
28 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

ECOSCALE: Reconfigurable computing and runtime system for future exascale systems / Mavroidis, Iakovos;
Papaefstathiou, Ioannis; Lavagno, Luciano; Nikolopoulos, Dimitrios S.; Koch, Dirk; Goodacre, John; Sourdis, Ioannis;
Papaefstathiou, Vassilis; Coppola, Marcello; Palomino, Manuel. - ELETTRONICO. - (2016), pp. 696-701. (Intervento
presentato al  convegno 19th Design, Automation and Test in Europe Conference and Exhibition, DATE 2016 tenutosi a
International Congress Centre Dresden (ICC), deu nel 14-16 marzo 2016) [10.3850/9783981537079_1021].

Original

ECOSCALE: Reconfigurable computing and runtime system for future exascale systems

Publisher:

Published
DOI:10.3850/9783981537079_1021

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2648229 since: 2018-04-05T20:44:00Z

Institute of Electrical and Electronics Engineers Inc.



 

 

ECOSCALE: Reconfigurable Computing and Runtime System  
for Future Exascale Systems 

 
Iakovos Mavroidis1, Ioannis Papaefstathiou2, Luciano Lavagno3, Dimitrios S. Nikolopoulos4, 

Dirk Koch5, John Goodacre5, Ioannis Sourdis6, Vassilis Papaefstathiou6, Marcello Coppola7, Manuel Palomino8 
 

1Telecommunication Systems Institute, Greece 
2Synelixis, Greece 

3Politecnico di Torino, Italy 
4Queen's University Belfast, United Kingdom 

5University of Manchester, United Kingdom 
6Chalmers University of Technology, Sweden 

7STMicroelectronics, France 
8Acciona Infraestructuras S.A., Spain 

Abstract: - In order to reach exascale performance, 
current HPC systems need to be improved. Simple 
hardware scaling is not a feasible solution due to the 
increasing utility costs and power consumption limitations. 
Apart from improvements in implementation technology, 
what is needed is to refine the HPC application 
development flow as well as the system architecture of 
future HPC systems. ECOSCALE tackles these challenges 
by proposing a scalable programming environment and 
architecture, aiming to substantially reduce energy 
consumption as well as data traffic and latency. 
ECOSCALE introduces a novel heterogeneous energy-
efficient hierarchical architecture, as well as a hybrid 
many-core+OpenCL programming environment and 
runtime system. The ECOSCALE approach is hierarchical 
and is expected to scale well by partitioning the physical 
system into multiple independent Workers (i.e. compute 
nodes). Workers are interconnected in a tree-like fashion 
and define a contiguous global address space that can be 
viewed either as a set of Partitioned Global Address Space 
(PGAS) partitions, or as a set of nodes hierarchically 
interconnected via an MPI protocol. To further increase 
energy efficiency, as well as to provide resilience, the 
Workers employ reconfigurable accelerators mapped into 
the  virtual address space utilizing a dual stage System 
Memory Management Unit with coherent memory access. 
The architecture supports shared partitioned 
reconfigurable resources accessed by any Worker in a 
PGAS partition, as well as automated hardware synthesis of 
these resources from an OpenCL-based programming 
model. 

1. Introduction  

In order to sustain the ever-increasing demand of storing, 
transferring and processing data, HPC servers need to 
improve their efficiency. Scaling the number of cores alone 
is not a feasible solution any more due to the increasing 
utility costs and power consumption limitations. While 
current HPC systems can offer petaflop performance, their 
architecture limits their capabilities in terms of scalability 
and energy consumption. Extrapolating from the top HPC 
systems, such as China's Tianhe-2 Supercomputer, we 
estimate that sustaining exaflop performance requires an 
enormous 1GW power. Similar, albeit smaller, figures are 

obtained by extrapolating even the best system of the Green 
500 list as an initial reference. 

