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LINEARIZED NAVIER-STOKES EQUATIONS AS ACOUSTIC
PROPAGATION MODEL
Andrea Lario and Renzo Arina
Dipartimento di Ingegneria Meccanica e Aerospaziale
Politecnico di Torino, corso Duca degli Abruzzi 24, I-10129 Torino, Italy
email: renzo.arina@polito.it

An acoustical model based on the Linearized Navier-Stokes (LNS) equations is proposed. The in-
clusion of the viscous terms enables to represent hydrodynamic-acoustic interactions responsible
of the generation of vorticity associated with hydrodynamic modes. The LNS equations are solved
with a high-order accurate and low-dispersive numerical scheme. Time integration is performed
using a fourth-order, six-stage Runge-Kutta scheme which has low dispersion and dissipation er-
rors, the space discretization is based on a Discontinuous Galerkin formulation on unstructured
grids and sponge-layer boundary conditions are introduced to avoid spurious wave reflections.
The model is applied to the analysis of the acoustic propagation of an incoming perturbation in-
side a circular duct with a sudden area expansion in presence of a mean flow . At corners, the
acoustic oscillations are strongly affected by viscous effects, vortical perturbations are generated
at the wall and convected into the duct by the mean flow field. The computed coefficients of the
scattering matrix are compared with experimental data for a convective Mach number equal to
0.29.

1. Introduction

In the case of acoustic propagation in complex geometries with a mean flow, significant hydrody-
namic-acoustic interactions, coupling acoustic waves and vortical modes, may occur. For example
in ducts with sudden changes of area, where flow separation may be present in correspondence of
sharp edges, with a consequent generation of vorticity due to viscous effects. To correctly capture this
coupling, the mechanisms responsible of the generation of vorticity associated with the hydrodynamic
modes must be included in the model. The Linearized Euler Equations (LEE) model both the acoustic
propagation as well as the vorticity transport. However some ambiguities remains on the vorticity
generation process which is ultimately due to the viscous effects. The inclusion of the viscous terms
not only solve the problem of a correct generation of vorticity, but may also contribute to solve the
problem of representing the Kelvin-Helmholtz instabilities, connected with the propagation of the
vortical modes, which make the current LEE models highly unstable. The explicit inclusion of the
viscous terms removes the need of adding artificial viscosity or to resort to other fictitious mechanisms
to stabilize the numerical solution of the LEE. The linearized Navier-Stokes (LNS) equations can be
a valid alternative to the LEE model for acoustic propagation problems.

The objective of the present work is to include the viscous effects into the acoustic wave propaga-
tion model obtained linearizing the Navier-Stokes equations, for a compressible flow, with respect to
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a representative mean flow. In this work an efficient numerical algorithm for the solution of the LNS
equations is proposed. To our knowledge, there are only few works dealing with the solution of the
LNS for aeroacoustics, and mainly in the frequency domain [1]. The present method solves the LNS
equations in the time domain on unstructured grids.

The occurrence of geometrical complexities, such as sharp edges, where acoustic energy is trans-
ferred into the vortical modes for viscous effects, requires an highly accurate numerical scheme with
not only reduced dispersive properties, to accurate model the wave propagation, but also providing a
very low level of numerical dissipation on unstructured grids. The Discontinuous Galerkin Method
(DGM) is one of the most appropriate numerical scheme satisfying these requirements. The DGM
displays many interesting properties: it is compact, regardless of the order of the element, data are
only exchanged between neighboring elements. It is well suited for complex geometries because it
can be applied to an unstructured grid, even non conformal. The expected dispersion and dissipa-
tion properties are retained also on unstructured grids. One of the disadvantages of the DGM is its
computational cost. Because of the discontinuous character, there are extra degrees of freedom at
cell boundaries in comparison to the continuous finite elements, demanding more computational re-
sources. This drawback can be partially reduced with a parallel implementation of the algorithm, an
operation which is not too difficult because of the compactness property of the scheme. Another dis-
advantage is the need of quadrature for the weighted residual formulation, but it can be eliminated by
adopting a quadrature-free approach [2]. Considering only elements with constant Jacobian, i.e. with
a linear mapping to the reference element (elements with straight edges), all integrals can be evaluated
during the initialization step. The time discretization is based on a low dissipation formulation of a
fourth-order accurate Runge-Kutta scheme [3]. Explicit time integration, the more appropriate for
acoustic wave propagation, avoids inversion of a large algebraic system and it is well suited for paral-
lel computation. Along numerical boundaries, to avoid incoming spurious reflections, a sponge-layer
boundary condition is used [4].

