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ABSTRACT  11 

The evaluation of the load acting on a shaft support is of fundamental importance for the cor-12 

rect dimensioning of the structure. The load acting on the support can appear somewhat 13 

complex. One approach may be to use the convergence-confinement method (CCM) normal-14 

ly used in the tunneling design. This process involves intersecting the convergence-15 

confinement (CC) curve with the support reaction line. However, in order to be able to adopt 16 

this technique, it is necessary to know the radial displacement of the shaft wall at the point in 17 

which the support is to be installed. Using the equations of Vlachopoulos and Diederichs 18 

(2009) the reaction line of the support can be calculated. Numerical models developed with 19 

Flac 2D v.6.0 considering the Mohr-Coulomb criterion and an ideal elastic-plastic behavior 20 

simulating stepwise excavation and support installation were developed. The relation be-21 

tween applied internal stress and radial displacement of the wall shaft, obtained by the nu-22 

merical simulation was compared with the CC curve obtained by the CCM and it showed a 23 

good match between the two methods. However, an iterative procedure has also been used 24 

to insert the reaction line in the CC graph. The result shows lower initial displacements (and 25 

therefore greater radial stress) when compared with the values obtained by numerical calcu-26 

lation with the axisymmetric model. It is therefore recommended the combined use of the 27 
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CCM (analytical method) and the axisymmetric numerical model (step by step simulation) to 28 

obtain the values of the final load on the lining and the final plastic radius, necessary for the 29 

correct design of supporting structures on the shaft wall. 30 

Key words: shaft, lining, convergence-confinement method, FLAC, weak rocks, numerical 31 

modelling, axisimmetric model, wall radial displacement profile. 32 

  33 



Introduction 34 

Underground mining methods invariably rely on tunneling networks to gain access to the 35 

zones of valuable minerals (Carter et al. 2011). Underground mines can be reached via 36 

ramps, inclined or vertical shafts or adits (Bullock 2011). To achieve great depths, vertical 37 

shafts are created. The method used to date for the construction of shaft is the shaft sinking 38 

(drill and blast), however over the past recent years, the mechanical excavation has become 39 

remarkably common, especially in underground mining (Rostami 2011). Depths up to 1,000m 40 

can be achieved through the conventional method whereas deep shafts up to 2,000m can be 41 

reached through mechanical method. The mechanical method has besides several ad-42 

vantages over the conventional method such as (Bullock 2011): 43 

• Improved personal safety; 44 

• Minimal ground disturbance; 45 

• Less material to move; 46 

• Uniform muck size; 47 

• Continuous operations; 48 

• Conducive to automation of system; 49 

• Higher production rates. 50 

Research into shaft construction is now becoming of increasing importance. Because ore 51 

bodies are becoming depleted, shafts are being constructed ever deeper and in ever more 52 

challenging geologies such as weak rocks. Studies carried out on these rocks show a rock 53 

intumescent, which can easily be damaged (Guo et al. 2012). Stress testing and analysis of 54 

structural geology must be taken into account for a correct mechanical characterization of the 55 

rock. Design methods for shaft lining are therefore very important. Jia et al. (2013) described 56 

the case of the Boulby Potash Mine where shaft linings installed in Marl suffered considera-57 

ble radial pressure from the Marl stratum together with vertical compression from the upper 58 

part of the shafts resulting from subsidence of the host surrounding rock.  59 



The main objectives of the linings are to maintain stability and preserve the ability of stress-60 

carrying rocks near the boundaries of underground excavations. Different types of reinforce-61 

ment may be used for this purpose: shotcrete, mesh, steel, concrete sets, and reinforced 62 

concrete linings. In literature many design methods for shafts exist. The calculation of the 63 

lining thickness for circular wells is based on the assumption that the pressure on the contact 64 

rock-lining is known (Öztürk and Ünal 2001). In general, according to Wong and Kaiser 65 