Apart from improving transistor and integration 
technology, important refinements in HPC application 
development and HPC architecture design are also needed. 
Towards this end, ECOSCALE [26] provide a hybrid 
manycore+OpenCL programming environment, a 
hierarchical architecture, an intelligent runtime system and 
middleware, and a shared distributed reconfigurable 
hardware based acceleration support. 

2. HPC Application Characteristics 

The ECOSCALE architecture is tailored to the 
characteristics and trends of future HPC applications to 
efficiently scale to exaflop performance. In our attempt to 
predict future HPC applications, we envision that they will 
have the following fundamental characteristics: 

1) Massive parallelism: Applications can be partitioned in 
many parallel tasks or threads that can run in parallel. A 
1000x increase in today's concurrency will be necessary to 
achieve exascale throughput [1]. 

2) Data locality: HPC applications should expose spatial 
and temporal locality in order to scale. The data accessed by 
an HPC application will be partitioned in memory sub-
domains in such a way that memory transfers between these 
sub-domains are infrequent and efficient.  

Partitioning into subdomains will dictate the mapping of 
tasks to cores and accelerators, so that each task executes on 
a device that is directly “attached” to the data that the task 
accesses. Instead of a flat partitioning of the application 
domain, we foresee that future large-scale HPC applications 
will perform hierarchical and topological partitioning (such 
as a high-radix Dragonfly or Slimfly topology) [2] of their 
data into domains, to reduce communication distance and 
latency. A leaf node in this partitioning would correspond to 
a data domain that fits in the local memory of a single 
processor-accelerator bundle, which we coin as “worker 
node” in the rest of this paper. Moving up one level in the 
hierarchy, domains would map to data that fits in multi-
worker chips. Further up one level, domains would map to 
data that fit in multi-chip nodes, and further up in multi-
node chassis and cabinets. Starting from the leaves, each 
level up the tree would add one hop in the maximum 
communication distance between any two processing units. 
Existing Petascale systems have a maximum distance of 



 

 

five hops and Exascale systems will push this distance to 
six or seven (possibly longer) hops, with a corresponding 
number of levels in the hierarchical partitioning. This 
hierarchical partitioning can significantly reduce the 
communication overhead and the mapping algorithm 
complexity to achieve scalability [3][4]. 

The programming model used by the HPC applications 
should also be considered in the architectural decisions (as 
well as in the specifications of the runtime system) in order 
to improve HPC efficiency. Although MPI has been the 
most popular programming model for developing parallel 
scientific applications, the PGAS programming model is an 
attractive alternative for designing applications with 
irregular communication patterns. It is widely believed that 
a hybrid flexible MPI+PGAS programming model is an 
efficient choice for many scientific computing problems 
and for achieving exascale computing [5]. Figure 1 
illustrates the proposed ECOSCALE partitioning of future 
HPC applications, which uses such a hybrid many-core 
MPI+PGAS programming model. PGAS is used for 
efficient intra-partition communication where the number of 
cores is limited by the hop-costs of a specific system 
instantiation. Since PGAS and related task scheduling 
algorithms have important scaling problems, MPI can also 
be used for efficient inter-PGAS communication.  

 
Figure 1.Example hierarchical partitioning (tasks, 

memory, communication) of an HPC application.  
 
Exascale performance and energy-efficiency are also 

supported by the extensive use of reconfigurable accelerator 
technology and by the UNILOGIC (Unified Logic) 
architecture. The latter is introduced in this project for the 
first time as an extension of the UNIMEM architecture 
proposed in the EUROSERVER project [6]. UNIMEM 
provides shared partitioned global address space while 
UNILOGIC provides shared partitioned reconfigurable 
resources within the UNIMEM. The UNIMEM architecture 
gives the user the option to move tasks and processes close 
to data instead of moving data around [6] and thus it 
reduces significantly the data traffic and the associated 
energy consumption and communication latency. From the 
point of view of a processor in a multi-node machine, a 
memory page can be cacheable at the local coherent node or 
at a remote coherent node, but not at both. This is the basis 
of the UNIMEM consistency model, which eliminates 
global-scope cache coherence protocols providing a 
scalable solution. Progressive address translation [12] can 
be further applied on top of UNIMEM in order to provide 
interprocessor communication.  