The paper is organized as follows. In Section 2, the LNS equations are presented for general co-
ordinates and for axisymmetric problems, The DGM formulation for the LNS equations is described
in Section 3, as well as the time integration algorithm and the non-reflecting boundary conditions. In
Section 4 the evaluation of the scattering matrix for a sudden area discontinuity in a cylindrical duct
in presence of mean flow is reported. The numerical results are validated using experimental data of
Ronneberger [5].

2. Linearized Navier-Stokes equations

2.1 General coordinate formulation

Denoting with (.)0 the mean flow variables, and with (.)′ the acoustic perturbations, the governing
equations for a general coordinate system read

(1)
∂q

∂t
+∇·Fc = ∇·Fd + g + h ,

where q = [ρ′, ρ0v
′, p′]T is the acoustic vector. Fc and Fd are the convective and viscous fluxes,

defined as follows

Fc =

 ρ0v
′ + ρ′v0

ρ0v0v
′ + p′I

γp0v
′ + p′v0

 , Fd =

 0
τ ′

(γ − 1)κ∇·T ′

 ,

γ is the specific heat ratio for a perfect gas and κ the thermal conductivity coefficient. The viscous
stresses τ ′, being µ the dynamic viscosity coefficient and µB the bulk viscosity coefficient, are linearly
related to the velocity fluctuation gradients

τ ′ = µ

[
(∇v′ +∇v′T )− 2

3
(∇·v′)I

]
+ µB(∇·v′)I .
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The bulk viscosity term can be neglected because it affects the acoustic propagation only over ex-
tremely long distances, when the accumulation of its influence over each cycle becomes important
and eventually dissipate the acoustic perturbation.

The vector g, containing the zero-th order terms and the mean flow derivatives, reads

g =

 0
−ρ′

(
∂v0

∂t
+ v0· ∇v0

)
− ρ0v

′· ∇v0

(γ − 1) (v′· ∇p0 − p′∇·v0) + (γ − 1) [(τ 0· ∇) ·v′ + (τ ′· ∇) ·v0]

 .

The source vector h contains explicit source terms, like a mass source or a force source.
LNS equations can be simplified assuming an isentropic relation between pressure and density

fluctuations. This assumption is not valid if an explicit addition of heat is present, such as in combus-
tion processes, or if heat conduction is not negligible; but it is applicable to non reacting problems
at low Mach number. In this case pressure and density are related by the relation p′ = c2

0ρ
′ where

c2
0 = γp0/ρ0 is the velocity of sound. With this assumption one dependent variable is removed from

the system and therefore the energy equation can be omitted from the system (1).
The LEE equations can be obtained from the (1) simply dropping out the viscous fluxes Fd and

setting to zero τ ′ and τ 0 in the expression of g.

2.2 Axisymmetric formulation

For axisymmetric problems, it is convenient to rewrite the governing equations in a cylindrical
coordinate system, namely (r, θ, z). If both the geometry and the mean flow can be assumed axisym-
metric, i.e.,

v0θ = 0 ,
∂

∂θ
[(.)0] = 0 ,

∂

∂θ

[
(.)′
]

= 0 ,

where v0θ is the θ-component of the mean flow velocity, the LNS equations can be written in cylin-
drical coordinates as

(2)
∂u

∂t
+

1

r

∂Fc
r

∂r
+
∂Fc

z

∂z
=

1

r

∂Fd
r

∂r
+
∂Fd

z

∂z
+ fp + gaxy + h ,

where u = [ρ′, ρ0v
′
r, ρ0v

′
z, p

′]T is the acoustic perturbation vector. Here (v′r, v
′
z, ) are the velocity

components in (r, z) directions respectively. Fc
r and Fc

z contain part of the inviscid fluxes, the pressure
gradient term being contained into fp, and Fd

r and Fd
z the viscous fluxes along r and z directions

respectively:

Fc
r =


ρ′v0r + ρ0v

′
r

ρ0v0rv
′
r

ρ0v0rv
′
z

r (γp0v
′
r + p′v0r)

