
29 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Designing parameterizable hardware IPs in a model-based design environment for high-level synthesis / Butt, SHAHZAD
AHMAD; Roozmeh, Mehdi; Lavagno, Luciano. - In: ACM TRANSACTIONS ON EMBEDDED COMPUTING SYSTEMS. -
ISSN 1539-9087. - 15:2(2016), pp. 1-28. [10.1145/2871737]

Original

Designing parameterizable hardware IPs in a model-based design environment for high-level synthesis

Publisher:

Published
DOI:10.1145/2871737

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2648227 since: 2016-09-12T15:27:03Z

Association for Computing Machinery

22

Designing Parameterizable Hardware IPs in a Model-based Design
Environment for High Level Synthesis

Shahzad Ahmad Butt, National University of Computer and Emerging Sciences,
shahzad.butt@nu.edu.pk

Mehdi Roozmeh, Politecnico di Torino, mehdi.roozmeh@polito.it
Luciano Lavagno, Politecnico di Torino, luciano.lavagno@polito.it

Model-based hardware design allows one to map a single model to multiple hardware and/or software ar-
chitectures, essentially eliminating one of the major limitations of manual coding in C or RTL. Model-based
design for hardware implementation has traditionally offered a limited set of micro-architectures, which are
typically suitable only for some application scenarios. In this paper we illustrate how DSP algorithms can be
modeled as flexible intellectual property blocks, to be used within the popular Simulink model-based design
environment. These blocks are written in C, and are designed for both functional simulation and hardware
implementation, including architectural design space exploration and hardware implementation through
high level synthesis. A key advantage of our modeling approach is that the very same bit-accurate model is
used for simulation and high-level synthesis. To prove the feasibility of our proposed approach, we modeled
an FFT algorithm and synthesized it for different DSP applications with very different performance and
cost requirements. We also implemented a high level synthesis IP generator that can generate flexible FFT
HLS-IP blocks that can be mapped to multiple micro/macro-architectures, to enable design space exploration
as well as being used for functional simulation in the Simulink environment.

Categories and Subject Descriptors: B.5.2 [REGISTER-TRANSFER-LEVEL IMPLEMENTATION]: De-
sign Aids; B.5.2 [SPECIAL-PURPOSE AND APPLICATION-BASED SYSTEMS]: Real-time and embed-
ded systems

General Terms: Design, Algorithms, Performance

Additional Key Words and Phrases: model-based design, model-based high level synthesis, simulink mod-
eling, parameterized IPs, IP generator, design reuse, audio detector, GPS acquisition, C/C++ hardware IP
description, FFT

ACM Reference Format:
Butt, S.A., Lavagno, L., Roozmeh, M. 2015. Designing Parameterized Signal Processing IPs for High Level
Synthesis in a Model Based Design Environment. ACM Trans. Embedd. Comput. Syst. 10, 1, Article 22
(August 2015), 28 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION
Model-based design environments (MBDEs), such as Simulink, are becoming more
widespread as they expand their capabilities of synthesizing efficient hardware and
software from high-level algorithmic models. They find application in very important
areas such as digital signal processing (DSP), telecommunications, and control sys-
tems. MBDEs allow modeling of complex algorithms and systems at a very abstract
level, using pre-defined primitive micro and macro blocks (e.g. adders, multipliers,
multiplexers, FIR filters, FFTs). The designer can thus focus on defining the best al-
gorithm without caring for tedious low level implementation details. Such details can
be introduced later in the design flow via automated model-to-model translation, in-
cluding both direct mapping and sophisticated hardware and software synthesis algo-
rithms, or through a user-directed refinement process.

One of the major advantages of MBD tools is that they let the designer verify and val-
idate abstract golden models against their design specifications. The designer can then
use these models to generate code targeting either a specific embedded processor for
software implementation, or a register transfer level (RTL) description for hardware
synthesis. The process of generating software code or the RTL hardware description is

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 22, Publication date: August 2015.

22:2 S.A. Butt et al.

normally assisted by the designer by providing constraints and directives. Algorithmic
design provides a much better scope for power, area and performance optimizations as
compared to what can be achieved at lower levels. MBD also greatly eases the verifica-
tion task by allowing one to re-use already verified macro blocks and more importantly
by letting the designer use the same verified golden reference model throughout the
complete design, verification and implementation flow.

State of the art MBD tools used in the industry can generate very efficient and op-
timized software code for different target processors, by using information about the
target processor architecture. But hardware implementation essentially entails the
generation of a cycle accurate RTL model from very abstract block level models that
have no notion of clock cycles. Hence the set of choices is much broader, and the normal
direct translation strategy used for software implementation is likely to fail. Current
MBD tools, such as Simulink from The Mathworks, can generate a very limited set
of hardware implementations starting from a given model. In other words, they have
limited capabilities to explore the hardware design space starting from a single model,
due to reasons that are described more in detail in the next sections. This is partic-
ularly true in the case of complex blocks like a Fast Fourier Transform (FFT), a Dis-
crete Cosine Transform (DCT) or a Viterbi decoder, which are normally represented as
Simulink macro blocks.

Simulink is one of the best known and most extensively used MBD tools. It has
a rich library of components that can be used to model systems and algorithms from
many different domains. In Simulink libraries, the components are arranged in groups
known as blocksets, for example the DSP-blockset that can be used to model DSP algo-
rithms. Simulink libraries are extensible through a mechanism known as S-functions.
It provides a component modeling paradigm in which the functionality (algorithm) as
well as the interaction with other components can be represented in a well-defined
way. The S-functions can be written in C, FORTRAN, or MATLAB, as required.

Simulink comes integrated with a tool called Real Time Workshop (RTW). RTW is a
set of code generators known as target language compilers (TLC) that can translate a
Simulink model to C/C++. Each TLC can be optimized to generate code for a different
processor or platform. Embedded Real Time (ERT) coder is one of these TLCs, which is
optimized to generate software code for embedded applications. It can generate float-
ing and fixed point code. Simulink models can be also translated to RTL description
for hardware synthesis through a tool called HDL Coder. Efficient hardware imple-
mentation starting from an abstract model generally requires effective design space
exploration (DSE) from a single model. HDL Coder, however, has limited capabilities
in this regard, especially when it comes to complex algorithms like FFT, DCT, and
Viterbi decoders. Each HDL coder block is mapped to a few micro-architectures, e.g.
fully sequential and fully pipelined, which provide only a few design points, such as
minimum area or maximum throughput. Many of the architectural trade-offs that are
essential for optimized hardware implementation, such as independent definition or
throughput and latency, or the choice of memory parallelism and architecture, may
even need to be performed manually, by changing the source model every time. This
changing of model defies one of the main purposes of model-based design, by requiring
different models for different implementations, and hence making the design process
long and tedious.

It was shown in recent work [Butt and Lavagno 2012a][Sayyah et al. 2011] that
effective hardware synthesis and design space exploration can be performed start-
ing from Simulink models. Simulink can be used as a modeling front-end to high
level hardware synthesis tools, which take as input functional specifications in the
form of C/C++ or SystemC. The strategy that was used consisted of first translating
a Simulink model to C/C++ using RTW, and then using this as input to high level

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 22, Publication date: August 2015.

Designing Parameterized Signal Processing IPs for High Level Synthesis in a MBDE 22:3

hardware synthesis after proper definition of hardware interfaces. The connection be-
tween the Simulink model and high level synthesis (HLS) was thus obtained in that
work by using the automatic C code generation capability provided by RTW. The added
advantage that comes through the use of a high level hardware synthesis tool is that
hardware design space exploration can be easily performed starting from same single
model, with little modification of the functional C code generated from the Simulink
model.

From our experience, however, we observed that the C code generated by RTW can
be used efficiently for hardware synthesis only if it involves mostly simple blocks. This
is the case when the algorithmic design is performed using fine-grained blocks. But
when it comes to using complex macro block like Fast Fourier Transform (FFT) or
Discrete Cosine Transform (DCT), then the software-oriented C code that is generated
by RTW limits the hardware design space that can be explored. This is because the
structure of the SW-oriented C code used to model such blocks can be based on a signal
flow representation that inherently limits, as we will argue below, the kind of micro-
architectures that can be explored. In this paper we propose the modeling of such
complex macro-blocks still using plain C, which is essential for smooth integration
with Simulink-based verification, but using a code structure that lends itself to better
HW design space exploration as a parameterized high-level Intellectual Property (IP)
block. Figure-1 illustrates in detail the integration of this kind of hardware-oriented
IP in the Simulink model-based design flow for high level hardware synthesis.

