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A surrogate model based on the proper orthogonal decomposition is developed in order to enable fast and reliable evaluations of
aerodynamic fields.The proposedmethod is applied to subsonic turbulent flows and the proper orthogonal decomposition is based
on an ensemble of high-fidelity computations. For the construction of the ensemble, fractional and full factorial planes together
with central composite design-of-experiment strategies are applied. For the continuous representation of the projection coefficients
in the parameter space, response surface methods are employed. Three case studies are presented. In the first case, the boundary
shape of the problem is deformed and the flow past a backward facing step with variable step slope is studied. In the second case, a
two-dimensional flow past a NACA 0012 airfoil is considered and the surrogate model is constructed in the (Mach, angle of attack)
parameter space. In the last case, the aerodynamic optimization of an automotive shape is considered.The results demonstrate how
a reduced-order model based on the proper orthogonal decomposition applied to a small number of high-fidelity solutions can be
used to generate aerodynamic data with good accuracy at a low cost.

1. Introduction

Despite flow nonlinearities and geometrical complexities,
the level of maturity reached by the numerical methods of
computational fluid dynamics enables performing detailed
numerical simulations of problems of practical interest.
However, there exist applications, such as aerodynamic shape
optimization, which plays nowadays an important role in the
design process for aerospace and automotive engineering,
demanding multiple simulations to perform optimization
loops. Optimization techniques can require the prediction of
certain quantities, such as lift and drag, as functionals of the
field variables associatedwith a parametric partial differential
system describing the physical behaviour of the problem.The
evaluation of the implicit relationship between the inputs
(the problem parameters), which identify specific system
configurations, and the outputs (quantities such as lift and
drag) requires the solution of the partial differential system.
Numerous optimization methods and models have been
developed and can be distinguished between local, global,
and hybrid methods, based on gradient, evolutionary, or

genetic algorithms [1]. Whatever optimization algorithm is
applied, many evaluations of the functional relationship are
needed. To keep the requirements of computational resources
within certain limits, reduced-order models (ROMs) (or
surrogate models) can be employed. A ROM provides a rapid
and reliable estimate of the input-output relationship, with a
considerable reduction of the computational cost.

The choice of the particular ROM however is quite crit-
ical, as it must preserve the essential physics and predictive
capability of the high-fidelity partial differential model. The
ROM definition can be sample based, employing statistical
analysis such as kriging, polynomial chaos expansions, or
Principal Component Analysis, for global surrogate models
[2], or based on dimensionality considerations: the solu-
tion of the partial differential problem evolves in a low-
dimensional manifold induced by the parametric depen-
dence; therefore, the high dimensionality of the discretization
space can be reduced constructing an approximation of this
manifold, leading to a reduced-basis method [3, 4].

The definition of the ROM used in this work relies on
the proper orthogonal decomposition (POD), a statistical

Hindawi Publishing Corporation
International Journal of Aerospace Engineering
Volume 2016, Article ID 8092824, 15 pages
http://dx.doi.org/10.1155/2016/8092824



2 International Journal of Aerospace Engineering

technique able to extract the essential physics of some
input information. The statistical analysis of the data allows
expressing the flow field in terms of a set of low rank basis
vectors and the ROM is obtained using this reduced set. In
literature, the POD appears in different equivalent forms such
as Karhunen-Loève decomposition, Principal Component
Analysis (PCA), and Singular Value Decomposition (SVD)
[5]. According to POD, an optimal linear basis, named POD
basis, may be interpreted as a solution of minimization of the
projection error of the original system, equivalent to maxi-
mizing the energy in the projection [6]. Therefore, the opti-
mality of the basis vector is in an energetic sense. If a problem
is described by a representative number of high-fidelity calcu-
lations fromwhich a set of basis vectors may be extracted, the
singular values become rapidly small and a small number of
basis vectors are sufficient to approximate the initial data. In
this way, POD provides an efficient statistical tool to capture
the dominant features of a model characterized by many
degrees of freedom and to represent it to the desired accuracy
by using a reduced set of modes.The ROM is derived by pro-
jecting the high-fidelity model onto a reduced space spanned
by only some of POD modes.

The POD has been applied in many different fields: data
compression, image processing, dynamical systems, and fluid
mechanics. Its application in fluid dynamics was first intro-
duced by Lumley [7] for the detection of coherent structures
in a turbulent flow. In fluid dynamics, the POD is usually
employed to find a basis for the projection of the Navier-
Stokes equations and to obtain a ROM composed of a system
of ordinary differential equations for the time dependent
POD expansion coefficients [8]. Less commonly, the POD is
applied in the frequency space [9] or in a parameter space.
In this latter case, as an example, the POD can be used to
describe flow fields around modified body shapes, using the
information about the flowpast few selected geometries of the
body,which form the snapshots for the POD. Examples of this
approach can be found in the works of LeGresley and Alonso
[10], Bui-Thanh et al. [11], Mifsud et al. [12], and Tang et al.
[13].

The application of POD-based ROMs in the parameter
space for aerodynamic shape optimization is quite recent and
still under active development. In the above-cited references,
the focus is on high-speed inviscid flows, in the transonic and
supersonic regimes. The main results of the present work are
the extension of the POD application in the parameter space
to low-speed viscous flows and the use of a low number of
snapshots for the initial set.This reduction is possible for two
reasons: firstly, the locations of the high-fidelity calculations
in the parameter space are chosen using a central composite
design exploiting the statistical inference theory, and sec-
ondly the errors of the surrogate model, with respect to the
full model solution, have a rapid decay with the number of
snapshots. The POD expansion coefficients are functions of
the parameters and are continuously extended in the param-
eter space by the response surface method (RSM) [14] using
different techniques, such as least-square regression and
radial basis functions (RBF) method [15]. This approach is
termed POD with interpolation (PODI) [16].