UNILOGIC adds to UNIMEM the capability to easily 
move the acceleration engine to local hardware, for instance 
through dynamic partial reconfiguration [7]. The proposed 
UNILOGIC+UNIMEM architecture partitions the design 
into several Worker nodes that communicate through a 
hierarchical communication infrastructure, similar to the 
one shown in Figure 1. These Worker nodes correspond to 
the partitions of the HPC application. Each Worker node is 
an entire sub-system including processing units, memory, 
and storage. Within a PGAS domain (consisting of several 
Workers), the proposed architecture offers (1) a shared 
global address space that can be partitioned for locality and 
(2) shared reconfigurable resources that can also access 
remotely cached data via regular load and store instructions, 
without using any global cache coherency mechanism to 
keep a local cache coherent. The ECOSCALE architecture 
and runtime system are further explained in Section 4. 

3. Related Work  

Recent advances allow the integration of reconfigurable 
hardware, alongside with general-purpose processors 
(CPUs) to form an efficient HPC system. Such systems 
combine the flexibility of the reconfigurable fabric with the 
general-purpose characteristic of CPUs. The advantage of 
such systems is that they can accelerate particular 
applications by mapping (parts of) them to reconfigurable 
hardware, substantially improving execution time and 
energy efficiency. Numerous such systems have been 
proposed [13][14][15]. The importance of the utilization of 
reconfigurable computing for future HPC systems is also 
demonstrated by the fact that there is a special National 
Science Foundation (NSF) research center in the USA 
consisting of more than 30 industrial and academic partners 
focusing only on this topic; the outcome is the most 
powerful HPC system in the world utilizing reconfigurable 
technology (Novo-G) [21].   

Various HPC systems incorporate reconfigurable fabric 
into their computing nodes. Some of them integrate FPGAs 
directly on a system bus such as AMD’s HyperTransport or 
Intel’s Front Side Bus [16] and QuickPath Interconnect 
(QPI). Their main drawback is that the FPGA device 
replaces one CPU and thus it reduces the overall system 
performance for applications that cannot benefit from 
reconfigurable computing. Then, several large systems have 
also been built with distributed FPGAs, including the Cray 
XD-1, Novo-G, Maxwell [22] and QP [23] . These systems 
integrate the FPGA with the CPU, while the FPGA-to-
FPGA communication must be routed through the CPU. 

Moreover, some  commercial systems provide FPGA-
based supercomputing nodes, namely Maxeler’s MPC 
series, Convey’s HC-2, BeeCube’s BEE4, SRC’s 
MAPstation, and Timelogic’s DeCypher [24]. These 
systems are using complex multi-FPGA infrastructures and 
were proven to be very efficient for certain applications 
e.g., the Convey HC-1 server has been used to accelerate 
data mining workloads using the CART algorithm for 
decision tree classification in big-data applications [17], 
while similar systems from Maxeler Technologies are used 
for financial applications [18]. The incorporation of 



 

 

reconfigurable devices into HPC systems is expected to 
expand since FPGAs are getting significantly cheaper, 
simpler to program and more powerful over time. 

Moreover, Microsoft has recently implemented their first 
CPU-FPGA server system called Catapult, which will be 
incorporated in its Bing data centers, and achieves a 40x 
speedup [19]. Similarly, IBM is rolling out  FPGA-based 
data centers for data analytics onto the market.  

Finally, reconfigurable resources have recently been 
integrated on the same chip as conventional multi-cores, 
creating a very powerful processing unit; both Xilinx and 
Altera have created FPGAs that contain dual core 32-bit 
ARM CPUs. More importantly Intel has recently announced 
the introduction of a Xeon Chip with an integrated 
reconfigurable fabric that is stated to achieve a 20x 
performance improvement for various applications when 
compared with a standard Xeon chip, while Altera has 
recently introduced a chip with a Quad Core 64-bit ARM 
coupled with a large amount of reconfigurable resources.  
However, all these approaches treat the FPGA as either a 
local accelerator for a single processing node, or as an 
independent node in an overall heterogeneous processing 
system. 