DDC
FFT

S-function

Code
Gen

IFFTDD
Peak

Search

FFT

S-Function

described in C/C++

to target hardware

implementation

SimulinkGPSAcquisition.mdl

Real Time

Workshop(RTW)

SystemC Wrapping

(Hardware Part only)

High Level Hardware Synthesis and

Design Space Exploration

Profile Based Partitioning

Control

dominated part

maps to software

after profiling for

target processor

platform

• Serial Search

• LFSR etc.

ntrol

SW HW

Computationally

Complex blocks

maps to hardware

• DDC

• CARR

• IFFTFT

FFT IP

C/C++ model generated by

RTW

Fig. 1. Complete Model-based design flow using the FFT S-function IP

We need a specialized C model because state of the art HLS tools can effectively ex-
plore the micro/macro architectural design space starting from a single model only if
it explicitly exposes parallelism and memory architecture in a form that can be used

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 22, Publication date: August 2015.

22:4 S.A. Butt et al.

(e.g. by unrolling, pipelining and merging loops) to efficiently map code blocks (func-
tions/loops) to concurrent hardware units. ERT deals with complex blocks like FFT,
DCT, and Viterbi decoder as atomic blocks and does not have a suitable representation
with enough parallelism to be used for HW design space exploration.

The key idea of our approach is to use a single functional model, composed of several
C functions, which can be scheduled both as parallel threads and as a single thread,
and which can use a variety of memory architectures (register file, single-ported or
dual-ported memory), thus providing a very broad area/performance/power trade-off
space.

2. RELATED WORK
Simulink models have been used for hardware synthesis and hardware/software co-
design in the past. For example, [Toledo et al. 2006] presents a Simulink image pro-
cessing blockset for hardware/software co-design, using Xilinx System Generator as
the backend for hardware generation. The authors have developed a component li-
brary that can be used for modeling image processing algorithms. The Xilinx System
Generator has been used to translate Simulink models to RTL. It has limitations that
are more or less similar to those of HDL Coder. In [Haubelt et al. 2008] an ESL design
tool is presented that can do automatic design space exploration starting from behav-
ioral SystemC models, but the modeling is completely done in SystemC, whereas we
propose to use Simulink as a modeling environment . [Huang et al. 2007] presents a
design flow for mapping a Simulink model to a full Multi-Processor System-on-Chip.
The design flow allows processor and task design space exploration at various abstrac-
tion levels, but does not provide any support for mapping part of the model to dedicated
hardware.

In [Butt et al. 2011] we discussed how to configure RTW for generating C code from
Simulink models and also to how to wrap the automatically generated code into a Sys-
temC wrapper that can be used for hardware implementation. We focused on how to
tune RTW for generating code that is suitable for HLS and on how to obtain different
points in the design space without requiring a deep understanding of the automati-
cally generated SystemC code. On the other hand, this new paper discusses how to
model complex algorithms in a way that allows greater reuse of the same model in dif-
ferent application scenarios, by enabling design space exploration and hence multiple
implementations starting from the same single model.

In [Wernsing and Stitt 2010] the authors define a modeling style that allows for
efficient HW/SW tradeoffs. On the other hand, we use Simulink, that is a well-known
industrial implementation of a similar data-flow modeling style. [Kienhuis et al. 2000]
presents a tool named Compaan that automatically transforms a nested loop program
written as MATLAB Script or C code into a process network specification. It can extract
parallelism from MATLAB and C code, but requires code rewriting to fit the Compaan
modeling style (affine array indices within nested loops without control), while in our
case we exploit designer-provided top-level parallelism among Simulink blocks.

Simulink HDL Coder generates synthesizable RTL code from Simulink mod-
els. However, the generated RTL code has a close 1-to-1 correspondence with the
Simulink model, hence different micro-architectures in hardware require very differ-
ent Simulink models, thus defeating the separation between functionality and archi-
tecture that is essential for true model-based design. Moreover, most architectural
trade-offs like resource sharing, pipelining and exposing more parallelism are tedious
to model in Simulink. Recent versions of HDL coder include options to choose the
micro-architecture of complex blocks like FFT or DCT among a very small set of op-
tions. For FFT this includes only two extreme options, namely fully resource shared
with low throughput structurally pipelined with streaming interfaces (one sample per

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 22, Publication date: August 2015.

Designing Parameterized Signal Processing IPs for High Level Synthesis in a MBDE 22:5

cycle). This is clearly a move in the right direction, but we argue, and will show exper-
imentally in the last section, that our strategy generates competitive results, and is
based on a much more flexible design flow, including easier interfacing with other HW
blocks, and exploration of a much broader design space from a single model.

Another approach that is normally used by FPGA vendors is to provide the end users
with an IP generator that can take as input different parameters and then produce an
RTL description that is tuned for their FPGA architectures. For example in [Mitra
1999] the authors discuss the design of a tool for creating such IP cores in VHDL. The
tool makes it possible for third-party IP developers to create cores targeted to XILINX
FPGAs. For FFT Altera has a tool called FFT MegaCore Function and Xilinx has an
FFT block called FFT LogicCore that can generate RTL for different FFT IPs, but they
mostly rely on either a fully concurrent streaming architecture or a very sequential
resource shared architectures.

Our goal, on the other hand, is to represent IPs in a flexible way, at a high level of ab-
straction, to allow mapping with different architectures and levels of concurrency. We
also ease the task of system verification by simulation, by making our models integrat-
able into Simulink as S-functions. Once the model is integrated as an S-function into
the full Simulink system model, the entire system can be verified at the algorithmic
level and can generate a set of golden vectors for RTL verification.

Since this paper uses the FFT as a commonly used IP block that needs to be mod-
eled specifically for HW implementation, we now review papers devoted to parameter-
ized HW FFT models. Traditionally this kind of IP blocks are designed [Lee and Chen
2006a][Chouliaras et al. 2009] at the Register Transfer Level, in order to be directly
used for low level implementation steps like logic synthesis and physical design. Many
architectures exist that can be used for optimized implementation in different applica-
tion scenarios. They define the level of concurrency and the computation parallelism
for various scenarios and also provide techniques to optimize the required memory
architecture. However, these IPs offer very little room for architectural optimization-
s/changes required by specific application scenarios. Only in a very few cases, such as
those described in [Murphy et al. 2004], the data-path and the algorithmic configura-
tion can be parameterized.

Little work has been performed in the domain of high level synthesis-IPs (HLS-IPs).
In [Takach 2010] the authors discuss the design of parameterizable FFT IPs. They fo-
cus on representing the design using advanced C++ templates and tool-specific data
type libraries to describe bit accurate hardware. However, Simulink cannot use C++
templates and would have difficulties incorporating external libraries within S func-
tions. On the other hand, our parameterized IP blocks are modeled in plain C, to be com-
patible with the Simulink S-function modeling style. The authors in [Dave et al. 2006]
also considered architectural exploration using BlueSpec SystemVerilog, but they did
not fully exploit the power of high-level synthesis, since the micro-architecture is flexi-
bly coded in their SystemVerilog model. Moreover, SystemVerilog cannot be used inside
Simulink for algorithmic verification in the same way as our C model can.

In [Kee et al. 2008] the authors discuss an approach that is related to ours in terms
of functional modeling. They present a technique that allows one to generate different
FFT IPs with different levels of concurrency and parallelism. The generated FFT IPs
are LabView [Kee et al. 2008] data-path diagrams that can be synthesized to RTL
using an FPGA synthesis tool that is a part of the LabView design suite.

3. PROPOSED DESIGN FLOW FOR HLS-IPS
Figure-2 shows our proposed design flow for HLS-IP integration, verification and high
level synthesis. In our recent publication [Butt and Lavagno 2012b] we proposed a
design flow that allows one to model hardware for complex algorithms in plain C for

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 22, Publication date: August 2015.

22:6 S.A. Butt et al.

HLS Tool

Simulink

S-Function Wrappers

Functional

Description

Functional

Description

S-Function

Configuration

HLS-IP

Generator

Functional

Template

……………

…………….

…………….

Functional

Description

SystemC

Wrappers

HLS Setup

Scripts

C/C++

RTL-1 RTL-2 RTL3

Fig. 2. FFT HLS-IP generation, verification and synthesis design flow

integration in the Simulink model-based design environment. We also discussed how
to use the same functional C code for efficient synthesis with a high level hardware
synthesis tool, which accepts algorithmic specification in C/C++ as input. FFT block
was used as case study. In that paper we used the FFT as a case study to highlight the
importance of algorithm partitioning and selection of concurrency during high level
synthesis to obtain optimized implementations. In that work the focus was mostly
on figuring out how to define algorithms like the FFT in plain C for integration in the
Simulink environment, and how to differentiate and choose between interesting signal
flow graphs for hardware implementation that offer better opportunities for design
space exploration. The FFT algorithm was modeled to accept variations in terms of
data-path size, transform length (number of samples) and, up to some extent, micro-
architecture. The way in which the FFT was modeled only allowed one to synthesize
hardware that used a shared memory and had a fixed concurrency.