It is not trivial to underline that, with respect to the appli-
cation of the response surfacemethodology (RSM), the PODI
method is able to provide the description of the entire fields
of the original variables from which the objective function is
calculated. The information is much more complete and jus-
tifies the minimum rise of computational effort. With RSM,
on the other hand, it is possible to obtain only the value of the
objective function in the desired point. More detailed infor-
mation about this comparison is presented in Section 3.

In the present work, the PODI is applied to three test
cases. The first one is the low-speed viscous flow past a
backward facing step, with the step slope as parameter. In the
second case, the flow past a NACA 0012 airfoil is recon-
structed by the ROM in the two-parameter space (Mach,
angle of attack). Finally, in the third case, the POD is coupled
to a genetic algorithm; four shape parameters are optimized
in order to minimize the drag coefficient of an automotive
shape. In all the applications, the high-fidelity calculations are
obtained from steady solutions of the Navier-Stokes equa-
tions.

In the first part of the paper, POD, RSM, and the interpo-
lation strategies are briefly described.The second part reports
the results obtained for the three cases under study, and in the
last section some concluding remarks are given.

2. Proper Orthogonal Decomposition
with Interpolation

2.1. ProperOrthogonalDecomposition. Several PODmethods
can be found in literature: the Karhunen-Loève decompo-
sition, the Principal Component Analysis, and the Singular
Value Decomposition (SVD). It can be shown that they are all
equivalent [6]. For steady-state problems, each high-fidelity
calculation, the snapshot, is represented as a set of discrete
data, a vector of dimension 𝑛, and the number of grid points
or cells. In this case, the POD described as SVD is more
straightforward [17].

2.1.1. SVD as Proper Orthogonal Decomposition. The central
issue of the POD is to approximate the snapshots {u𝑗}

𝑚

𝑗=1

simultaneously by a single, normalized vector 𝜑 ∈ R𝑛 as well
as possible, that is, to solve the optimization problem

max
𝜑∈R𝑛

1

𝑚

𝑚

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
⟨u𝑗,𝜑⟩

󵄨
󵄨
󵄨
󵄨
󵄨

2

subject to 󵄩
󵄩
󵄩
󵄩
𝜑
󵄩
󵄩
󵄩
󵄩

2
= 1,

(1)

where ‖𝜑‖ = √⟨𝜑,𝜑⟩.
In (1), 𝑚 is equal to the number of snapshots.
Considering the Lagrangian functional associated with

(1), the following eigenvalue problem can be written:

1

𝑚

AA𝑇𝜑 = 𝜆𝜑 in R
𝑛
, (2)

with the condition
󵄩
󵄩
󵄩
󵄩
𝜑
󵄩
󵄩
󵄩
󵄩
= 1. (3)
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The orthonormal vectors {𝜑𝑖}
𝑙
𝑖=1

, found solving eigen-
value problem (3), are called POD basis of rank 𝑙 ≤ 𝑚.
The approximation of the snapshots {u𝑗}

𝑚

𝑗=1
, columns of A,

by the first 𝑙 vectors {𝜑𝑖}
𝑙
𝑖=1

is optimal among all rank 𝑙

approximations to the columns of A. This method is the so-
calledmethod of snapshots [18].

The choice of 𝑙 is of central importance for the POD. No a
priori rule is available; rather, it is possible to apply a heuristic
criterion based on the ratio between the modeled energy
and the total energy contained in the system which can be
expressed as

𝜀 (𝑙) =

∑
𝑙
𝑖=1 𝜆𝑖

∑
𝑚
𝑖=1 𝜆𝑖

. (4)

2.2. Continuous Extension of the POD Projection Coefficients.
The vector u𝑗 ∈ R𝑛 represents a vector of scalar functions
of grid points (or cells), such as the primitive variables of
the flow field. The POD is applied to each nondimensional
variable to compute a distinct basis. As shown in the previous
section, each snapshot u𝑗 can be expanded as, setting 𝑑 = 𝑚,

u𝑗 =
𝑚

∑

𝑙=1

𝛼𝑙𝑗𝜑𝑙 for 𝑗 = 1, . . . , 𝑚, (5)

where the projection coefficients

𝛼𝑙𝑗 = ⟨𝜑𝑙, u𝑗⟩ (6)

are discrete functions in the parameter space, with values
defined at the points corresponding to the individual snap-
shots u𝑗. To use the derived ROM as a prediction tool, it is
necessary to extend the discrete functions 𝛼𝑙𝑗 in continuous
functions 𝛼𝑙 in the parameter space, and the field variable in
a generic point of the parameter space may be approximated
by the linear combination

u =

𝑚

∑

𝑙=1

𝛼𝑙𝜑𝑙. (7)

The combination of the POD and the continuous exten-
sion of the projection coefficients is termed POD with
interpolation (PODI) [16].

In the case of one-dimensional parameter spaces, the
continuous extension is obtained by linear or spline inter-
polation. For multidimensional spaces, the method of the
response surface is adopted. The response surface method
(RSM) describes the continuous behaviour of a dependent
variable by a set of simple basis functions [14]. Response
surfaces are generally valid in a large region only in the case of
few parameters; when a great number of parameters are
involved, such as in the case of optimization problems, the
RSM must be treated carefully. RSM has been originally
developed for experimental data, employing regression tech-
niques. In this way, random experimental fluctuations are
smoothed out. When the data set is provided by numerical
simulations, a response surface obtained with a regression
method in general does not fit exactly the data, introducing

an undesirable smoothing.Therefore, in this work, other than
a least square regression technique, interpolating methods,
based on radial basis functions, are studied.