 , Fd
r =


0
rτ ′rr
rτ ′rz

(γ − 1)κr ∂T
′

∂r

 ,

Fc
z =


ρ′v0z + ρ0v

′
z

ρ0v0zv
′
r

ρ0v0zv
′
z

γp0v
′
z + p′v0z

 , Fd
z =


0
τ ′rz
τ ′zz

(γ − 1)κ∂T
′

∂z

 ,

and

fp = −
[
0,
∂p′

∂r
,
∂p′

∂z
, 0

]T
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The vector gaxy contains terms of the mean flow due to axi-symmetry and the mean flow derivatives
and h represents the acoustic sources,

gaxy =


0

−
[
ρ′ ∂v0r

∂t
+ (ρ′v0r + ρ0v

′
r)

∂v0r
∂r

+ (ρ′v0z + ρ0v
′
z)

∂v0r
∂z

]
−
[
ρ′ ∂v0z

∂t
+ (ρ′v0r + ρ0v

′
r)

∂v0z
∂r

+ (ρ′v0z + ρ0v
′
z)

∂v0z
∂z

]
(γ − 1)gzaxy

 .

where

gzaxy =

(
v0r

∂p′

∂r
+ v0z

∂p′

∂z

)
+

(
v′r
∂p0

∂r
+ v′z

∂p0

∂z

)
+(

τ0rr

r

∂

∂r
(rv′r) + τ0rz

∂v′r
∂z

)
+

(
τ0rz

r

∂

∂r
(rv′z) + τ0zz

∂v′z
∂z

)
+(

τ ′rr
r

∂

∂r
(rv0r) + τ ′rz

∂v0r

∂z

)
+

(
τ ′rz
r

∂

∂r
(rv0z) + τ ′zz

∂v0z

∂z

)
,

and

τ ′rr = 2µ
∂v′r
∂r

+

(
µB −

2

3
µ

)[
1

r

∂

∂r
(rv′r) +

∂v′

∂z

]
,

τ ′rz = µ

(
∂v′r
∂z

+
∂v′z
∂r

)
,

τ ′zz = 2µ
∂v′z
∂z

+

(
µB −

2

3
µ

)[
1

r

∂

∂r
(rv′r) +

∂v′

∂z

]
.

3. DGM-RK numerical method

3.1 Spatial dicretization

LNS equations (1) define a linear convection-diffusion problem over the domain Ω ⊂ R3, which
can be cast in the form

(3)
∂u

∂t
+∇ · (Fc(u) + Fd(u,∇u)) + g = h in Ω ,

where u is the m-dimensional vector of the unknowns, Fc are the convective fluxes, Fd are the
diffusive fluxes, g is the source term and h is the forcing term.

To apply the Discontinuous Galerkin formulation, the domain Ω must be partitioned into a collec-
tion of disjointed elements K named Th. The faces of the elements in the collection defines the set
∂Th := {∂K : K ∈ Th}. On each element K, a finite element space is introduced for u

Wk
h =

{
w ∈

(
L2(Th)

)m
: w|K ∈

(
Pk (K)

)m
,∀ K ∈ Th

}
,

where Pk (D) denotes the space of polynomials of degree at most k on a domain D and L2 (D) is the
space of square integrable functions on D. Applying the Galerkin projection method to each element,
it is possible to find an approximate solution to u in the finite element space Wh. On each element,
the variational problem becomes: find an approximation uh ∈Wk

h such that for all K ∈ Th(
∂uh
∂t

,w

)
K

−
(
Fc (uh) + Fd (uh) ,∇w

)
K

+(4)

+
〈(

F̂c
h + F̂d

h

)
· n,w

〉
∂K

+ (g,w)K = (h,w)K , ∀w ∈
(
Pk
)m

,
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The numerical fluxes F̂c
h and F̂d

h are an approximation of Fc (u) and Fd (u) over ∂K respectively,
expressed in the following form

(F̂c
h + F̂d

h) · n = (Fc(ûh) + Fd(ûh) · n + S(uh, ûh)(uh − ûh) , on ∂K ,(5)

where ûh is an approximation to the trace of the solution u on ∂K and it is single-valued over each
edge. S(uh, ûh) is a local stabilization matrix.