 
4. ECOSCALE Approach  

ECOSCALE aims to provide a novel methodology and 
architecture to automatically execute HPC applications onto 
an HPC platform that supports thousands or millions of 
reconfigurable hardware blocks, while taking into account 
the projected trends and characteristics of HPC applications. 
Within this context, ECOSCALE aims at placing FPGA-
based acceleration as an integrated peer of the processing 
nodes within the UNIMEM system architecture and 
adapting them to work in an HPC environment. Thus its 
novel framework provides the locality and scalability model 
for FPGA-based acceleration from the ground up. In order 
to efficiently do so, we follow a holistic approach providing 
solutions for all aspects of an HPC environment, ranging 
from architecture and runtime management and 
optimization, to high level synthesis (HLS) and hardware 
virtualization. 

 
Figure 2. The ECOSCALE framework. 

 
The proposed HW design consists of a stack of three 

interdependent HW abstraction layers, as shown in Figure 
2. At the bottom layer, the proposed hardware architecture 
provides the basic hardware components and functionality 
in order to efficiently use the HW resources (CPU, memory, 

Reconfigurable Hardware, etc.) in an HPC system. In the 
middle layer, a middleware provides the primitives to 
reconfigure hardware blocks at runtime, while an HLS tool 
provides the synthesized application tasks to the 
middleware. In the top layer a runtime system schedules 
tasks inside a PGAS partition, provides the MPI primitives 
for communication between PGAS partitions and decides at 
run-time which functions of the accelerated application 
should be implemented and executed in reconfigurable 
hardware, and where data should be placed for locality.  

The aforementioned layers and programming model are 
described in more detail below. 

 
4.1. The ECOSCALE Architecture 

This novel system architecture uses CPUs, memory and 
reconfigurable blocks in a highly parallel manner. Driven 
by the characteristics and trends of future HPC applications 
and following the high-radix partitioning of an HPC 
application (see Figure 1), the proposed 
UNILOGIC+UNIMEM architecture logically partitions 
hierarchically the hardware resources (CPUs, 
reconfigurable logic, memories, SSDs) into several 
interconnected Compute Nodes (corresponding to the 
PGAS partitions of the application) which are further 
partitioned into several Worker nodes, depending on the 
physical structure of the system. Thus, one or more 
Compute Nodes create an entire and independent PGAS 
sub-system including several Worker nodes and offer:  

1) UNIMEM:  a shared partitioned global address space 
that allows Worker nodes to communicate via regular load 
and store instructions without any global cache coherent 
mechanism and  

2) UNILOGIC: shared partitioned reconfigurable 
resources that share the UNIMEM space with software 
tasks.  

Other existing architectures either require a global cache 
coherent mechanism, which simply cannot scale, or support 
only DMA operations, which are not efficient for small data 
transfers such as messages to synchronize remote threads or 
to configure a remote peripheral [23]. The UNIMEM 
architecture allows moving tasks and processes close to data 
instead of moving data around [7]. 

 

Figure 3. The ECOSCALE Hardware Architecture.  
 
The proposed HPC architecture, where (1) each Compute 

Node is a PGAS sub-system providing a shared address 
space and reconfigurable acceleration logic, and (2) MPI is 
used for communication between Compute Nodes via CPU-



 

 

based routers following the application topology, is shown 
in Figure 3. It consists of several Worker nodes 
communicating through a multi-layer interconnection. The 
actual number of Workers inside a Compute Node depends 
on the integration capabilities of future technologies. Each 
Worker is an independent computing unit that can execute, 
fork, and join tasks or threads of an HPC application in 
parallel with the other Workers. It includes a CPU, a 
reconfigurable block and an off-chip DRAM memory. The 
communication and synchronization between the Workers 
is performed through a multi-layer interconnection, which 
allows load and store commands, DMA operations, 
interrupts, and synchronization between the Workers of a 
Compute Node (following the UNIMEM architecture). The 
Compute Nodes are PGAS sub-systems that correspond to 
the application's PGAS-based partitions shown in Figure 1. 
Matching the application logical topology of Figure 1, the 
Compute Nodes are interconnected through an MPI-based 
multi-layer interconnection. 