(1988), the design of a shaft consists of: 66 

1. The design of the shaft lining to prevent instability of shaft wall and; 67 

2. Estimation of the soil movement associated with shaft construction. 68 

Although these two tasks are interrelated, they are usually handled separately. According to 69 

Wong and Kaiser (1988) many design approaches are based on soil plasticity considering 70 

the stress redistribution around a circular shaft opening (see Terzaghi 1943). Berezantzev 71 

(1958) used the Mohr-Coulomb failure criterion as a condition of plastic equilibrium and also 72 

made the assumption of equal principal stresses to render the problem statically determinate. 73 

The yield zone considered by Berezantzev (1958) is bounded by Rankine slip lines. Alterna-74 

tively Coulomb-type analysis with a conical sliding surface are also used (e.g. Pratere 1977). 75 

Both shaft design model consider gravity or the influence of the vertical principal stress. An-76 

other method is the one treating a shaft as a two dimensional hole-in-a-plate model in order 77 

to calculate the extent of yielding, the equilibrium support pressure, and the related defor-78 

mations for circular openings in a uniform stress field and in perfectly plastic or strain-79 

weakening ground (e.g. Abel et al. 1979; Brown et al. 1986). The actually expected and ob-80 

served pressures depend, however, on such factors as ground deformation, in situ stress, 81 

and ground strength-deformation properties. However, as stated by Wong and Kaiser (1988) 82 

the methods described above describe the actual shaft behavior. These methods do not indi-83 

cate when gravity effects are relevant or when the limits of applicability of the "hole-in-a-84 

plate" approach have been reached. McCreath (1980) found that the convergence-85 



confinement method (CCM) could be applied to explain the shaft performance of deep shaft 86 

in yielding rocks. 87 

In this research the main analytical methods used in the calculation of the loads acting on the 88 

shaft lining and two-dimensional numerical models of the cross section and longitudinal sec-89 

tion (axisymmetric modelling) are presented. The comparison of the calculation results for a 90 

specific case will permit to obtain useful indications on the optimal calculation technique in 91 

order to correctly assess the radial load on the lining and to design it. 92 

The convergence-confinement method and the equation of Vlachopoulos and 93 

Diederichs for the evaluation of the radial displacement profile 94 

The CCM method is one of the most commonly used analytical methods in the field of tunnel-95 

ing (Fig. 1). It permits to analyze the stresses and strains that develop around a deep circular 96 

cavity. The extent of the yield (or plastic) zone can also be estimated by this method under 97 

well-defined conditions (e.g. Fenner 1939; Pacher 1964; Rechsteiner and Lombardi 1974). 98 

This method requires the intersection of the convergence-confinement (CC) curve with the 99 

support reaction line. The value of the radial stress acting at the extrados of the support 100 

structure is an important result that can be obtained (Oreste 2005a; 2005b). The CCM was 101 

adopted and proposed by Wong and Kaiser (1988) as a rational approach to predict shaft 102 

behavior. In this manner in situ stress, rock strength, and deformation properties as well as 103 

many construction details can be included in the analysis. 104 



 105 

Fig. 1 Convergence-confinement curve of an underground opening and the reaction line of 106 

the support (modified after Vlachopoulos and Diederichs 2009). Key: p0 is the lithostatic 107 

stress, uR0 is the radial wall displacement in the point along the cavity axis where the lining is 108 

constructed, uRmax is the final radial wall displacement of the cavity, σReq is the final radial load 109 

on the lining. 110 

The assumptions used in the development of the CCM are: 111 

• Circular and deep shaft; 112 

• Homogeneous and isotropic rock around the shaft;  113 

• Isotropic lithostatic stress around the shaft, with the horizontal lithostatic stresses 114 

equal in the two main directions in the case of a vertical shaft (e.g. Panet 1995; 115 

Oreste 2009a). 116 



In order to proceed with the correct evaluation of the load acting on the support with the CC 117 

curve, it is necessary to know the radial displacements of the shaft walls at the moment in 118 

which the support structure is installed (uR0). The formulation presented by Vlachopoulos and 119 