In this paper, on the other hand, we discuss a modeling style for HLS-IP (which
is again an FFT, due to its widespread use) that allows one to synthesize hardware
implementations that can have different level of concurrency and micro-architecture.
Our key idea is to generate a partitioned model of the FFT, where different partitions
can be merged in order to obtain different implementations with different cost and
performance as required. In this new paper we also present an HLS-IP generator that
automates many design steps that were left manual in that earlier paper.

The complete design flow is shown in Figure-2. The figure shows that the HLS-IP can
be generated automatically based on a configuration file. Note, however, that the same
approach can be used for HLS-IP integration, simulation and synthesis of a manual
description written following the guidelines and constraints given in this paper. The
first step that must be completed by a user of our IP is to write a small configuration
file that defines various parameters, such as the length of the FFT, the widths of the
data-path layers, and the type of SystemC wrappers to be generated (if required by the
HLS tool). The FFT HLS-IP generator produces:

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 22, Publication date: August 2015.

Designing Parameterized Signal Processing IPs for High Level Synthesis in a MBDE 22:7

(1) the algorithmic description in C,
(2) the S-function wrappers that allow the integration of the generated C-code with

Simulink models for simulation and verification,
(3) the SystemC wrapper (if required), and
(4) a set of HLS scripts that can map the generated IP to various micro/macro architec-

tures to ease the hardware design space exploration.

Once the set of scripts and the C model are generated, the next steps consist of:

— Using the S-function wrapper and the generated code for simulation-based verifi-
cation in Simulink. This step uses the full power of the Simulink/Matlab modeling
environments to find the best overall algorithmic solution to the problem at hand.
In this phase also the arithmetic precision that is required to satisfy the application
requirements is identified. We provide several examples of such algorithmic models
in Section-7.

— Performing HLS and design space exploration starting from the HLS-IP functional
code. The FFT HLS-IP will in most cases appear as a separate hardware block in the
final implementation, unless the performance requirements are really low, and it can
be scheduled with other functionalities in order to save area. If the other parts of the
model also need to be implemented in hardware, then they can also be mapped to
hardware by generating C-code from the Simulink model and then using this code as
input to the C-to-RTL HLS tools, as discussed in detail in [Sayyah et al. 2011].

4. HLS-IP MODELING STRATEGY
Modeling HLS-IP as plain C code that still enables HW design space explo-
ration through HLS can be challenging. Even though HLS can vary several micro-
architectural parameters, such as architectural parallelism, loop pipelining, resource
sharing, memory splitting and merging, and so on, several of these options are avail-
able only when the appropriate modeling style is used in C. For example in DSP ap-
plications the data-path width is decided based on the results of several bit-accurate
simulations (e.g. using the fixed point optimization capabilities of Simulink). However,
representing bit-accurate types in plain C can be tricky. Moreover, DSP applications
derive most of their performance from both architectural level and fine-grained paral-
lelism and pipelining.

We developed a modeling strategy based on a representation which can be easily
used to explore different micro-architectures. It also accurately models different data-
path bit widths and arithmetic overflow/saturation modes in a single C model, which
is both compatible with the S-function modeling style and amenable to efficient HW
synthesis. This strategy is illustrated in this paper, for the sake of explanation, with an
FFT algorithm, but it can be easily applied to a more general class of DSP algorithms
(e.g. DCT, Viterbi, etc.). Also blocks that access memory in a non-linear fashion, such as
cache controllers, and non-linear kernels [Butt et al. 2014] would benefit from such a
synthesis-oriented Simulink HLS-IP approach. During partitioning the general notion
of maximizing throughput and simplifying interface cost should be followed. But one
should always keep in mind that the partitions and interfaces should be defined in
such a way that they can be merged depending on the target application throughput
requirements, which may result in resource savings.

4.1. Signal Flow Graph Representation and Algorithm Partitioning
Modern state of the art HLS tools are very good at scheduling operations onto a shared
resource architecture, but they have only limited capabilities to extract and expose
parallelism in sequential descriptions. So a very important first step during the design

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 22, Publication date: August 2015.

22:8 S.A. Butt et al.

of HLS-IPs is to select a suitable signal flow graph (SFG, also known as data Flow
Graph) that allows one to expose parallelism in an explicit way.

The Fourier Transform is widely used in signal processing to transform signals from
the time domain to the frequency domain and vice-versa. The Fourier Transform that
operates on discrete data is called Discrete Fourier Transform (DFT). The Fast Fourier
Transform (FFT) is one of the most famous and widely used algorithms to calculate
the DFT and its inverse. The FFT algorithm exploits the symmetry of the calculation
and the re-use of already performed calculations to reduce the computation complexity
from N2 to NLog2N for a DFT that is computed on N samples. The FFT algorithm is
selected as case study because it can be represented using different non-trivial SFGs
and finds application in many signal processing areas. These various signal flow graph
representations are beneficial for targeting different application domains with differ-
ent performance requirements under different constraints. Our target is to derive all
those that required to cover a very broad design space from a single functional model
in C.

WN
0

WN
0

WN
0

WN
1

WN
0

WN
2

WN
0 WN

3
WN

2

WN
0

WN
2

WN
0

-1

-1

-1

-1

-1

-1

-1

-1
-1

-1

-1

-1

Fig. 3. Signal flow graph for radix-2, 8-point in place FFT computations

Figure-3 shows a signal flow graph (SFG) for computing an FFT with 8 samples. The
SFG represents the fully unrolled computations and data dependencies (and thus the
full available parallelism) implied by the C code structure used by RTW for a software-
oriented FFT implementation. In this SFG each node represents a complex operator
and each arc represents a complex value. It is called radix-2 FFT since its basic unit,
called butterfly and marked by the dotted box at the top left of the figure, consumes two
input samples to produce two output samples. Constants marked as W 0

N , W 1
N , W 2

N and
W 3

N are complex exponentials, known as twiddle factors. Inputs x(0), x(1), . . .x(7) are
the complex time domain samples of the signal to be transformed and outputs X(0),
X(1), . . .X(7) are the complex values of the frequency spectrum of the signal. Each
butterfly represents the multiplication of twiddle factors by input samples and then
one addition and subtraction to calculate outputs.

The signal flow graph in Figure-3 is called in-place FFT because every butterfly can
write outputs to the same memory from where it has read the inputs. Such a represen-

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 22, Publication date: August 2015.

Designing Parameterized Signal Processing IPs for High Level Synthesis in a MBDE 22:9

tation is useful for implementing a resource shared FFT with relatively low through-
put requirements, targeting low power applications with limited on chip memory size
and bandwidth. But this kind of signal flow graph is not well suited when through-
put requirements are high and either a pipelined implementation or a fully unrolled
register-based (rather than memory-based) implementation is required. For example,
let us assume that in order to increase throughput we unroll the inner loop that per-
forms butterflies in a stage (a column of Figure-3), and that stage inputs are mapped to
registers. After performing a butterfly computation, the inputs for the next butterflies
mapped to the same multiplier/adder/subtractor resources will come from signal flow
graph positions that are different from the first stage, which in hardware will imply
high multiplexing cost and hence will not be efficient. Similarly, some tools and mem-
ory architectures may not efficiently support pipelining of loops in which computations
read and write from the same memory, due to the need to use multi-ported memories.
This, on the other hand, would be easy in software, for which the graph in Figure-3
works best.

WN
0

WN
0

WN
0

WN
0

WN
0

WN
0

WN
2

WN
2

WN
0

WN
1

WN
2

WN
3

-1

-1

-1

-1

Fig. 4. The Signal flow graph for radix-2, 8-point FFT computations

Figure-4 shows another signal flow graph for FFT, which also can be represented in
C in the form of nested loops, but is much more flexible than the one in Figure-3 to
derive many possible implementations using HLS. In particular, it can be mapped to a
register-based unrolled implementation.

The advantage of such an FFT representation with respect to Figure-3 is that the
interconnection network between the stages is the same for all the stages, which re-
sults in less multiplexing cost when a stage is partially or fully unrolled and subse-
quent stages are implemented by iteration. Even when a memory-based implementa-
tion with more aggressive resource sharing and lower throughput is required, still the
signal flow graph in Figure-4 is more flexible. This is because one can always map in-
puts and outputs of a butterfly to two different memories, while still allowing partial
unrolling depending on the memory read/write bandwidth. The signal flow graph in
Figure-4 can even be mapped to a single on-chip memory implementation by utilizing
the memory merging capabilities offered by HLS tools, which allows one to map two
different memories of different lengths and widths (arrays in C) to a single aggregate

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 22, Publication date: August 2015.

22:10 S.A. Butt et al.

memory. In our FFT HLS-IP we used the SFG in Figure-4, because it can offer broader
design space exploration as compared to Figure-3, which corresponds to the default
software implementation from Simulink RTW.

