a polynomial basis that leads to better conditioned local matrices and more
accurate solutions. The construction is based on a local eigenvalue-eigenvector
computation. This approach is very effective for very badly shaped elements, but
for some elements with a huge aspect ratio the eigenvalue-eigenvector problem
can be inaccurately solved and this approach does not provide a reliable solution,
as well.

We have reported the success of the method in providing good solutions in
some applications and have provided a criterion to evaluate the reliability of the
method when the most problematic elements are met. The method has also the
attractive property to be simply added to a standard VEM implementation and
can be applied selectively only on the elements that really need an improvement
in terms of accuracy of the computations, and provides an indicator that alerts
the user when the method is no longer reliable.
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[28] S. Berrone, S. Pieraccini, S. Scialò, Non-stationary transport phenomena in
networks of fractures: effective simulations and stochastic analysis, Com-
puter Methods in Applied Mechanics and Engineering.

[29] F. Brezzi, A. Buffa, K. Lipnikov, Mimetic finite differences for elliptic prob-
lems, ESAIM: Mathematical Modelling and Numerical Analysis 43 (2009)
277–295.

[30] L. Beirão da Veiga, K. Lipnikov, G. Manzini, The Mimetic Finite Dif-
ference Method for Elliptic Problems, Vol. 11 of Modeling, Simulation &
Applications, Springer, 2014.

[31] F. Brezzi, L. D. Marini, Virtual element methods for plate bending prob-
lems, Computer Methods in Applied Mechanics and Engineering 253 (2013)
455 – 462. doi:10.1016/j.cma.2012.09.012.

[32] L. Beirão da Veiga, F. Brezzi, L. D. Marini, Virtual elements for linear
elasticity problems, SIAM Journal on Numerical Analysis 51 (2) (2013)
794–812. doi:10.1137/120874746.

[33] L. Beirão da Veiga, C. Lovadina, D. Mora, A virtual element method for
elastic and inelastic problems on polytope meshes, Computer Methods in
Applied Mechanics and Engineering 295 (2015) 327 – 346. doi:10.1016/

j.cma.2015.07.013.

[34] P. F. Antonietti, L. Beirão da Veiga, D. Mora, M. Verani, A stream virtual
element formulation of the stokes problem on polygonal meshes, SIAM
Journal on Numerical Analysis 52 (1) (2014) 386–404. doi:10.1137/

13091141X.
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