Diederichs (2009), which allows an estimation of the radial displacements in function of the 120 

final radial displacement of the shaft, at a long distance from the excavation face, appears to 121 

be particularly interesting. This equation allows estimating the radial movement uR0 of the 122 

shaft wall where the support structure of the shaft is installed (generally near to the excava-123 

tion bottom). For Vlachopoulos and Diederichs (2009) uR is described by the following equa-124 

tion in function of the distance x from the shaft bottom: 125 
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 127 

Where: uRmax is the maximum radial displacement of the shaft (for very elevated x); 128 

  Rpl is the final plastic radius of the shaft (for very elevated x); 129 

The iterative procedure to design the linings using the convergence confine-130 

ment method 131 

In order to insert the reaction line of the support in the CCM, the formulation of Vlachopoulos 132 

and Diederichs (2009) can be used; this formulation permits to estimate the wall displace-133 

ment, uR0, of the shaft at the point where the supports are installed. Because the radial dis-134 

placement and the plastic radius at a great distance from the excavation bottom are influ-135 

enced by uR0 (which is unknown) an iterative procedure can be adopted (Oreste 2009b) This 136 

procedure involves the following steps: 137 

1. Inserting the reaction line in the graph of the curve obtained by the CCM (Fig. 1), initially 138 

considering uR0 = 0; the support reaction line has a slope given by its stiffness ksup (Hoek 139 

and Brown 1980): 140 
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where: R is the shaft radius; 142 

  tsup is the lining thickness; 143 

 Esup e νsup are the elastic modulus and Poisson ratio of the lining material respec-144 

tively. 145 

2. Determination of the intersection point of the convergence-confinement curve with the 146 

reaction line of the lining, obtaining the first value of the final shaft wall displacement 147 

(uRmax) and determining the final pressure applied to the lining (σReq), at a great distance 148 

from the temporary bottom. 149 

3. Calculation of the plastic radius, Rpl, which develops at a great distance from the tempo-150 

rary excavation bottom, starting from σR as determined above. 151 

4. Estimation of uR0 through Equation 1 knowing uRmax and Rpl obtained from steps 2 and 3. 152 

The distance from the shaft bottom, x, is replaced by the actual distance from the tempo-153 

rary shaft bottom, where the support is installed. 154 

5. The new value of uR0 is used to re-calculate the position of the reaction line, by repeating 155 

steps 2 to 4. 156 

The iterative procedure rapidly converges and can be stopped when the difference between 157 

two consecutive values of uR0 or σReq is below a certain predetermined tolerance. After this 158 

procedure it is possible to obtain in the convergence-confinement curve graph, the position of 159 

the reaction line according to the equation of Vlachopoulos and Diederichs (2009). The inter-160 

section between the two curves allows calculating both the final displacement of the shaft 161 

wall and the final radial load acting on the lining. This in turn, quickly permits the verification 162 

about the ability of the lining to sustain the rock pressure, without using any numerical model. 163 

This approach could be useful in the determination of the shaft lining type and consistency, 164 

until reaching a final configuration that guarantees not only shaft walls stability but also the 165 

optimization of the available economic resources. 166 



Numerical simulations of the shaft installation 167 

The shaft installation can be studied in great detail by the two-dimensional numerical model-168 

ing when the lithostatic state has equivalent horizontal stress in the two main directions and 169 

when the section of the shaft is assumed to be circular. In fact, in this case, it is possible to 170 

study the cross section with a plane model (plane strain state condition) and the longitudinal 171 

section (vertical section) with an axisymmetric model. The combined use of these two numer-172 

ical models permits to have all the necessary information on the stress and strain developing 173 

in the rock mass around the shaft and in the lining. 174 

This paragraph analyzes, with the combined use of the two-dimensional modeling, the stress 175 

and strain at the shaft contour considering a circular section with 3m radius. Assuming the 176 