4.2. Parameterizable Datapath Modeling
The datapath of an HLS-IP should be modeled using parameterizable arithmetic data
types. Which allows to appropriately select bit-widths and different point in datapath.
Another constraint on these data types is that they should be described in plain C (not
C++) to make them usable in Simulink C S-functions. The following discussion uses
FFT butterfly units as example. A detailed representation of the signal flow graph of a
radix-2 butterfly is shown in Figure-5, where values and operators are on real, rather
than complex, numbers. Here X0r, X0i and X1r, X1i represent inputs, Y0r, Y0i and Y1r,
Y1i represent outputs and WNr, WNi represent twiddle factors. Superscripts ‘i’ and ‘r’
identify the real and imaginary parts respectively. For hardware implementation this
local signal flow graph must be represented as a fixed point data-path with specific
bit widths. Based on our design flow requirements, the same representation must be
usable for HLS and for simulation in Simulink. In the next section we discuss how
we modeled fixed point operators with different arithmetic modes to satisfy all these
requirements.

4.2.1. Modeling Arithmetic Operators for HLS. Fixed point operators take two inputs and
produce an output, each with a given bit width, location of the decimal point, and
rounding and overflow mode. Some pre and post processing steps, such as decimal
point alignment, rounding and overflow management are necessary to correctly per-
form arithmetic operations. We divided our C-based implementation of each fixed point
arithmetic operator in three steps.

— core operation (including alignment),
— rounding,
— overflow management.

X0

r
 X0

i

WN

r
 WN

i

X1

r
 X1

i

Y0

r
 Y0

i

Y1

r
 Y1

i

-1 -1

-1

Fig. 5. Figure 4. Radix-2 butterfly signal flow graph

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 22, Publication date: August 2015.

Designing Parameterized Signal Processing IPs for High Level Synthesis in a MBDE 22:11

Alignment is included in the core operation because it depends on the operation (e.g.
for addition or subtractions inputs need to be aligned, while for multiplication they do
not).

Rounding, overflow management and core operation are modeled as reusable plain
C functions. For example, the overflow manager function (implementing wrapping and
saturation) is called when any addition, multiplication or subtraction operation re-
quires an output to be stored in fewer bits than the full bit width of the core operation
result, which can be computed from the input operands. The rounding function on the
other hand (implementing truncation, ceiling, floor and rounding) is called when the
number of bits for the output fractional part is reduced. Finally, functions that are
used to model the core operation take as input the operands with bit width and dec-
imal point information, and they produce an output with the desired bit width and
decimal point. They call rounding and overflow functions as needed.

All these functions are automatically inlined during hardware synthesis, and since
the precision, point position, rounding and overflow selection arguments are synthesis-
time constants, the high-level synthesis tool can perform efficient bit width inference
for all needed hardware resources.

Note that this method is only applicable if the total bit width for each input or output
(including temporary outputs before overflow and rounding management) is less than
or equal to the maximum integer size supported by the machine where Simulink and
the high-level synthesis tool are executed (typically 64 bits).

Normally HLS tools use data types, like sc fixed or ac fixed, which use C++ tem-
plates to make arithmetic expression representation and automated conversions and
casting easier and more natural to handle. However, such sophisticated mechanisms
are not available in the plain C which is required by our methodology, since we do not
want to use different models for verification and hardware synthesis, which would re-
quire one to re-verify the HW-oriented models to be used by the high-level synthesis
tool. However, we observed that if masking coupled with sign extension is applied at
appropriate places in the data-path, then the HLS tool can identify and optimize the
data widths of the allocated resources even with our plain C representation of fixed-
point data types. Moreover, we are advocating this style only for frequently re-used IP
blocks, where hardware implementation flexibility and efficiency are more important
than ease of modeling within the blocks. Figure-6 represents the flow chart of a fixed
point addition operation.

Note that for an FFT, butterflies in the same stage have the same data-path and
produce outputs with the same fixed point representation. But butterflies in different
stages can have different bit widths, which can be handled either by increasing the
width by one at each stage, or by appropriate rounding. We used the latter technique,
since it lends itself to better resource sharing among stages, and is commonly used in
practice. The fixed point parameters passed to the various arithmetic operators can
thus be derived from input bit width, output bit width and length of the FFT.

4.3. Simulink S-functions
Simulink allows one to extends its components libraries through a powerful mecha-
nism called S-function. S-functions are computer programs defined in different lan-
guages like C, FORTRAN and M-script. These S-functions are written conforming to a
set of requirements provided in the Mathworks documentation. In brief, each Simulink
block to be modeled as an S-function must implement or use a list of functions (API)
that allow it to interact with the simulation kernel. Depending on the type of block
(continuous or discrete time, with state or without), these are called by the kernel to
initialize the block, execute one simulation step, and terminate the block. The block,
on the other hand, can call functions to access its inputs, outputs and state.

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 22, Publication date: August 2015.

22:12 S.A. Butt et al.

 YES NO
DEFAULT_MODE

Calculate output width

Addition (Core Operation)

Align decimal point

Masked Sign Extension

deci Align decimal point

Addition (Core Operation)

Ceil Floor Truncat

Rounding Manager Function Call

Ceil Fl

Rounding Man

Fl

 Man

Floor Truncat

anager Function Ca

Floo

an

oor

anag

Floo

an

Wrap Saturate

Overflow Manager Function Call

Wrap

Overflow Man

Saturate

anager Function Caan

Masked Sign Extension

deci

at tp

(Core

ed Sig

Co O

anager

anager

Fig. 6. Flow chart for addition operation with masked sign extension

Figure-7 illustrates how the Simulink engine interacts with the blocks, both S-
function based or native. Initialization is carried out at the start of the simulation
by calling a function provided by each block to initialize state or global variables. Then
simulation enters a loop in which it calls two other block functions to calculate outputs
and update states. Simulink provides a unified access to inputs, outputs and other pa-
rameters of an S-function block through a structure called SimStruct. The members
of the structure can be accessed for reading and writing through a set of functions
provided by Simulink.

The code listing in Algorithm-1 shows a simplified S-function wrapper. Here mdlIni-
tializeSizes is a function which is called by the simulation engine for initialization and
mdlTerminate is called when the simulation ends. The function mdlOutputs is used
to update the output of any block during simulation. There is also a function called
mdlUpdate which is used to update state which is carried across multiple block output
update iterations. For our FFT HLS-IP there is no state to be carried across multiple
iteration because it calculates the transform of a complete frame in single invocation.
Simulink also provides a graphical user-interface called S-function builder. It takes as
input the user-defined C/C++ files and some other information related to block states,
inputs, outputs and it generates this wrapper automatically.

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 22, Publication date: August 2015.

Designing Parameterized Signal Processing IPs for High Level Synthesis in a MBDE 22:13

ALGORITHM 1: Simplified S-function wrapper

#define S FUNCTION NAME USER DEFINED SFUCNTION NAME
#define S FUNCTION LEVEL 2
#include ” simstruc . h”
static void mdlIn i t ia l i zeSizes (SimStruct ∗S)
{
}
static void mdlTerminate (SimStruct ∗S)
{
}
static void mdlOutputs (SimStruct ∗S)
{

. . .
//Read input from SimStruct
funct ional behavior stage1 (. . . .) ;
funct ional behavior stage2 (. . . .) ;
functional behavior stageN (. . . .) ;
// Write Output to SimStruct . . .

}
<addit ional S−function routines / code>
#ifdef MATLAB MEX FILE #include ” simulink . c ”
#else #include ” cg sfun . h”
#endif

5. MODELING FFT AS HLS-IP
Most model-based design environments offer the FFT as a built-in macro block. They
can also generate C code for software and RTL for hardware implementation. The C
code, as mentioned above, is optimized by exploiting some knowledge of the proces-
sor architecture. But when it comes to hardware, the implementation requirements
can be very diverse, ranging from a low throughput low power sequential architec-
ture to a high throughput highly concurrent architecture. The FFT macro block that
is normally offered by a model-based design environment relies on a pre-defined fixed
architectural template that can be parameterized to change the data-path width and
the FFT length. As argued above, this may result in a sub-optimal hardware imple-
mentation depending on the specific architecture support and the application area to
be targeted. In this section we discuss how we represented the FFT as a parameter-
ized C IP block that can be used for verification in Simulink and for HLS using a C or
SystemC-based tool.

5.1. C modeling of the FFT HLS-IP as S-function
Simulink integration of the FFT HLS-IP is performed by implementing and using sev-
eral C functions defined by the S-function APIs described above.

Our FFT model is written in plain C and split in different files, as shown in Figure-
8, in order to make it more understandable and ready for easy encapsulation in an
S-function wrapper or SystemC wrapper.

— The “params.h” file defines all the constants to model the fixed point data-path, the
parameters of the FFT computation, such as for example the FFT length, radix, as
well as the bit width and point position for inputs and outputs. It also allows one to
switch between fixed point and floating point in order to ease fixed point conversion.