It is important to underline that number and topology
of the discretization should not vary in the high-fidelity
calculations. In this way, the correct correlations between the
different CFDfields, corresponding to different solutions, can
be performed. Only the position of the nodes on the geomet-
ricalmesh can change, exploiting the procedure ofmorphing.

2.2.1. Least Square Regression. In the framework of response
surface methodology, least square regression can be a simple
technique to estimate a best fit approximation of the POD
coefficients 𝛼𝑙.

The second-ordermodel of a response surface in the space
defined by the 𝑝 parameters 𝑥1, 𝑥2, . . . , 𝑥𝑝 can be written as

𝛼𝑙 = 𝛽0 +

𝑝

∑

𝑖=1

𝛽𝑖𝑥𝑖 +

𝑝

∑

𝑖=1

𝛽𝑖𝑖𝑥
2
𝑖 +

𝑝−1

∑

𝑖=1

𝑝

∑

𝑗=2

𝛽𝑖𝑗𝑥𝑖𝑥𝑗 + 𝜖. (8)

In (8), with 𝛽 are indicated the regressors of the model
and 𝜖 is an estimate of the error of the approximation. The
second-order model can be useful in the event of a strong
curvature in the true input-output relation. On the other
hand, there can be cases where a first-order expression can fit
properly the system behaviour with the relation

𝛼𝑙 = 𝛽0 +

𝑝

∑

𝑖=1

𝛽𝑖𝑥𝑖 + 𝜖. (9)

In the present work, both regression types are used.
Applying relation (8) or relation (9) to the 𝑗 = 1, . . . , 𝑚

pointswhere the coefficient𝛼𝑙 is evaluated for specific settings
of the parameters {𝑎𝑖}

𝑝

𝑖=1, we have the system in matrix
notation:

𝛼 = 𝑋𝛽 + 𝜖, (10)

where 𝛼 ∈ R𝑚, 𝑋 ∈ R𝑚×𝑞 is the model matrix, 𝜖 ∈ R𝑚, and
𝛽 ∈ R𝑞 contains the 𝑞 regressors of the model. System (10)
can be solved through least square minimization, assuming
that 𝜖 has zero mean:

𝛽 = (𝑋
𝑇
𝑋)

−1
𝑋
𝑇
𝛼. (11)

Once the vector 𝛽 of the regressors is found, the response
surface is defined (8) and the POD coefficients 𝛼𝑙 are known
as continuous functions in the parameter space.

2.2.2. Radial Basis Functions. Least squares method does not
provide an exact fit of the computed values 𝛼𝑙𝑗, which is
provided if interpolation is used. One of the primary tools
for interpolating multidimensional data is the radial basis
functions (RBF) method. The guiding principle behind this
generalmethod is to use translations of a single basis function
𝜙(𝑟) that depends only on the Euclidean distance from its
center, therefore radially symmetric about its center, in order
to create a multidimensional interpolant [15]. The model of
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Figure 1: Shape change of the Gaussian (a) and multiquadric (b) basis with the increasing of the shape parameter 𝜎𝑖.

response surface for the POD coefficients that can be built
using RBF has the general form

𝛼𝑙 (x) =

𝑚

∑

𝑖=1

𝑤𝑖𝜙 (
󵄩
󵄩
󵄩
󵄩
x − x𝑖

󵄩
󵄩
󵄩
󵄩
) , x ∈ R

𝑝
, (12)

with x𝑖 being the centers and 𝜙 the 𝑚 radial basis functions,
each one weighted by the expansion coefficient 𝑤𝑖. In our
work, two typical radial basis functions are used:

The Gaussian 𝜙(𝑥) = 𝑒
−(1/2𝜎2

𝑖
)‖𝑥−𝑥

𝑖
‖2 .

The multiquadric 𝜙(𝑥) = √1 + ‖𝑥 − 𝑥𝑖‖
2
/2𝜎
2
𝑖 .

The parameter 𝜎𝑖 is called shape parameter and it is related to
the width of the basis function. In Figure 1 [19], the influence
of the shape parameter can be understood for Gaussian e
multiquadric basis.

The expansion coefficients 𝑤𝑖 are determined from the
interpolation conditions𝛼𝑙(𝑥𝑗) = 𝛼𝑗𝑙 for 𝑗 = 1, . . . , 𝑚, leading
to a symmetric linear system, unconditionally nonsingular if
the data points are distinct [20]:

Aw = 𝛼𝑙 (x𝑗) . (13)

Formulation (12) implies the constraint of using as many
radial basis functions as the number of data points that in
the present work is equal to the number of snapshots. If the
snapshot number ismuch bigger than the number of freedom
degrees required to generate an acceptable fit, the linear sys-
tem can be ill-conditioned [20]. To overcome this problem, a
relaxation of the interpolation conditions can be made. In
order to do this, it is necessary to distinguish between the
radial basis function centers and the data points. In this
way, the problem becomes overdetermined, the matrix A
is no longer square, and a unique inverse no longer exists.