Mohr-Coulomb strength criterion and an ideal elastic-plastic behavior, the following mechani-177 

cal properties of the rock mass were considered in the studied case: 178 

• cohesion (c): 0.9MPa; 179 

• friction angle (φ): 31°; 180 

• elastic modulus (E): 8000MPa; 181 

• Poisson ratio (ν): 0.3. 182 

Lithostatic stress was assumed to be equal to 15MPa, in both vertical and in two main hori-183 

zontal directions (isotropic stress conditions). This stress state refers to conditions that may 184 

be encountered at a depth of about 650-700m. 185 

The numerical models were developed with the numerical code FLAC 2D v.6.0 (Flac 2008), 186 

which uses a finite differences numerical solution. The two-dimensional numerical model of 187 

the plane section considers 2745 quadrilateral elements and represents a rock portion at the 188 

shaft contour up to the distance of 60m (Fig. 2).  189 



 190 

Fig. 2. Two-dimensional numerical model of the plane section. Left: the whole model; Right: 191 

a detail of the zone close to the shaft wall. 192 

 193 

The internal pressure at shaft has been reduced from the lithostatic value of 15MPa to 0MPa, 194 

for 0.5MPa intervals (to simulate the excavation process) in order to obtain a detailed rela-195 

tionship between the radial displacement of the shaft wall and the internal pressure (Fig. 3). 196 



 197 

Fig 3. Relationship between the radial displacement of the shaft wall uR and the internal 198 

pressure for the studied case σR obtained by the numerical modeling of the cross-section 199 

 200 

The axisymmetric numerical model simulated a vertical longitudinal section of half shaft, for 201 

48m depth and 24m width (i.e. 16 times the shaft radius) (Fig. 4). The quadrilateral elements 202 

used for the analysis (about 12,800 items) have dimension 0.3m side and square in shape. 203 



 204 

Fig 4. Element mesh of the axisymmetric numerical model of the half shaft longitudinal sec-205 

tion: the global view and a detail of the zone of the model close to the temporary shaft bot-206 

tom. 207 

 208 

Through the axisymmetric numerical model, it was possible to simulate both excavation op-209 

erations and lining installation, along the entire depth of the model, proceeding from the up-210 

per edge until reaching the bottom edge. Different excavation and support step lengths were 211 

considered: 0.3, 0.6 and 1.2m. 212 

The lining was considered immediately active after the completion of the excavation. The 213 

excavation was simulated through the cancellation of model elements in the shaft zone. The 214 

lining considered in the calculation consists of concrete (with E=25000MPa and ν=0.15) and 215 

it was simulated by the same elements of the numerical model, reactivated after the cancel-216 

lation with the mechanical characteristics of the concrete and with a zero initial stress state. 217 

The situation obtained by the calculation with the bottom of the excavation positioned at half 218 

depth of the model, was analyzed with great detail. It was possible to detect the trend of the 219 

radial displacement of the wall shaft, obtained by the numerical calculation at different dis-220 



tances from the excavation bottom. This trend seems to be of great interest because it repre-221 

sents the deformation condition of the shaft in the radial direction, with the presence of lining 222 

in the section already excavated (Fig. 5). From the analysis shown in Fig. 5 it is possible to 223 

observe how the radial displacement from the shaft wall is less influenced by the excavation 224 

steps, s. In addition to the conditions of deformation, also the plastic zones, observed during 225 

the calculation, were analyzed: more specifically a final plastic radius of 3.9 m was observed 226 

for each analyzed excavation step (Fig. 6). 227 

 228 

Fig 5 Deformation condition of the shaft in the radial direction, with the presence of lining, in 229 

the section already excavated with different step values, s. Key: uR is the radial displacement 230 

of the shaft wall, uRmax is the maximum radial displacement at a great distance from the shaft 231 

bottom, R is the shaft radius. 232 



 233 

Fig 6. Plastic zones around the shaft and below the shaft bottom during the axisymmetric 234 

numerical calculation: a final plastic radius Rpl in the interval between 3.75 m and 4.05 m can 235 

be estimated by the results. 236 

Fig. 7 shows the comparison of the curves shown in Fig. 5 (for s = 0.6m) and the result from 237 