— The “globals.h” file defines all the global variables, such as the buffer memories,
which should be defined as public members when encapsulated in SystemC.

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 22, Publication date: August 2015.

22:14 S.A. Butt et al.

Update State

Calculate Outputs ulat Ou

Initialize

Update S

S
im

u
la

ti
o

n
 L

o
o

p

Fig. 7. Interaction of Simulink simulation engine with S-function blocks

 params.h

 globals.h

 const_members.h

 hls_types.h

 private_funs.h

 private_funs.c

Fig. 8. IP C code organization in different files

— The “const members.h” file defines all constant data, such as the twiddle table defin-
ing all the complex twiddle factors that are required to perform butterflies in differ-
ent stages. Unfortunately they are different for every FFT length. Then the twiddle
table must be (automatically) pre-computed and saved as a C text file used to initial-
ize a constant array for any given parameterization of the IP.

— The “hls types.h” file conditionally defines basic data types as floating point or inte-
ger, as selected in “params.h”.

— The “private funs.c” and “private funs.h” files define and declare all the other func-
tions required to implement the FFT, including the top level core wrapper function
that iterates over butterflies to implement the FFT execution.

5.2. SystemC wrapper for the FFT HLS-IP
When I/O signal names and bit widths and the communication protocol are selected
for the FFT HLS-IP, then a SystemC wrapper can be generated for HLS. This wrap-
per serves two purposes; it defines the synthesizable RTL interface of the block and
it integrates the plain C code in a class structure (an SC MODULE), where global vari-
ables appear as public members and all constants appear as constant public static
members. It also defines the SystemC thread behavior by appropriately calling the

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 22, Publication date: August 2015.

Designing Parameterized Signal Processing IPs for High Level Synthesis in a MBDE 22:15

 #include “params.h”

#include “hls_types.h”

#include “private_funs.h”

class FFT: public sc_module {

public:

#include “globals.h”

}

 sc_in< bool > reset;

 sc_in<bool> clk;

 sc_in< bool > start;

}

 void core_wrapper_function (------);

 sc_out< sc_int <OUTPUT_WIDTH> > data_out_real;

_i
sc_in< sc_int <INPUT_WIDTH> > data_in_real;

 sc_in< sc_int <INPUT_WIDTH> > data_in_imag;

 sc_out< sc_int <OUTPUT_WIDTH> > data_out_real;

Fig. 9. SystemC wrapper for IP

top-level function defined in “private funs.c”, as shown in Figure-9. The S-function I/O
interfaces are implemented as two separate cycle accurate functions (also known as
“transactors”) that inherit the I/O data types from “hls types.h”. For the FFT HLS-
IP we used a simple streaming I/O protocol with handshake signal to initiate data
transfers. Note that generation of this boilerplate code can be easily automated with
a script. This SystemC wrapper is not required by some high level synthesis tools, for
example Catapult from Calypto. In our case we first started experimenting with CtoS
from Cadence, so we also implemented a SystemC wrapper generator.

5.3. S-function Wrapper for the FFT HLS-IP
The S-function wrapper can be generated in two ways. First it can be written manu-
ally, by following all the rules described by the MathWorks. As an alternative, Simulink
provides a graphical environment, called S-function builder, that can be configured to
generate the S-function wrapper automatically. In this case only a few lines of manu-
ally written code are required to describe how the top level function that implements
the FFT kernel accesses the input and output (the FFT block has no state to be carried
across executions).

5.4. Basic Template Hardware Architectures for FFT
Two kinds of basic architecture templates are utilized in most cases [Lee and Chen
2006b][Nikolic 2011]. One is a resource shared architecture template shown in Figure-
10, where the LUT block identifies the twiddle factor generator. In this architectural
template, the complete FFT is mapped to a set of butterfly computation units. These
units normally fetch data from a large memory that stores all the input samples and
all the intermediate results. When two memories are used, they are required to be
swapped as input and output after the execution of butterflies in a stage. The number
of butterfly units that can operate in parallel to execute butterflies in a stage depends
mainly on the bandwidth of these memories, which in many cases is limited. This

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 22, Publication date: August 2015.

22:16 S.A. Butt et al.

architectural template can be used for applications with low throughput requirements
and for implementations that use less chip area.

Butterfly-1

Butterfly-N

M

E

M

O

R

Y

CONTROLLER

M

E

M

O

R

Y

M MM

E

M

LUT LUT

ButterflyB

Butterfly-N

M

O

R

Y

M

O

R

YB
R

YB tt flB

Fig. 10. Resource shared hardware architecture for FFT

The other architectural template that is mostly used for high throughput applica-
tions, is called pipelined FFT architecture. It has many variants but in its funda-
mental form it looks like the one shown in Figure-11. It uses a butterfly unit and a
twiddle factor generator per butterfly stage. For example, the signal flow graph shown
in Figure-12 for an 8-sample FFT uses three butterfly stages. This usually consumes
more hardware than the resource shared architecture.

Butterfly-1

Memory

LUT

1B Butterfly-2

Memory

LUT

2BB
Butterfly-n

Memory

LUT

nB

Fig. 11. Pipelined hardware architecture for FFT

The resource shared architecture doubly folds the FFT signal flow graph both hori-
zontally and vertically. The pipelined architecture on the other hand folds it only in the
vertical directions, to map each butterfly stage to a concurrent hardware unit. In [Kee
et al. 2008], the authors present an interesting approach that implements a hybrid of
vertical and horizontal folding to generate different kinds of interesting architectures,
but its detailed discussion is not in the scope of this paper.

6. FLEXIBLE HIGH LEVEL DESCRIPTION OF HLS-IP
In our past work [Butt and Lavagno 2012b], the FFT was used as a case study for
application domains in which a doubly-folded resource shared architectures was suffi-
cient for implementation. The core of the FFT kernel was specified as a double nested
loop in C which resulted in different single threaded architectures (aggressively re-
source shared) with variations in terms of micro-architecture, memory bandwidth and
data-path width.

However, when high levels of concurrency are required to meet application require-
ments, the architecture of the memory also becomes important, as argued above. For
concurrent implementation the memory is usually a set of distributed buffers that can

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 22, Publication date: August 2015.

Designing Parameterized Signal Processing IPs for High Level Synthesis in a MBDE 22:17

WN
0

WN
0

WN
0

WN
0

WN
0

WN
1

WN
2

WN
3

-1

-1

-1

-1-1

-1

-1

-1

X(0)

X(1)

X(2)

X(3)

X(4)

X(5)

X(6)

X(7)

x(0)

x(4)

x(2)

x(6)

x(1)

x(5)

x(3)

x(7)
WN

2

WN
0

WN
2

WN
0

-1

-1

-1

-1

Fig. 12. . Radix-2 FFT signal flow graph

be mapped to SRAMs during HLS. This is because every concurrently executing hard-
ware block requires a dedicated access to memory in order to satisfy the read/write
bandwidth requirements. Hence in this paper we propose a new IP modeling strategy
that allows a variable level of parallelism to be extracted from a single plain C func-
tional model.

.

N/21

. . . .

N/22

. .

N/2m

Twiddle

Factors

Twiddle

Factors

Twiddle

Factors

. . .

State

info

State

info
State

info

. . .

. . .

.

N/21

Twiddle

Factors

State

info

Fig. 13. Symmetry of Pipelined FFT Architecture

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 22, Publication date: August 2015.

22:18 S.A. Butt et al.

The pipelined FFT architecture shown in Figure-13 is very symmetrical. The dotted
box represents the folding of a single butterfly stage of the FFT signal flow graph.
Folding essentially maps a stage to:

— a buffer that acts as a shift register,
— a butterfly computation unit (the core data-path),
— control information, which essentially describes which butterfly in this stage is exe-

cuting at any time,
— a set of twiddle factors.

In the fully pipelined architecture, the behavior of each folded butterfly execution unit
can be represented as a C function that takes one sample as input and produces one
sample as output, using a twiddle table, a memory and some control information repre-
sented as global variables. This reusable C-function can easily represent all the stages.
Then for fully pipelined hardware implementation, the functional description of each
stage can be wrapped inside a SystemC bit level interface and synthesized using any
SystemC based HLS tool. As discussed before, the sequential C representation with
double nested loops allows synthesis of resource shared architectures with less area,
while this stage-level model allows synthesis of a pipelined architecture with higher
throughput. Apparently it may look like that these two approaches have opposite lim-
itations, one being suited for very low throughput and the other for very high through-
put. But the second description, in which the FFT is partitioned and described as C-
function calls with partitioned memory, can be useful to obtain variable concurrency
FFT implementations starting from the same representation.