The assembled problem is obtained by adding the contributions (4) over all the elements and
enforcing the continuity of the normal component of the numerical fluxes〈(

F̂c
h + F̂d

h

)
· n, µ

〉
∂Th\∂Ω

+
〈
B̂h, µ

〉
∂Ω

= 0 ∀µ ∈Mk
h ,(6)

where B̂h is the numerical flux vector of dimension m and is defined over the boundary ∂Ω.
Equation (6) enforces the continuity of the normal component of the numerical flux, which can

be interpreted point-wise over the interior faces as a jump condition. Inserting the definition of the
numerical fluxes (5) it follows, with [[.]] defining the jump across the interface,

[[
(
Fc(ûh) + Fd(ûh,qh)

)
· n]] + S+u+

h + S−u−h − (S+ + S−)ûh = 0 ,

where (.)± denote the traces of the quantity (.) on the interior faces between two neighboring ele-
ments. Since S is constant over a face, i.e. S = S+ = S−, the auxiliary variable ûh can be expressed
on the interior faces as

ûh =
1

2
S−1[[

(
Fc(ûh) + Fd(ûh,qh)

)
· n]] +

1

2

(
u+
h + u−h

)
.

The stabilization matrix S is chosen using the local Lax-Friedrichs splitting, and is given by the
expression S = λmaxI, where λmax is the maximum absolute value of the eigenvalues of the local Ja-
cobian matrix [∂Fc (ûh) /∂ûh] ·n, and I is the identity matrix. With this stability matrix the numerical
fluxes become

ûh =
1

2λmax
[[
(
Fc(ûh) + Fd(ûh)

)
· n]] +

1

2

(
u+
h + u−h

)
,

(F̂c
h + F̂d

h) · n =
(
Fc(ûh) + Fd(ûh)

)
· n + λmax

(
u+
h − u−h

)
, on ∂K .

3.2 Time integration

Time integration is performed using a fourth-order, six-stage Runge-Kutta scheme which has low
dispersion and dissipation errors [3]. Classical third- and fourth-order Runge-Kutta schemes provide
relatively large stability limits but, for acoustic calculations, the stability consideration alone is not
sufficient, since the Runge-Kutta schemes retain both dissipation and dispersion errors. Instead of
choosing the coefficients of the Runge-Kutta scheme to optimize the maximum order of accuracy, it
is possible to select coefficients so as to minimize the dissipation and the dispersion errors. Moreover,
this optimization does not introduce additional stability constraints and sufficiently large time steps
can be used, which therefore increase the efficiency of the computation. The Runge Kutta scheme is
implemented using the low-storage Willamson’s formulation, which only requires two storage loca-
tions per variable.

3.3 Boundary conditions

To avoid spurious reflections along numerical boundaries, sponge layers are added to the compu-
tational domain. In the current formulation, sponge layers act both damping the solution and applying
a virtual stretch to the computational mesh.
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The damping[4] is applied multiplying the solution by a damping function ζ which gradually
decreases from 1 to 0. The function ζ is defined as

ζ = (1− C1x
2
l )

(
1− 1− eC2x2l

1− eC2

)
,

where C1 = 0 and C2 = 13. The quantity xl is the normalized distance from the inner border
of the sponge layer. Thus xl ranges from 0 to 1, marking, respectively, the beginning and the end
of the sponge layer. The virtual stretching [6] has the effect to gradually slow down waves in the
layer, this can be achieved with a coordinate transformation. Along a layer, the transformation x =
x (ξ) is defined as the backward solution from the virtually stretched coordinate ξ = [ξ1, ξ2], with ξ1

and ξ2 being the starting and the ending coordinates of the virtually stretched layer, of the ordinary
differential equation

d

dξ
(x) = η (x (ξ) , ξ) x (ξ2) = x2 ,

where x2 is the ending coordinate of the physical layer. The stretching function η (x) can be chosen
as η = 1− (1− εl) [1− (1− xl)p]q, where p = 3.25, q = 1.75 and εl = 10−4.

The combination of the two strategies leads to an efficient approach that requires shorter buffer
layers and is computationally efficient.

Walls are assumed impermeable and acoustically rigid, this means that no flow passes through
the boundary and that acoustic waves are totally reflected. Two different boundary conditions can be
imposed at the walls: slip or no-slip boundary condition. The slip flow boundary condition forces the
velocity to be tangent to the wall, which can be evaluated at timestep j + 1 from the values at the
previous timestep as

(uw)j+1 = (uw)j −
[
(uw)j · n

]
n .