the simplified excavation simulation, obtained by instantaneously eliminating all the elements 238 

until reaching the half of the model, with the simultaneous activation of the support along the 239 

excavated section. The instantaneous shaft excavation for half depth, without simulating the 240 

excavation and support installation steps, performed in the previous analyses, was therefore 241 

simulated. In Fig. 7 also the radial displacements of the shaft walls obtained using the equa-242 

tion of Vlachoupoulos and Diederichs (2009) are shown, considering the displacement uRmax 243 

and two different values of the final plastic radius Rpl, all obtained by the numerical simula-244 

tion. The two extreme values of plastic radius (i.e. 3.75 and 4.05m) obtained by the numeri-245 

cal modelling, were considered. Analyzing the data of Fig. 7 we can observe: 246 



1. The simplified shaft excavation and support simulation (“LDP simplified” curve in Fig. 247 

7) shows a trend for the ratio between radial displacement uR and the maximum dis-248 

placement uRmax, which practically corresponds to the trend obtained with the proce-249 

dure considering both excavation and support installation by steps (step by step pro-250 

cedure: “LDP s=0.6” curve). 251 

2. The equation of Vlachoupulos and Diederichs (2009), which is very widespread in 252 

geomechanical design practice, for Rpl 3.75 (black continuous line) and Rpl 4.05 (grey 253 

continuous line) creates radial displacements of shaft walls, which are different from 254 

the ones obtained by the numerical axisymmetric calculation, even if in the Vla-255 

choupulos and Diederichs equation (2009), values of uRmax and Rpl obtained by the 256 

numerical simulation, are used; 257 

3. In the numerical simulation, the radial wall displacement in correspondence of the 258 

temporary excavation bottom (where the support is activated) is about 60% of the fi-259 

nal displacement; for Vlachoupulos and Diederichs (2009) this value is about 28%, 260 

i.e. near the half obtained by the numerical simulation. 261 

 262 

Fig. 7. Comparison of the trends of radial displacements of shaft wall with the distance x from 263 

the temporary shaft bottom, obtained by the numerical simulation and Vlachoupulos and 264 



Diederichs formulation. Key: LDP: longitudinal displacement profile; LDP Rpl 3.75: displace-265 

ment profile obtained by the Vlachoupulos and Diederichs formulation considering a plastic 266 

radius of 3.75 m; LDP Rpl 4.05: displacement profile obtained by the Vlachoupulos and 267 

Diederichs formulation considering a plastic radius of 4.05 m; LDP s=0.6: displacement pro-268 

file obtained by the step by step axisymmetric numerical calculation for a step length of 0.6m; 269 

LDP simplified: displacement profile obtained by the simplified axisymmetric numerical calcu-270 

lation. 271 

Comparison between the analytical iterative procedure and the numerical simulation 272 

The relation between the applied internal pressure and the radial displacement of the shaft 273 

wall, obtained by the numerical simulation of the cross-section (see Fig. 3) was compared 274 

with the CC curve of the circular cavity obtained by the CCM (Fig. 8). It is possible to observe 275 

a very good match between the two methods. The CCM represents therefore an interesting 276 

alternative tool to the numerical modeling of the shaft cross-section. The CCM permits to 277 

quickly calculate the CC curve of the circular cavity, in comparison with the numerical model-278 

ling. 279 

 280 



Fig. 8. Comparison of the applied internal pressure-radial displacement of the wall shaft 281 

curve, obtained with FLAC numerical modelling (dotted line) and with the CCM (continuous 282 

line). 283 

 284 

In the CC graph, the reaction line of the support has been inserted as previously described in 285 

paragraph 3 (see Fig. 9). The results coming from the iterative procedure give an initial dis-286 

placement, uR0, of 1.7mm and a final radial stress, σReq, of 4MPa. In Fig. 9 the reaction lines 287 

of the support obtained from the uR0 values of the axisymmetric models for the following con-288 

ditions are also shown: 289 

• excavation and support installation simulation for steps with length of 0.3, 0.6 and 290 