Theprevious exact problembecomes a problemof linear opti-
mization. The Moore-Penrose pseudoinverse A+ of matrix
A can be introduced; the problem becomes A+w = 𝛼𝑙(x𝑗)
which can be solved in a least square sense. Another way to
overcome the problem of the ill-conditioning of matrix A is
to add polynomial terms to the RBF approximation [21]. In
the so-called augmented RBF method, (12) becomes

𝛼𝑙 (x) =

𝑚

∑

𝑖=1

𝑤𝑖𝜙 (
󵄩
󵄩
󵄩
󵄩
x − x𝑖

󵄩
󵄩
󵄩
󵄩
) +

𝑠

∑

𝑗=1

𝑃𝑗 (x) 𝛾𝑗, (14)

where 𝑃𝑗 are the monomial terms in the polynomials and 𝛾𝑗

are additional 𝑠 constants. If we consider a two-dimensional
problem where x = [𝑥1, 𝑥2], the monomial terms are equal
to (1, 𝑥1, 𝑥2, 𝑥

2
1, 𝑥1𝑥2, 𝑥

2
2, . . .). The order of the polynomials

has to be one degree less than the RBF. Normally linear or
quadratic polynomials are adopted due to the fact that the
use of high-order polynomials can be too computationally
expensive.

For the case 𝑠 = 1, the additional constant term is unique.
Since now the problem is underdetermined, the orthogonal-
ity condition

𝑚

∑

𝑖=1

𝑤𝑖𝛾𝑗 = 0 for 𝑗 = 1, . . . , 𝑠 (15)

should be imposed [12]. Equation (14) in matrix form
becomes

[

[A]𝑚×𝑚 [B]𝑚×𝑠

[B]
𝑇
𝑠×𝑚 [0]𝑠×𝑠

][

[w]𝑚×1

[b]𝑠×1
] = [

[𝛼𝑙]𝑚×1

[0]𝑠×1
] , (16)

where the coefficients 𝑏𝑖𝑗 of thematrixB can be obtained from

𝑏𝑖𝑗 = 𝑃𝑗 (𝑥𝑖) 𝑗 = 1, . . . , 𝑠, 𝑖 = 1, . . . , 𝑚. (17)
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Figure 2: Backward facing step with variable step slope.

3. Computational Results

In this section, the results of three test cases are presented. In
these applications, the capability of the POD-ROM to obtain
some fields of interest not belonging to the initial snapshot
simulations is verified.

In the first problem, the snapshot set is obtained varying
a single geometry parameter. In the second case, the two-
dimensional flow field past a NACA 0012 airfoil is investi-
gated. The Mach number of the uniform flow and the angle
of attack of the airfoil are chosen as parameters of the POD
surrogatemodel. In the last case, a ROM is applied to the opti-
mization of a particular automotive geometrywith four shape
parameters as design variables.

3.1. Backward Facing Step with Variable Step Slope
3.1.1. Problem Setting. This test case is set according to the
experimental work of Ruck and Makiola [22]. The flow
enters a channel from the inlet at a prescribed velocity and
then encounters a step. The section of the channel increases
causing the generation of a recirculation bubble in the flow.
The length of the recirculation bubble is strongly dependent
on length and slope of the step. A visualization of the problem
setting is shown in Figure 2. The geometry of the problem is
characterized by the Expansion Ratio (ER), that is, the ratio
between the height of the channel (𝐻 + ℎ1) and the height of
the inlet ℎ1. In this work, ER is equal to 2 with an inlet height
of ℎ1 = 0.1. In order to have a fully developed channel flow
before the step, the value of the length𝐿𝑢 of the first part of the
channel has to be chosen fulfilling the inequality 𝐿𝑢 > 5𝐻;
therefore, in this work, 𝐿𝑢 is equal to 1. Similarly, to have a
fully developed flow in the channel behind the step, the length
of the duct, measured from the step, is set to 40𝐻.

A set of four snapshots is obtained, modifying the slope
angle 𝛼 of the step. The angle 𝛼 assumes the values of 90

∘,

45
∘, 30∘, and 25

∘. For each snapshot, a full CFD simulation
is realized. The initial velocity is set equal to 2.5m/s in all
cases with a corresponding Reynolds number, referring to
the height of the step 𝐻, Re𝐻 = 19800. The simulation is
done with the open source software OpenFOAM using the
simpleFoam solver with a 𝑘-𝜖 turbulence model. A visualiza-
tion of the four different geometries used for the snapshot set
is shown in Figure 3. The number of cells is about 350000.
The geometry variation is obtained through a morphing of
themesh from the base configuration, keeping the number of
cells constant.

3.1.2. POD Reconstruction. In Figure 4, a visualization of the
four POD basis vectors generated from the decomposition of
the 𝑥-component of the velocity field is shown. These basis
vectors are the basic components of the surrogate model and
are calculated as explained in Section 2.1.1. Then, velocity
and pressure fields for a geometry characterized by a slope
angle of the step of 70

∘, not belonging to the initial set of
snapshots, are reconstructed using the POD surrogatemodel.
The parameter space is one-dimensional and piecewise linear
interpolation is used to compute the POD coefficients.

We computed a measure of the error as

Error =
󵄩
󵄩
󵄩
󵄩
x − xPOD

󵄩
󵄩
󵄩
󵄩2

, (18)

where x indicates the value of the field of interest calculated
with the CFD full model and 𝑥POD the corresponding value
obtained with PODI.The values of the error are 7.2𝑒

−6 for the
pressure field and 9.3𝑒

−5 for the velocity field. The surrogate
model therefore is able to predict the behaviour of the system
for the point 𝛼 = 70

∘ in the parameter space, within an
acceptable accuracy.