As mentioned above, HLS tools cannot easily increase the level of concurrency au-
tomatically, but they can easily remove it, by inlining functions and scheduling them
on the same resources. They also allow one to merge different memories into a single
one. Using these two mechanisms, the functional description of the pipelined FFT can
be mapped to different micro and macro architectures. The macro architecture can be
changed e.g. by changing the level of concurrency, that is by mapping different but-
terfly stages to a single SystemC thread. The micro-architecture can be changed by
modifying the HLS constraints that describe the set of available resources and how
the butterfly computation will be scheduled on them. In other words, the functional C
description of the FFT can be mapped to a fully sequential architecture by

— wrapping it inside a single SystemC thread,
— merging and mapping all the C arrays into a single memory.

In Figure-13 each FFT stage has a buffer with a size of N
2m samples, where N is

the FFT length and m is the stage number starting from the left. The total memory
required for storage is (N − 1) samples, which is the sum of the memory sizes required
by all the butterfly stages. For a pipelined implementation with the highest level of
concurrency, each buffer should be mapped to a separate SRAM with one read and
one write port. For lower levels of concurrency, the FFT stages should be merged into
groups of two, four and so on, where each group is then mapped to a single thread.
The FFT is initially represented at the functional level in a partitioned manner, by
mapping each butterfly stage to a separate C function with a buffer for storage. So
during the process of merging FFT butterfly stages in groups, the memories in each
group are also merged to save chip area. Figure-14 illustrates how the memories are
merged into groups for different levels of concurrency.

7. HLS AND DESIGN EXPLORATION USING FFT HLS-IP
We have taken an FFT of length 256 with a 16-bit data path and synthesized it using
UMC-90nm libraries for different levels of concurrency, ranging from fully sequential

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 22, Publication date: August 2015.

Designing Parameterized Signal Processing IPs for High Level Synthesis in a MBDE 22:19

. . .

N/2
1

.

N/2
(m-1)

N/2
2

.

N/2
m

. .

N/22

.

N/2(m-1)

. .

N/2m N/21

.

2m-1

N/2

.
. . . .

N/2(m-1)

. .

N/2m

N

.
. . .

N/21+(N/22)
N/2(m-1)+(N/2m)

Fig. 14. Merging of memories for different levels of concurrency

to fully pipelined implementations. The HLS-IP C description was generated using our
HLS-IP generator. Then this model was used for HLS by using various tools, namely
Cadence C-to-Silicon Compiler and Calypto Catapult, as well as Synopsys Synphony
and Mathworks HDL Coder. The HLS-IP Generator can also generate SystemC wrap-
pers for the different concurrency levels, as mentioned above, by stitching different
function calls (which correspond to different folded stages) into a single thread.

The code listed in Algorithm-3 shows a thread wrapper with a concurrency level
of 4 for an FFT of length 256. The 256 point FFT has 8 stages in total, so 2 stages
are grouped into a single thread. Similarly the listing in Algorithm-2 shows a thread
wrapper when all butterfly stages are concurrently executing, with each stage wrapped
inside a separate thread.

Figure-15 shows how throughput scales when the concurrency level is changed from
1 to 8. The concurrency level of 1 (a fully resource shared architecture) is synthe-
sized by merging all the memories to a single memory and by wrapping all the but-
terfly stages into a single thread, whereas the concurrency level of 8 corresponds to a
pipelined architecture with each butterfly stage wrapped inside a separate SystemC
thread. The design was synthesized at 200MHz, obtaining a minimum throughput of
25 Million Samples Per Second (MSPS) with concurrency 1 and a maximum through-
put of 200 MSPS (i.e. one sample per clock cycle) with concurrency 8. Figure-16 shows
the area required for different throughput levels.

Such a large variation in throughput and required hardware resources for imple-
mentation as shown in Figure-15 and Figure-16 cannot be obtained from any sequen-

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 22, Publication date: August 2015.

22:20 S.A. Butt et al.

ALGORITHM 2: SystemC Thread Wrapper for concurrency level-8, for 256 point FFT

void pipeLinedFFT WRAPPER : : stageN exec WRAPPER (void)
{

struct mcomplex input sample ;
struct mcomplex output calculated ;
hshake [STAGE NUMBER sN] . write (false) ;
wait () ;
init stageN () ;
wait () ;
while (hshake [STAGE NUMBER sN−1]. read () ==false) wait () ;
hshake [STAGE NUMBER sN] . write (true) ;
while (1)
{

input sample . real =(int) in inter faceN real . read () ;
input sample . imag=(int) in interfaceN imag . read () ;
functional behavior stageN (input sample ,&

output calculated) ;
o u t i n t e r f a c e r e a l [STAGE NUMBER sN] . write (

output calculated . real) ;
out interface imag [STAGE NUMBER sN] . write (

output calculated . imag) ;
}

}

25

50

100

200

16

32

64

128

256

1 2 4 8

T
h

ro
u

g
h

p
u

t
(M

S
P

S
)

Concurrency

THROUGHPUT vs CONCURRENCY

Fig. 15. FFT Throughput vs. Concurrency

tial description of the FFT in C. It is only made possible by the memory and code
partitioning strategy that we used to interleave the butterfly stages.

The results obtained from our HLS-IP generator were also compared with similar
implementations obtained from other tools. Synphony Model Compiler is a tool from
Synopsys that can generate RTL code from Simulink models. It has a library of compo-
nents that can be used in Simulink for verification, but it supports generation of RTL
only for blocks that come from its own IP library. Synphony can only generate a fully

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 22, Publication date: August 2015.

Designing Parameterized Signal Processing IPs for High Level Synthesis in a MBDE 22:21

ALGORITHM 3: SystemC Thread Wrapper for concurrency level-4, for 256 point FFT

void FFT WRAPPER: : stageN M exec WRAPPER (void)
{

struct mcomplex in , outN , outM ;
struct mcomplex ind , outNd , outMd ;
s c i n t < 16 > trans real ;
s c i n t < 16 > trans imag ;
init stageN&M() ;
wait () ;
while (s tart . read () ==false) wait () ;
while (1)
{

trans real =(int) in interfaceNM real . read () ;
trans imag =(int) in interfaceNM imag . read () ;
in . real=trans real ;
in . imag=trans imag ;
functional behavior stageN (in ,&outNd) ;
t rans real=outNd . real ;
trans imag=outNd . imag ;
outN . real=trans real ;
outN . imag=trans imag ;
wait () ;
functional behavior stageM (outN,&outMd) ;
trans real=outMd . real ;
trans imag=outMd . imag ;
outM . real = trans real ;
outM . imag=trans imag ;
out interfaceNM real . write (outM . real) ;
out interfaceNM imag . write (outM . imag) ;
wait () ;

}
}

pipelined FFT that is very close, in terms of both performance and area, to the fully
concurrent implementation obtained from our HLS-IP generator.

Similarly, we generated an FFT implementation from HDL Coder . It generates a
sequential resource shared architecture, which in our case corresponds to concurrency
level-1. Figure-16 compares the different implementations obtained from our HLS-IP
Generator with those obtained from Synphony Model Compiler and HDL Coder. From
these results it is clear that the Quality of Results (QoR) of our FFT implementations
is very close to that of these other tools, which rely on hand-optimized parameterized
architectures, while our solution allows a much broader range of implementations from
a single model.

8. USE CASES
Different use-cases have been selected from different digital signal processing applica-
tion domains and FFT HLS-IP is generated and optimally synthesized to meet differ-
ent cost and performance requirements. The quality of result (QoR) for our automati-
cally generated FFT HLS-IPs is compared with manually designed FFT IPs and also
with the IPs generated from Simulink using the HDL Coder tool.

To demonstrate the effectiveness of our design methodology for HLS-IP blocks to
be used in a model-based hardware design environment, we considered very different

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 22, Publication date: August 2015.

22:22 S.A. Butt et al.

25

50

100

200

16

32

64

128

256

6400 25600 102400

T
h

ro
u

g
h

p
u

t
(M

S
P

S
)

Area (um2)

THROUGHPUT vs AREA

HDL Coder

Synphony Model Compiler

Fig. 16. FFT Throughput vs. Chip Area

use cases for our FFT HLS-IP. They include an FFT processor for frequency domain
audio detection,a GPS acquisition front end, a DSP front-end for a radar and an OFDM
receiver. The use-cases have been synthesized for two different target implementation
technologies, namely the 90nm ASIC technology libraries from UMC and the Kintex-7
FPGA from Xilinx

8.1. Frequency Domain Audio Detector
In sound-triggered wireless security camera applications, a front-end audio detector is
employed at the start of the alarm processing chain. Still images and video streams
are very expensive to collect and process, hence the video cameras are only turned on
when the low-power sound sub-system detects an event of interest, as illustrated in
Figure-17.

Fig. 17. Sound triggered multi-modal wireless surveillance network

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 22, Publication date: August 2015.