1.2m (step by step procedure); 291 

• Simplified excavation and support installation simulation (“Flac simplified” reaction 292 

line); 293 

 294 

Fig. 9. Comparison of the support reaction lines obtained with different calculation proce-295 

dures. Key: CC: convergence-confinement curve obtained by CCM; CCM: support reaction 296 

line located on the basis of the iterative procedure of section 3; “Flac s=0.3 m”: support reac-297 



tion line located on the basis of step by step procedure using the axisymmetric numerical 298 

model and a step length of 0.3 m; “Flac s=0.6 m”: step length of 0.6 m; “Flac s=1.2 m”: step 299 

length of 1.2 m; “Flac simplified”: support reaction line located on the basis of the simplified 300 

procedure using the axisymmetric numerical model. 301 

 302 

Comparing the data it is possible to observe how the iterative procedure previously described 303 

in paragraph 3 gives a uR0 value less than 54% and a σReq value higher than 30% with re-304 

spect to the three analyzed cases with the axisymmetric numerical model and by considering 305 

the excavation step by step (uR0 ≅ 4.1mm; σReq ≅ 3.1MPa). The different excavation step 306 

values do not appreciably influence uR0 neither does the final stress on the lining, σR. The 307 

simplified axisymmetric numerical simulation give intermediate values of uR0 and σR with re-308 

spect to those described above. The value of uR0 is in fact less than 20% and σR is higher 309 

than 10% if compared with the step by step simulations. Regarding the final plastic radius, 310 

considered at a long distance from the temporary excavation bottom, we can observe how 311 

the value obtained from the analytical iterative procedure is about 8% less than the one ob-312 

tained by the axisymmetric numerical simulations (Fig. 10). The value of the plastic radius 313 

calculated by the step by step axisymmetric numerical simulation agrees with the one ob-314 

tained by the relation Rpl-σReq calculated by means of the CCM. In this case, too, the final 315 

plastic radius is 2% smaller than the one obtained by the step by step axisymmetric numeri-316 

cal simulation. 317 



 318 

Fig. 10. Calculation of the final plastic radius Rpl obtained with different calculation proce-319 

dures. Key: “CCM”: plastic radius vs internal pressure curve obtained by CCM; “σReq by-320 

CCM”: plastic radius obtained by the internal pressure derived by the analytical iterative pro-321 

cedure; “σReq by simplified num. modelling”: plastic radius obtained by the internal pressure 322 

derived by the simplified axisimmetric numerical model; “σReq by simplified num. modelling 323 

(s=0.6)”: plastic radius obtained by the internal pressure derived by the step by step axisim-324 

metric numerical model; “Min. value by num. modelling”: the plastic radius value obtained by 325 

the axisymmetric numerical analyses. 326 

Conclusions 327 

The design of the shaft lining is a very important stage in the shaft design. From the results 328 

coming from the research presented in the paper, the CCM seem to be an interesting tool for 329 

describing the relation between the applied internal stress and the radial displacement of the 330 

shaft walls. The CCM could be an alternative calculation method to the 2D numerical model 331 

for the horizontal cross-section of the shaft. 332 



The simplified iterative procedure, used for positioning the reaction line of the support on the 333 

characteristic curve graph of the circular cavity, gives, however, final stress values on the 334 

lining higher (about 30%) with respect to the values obtained with the axisymmetric numeri-335 

cal model step by step, i.e. simulating the progressive shaft excavation and support installa-336 

tion. For this reason, a step by step axisymmetric numerical model, in order to obtain the 337 

radial displacement of the shaft wall (uR0) in the zone where the lining is installed, was devel-338 

oped. The simplified axisymmetric numerical model, although it correctly estimates the rela-339 

tion between uR0 and umax, it over-estimates the value of the final stress on the lining, giving 340 

higher value than the one obtained with the step by step axisymmetric numerical model. 341 