The first and most energetic POD mode visualized in
Figure 4 is qualitatively identical to the reconstructed field.
An estimate based on (4) indicates that the first POD mode
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1 2

Figure 5: Backward facing step. Control sections.

contains 99.8% of the total field energy. The fact that the first
PODmode is able to represent themost field energy is intrin-
sic in the POD technique because it maximizes the mean
of the norm of the squared field projection along the POD
modes. Nevertheless, in this work, all the POD modes were
used for the reconstruction because the saving of computa-
tional effort and time of retaining fewermodeswas negligible.

In addition, selecting two sections (Figure 5), the first
one placed in the recirculation bubble and the second one
close to the end of it, it is possible to compare the velocity
profile obtained with the POD reconstruction with the high-
fidelity solution. In Figure 6, this comparison is represented.
The maximum relative error 𝑒, calculated as

𝑒 = max
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑥POD − 𝑥

𝑥∞

⋅ 100

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

, (19)

is 1.3% in the recirculation bubble. 𝑥∞ indicates the corre-
sponding value of the undisturbed flow. For example, for the
velocity, 𝑥∞ = 2.5m/s. Probably the maximum error takes
place in this area because it is a low energy zone and the POD
technique is optimal in the energetic sense.

3.1.3. PODReconstruction with Different Sets of Snapshots. To
quantify the influence of the number of snapshots on the
accuracy of the surrogate model, a further test is made. The
problem setting is the same as that of Section 3.1.1 but now
four different surrogate models are constructed and com-
pared using 3, 6, 11, and 21 snapshots. In this case, the geom-
etry is fixed for all the snapshots, with step slope of 90∘, and
each snapshot is calculated imposing a different inlet velocity.
The inlet velocity varies in the range between 10 and 30m/s.
In Table 1, a summary of the four sets of snapshots used in the
different types of reconstruction is reported.

The surrogate model is used to reconstruct pressure and
velocity fields for an initial velocity of 15.5m/s not belonging
to any of the initial sets of snapshots. Based on estimate (4), it
can be remarked how the energy captured by the first mode
decreases with the number of snapshots composing the set.
Moreover, the first mode is always able to get more than the
99.99% of the total energy.

A comparison between the reconstruction error gener-
ated by the four surrogate models for the pressure field is
shown in Figure 7. The error 𝑝 − 𝑝POD is calculated along the
center line of the duct. As expected, this difference is decreas-
ing as the number of snapshots increases. However, in the
three-snapshot case, themaximumerror is already acceptable
and below 2.5 Pa.

In Figure 8, the variation of the reconstruction error
‖𝑒‖∞ = max(|𝑝 − 𝑝POD|) of the pressure field using the four
different snapshot sets can be seen. The error trend is clear
and the use of 11 snapshots for the surrogate model seems
to be optimal, in terms of computational time and accuracy,

Table 1: Backward facing step. Summary table of the snapshot
parameters.

Three-snapshot case Six-snapshot case
Snapshot
number

Initial velocity
m/s

Snapshot
number

Initial velocity
m/s

1 10 1 10
2 20 2 14
3 30 3 18

4 22
5 26
6 30

11-snapshot case 21-snapshot case
Snapshot
number

Initial velocity
m/s

Snapshot
number

Initial velocity
m/s

1 10 1 10
2 12 2 11
3 14 3 12
4 16 4 13
5 18 5 14
6 20 6 15
7 22 7 16
8 24 8 17
9 26 9 18
10 28 10 19
11 30 11 20

12 21
13 22
14 23
15 24
16 25
17 26
18 27
19 28
20 29
21 30

compared with the 21-snapshot case. As expected, the result
with many snapshots is more precise, but in the three-
snapshot reconstruction, the error is already acceptable. The
POD decomposition is optimal in the energetic sense; there-
fore, in a steady problem, the first POD mode is quite always
able to get a relevant part of the field energy and a reduced
number of modes and snapshots can be used to build a
surrogate model.

3.2. NACA 0012 Airfoil. In this section, the problem of the
two-dimensional steady subsonic flow past a NACA 0012
airfoil is analyzed. The parameter space of the surrogate
model is two-dimensional: the angle of attack 𝛼 of the airfoil
and theMachnumber𝑀 of the uniformflow.ThePOD-ROM
is applied to obtain flow fields for parameter combinations
not belonging to the initial set of snapshots. A 2-level full
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factorial design is applied to define the initial snapshot set
composed of 22 configurations that will be solved using the
CFD full model of the problem. In Figure 9, a representation
of the design in the parameter space can be seen, together
with the positions of the reconstructed fields, and the values
of the (𝑀-𝛼) combinations used to create the snapshots are
summarized. One objective of the test is to compare different
interpolation and regression techniques, as explained in
Section 2.2, for the PODI.

The numerical solution of the Navier-Stokes equations
represents the high-fidelity solution of this problem. The
solver used in this work is simpleFoam, from the open source
software OpenFOAM.The Spalart-Allmaras model with wall
functions is used as turbulence model. The geometry is
discretized with about 500000 cells. In Figure 10, the grid in
the computational domain and a zoom of the region around
the airfoil are shown.