Designing Parameterized Signal Processing IPs for High Level Synthesis in a MBDE 22:23

Hamming Window Spectrum Averaging

Fast Fourier

Transform

PSD Estimation Block

Threshold Estimation

And Signal Detection Block

Audio

samples

Fig. 18. Front end audio detection algorithm block diagram

A frequency domain audio detector is considered in this case, as shown in Figure-18.
It consists of two main blocks: “power spectral density estimation” (PSD) and “thresh-
old estimation and signal detection” that we fully modeled in Simulink.

After code generation from Simulink and profiling, the FFT within PSD estimation
is identified as the power and performance bottleneck, and thus selected for HW imple-
mentation. We then compare the results of HLS when performed on our IP and when
performed on the C code automatically generated by RTW.

In this use case, due to the relatively low frequency of the audio input, performance
requirements are low, namely one 256-sample FFT with 14 bits of precision every 4
milli-seconds. Hence the goal is essentially area and power optimization.

Table-I compares the implementation results obtained after HLS and RTL level
power estimation of our IP block and of the default RTW C code implementation, also
encapsulated in SystemC. Our (hardware-oriented) IP consumes 45 percent less area
and has essentially the same throughput as the (software-oriented) RTW code. The
power consumption is also lower in our case.

Table I. RTW FFT vs. FFT HLS-IP for audio de-
tector application

Design Area (mm2) Power (mW)
RTW FFT 0.60 4.14

FFT HLS-IP 0.42 2.16

Table II. Comparison of implementation cost for different
audio detector blocks Implemented using HLS

Audio Detector Blocks Area (mm2)
FFT HLS-IP 0.42

Windowing and Spectrum Averaging 0.1783
Threshold Estimation and Detection 0.267

One important reason for the area difference is the better bit-width optimizations
that are enabled by our bit-accurate representation of the individual butterflies. Both
the data path and the memories were trimmed to the exact 14 bit width required by
the usage scenario, instead of the default 16 bits used by the RTW implementation
(which is limited to C data types).

The complete audio detection hardware was implemented using high level synthesis,
using the RTW code for the other blocks. Table-II compares the area cost of the FFT
implementation to the other blocks. Their relatively lower area implies that the de-
velopment of a dedicated HLS-IP for them may not be justified in terms of manpower
expenditure

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 22, Publication date: August 2015.

22:24 S.A. Butt et al.

8.2. FFT-based GPS Acquisition
A GPS receiver must be able to capture and demodulate signals transmitted by at least
four GPS satellites. Every satellite convolves its signal with a code that spreads its
power over a relatively large spectrum. When a GPS receiver is turned on, it first task
is to identify which satellites are visible at that time and place. This means sampling
the received signal and figuring out which codes have been used by the visible satellites
for spreading and what is the approximate phase of the (known) spreading sequence at
that time. Because of the relative movement of satellites with respect to the receiver,
there is also a Doppler frequency shift which the receiver is required to estimate.

There are many different techniques for acquisition, including parallel search tech-
niques based on FFT. The FFT-based GPS acquisition algorithm block diagram is
shown in Figure-19. The first block in the chain performs two tasks. First it down con-
verts data to baseband, and then it averages data samples to have a lower sampling
rate at the output. The next block performs the frequency domain transformation us-
ing the FFT algorithm. Then the data is multiplied by the transform of the spreading
code. This is followed by an inverse FFT and the peak search in the time domain.

We modeled this complete algorithm in the Simulink environment, verifying it with
both the native Simulink FFT block and the S-function FFT HLS-IP developed by us.
Then we synthesized both FFTs (our HLS-IP and the RTW version) under the very
stringent timing constraints required by this usage scenario, namely one 1024-sample
FFT with 4 bits of precision every milli-second.

Note that the throughput is 16 times higher than in the frequency domain audio
detector case, but the data-path requires only about 1/4 of the bits of the previous case
(4 versus 14).

Table III. RTW FFT vs. FFT HLS-IP for GPS ac-
quisition application

Design Area (mm2) Power (mW)
RTW FFT 0.87 6.8

FFT HLS-IP 0.60 5.7

Table-III compares the results of these two implementations. Our IP is much better
in terms of area than the RTW version, with essentially the same throughput. Power
consumption is also smaller in our case.

We also compare our implementation with a manually optimized RTL that was
specifically designed for FPGA implementation in [Molino et al. 2008], while our IP

Down

Sample and

Average

FFT

Product

Peak

Search
IFFT

Pr
Se

FFT of

Spreading

Code

Incoming

Signal

Fig. 19. Core GPS acquisition algorithm

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 22, Publication date: August 2015.

Designing Parameterized Signal Processing IPs for High Level Synthesis in a MBDE 22:25

model was not specifically tuned for FPGAs but only for generic HW implementation.
The results are reported in Table-IV, showing that our implementation is comparable
with a hand optimized RTL. The SRAM requirements are exactly the same, while we
are about 20% worse in terms of area. For the GPS receiver use-case, we present re-
sults only for the FFT block, because it is used multiple times during the execution of
algorithm and it is by far the most complex and resource consuming block.

Table IV. Hand optimized RTL implementation vs. FFT HLS-
IP for GPS acquisition application

Design Number of Slices SRAM (Kbits)
Manual Design 4.2K 18

FFT HLS-IP 5.2K 18

8.3. FFT-based Digital Signal Processing Unit for Radar
A radar is an electronic device that is used for estimating different parameters (e.g.
speed, direction and position) related to the movement of an object. Radars typically
find uses in military and commercial applications. In particular, they are an essen-
tial component of assisted driving applications in automotive electronics, e.g. parking
assistance, lane departure warning and collision avoidance. In this case study we ex-
perimented with the Digital Signal Processing (DSP) unit of a radar for automotive ap-
plications based on the Continuous Wave Frequency Modulation (CWFM) technique.
The CWFM based radar transmits a frequency-modulated signal that is reflected from
a target object. The reflected signal is captured and different parameters, such as the
time of flight and Doppler shift are estimated, as shown in Figure-20. Then these can
be translated into the distance and the velocity of the object.

Frequency Shift

Time

Δf

Time Shift

Fig. 20. Operation of CWFM Doppler Radar

In our experiments we modeled using Simulink the digital signal processing unit of
this radar, as shown in Figure-21. The most expensive block, also in this case, is a high
precision 2048 sample FFT. In this experiment we targeted the implementation to a
Kintex-7 FPGA (xc7k160tfbg484-3) from Xilinx. Table-V shows the synthesis results
only for the FFT, using the performance requirement of the full radar application. It il-
lustrates that our HLS-IP, synthesized using Calypto Catapult, uses similar resources
when compared to the optimized RTL implementation from HDL coder, for the same
real-time throughput constraints. Note that the LUT cost obtained via HLS uses more

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 22, Publication date: August 2015.

22:26 S.A. Butt et al.

BPF LNA

Mixer

ADC

Antenna

LPFFFT
Detection and

Estimation

Digital Signal Processing unit

Fig. 21. CWFM Radar Receiver Architecture

Table V. FFT Implementation for Radar DSP Unit HLS-IP vs. HDL Coder

Synthesis Tool DSP48 LUT FF Memory Blocks
Catapult (HLS-IP) 80 9069 7015 22

HDL Coder (Manually Designed RTL IP) 72 7744 11524 25

LUTs because the resulting RTL is less efficient for exploiting the DSP48 units. This is
something that we will consider for the future, e.g. by automatically generating FPGA-
specific mapping directives for the HLS tool.

Table VI. Comparison of implementation cost for different radar blocks Imple-
mented using HLS

Radar Block DSP48 LUT FF Memory Blocks
FFT 80 9069 7015 22
LPF 6 901 1529 0

Detection & Estimation 24 11858 4927 0

Table VII. Full Radar DSP Unit Implementation HLS vs. HDL Coder

Synthesis Tool DSP48 LUT FF Memory Blocks
Catapult/HLS 110 21828 13471 22

HDL Coder 288 13268 11878 25

The complete synthesis result for radar DSP front-end are reported in Table-VI. As
shown in Table-VII, the results obtained using HLS-IP and high level synthesis are
very comparable with the results obtained using HDL Coder. The HDL Coder based
solution uses many more DSP48 slices the result of HLS-IP,which again uses many
more LUTs. The other blocks are synthesized starting from the automatically gener-
ated C-code produced by Embedded Real Time Coder.

8.4. FFT-based OFDM Receiver
Orthogonal frequency division multiplexing (OFDM) is an extensively used digital en-
coding technique used for baseband modulation in wireless networks. Several IEEE
standard, like 802.11a and 802.11b, use OFDM. Figure-22 shows a simplified block
diagram (blocks for channel coding part are omitted and only core modulation blocks
are shown) of an OFDM receiver. All the other blocks are much simpler than the FFT
from the hardware design point of view, and again can be synthesized from the ERT-
generated code. The FFT HLS-IP was parameterized and synthesized considering a
9Mbps data rate specification. The authors of [Shao and Slump 2008] suggested that
5-bits are sufficient for sampling the OFDM receiver input in baseband. So the data-
path for FFT is parameterized for an input sample bit-width of 5. Scaling is used and
the integer part of the output results is allowed to grow by one bit after each stage of
butterflies, resulting in a final output with 11 bits.