 

Figure 4. Block diagram of ECOSCALE Worker. 

The communication overhead between a CPU and a 
hardware accelerator, i.e. the Reconfigurable Block inside a 
Worker node, is one of the most crucial challenges. A few 
years ago only explicit memory transfers between the host 
memory and the accelerator's memory were supported, like 
in a GP-GPU. Recent technological advances allow the 
integration of the host CPU and hardware accelerators on 
the same chip, and thus hardware accelerators can now 
access directly the host memory. Such a typical ARM-based 
system [25] is depicted on the left of Figure 4. However, 
there are still important limitations, as described below, that 
we will tackle in this project. 

In the example state-of-the-art architecture (Figure 4), the 
ARM Cache Coherent Interconnect supports two types of 
coherent ports in order to provide hardware coherency in 
the system: (1) ACE ports, which can be used by masters 
containing caches, such as a processor, and (2) ACE-lite 
ports, which can be used by masters that do not have 
hardware coherent caches. ACE-lite ports are traditionally 
used for hardware accelerators such as GPUs and FPGAs, 
as shown in the figure.  

Figure 4 (right side) shows the block diagram of our 
Worker node. The proposed architecture will extend such a 
typical architecture as follows. Accelerator blocks act as 
what is known in UNIMEM as a Unit of Compute, and 
hence they can interface directly with any other UNIMEM 
units of compute where each unit caches its local data 
coherently.  Each accelerator can also cache its local data 

and likewise provide coherent access from remote 
UNIMEM units.  If a single accelerator block needs to span 
across multiple FPGA local memories, then the FPGA units 
can provide their own coherence schemes independent of 
UNIMEM. 

The reconfigurable resources are typically configured to 
use physical addresses in order to access shared variables. 
Since only the OS (or the hypervisor in virtualized systems) 
has access to the physical address space, the intervention of 
the OS (or the hypervisor) is unavoidable. A dual stage I/O 
MMU, such as the ARM SMMU shown in Figure 4, can 
resolve this problem by translating virtual addresses to 
physical addresses in hardware. Using an I/O MMU the 
proposed architecture will allow “user-level access” to the 
reconfigurable accelerators. 

Virtualization and context switching enables multiple 
tasks or threads of an HPC application to share a single 
CPU in order to maximize the utilization of the CPU 
resources. Similarly, our architecture will support coarse-
grain time-sharing of the reconfigurable resources through 
partial runtime reconfiguration. Moreover, it will support 
fine-grain sharing of those FPGA resources, where a 
function implemented in hardware can be “called” by 
different tasks or threads of an HPC application in parallel, 
through the Virtualization block shown in Figure 4. The 
Virtualization block and the HLS tool provide a mechanism 
to execute multiple function calls (from different virtual 
machines) in a fully pipelined fashion. 

Sharing of the limited reconfigurable resources between 
Workers is very important. Thus, within a Compute Node, 
any Worker can access any Reconfigurable block (even 
remote blocks that belong to other Workers) through the 
multi-layer interconnect shown in Figure 3. Moreover, the 
L0 Interconnect in this example system provides an external 
ACE-lite port (connection to L1 interconnect in Figure 4) 
that can be used by remote Reconfigurable blocks to make 
coherent accesses. However, since this is not an ACE port 
(no snooping protocol is supported) the remote 
Reconfigurable block should disable its data cache (and 
would not be as efficient as a local one).  