0 3 6 9 12 15 18 21 24

Snapshot number

M
ax

im
um

 er
ro

r

3.5

3

2.5

2

1.5

1

0.5

0

Figure 8: Backward facing step. Error ‖𝑒‖∞ on the pressure field
with respect to the number of snapshots.
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(a) Full computational domain (b) Zoom of the airfoil region

Figure 10: NACA 0012 airfoil. Computational grid.
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Pressure and velocity fields are reconstructed with the
PODI technique for three different points: 𝛼 = 1.45

∘, 2
∘,

and 2.9
∘, with 𝑀 = 0.13, 0.08, and 0.11, respectively. Four

techniques are used to define the response surface of the
POD coefficients: a least square regression of the first order,
radial basis functions using Gaussian basis, with and without
polynomial term, and multiquadric basis considering the
polynomial term. A comparison of the results can be seen in
Figure 11, where only the biggest error of the three reconstruc-
tion points is considered.The best overall result for the recon-
struction of the pressure field is obtained using radial basis
functions with Gaussian basis, no relaxation of the interpola-
tion condition, and a value of the shape parameter 𝜎 of 1.05.
In this application, a constant parameter 𝜎 is chosen for all
the different radial basis functions; therefore, 𝜎𝑖 ≡ 𝜎, 𝑖 =

1, . . . , 𝑚.
In the case of the POD reconstruction of the velocity field,

the behaviour of the response surfaces is different. In this case,
the lower error is obtained using a multiquadric basis, with
the orthogonality condition. These interpolation methods

A

B

C

D

E F

G

0 0.05 0.1 0.15 0.2 0.25 0.3

Mach number

Reconstructions

6

5

4

3

2

1

0

4-snapshot case
9-snapshot case
16-snapshot case

25-snapshot case

𝛼
(d

eg
.)

Figure 12: NACA 0012 airfoil. Snapshot sets and reconstruction
positions in the (𝑀-𝛼) plane.

will be used for the airfoil surrogate models built in Sec-
tion 3.2.1.

In all the three test points, the surrogate model shows
good agreement with the high-fidelity solution.

3.2.1. Influence of theNumber of Snapshots. In a similar way to
the backward facing step case, the influence of different num-
bers of snapshots is investigated.The aim is to show the rapid
decay of the errors when increasing the snapshot number
and therefore the possibility of using a ROM with a reduced
snapshot set. In particular, four PODI surrogate models are
constructed using 4, 9, 16, and 25 snapshots corresponding to
a 2-, 3-, 4-, and 5-level full factorial design for the two param-
eters, Mach number 𝑀 and angle of attack 𝛼. With respect
to the surrogate model of the previous section, the parameter
ranges are extended: 𝑀 now is varying from 0.05 to 0.25
and 𝛼 is between 𝛼 = 1

∘ and 𝛼 = 5
∘. In Figure 12, a

visualization of the snapshot position is shown.The surrogate
models are used to reconstruct pressure and velocity fields in
seven random points in the parameter space.The positions of
the reconstructed cases in the (𝑀-𝛼) plane are summarized in
Table 2.
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Table 2: NACA 0012 airfoil. List of the reconstruction combina-
tions.

Reconstruction point Mach number 𝛼 [∘]
A 0.17 2.5
B 0.12 4.5
C 0.08 3.5
D 0.25 1.5
E 0.05 4.5
F 0.23 4.7
G 0.21 3.7
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Figure 13: NACA 0012 airfoil. Errors generated by the PODI
surrogate model for the reconstruction of the pressure field.

The error with respect to the solution of the CFD full
model is computed using the expression

Error =
󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑥POD

󵄩
󵄩
󵄩
󵄩2

, (20)

where 𝑥 is the cell value of the field of interest calculated
with the CFD full model and 𝑥POD the corresponding value
obtained with PODI.

In Figures 13 and 14, the error trends obtained with (20)
are shown for the pressure and velocity fields. As expected,
the errors are decreasing as the snapshot number increases.
In the case of the velocity field, being the values under 0.01,
the error is slowly decreasing. Therefore, depending on the a
priori threshold of the surrogate model error, the use of 25
snapshots can be avoided and 9- or 16-snapshot sets can be
used, saving computational time and effort. For the pressure
field, higher errors are generated, but again the use of the 16-
snapshot set can fulfill accuracy requirements.

3.2.2. Comparison between Response SurfaceMethodology and
POD Method. The response surface methodology (RSM) is
an interpolation/regression technique able to predict values
for desired parameter combinations, starting from informa-
tion acquired from a known data set. In the POD surrogate
method described in this paper, the RSM is used to obtain the
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Figure 14: NACA 0012 airfoil. Errors generated by the PODI
surrogate model for the reconstruction of the velocity field.

POD coefficients corresponding to parameters not belonging
to the initial snapshot set.

In this section, a comparison between the POD method
and the RSM stand-alone will be presented. Gaussian basis is
used to build a response surface with the radial basis function
technique.

The most important difference between the two methods
is that with RSM the output will be a single number (e.g., the
objective function of the problem) andwith the PODmethod
the entire field of every fluid dynamic variable of interest can
be obtained.

TheNACA 0012 airfoil problem is considered and lift and
drag coefficients are computed using a response surface with
Gaussian basis and shape parameter 𝜎𝑖 = 1. The 16-snapshot
set of the previous section is used in the POD method and
the aerodynamic coefficients calculated in the same points are
then exploited to build the response surface.

The same 6 test points, A, B, C, D, E, and F, of the previous
section are used to compare the methods.

In Figure 15, the relative errors on the computation of the
lift coefficient with respect to the CFD solution can be seen
for RSM and POD methodology. In Figure 16, the errors are
reported for the computation of the drag coefficient.

The results are comparable and furthermore the outputs
of the POD method are not single values but entire fields.