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 22, Publication date: August 2015.

Designing Parameterized Signal Processing IPs for High Level Synthesis in a MBDE 22:27

Serial

to

Parallel

FFT

Parallel

To

Serial

Symbol

De-mapping

Fig. 22. OFDM receiver simplified block diagram

Table VIII. FFT HLS-IP Synthesis results for an OFDM receiver

Implementation Type Memory LUT DSP48 LUT FF
HLS-IP 0 0 1901 1399

Simulink HDL Coder 150 0 1558 2122

Table-VIII gives implementation results for the FFT processor synthesized from
Simulink HDL Coder and our HLS-IP. The FFT implementation obtained from our
HLS-IP uses almost 52 % less flip-flips but uses 18% more LUTs. The reason for this
increased use of LUTs is that for HLS-IP the read only storage is synthesized from
LUTs, wheres in the case of HDL coder it consumes 150 memory LUTs.

9. CONCLUSIONS
In this paper we demonstrated how one can design a parameterized bit-true IP, coded
in plain C, which can be both integrated with Simulink for verification, and used for
High-Level Synthesis into hardware. To prove the effectiveness of our approach we
also compared our synthesis results with other implementations that are based on
hand optimized RTL, parameterized RTL, and generating C code automatically from
Simulink models. We also illustrated our HLS-IP design flow by using a concrete ex-
ample, namely a flexible HLS-IP model of a Fast Fourier Transform. It allows one to
model the FFT as a symmetrically partitioned C-model that can be used for simulation
in the Simulink environment, and then for efficient high level hardware synthesis. We
can synthesize FFT hardware with different optimized datapath widths and with a
great degree of throughput variations which is achieved by changing the concurrency
of the hardware implementation, both in our generator (for thread-level parallelism)
and in the HLS tool (for loop-level parallelism). We implemented an FFT HLS-IP Gen-
erator that takes as input a configuration file specifying the required FFT length and
the number of threads to be used. This FFT HLS-IP is used to show the effectiveness
of our design flow. It generates a functional level C description of the FFT, as well as
the synthesis scripts, the S-function wrapper for the Simulink environment and the
SystemC wrapper for high level hardware synthesis. Finally we generated and syn-
thesized our FFT HLS-IP with different architectures for different performance and
resource requirements, for very different applications starting from the same func-
tional C template, and we compared the quality of results with other tools.

References
Fft logicore - xilinx fft ip generator.
Fft megacore function - fft megacore R© function:a high-performance, highly parameterizable fft processor.
Labview system design software.
Real-time workshop: Generates c/c++ from simulink models.
Simulink - simulink is a block diagram environment for multidomain simulation and model-based design.
Simulink hdl coder - generate hdl code from simulink models and matlab code.
Synphony model compiler.

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 22, Publication date: August 2015.

22:28 S.A. Butt et al.

BUTT, S. AND LAVAGNO, L. 2012a. Design space exploration and synthesis for digital signal processing
algorithms from simulink models. In Design and Test Symposium (IDT).

BUTT, S., SAYYAH, P., AND LAVAGNO, L. 2011. Model-based hardware/software synthesis for wireless sensor
network applications. In Electronics, Communications and Photonics Conference (SIECPC), 2011 Saudi
International. 1–6.

BUTT, S. A. AND LAVAGNO, L. 2012b. Designing parameterized signal processing ips for high level synthe-
sis in a model based design environment. In Proceedings of the eighth IEEE/ACM/IFIP international
conference on Hardware/software codesign and system synthesis. CODES+ISSS ’12. ACM, New York,
NY, USA, 295–304.

BUTT, S. A., MANCINI, S., ROUSSEAU, F., AND LAVAGNO, L. 2014. Design of a pseudo-log image trans-
form hardware accelerator in a high-level synthesis-based memory management framework. Journal of
Electronic Imaging 23, 5, 053012–053012.

CHOULIARAS, V., GALIATSATOS, P., NAKOS, K., REISIS, D., AND VLASSOPOULOS, N. 2009. Efficient cas-
caded vlsi fft architecture for ofdm systems. In Electronics, Circuits, and Systems, 2009. ICECS 2009.
16th IEEE International Conference on. 97 –100.

DAVE, N., PELLAUER, M., GERDING, S., AND ARVIND. 2006. 802.11a transmitter: A case study in microar-
chitectural exploration. In Proceedings of the Fourth ACM and IEEE International Conference on For-
mal Methods and Models for Co-Design, 2006. MEMOCODE ’06. Proceedings. MEMOCODE ’06. IEEE
Computer Society, Washington, DC, USA, 59–68.

HAUBELT, C., SCHLICHTER, T., KEINERT, J., AND MEREDITH, M. 2008. Systemcodesigner: Automatic de-
sign space exploration and rapid prototyping from behavioral models. In Design Automation Conference,
2008. DAC 2008. 45th ACM/IEEE. 580–585.

HUANG, K., IL HAN, S., POPOVICI, K., BRISOLARA, L., GUERIN, X., LI, L., YAN, X., CHAE, S.-I., CARRO,
L., AND JERRAYA, A. 2007. Simulink-based mpsoc design flow: Case study of motion-jpeg and h.264. In
Design Automation Conference, 2007. DAC ’07. 44th ACM/IEEE. 39–42.

KEE, H., PETERSEN, N., KORNERUP, J., AND BHATTACHARYYA, S. 2008. Systematic generation of fpga-
based fft implementations. In Acoustics, Speech and Signal Processing, 2008. ICASSP 2008. IEEE In-
ternational Conference on. 1413 –1416.

KIENHUIS, B., RIJPKEMA, E., AND DEPRETTERE, E. 2000. Compaan: deriving process networks from mat-
lab for embedded signal processing architectures. In Hardware/Software Codesign, 2000. CODES 2000.
Proceedings of the Eighth International Workshop on. 13–17.

LEE, S.-Y. AND CHEN, C.-C. 2006a. Vlsi implementation of programmable fft architectures for ofdm com-
munication system. In Proceedings of the 2006 international conference on Wireless communications and
mobile computing. IWCMC ’06. ACM, New York, NY, USA, 893–898.

LEE, S.-Y. AND CHEN, C.-C. 2006b. Vlsi implementation of programmable fft architectures for ofdm com-
munication system. In Proceedings of the 2006 international conference on Wireless communications and
mobile computing. IWCMC ’06. ACM, New York, NY, USA, 893–898.

MITRA, S. 1999. Xcc-a tool for designing parameterizable ip cores in vhdl. In Signals, Systems, and Comput-
ers, 1999. Conference Record of the Thirty-Third Asilomar Conference on. Vol. 1. 752 –756 vol.1.

MOLINO, A., GIRAU, G., NICOLA, M., FANTINO, M., AND PINI, M. 2008. Evaluation of a fft-based acquisi-
tion in real time hardware and software gnss receivers. In Spread Spectrum Techniques and Applica-
tions, 2008. ISSSTA ’08. IEEE 10th International Symposium on. 32–36.

MURPHY, G., POPOVICI, E., BRESNAN, R., MARNANE, W., AND FITZPATRICK, P. 2004. Design and im-
plementation of a parameterizable ldpc decoder ip core. In Microelectronics, 2004. 24th International
Conference on. Vol. 2. 747 – 750 vol.2.

NIKOLIC, G. April 2011. Fourier Transforms - Approach to Scientific Principles. Intech Open.
SAYYAH, P., BUTT, S., AND LAVAGNO, L. 2011. Simulink-based hardware/software trade-off analysis tech-

nique. In Applied Electrical Engineering and Computing Technologies (AEECT), 2011 IEEE Jordan
Conference on. 1 –7.

SHAO, X. AND SLUMP, C. H. 2008. Quantization effects in ofdm systems.
TAKACH, A. 2010. Creating c++ ip for high performance hardware implementation of ffts. In DesignCon.
TOLEDO, A., SUARDIAZ, J., CUENCA, S., AND GREDIAGA, A. 2006. Novel simulink blockset for image pro-

cessing codesign. In Electrotechnical Conference, 2006. MELECON 2006. IEEE Mediterranean. 117–
120.

WERNSING, J. R. AND STITT, G. 2010. Elastic computing: a framework for transparent, portable, and adap-
tive multi-core heterogeneous computing. SIGPLAN Not. 45, 4, 115–124.

Received May 2015; revised May 2015; accepted May 2015

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 1, Article 22, Publication date: August 2015.