 
4.2. Runtime System 

The ECOSCALE runtime environment will extend 
current OpenCL frameworks in three ways. First, by 
supporting a partitioned global address space within and 
between ECOSCALE nodes via the introduction of new 
data scoping abstractions and mechanisms in OpenCL. 
Second, by extending the semantics and providing a 
scalable and efficient implementation of OpenCL data 
transfers between partitions of the address space. This will 
be in addition to data transfers between devices (CPUs and 
reconfigurable subsystems) within the same address space, 
by using direct loads and stores from and to remote shared 
memories. Third, by allowing the programmer to specify 
functions that can be synthesized in hardware and can be 
accelerated, on-demand, at runtime, depending on the 
dynamic execution conditions of the system. We will 
explore and implement algorithms to dynamically partition 



 

 

computation between CPU cores and hardware accelerators 
on the ECOSCALE nodes.  

ECOSCALE will explore new algorithms and new 
models for monitoring the execution time complexity and 
energy consumption of tasks on CPUs and reconfigurable 
systems, as well as new algorithms for choosing on the fly 
the most appropriate device to execute each function. We 
will specifically develop input-dependent models of 
execution time and energy to select the best device to 
execute a function. The models will attempt to capture the 
correlation between input/output size, input/output data 
shape (when available), and data access pattern in memory 
(model inputs) and execution time and power consumption 
(model outputs) using one or more CPU cores or 
accelerator(s). The models will be co-designed with the 
application use cases of ECOSCALE. This effort entails 
three parts. A first, training part will use the target 
applications with different realistic inputs, in order to 
capture static and dynamic properties of the input and 
record the corresponding execution time and power outputs. 
A second, model building part will entail an exploration of 
models for predicting outputs from inputs. We intend to use 
an array of regression, SVM and PCA techniques for this 
purpose, building on prior experience on models for 
predicting execution time and power for the purpose of 
multi-dimensional program adaptation [8]. A third, 
actuation part, will deploy the models with actual running 
applications, using hardware performance monitors and 
function instrumentation to capture the static and dynamic 
properties of the unseen input, and project execution time 
and power using the trained models with hardwired 
parameters. This will enable the runtime scheduler to 
judiciously and dynamically select and distribute functions 
for hardware acceleration. 

 

Figure 5. Interaction and control flow between the 
three abstraction layers. 

 
We will also explore methods to minimize non-

overlapped communication latency within each 
ECOSCALE node and across nodes in the same cluster. We 
will implement one scheduler per worker, which will 
manage the local reconfigurable blocks and the execution of 
the accelerated functions. Whenever a function is called,  a 
work and data distribution algorithm in the runtime system 
(included in the Execution Engine in Figure 6) will decide 
whether the function will be executed in software or in 
hardware based on the local status and the status of other 
Workers in the vicinity. To curb the overhead of monitoring 

remote status, we will implement local work queues per 
worker and infer (approximately) the status of remote 
workers via the status of the local queue, using techniques 
inspired by Lazy Scheduling [9]. A history of the function 
calls as well as their execution time is stored in a History 
file (Execution History block). The runtime 
scheduler/daemon will read periodically the system status 
and the History file in order to decide at runtime what 
functions should be loaded on the reconfiguration block.  

 
4.3. Middleware and High Level Synthesis 

The middleware bridges the gap between the 
reconfigurable hardware and the software parts of the full 
application, providing the means to enable a fully software-
driven development flow. The middleware will play two 
main roles, namely providing the partial-reconfiguration 
toolset and the SW-HW communication library. Thus, first, 
it performs partial reconfiguration at runtime. This includes 
the development of a low level driver backend that will add 
virtualization features, such as defragmenting the 
reconfigurable resources, accelerator migration, and pre-
emptive hardware execution. Second, it provides a 
communication library and API in order to call any function 
that is implemented in hardware.  