3.3. Drag Coefficient Optimization of an Automotive Shape

3.3.1. Problem andCFD Setting. In the last test case, the POD-
ROM is employed in an optimization loop to obtain the
minimum drag coefficient for an automotive shape. The base
form is the open source DrivAer car model from the Techni-
cal University of Munich [23]. The drag coefficient 𝑐𝑥 is min-
imized acting on four shape parameters: the length 𝑥1, width
𝑦1, and height 𝑧1 of the trunk and the height of the diffuser
𝑧2 (Figure 17). The parameters are changed through mesh
morphing. This concept is clarified in Figure 18 where



International Journal of Aerospace Engineering 11
Er

ro
r%

0 1 2 3 4 5 6 7

Evaluation number

POD error
RSM error

25

20

15

10

5

0

Figure 15: Comparison between RSM and POD method. Recon-
struction of the lift coefficient 𝐶𝑙.

Er
ro

r%

0 1 2 3 4 5 6 7

Evaluation number

25

20

15

10

5

0

POD error
RSM error

Figure 16: Comparison between RSM and POD method. Recon-
struction of the lift coefficient 𝐶𝑑.

the variation of the trunk width can be visualized. In
Figure 19, the variation of the trunk height can be seen:
starting from the base configuration, the minimum (−Δ𝑧)
and maximum (+Δ𝑧) variations are shown.

The optimization problem can be formulated as

𝑐𝑥 = min
𝑥
1
,𝑦
1
,𝑧
1
,𝑧
2

𝐷(𝑥1, 𝑦1, 𝑧1, 𝑧2)

(1/2) 𝜌∞𝑈
2
∞𝐴 ref

s.t. − 0.5 ≤ 𝑥1 ≤ 0.5,

− 0.5 ≤ 𝑦1 ≤ 0.5,

− 0.4 ≤ 𝑧1 ≤ 0.4,

− 0.5 ≤ 𝑧2 ≤ 0.5,

(21)

with 𝐷 being the vehicle drag, 𝜌∞ the density, and 𝑈∞ the
velocity of the undisturbed flow and 𝐴 ref a reference area
equal to the vehicle maximum frontal area.

X
Y

Z

z1

z2

y1x1

Figure 17: DrivAer model. Shape parameters chosen as design
parameters.

The geometry is discretized with 1959410 cells and the
CFD simulation is performed with the OpenFOAM solver
simpleFoam using a 𝑘-𝜖 turbulence model. 𝑈∞ is 40m/s and
the Reynolds number Re∞ ≈ 14 ⋅ 10

6. The correct deforma-
tions corresponding to the desired values of the design vari-
ables are imposed with mesh morphing. Therefore, the cell
number remains constant for each geometry and only some
point positions are modified.

3.3.2. Optimization. In this specific problem, the cost func-
tion evaluations correspond to the calculations of the drag
coefficient. As explained in the previous sections, the adop-
tion of a reduced-order model is very attractive to avoid a
large number of high-fidelity computations; therefore, the
POD method is used: pressure, velocity, turbulence kinetic
energy, specific turbulence dissipation, turbulence eddy vis-
cosity ]𝑡, and the mass flow through the cell faces 𝜑 fields
are reconstructed and then the drag coefficient is computed.
The selection of the set of snapshots is made on the basis of
the central composite design theory. The number of snap-
shots determines the total number of CFD calculations. An
appropriate selection of the snapshots is extremely important
because their calculations represent themost time consuming
step of the entire optimization procedure. The calculation of
the POD basis is done following the method described in
Section 2. Response surfaces are generated with a least square
method of the second order or interpolating using radial basis
functions as explained in Section 2.2.

The optimization has to be performed in a 4-dimensional
parameter space; therefore, willing to adopt a full level facto-
rial design, we have to construct 24 snapshots only for the 2-
level case and this number would grow exponentially increas-
ing the levels. Taking into account the error trends of the sur-
rogate models built in the two previous test cases, a reduced
initial snapshot set can be used in this practical case. A 2-level
fractional factorial design 2

4−1, adding the central point,
is adopted instead of a full level and the snapshot set is
composed only of 9 snapshots. In Table 3, a description
of the design parameter combinations used to generate the
snapshots is reported. In this table, the highest and lowest
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Table 3: DrivAer model. Two-level fractional factorial design for
the initial snapshot set.

Snapshot number 𝑥1 𝑦1 𝑧1 𝑧2

1 −1 −1 −1 −1
2 −1 1 1 −1
3 1 1 −1 −1
4 1 −1 1 −1
5 −1 1 −1 −1
6 −1 −1 1 1
7 1 −1 −1 1
8 1 1 1 1
9 0 0 0 0

values of the variables are represented with 1 and −1,
respectively. The real values of the high and low levels of
the design parameters are determined by the optimization
constraints and are ±0.5 for 𝑥1, 𝑦1, and 𝑧1 and ±0.4 for 𝑧2.

Once the snapshots are calculated, the remaining func-
tion evaluations required by the optimization algorithm are
obtained using the PODI surrogate model.

The optimization algorithm used in this application is the
SOGA (single-objective genetic algorithm) implemented in
the JEGA library of the open source software Dakota. SOGA
is a classical single-objective genetic algorithm that performs
optimizations of a single cost function. Obviously, the use of

a genetic algorithm is not mandatory: the PODI surrogate
model can be linked to any other optimizer.