The pressure fluctuations at the wall are evaluated linearizing the exact solution of the Riemann prob-
lem for a reflective wall

(pw)j+1 = (pw)j + p0
γ

c0

(uw)j .

For the LNS equations an additional boundary condition should be imposed on the temperature.

4. Cylindrical duct with sudden area expansion

As test case the calculation of the acoustic propagation of an incoming perturbation inside a circu-
lar duct with a sudden area expansion in presence of a mean flow is shown. At the corner, the acoustic
oscillations are strongly affected by viscous effects, vorticity is generated and convected into the duct
by the mean flow field. No analytical method is able to predict the coefficients of the scattering matrix
of such acoustic network with a satisfying level of accuracy, especially for mean flows characterized
by Mach numbers greater than 0.1 [7]. Therefore the development of an accurate computational
model for this kind of problems is of great practical interest. Experimental data have been provided
by Ronneberger [5] for several mean flow Mach numbers. The measurements were performed on a
cylindrical area discontinuity with an upstream diameter h1 = 50 mm and a downstream diameter
h2 = 85 mm, corresponding to an area ratio equal to η = 0.346.

In the computational domain, the length of the upstream and downstream ducts are l1 = 1.5 m
and l2 = 2.75 m respectively. Since the acoustic field is axisymmetric, only half of the domain is
considered. The LNS equations are solved using elements of degree p = 4. To absorb the outgoing
wave and avoid spurious reflections, two sponge layers with a thickness of 0.75 m are placed at
the inflow and outflow boundaries. The mean flow field in the duct has been calculated solving
the steady-state incompressible Reynolds-averaged Navier-Stokes (RANS) equations with a k − ω
model. The inlet turbulent length scale is set equal to 1 mm and the turbulent intensity to 10%, fixed
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Figure 1: Instantaneous vorticity fluctuations [1/s] at for M0 = 0.29 from left to right: t=4.0 10−3 s,
t=4.8 10−3 s, t=5.6 10−3 s.

ambient pressure boundary condition at the outlet boundary and prescribed velocity profile at inlet
are imposed.

In the frequency-domain calculations [1, 8] the acoustic source is modeled as a sinusoidal func-
tion with a specified frequency. With the time-domain approach the monochromatic wave can be
substituted with time domain wave packet. This approach, suitable for linear problem, replace the
monochromatic sinusoidal source with a single temporally compact broadband pulse. Such a wave
packet contains a broad range of frequencies in a short time duration and it is possible to solve with
one computation all frequencies within numerical resolution. Details of the wave packet technique
can be found in [9].

Considering the case with mean flow Mach number M0 = 0.29, the effect of the mean flow can
be seen in figure 1, where the instantaneous vorticity perturbation is plotted for three different times.

The relationship between the transmission and the reflection of incoming sound waves through an
acoustics element can be described using the scattering-matrix formalism. A general network element
can be thought of as a black box to which acoustic waves enter and exit through the so-called ports.
For a two-port element, without active processes, the scattering-matrix formalism could be written as

(
pa−
pb+

)
=

S︷ ︸︸ ︷(
R+ T−

T+ R−

)(
pa+

pb−

)
,

where a and b represent the inflow and outflow ports respectively and p+ and p− are the Fourier
coefficients of the transmitted and reflected acoustics waves. The matrixS is the scattering matrix and
takes into account the passive transmission and reflection of sound waves. To evaluate the scattering
matrix S the two source-location method is applied: first the problem is solved with a time-harmonic
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Figure 2: Amplitude of the scattering matrix terms with an inlet Mach number M = 0.29. Circles
(©): numerical, diamonds (�): experiments. (a) |R + |; (b) |T − |; (c) |T + |; (d) |R− |.
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Figure 3: Phase of the scattering matrix terms with an inlet Mach number M = 0.29. Circles (©):
numerical, diamonds (�): experiments. (a) φ(R+)/π; (b) φ(T−)/π; (c) φ(T+)/π; (d) φ(R−)/π.

wave entering from the inflow, and then the problem is solved with the same wave entering from the
outflow port [9]. The scattering coefficients, compared with the experimental ones [5], are reported
in figures 2 and 3.
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