ECOSCALE will support hardware-assisted virtualization 
in order to increase the performance and to lower the power 
consumption. We will both extend the HLS tool developed 
in the FASTCUDA project [20], and exploit recently 
introduced industrial tools (e.g. the SDAccel tool flow from 
Xilinx). The main focus will be on effectively exploiting the 
huge cost/performance trade-off space provided by 
ECOSCALE, while requiring minimal intervention and no 
specific hardware design experience from the programmer.  

 The ECOSCALE HLS tool will tackle this problem by 
providing a way to specify performance and area 
constraints, and then automatically exploring high-
performance hardware implementation techniques, such as 
pipelining, loop unrolling, as well as data storage and data-
path partitioning and duplication, starting from a non-
hardware specific OpenCL model. Current HLS tools 
require an experienced designer to take architectural 
decisions, such as the DRAM port parallelism, the local 
data memory partitioning, and so on. These will be 
automated as much as possible (while still retaining 
designer control, if and when needed). 

The tool will generate at compile time a library with the 
hardware implementations of those functions that will be 
implemented on reconfigurable resources. These 
implementations will be transformed with the help of a 
Physical Implementation Tool, which will extend the 
existing GoAhead framework [10], automatically into an 
accelerator module library. This includes the steps of 
resource budgeting, floorplanning, communication 
infrastructure synthesis and physical constraint generation 
for the reconfigurable fabric’s vendor place and route tools, 
as well as the final partial bitstream assembly. By 
minimizing module bounding boxes and by using 
configuration data compression [11], we will reduce 



 

 

memory requirements, configuration latency and 
configuration power consumption at the same time.   

At runtime, the system can use this library in a very 
flexible manner. For example, we consider chaining 
together different accelerator modules for building longer 
complex processing pipelines, when needed. This will 
substantially increase the amount of processing that is 
carried out per unit of transferred data and will 
consequently result in substantial energy savings.  

 
4.4. Programming Model  

ECOSCALE will develop co-designed HPC applications 
based on hierarchical data partitioning to achieve locality 
and reduced data traffic and associated power consumption 
and latency. The programming model for expressing 
hierarchical data partitioning will start from the widely used 
MPI-3.0 standard, leveraging the new topology 
abstractions. The focus of the programming model efforts in 
ECOSCALE is on two directions. The first is to extend 
OpenCL to support multiple workers (“devices” in OpenCL 
nomenclature), distributed command queues and transparent 
command queue management across workers in a node. The 
second direction is on providing a transparent substrate to 
achieve data access locality from OpenCL instances 
running in workers. We will treat the global memory in 
each compute node as a collection of NUMA domains 
accessible via the UNIMEM interface. We will explore 
topology-aware global memory allocators in these domains, 
to be used by the OpenCL runtime for implicit data 
allocation, migration and replication between workers.  

5. Conclusion 

Today's technologies and architectures cannot efficiently 
scale to exascale. A holistic approach tailored to the 
characteristics and trends of future HPC application is 
required. Towards this end, ECOSCALE employs a novel 
hardware architecture, runtime system and programming 
model in order to be able to directly map the HPC 
application hierarchical structures to hardware resources, 
while in parallel it takes full advantage of energy-efficient 
reconfigurable computing. ECOSCALE will provide 
solutions for all the aspects of an HPC environment, 
ranging from architecture and runtime optimizations, to 
partial reconfiguration, HLS and hardware virtualization. 

6. Acknowledgement 

This research project is supported by the European 
Commission under the H2020 Programme and the 
ECOSCALE project (grant agreement 671632).  

References 

[1] J. Dongarra, P. Beckman, T. Moore, and P. e. a., "The 
International Exascale Software Project Roadmap", IJHPCA., 
25(1):3–60, Feb. 2011. 

[2] B. Prisacari, G. Rodriguez, P. Heidelberger, D. Chen, C. 
Minkenberg, and T. Hoefler, "Efficient task placement and routing 
of nearest neighbor exchanges in dragonfly networks", ACM, 23rd 
HPDC, 2014. 