The combined use of the CCM and the step by step axisymmetric numerical model gave very 342 

good estimation of the final stress on the lining and final plastic radius values, both of them 343 

necessary to correctly design the support structure of the shaft, in order to guarantee its sta-344 

bility. 345 
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Figure caption 406 

Fig. 1 Convergence-confinement curve of an underground opening and the reaction line of 407 

the support (modified after [19]). Key: p0 is the lithostatic stress, uR0 is the radial wall dis-408 

placement in the point along the cavity axis where the lining is constructed, uRmax is the final 409 

radial wall displacement of the cavity, σReq is the final radial load on the lining. 410 

Fig. 2. Two-dimensional numerical model of the plane section. Left: the whole model; Right: 411 

a detail of the zone close to the shaft wall. 412 

Fig 3. Relationship between the radial displacement of the shaft wall uR and the internal 413 

pressure for the studied case σR obtained by the numerical modeling of the cross-section 414 

Fig 4. Element mesh of the axisymmetric numerical model of the half shaft longitudinal sec-415 

tion: the global view and a detail of the zone of the model close to the temporary shaft bot-416 

tom. 417 

Fig 5 Deformation condition of the shaft in the radial direction, with the presence of lining, in 418 

the section already excavated with different step values, s. Key: uR is the radial displacement 419 

of the shaft wall, uRmax is the maximum radial displacement at a great distance from the shaft 420 

bottom, R is the shaft radius. 421 

Fig 6. Plastic zones around the shaft and below the shaft bottom during the axisymmetric 422 

numerical calculation: a final plastic radius Rpl in the interval between 3.75 m and 4.05 m can 423 

be estimated by the results. 424 

Fig. 7. Comparison of the trends of radial displacements of shaft wall with the distance x from 425 

the temporary shaft bottom, obtained by the numerical simulation and Vlachoupulos and 426 

Diederichs formulation. Key: LDP: longitudinal displacement profile; LDP Rpl 3.75: displace-427 

ment profile obtained by the Vlachoupulos and Diederichs formulation considering a plastic 428 

radius of 3.75 m; LDP Rpl 4.05: displacement profile obtained by the Vlachoupulos and 429 

Diederichs formulation considering a plastic radius of 4.05 m; LDP s=0.6: displacement pro-430 

file obtained by the step by step axisymmetric numerical calculation for a step length of 0.6m; 431 



LDP simplified: displacement profile obtained by the simplified axisymmetric numerical calcu-432 

lation. 433 

Fig. 8. Comparison of the applied internal pressure-radial displacement of the wall shaft 434 

curve, obtained with FLAC numerical modelling (dotted line) and with the CCM (continuous 435 

line). 436 

Fig. 9. Comparison of the support reaction lines obtained with different calculation proce-437 

dures. Key: CC: convergence-confinement curve obtained by CCM; CCM: support reaction 438 

line located on the basis of the iterative procedure of section 3; “Flac s=0.3 m”: support reac-439 

tion line located on the basis of step by step procedure using the axisymmetric numerical 440 

model and a step length of 0.3 m; “Flac s=0.6 m”: step length of 0.6 m; “Flac s=1.2 m”: step 441 

length of 1.2 m; “Flac simplified”: support reaction line located on the basis of the semplified 442 

procedure using the axisymmetric numerical model. 443 

Fig. 10. Calculation of the final plastic radius Rpl obtained with different calculation proce-444 

dures. Key: “CCM”: plastic radius vs internal pressure curve obtained by CCM; “σReq by-445 

CCM”: plastic radius obtained by the internal pressure derived by the analytical iterative pro-446 

cedure; “σReq by simplified num. modelling”: plastic radius obtained by the internal pressure 447 

derived by the simplified axisimmetric numerical model; “σReq by simplified num. modelling 448 

(s=0.6)”: plastic radius obtained by the internal pressure derived by the step by step axisim-449 

metric numerical model; “Min. value by num. modelling”: the plastic radius value obtained by 450 

the axisymmetric numerical analyses. 451 
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