In this problem, the design variables are represented in
floating point, with a random initialization and control to
avoid duplications.The number of individuals composing the
initial population is 50. A shuffle random crossover type is set
with a rate of 0.8. With this particular crossover, the parent
chromosome sequences, once selected, are randomly shuf-
fled and then the single-point crossover is performed. This
operation is useful to eliminate the positional bias associated
with the length of each chromosome.A randommutation rate
of 0.08 is imposed. This kind of mutation corresponds to a
random selection of an individual and a random selection of
a design variable at which a random valid value is assigned.
After 7 generations, the genetic algorithm is able to identify
an optimal solution calculated using the surrogatemodel.The
optimal drag coefficient is 0.3013, starting from a base config-
uration (all parameters at 0 level) of 0.3111, with an improve-
ment of the 1.8%. The error with respect to the CFD solution
is 1.36% for the optimal point.

The adoption of a PODI surrogate model dramatically
reduces the computing time of the optimization: instead of
∼240 h without the adoption of the surrogate model, ∼90 h
are necessarywith PODI, using 2 Intel XeonE5440Quad core
processors.

Figure 20 shows considerations on the energy associated
with the POD modes. The results have a direct analogy
with the 2 previous test cases and in particular with the
backward facing step problem. Considering, for example, the
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Figure 20: DrivAer model. Comparison between the velocity field obtained from the PODI surrogate model and the individual PODmodes.

Figure 21: DrivAer model. Wake section.

𝑥-component of the velocity, the first POD mode is able to
represent the greater amount (99.3%) of the energy and its
qualitative appearance is comparable to the reconstructed
field. The other PODmodes add information on the zones of
the field withminimal energy, thereforemostly on the vehicle
wake. All the POD modes are used for the surrogate model
evaluation, as shown in the previous test cases, since this
addition is not computationally demanding.

In order to further compare the results of the proper
orthogonal reconstruction for the optimal point configura-
tion, a section in the wake of the vehicle is defined as shown
in Figure 21.The velocity and pressure profiles on this section,
along the centerline of the vehicle, are plotted in Figure 22.
The maximum relative errors, calculated as in Section 3.1.2,
are 0.73% for the velocity and 3.14% for the pressure.

3.3.3. POD Coefficient Calculation. To test the surrogate
model, 14 random points in the parameter space are selected.
These points belong to the first generation of individuals

created by the optimization algorithm. In order to have a visu-
alization of the points, a slice in the 4-dimensional param-
eter space is made and the point positions in the (𝑧1, 𝑥1)

plane can be seen in Figure 23. A comparison between some
of the different methods to build the response surface for
the POD coefficients is shown in Figure 24. The comparison
is made between four kinds of interpolation: RBF using
Gaussian basis, RBF with Gaussian basis, and relaxation of
the interpolation conditions using only 5 nodes; RBF with
Gaussian basis and polynomial term; multiquadric basis and
polynomial term. No regression was used because in the pre-
liminary test cases the errors of these types of reconstruction
were much higher than using a radial basis function interpo-
lation.

The relative error is not calculated considering the recon-
structed fields but using the drag coefficient 𝑐𝑥, that is, the
objective function of the optimization problem and the CFD
simulation, is considered as reference solution:

Error =

𝑐𝑥CFD − 𝑐𝑥POD
𝑐𝑥CFD

⋅ 100. (22)

Analyzing Figure 24, it can be seen that the errors increase
usingRBFwithGaussian baseswithout anymodification.The
relaxation of the interpolation conditions and the addition
of a polynomial term, used to improve the conditioning of
matrix A, give a reduction of the percent error. Both the
multiquadric and the Gaussian bases are able to generate a
response surface that foresees accurately the values of the
PODI reconstruction coefficients 𝛼𝑙. The relaxation of the
interpolation conditions gives good results but the initial
choice of the number and node position is an additional
unknown which has to be handled during the building
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Figure 22: DrivAer model. Velocity and pressure profiles in the wake section.
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process of the surrogate model. On the other hand, the
addition of a polynomial term is easier to implement and
therefore for the construction of the surrogate model linked
to the optimizer, a multiquadric basis with no relaxation and
addition of the polynomial term has been adopted.

4. Conclusions

Three applications of the proper orthogonal decomposition
with interpolation (PODI) for the construction of surrogate
models were presented. In the first case, a PODI/ROM was
built for a backward facing step problem varying the slope of
the step. The technique provided acceptable results showing
its capability to substitute CFD simulations once the initial set
of snapshots was obtained.

The second problem was the construction of an optimal
PODI/ROM in order to analyze the subsonic steady flow
field around a NACA 0012 airfoil. The parameter space was
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Figure 24: DrivAer model. Relative errors on the drag coefficient 𝑐𝑥
using different RBF interpolations.

two-dimensional and was generated varying the Mach num-
ber of the undisturbed flow and the angle of attack of the
airfoil. Four surrogate models were built and compared using
different snapshot numbers and different response surfaces
for the interpolation of the PODI coefficients.

The third case was a practical case and the surrogate
model was linked to a single-objective genetic algorithm.
Four shape parameters were chosen as design variables and
the drag coefficient of a full vehicle was the cost function to
minimize. The function evaluations required by the genetic
algorithmwere performed through the PODI/ROM avoiding
other CFD simulations except the ones required to generate
the initial set of snapshots. The saved amount of time was
remarkable.

In all the three cases considered in this work, the PODI
method was able to produce a consistent low error surrogate
model that can be used for fast evaluations of the flow fields of
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interest using reduced initial sets. The number and position
of the snapshots are crucial features that affect both the
computational effort in building the surrogate model and its
accuracy with respect to the full model solution.The optimal
position and number of the snapshot set can be a useful sub-
ject of future investigations, together with a rational choice of
the particular type of response function and a methodology
to compute a reliable a priori estimate of the ROM accuracy.
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