[3] I-Hsin Chung, C.-R. Lee, J. Zhou, and Y.-Ching Chung, 
"Hierarchical Mapping for HPC Applications",  Parallel 
Processing Letters, 2011. 

[4] A. Abdel-Gawad, M. Thottethodi, and A. Bhatele, "RAHTM: 
Routing-Algorithm Aware Hierarchical Task Mapping", SC, 2014. 

[5] J. Jose, S. Potluri, H. Subramoni, X. Lu, e.a. "Designing 
Scalable Out-of-core Sorting with Hybrid MPI+PGAS 
Programming Models", 8th PGAS, 2014. 

[6] Y. Durand et al., "EUROSERVER: Energy Efficient Node for 
European Micro-servers",  Euromicro DSD, 2014. 

[7] D. Koch, "Partial Reconfiguration on FPGAs – Architectures, 
Tools and Applications", Springer, 2012. 

[8] M. Curtis-Maury, A. Shah, F. Blagojevic, D. Nikolopoulos, 
B. de Supinski, M. Schulz, “Prediction models for multi-
dimensional power-performance optimization on many cores”, 
PACT, pp. 250-259, 2008. 

[9] A. Tzannes, G. C. Caragea, U. Vishkin, e.a., "Lazy 
Scheduling: A Runtime Adaptive Scheduler for Declarative 
Parallelism" ACM Trans. Program. Lang. Syst , 2014. 

[10]  C. Beckhoff, D. Koch and J. Torresen, "GoAhead: A Partial 
Reconfiguration Framework", FCCM, 2012. 

[11]  Dirk Koch, Christian Beckhoff and Jurgen Teich, "Hardware 
Decompression Techniques for FPGA-based Embedded Systems",  
ACM TRETS, 2009. 

[12]  M. Katevenis, "Interprocessor communication seen as load-
store instruction generalization", K. Bertels e.a. (Eds.), Delft,  '07. 

[13]  D. Burke, et al., “RAMP blue: Implementation of a manycore 
1008 processor system”, RSSI, 2008. 

[14] A. P. Michael Showerman and J. Enos, “QP: a heterogeneous 
multi- accelerator cluster”, SC, 2010.  

[15]  P. P. Kuen Hung Tsoi, A. Tse, and W. Luk, “Programming 
framework for clusters with heterogeneous accelerators”, Highly-
Efficient Accelerators and Reconfigurable Technologies, 2010. 

[16]  L. Ling et al, “High-performance, Energy-efficient Platforms 
Using In-socket FPGA Accelerators”, FPGA, 2009.  

[17]  G. Chrysos, P. Dagritzikos, I. Papaefstathiou, and A. Dollas. 
HC-CART, "A parallel system implementation of data mining 
classification and regression tree (CART) algorithm on a multi-
FPGA system", TACO, 2013. 

[18]  Q. Jin, D. Dong, A. H. T. Tse, G. C. T-Chow, D. B. Thomas, 
W. Luk, and S. Weston, "Multi-level Customisation Framework 
for Curve Based Monte Carlo Financial Simulations", ARC, 2012 

[19]  http://www.wired.com/2014/06/microsoft-fpga/. 

[20]  I. Mavroidis., I. Papaefstathiou, L. Lavagno, e.a., 
"FASTCUDA: Open Source FPGA Accelerator & Hardware-
Software Codesign Toolset for CUDA Kernels", DSD, 2012. 

[21]  http://www.chrec.org/ngforum/  

[22]  R. Baxter et al., “Maxwell - a 64 FPGA Supercomputer”, 
Engineering Letters, 2008 

[23]  M. Showerman et al., “QP: A Heterogeneous Multi-
Accelerator Cluster”, High-Performance Clustered Computing,'09 

[24]  http://www.timelogic.com/catalog/752/biocomputing-
platforms. 

[25]  CoreLink CCI-400 Cache Coherent Interconnect: 
http://www.arm.com/products/system-ip/interconnect/corelink-cci-
400.php. 

[26]  Website of ECOSCALE: http://www.ecoscale.eu/ 


