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Attitude recovery from feature tracking for estimating
angular rate of non-cooperative spacecraft

G. Biondi, S. Mauro, T. Mohtar, S. Pastorelli, M. Sorli

Politecnico di Torinoa, Dipartimento di Ingegneria Meccanica e Aerospazialea

a10129 Corso Duca degli Abruzzi 24, Torino

Abstract

This paper presents a fault-tolerant method for estimating the angular rate of

uncontrolled bodies in space, such as failed spacecrafts. The bodies are assumed

to be free of any sensors; however, a planned mission is assumed to track several

features of the object by means of stereo-vision sensors. Tracking bodies in the

space environment using these sensors is not, in general, an easy task: obtainable

information regarding the attitude of the body is often corrupted or partial.

The developed method exploits this partial information to completely recover

the attitude of the body using a basis pursuit approach. An unscented Kalman

filter can then be used to estimate the angular rate of the body.

Keywords: Space debris, Stereo-vision, Basis pursuit denoising, State

estimation, Signal recovery

1. Introduction

The estimation of attitude and angular rate of artificial satellites is a very

well-known process that is normally performed using the appropriate on-board

instrumentation. Very common associated techniques are sensor fusion and

Kalman filtering; data captured by star trackers and gyros are combined with5

dynamic models of the system to produce an on-orbit estimate of the state,

URL: www.polito.it (Politecnico di Torino)

Preprint submitted to Mechanical Systems and Signal Processing May 17, 2016



which includes the inertia tensor, which changes over time because of fuel con-

sumption [1]. This information is required for stability control of the active

spacecraft. Several studies have been peformed to relieve some of the used sen-

sors to prevent failures and to reduce costs, particularly for missions involving10

small spacecrafts [2]. Additionally, gyro-less control systems that use only star

tracker information as the input of accurate non-linear Kalman filters have been

developed.

The estimation problem becomes difficult when artificial objects have no active

sensors at all,i.e., in the case of failed spacecrafts. No direct information regard-15

ing the attitude of the object might be available and obtaining this information

by exploiting external sensors (e.g., CCD cameras on a chaser spacecraft) is, in

general, a difficult task.

Space debris removal is becoming an urgent environmental issue related to space

exploration. As assessed by the U.S. Space Surveillance System, the number of20

objects that orbit the Earth has increased significantly over the years [3]; the

risks of collisions between active and lost spacecrafts may soon become consis-

tent. Additionally, no docking or de-orbiting maneuver can be considered safe

without precise knowledge of the attitude and angular rate of the target debris.

Lichter and Dubowsky [4] proposed an architecture for the estimation of the25

dynamic state of non-cooperative spacecrafts. This architecture primarily con-

sists of 3D active sensors, which are suitable for use in harsh lighting conditions.

Aghili et al. [5] presented a method for pose estimation of passive space bodies

using a laser 3D scanner. Their method also considers the possibility of failures

during the scanning procedure without compromising the estimation. However,30

this method requires a CAD model of the object.

The use of active sensors, although they are relatively reliable, could neverthe-

less be less appealing than obtaining the same information using stereo-vision

sensors, because of the possibility of saving energy and costs. A survey of the

most common tracking techniques based with stereo-vision can be found in [6].35

In [7] and [8] two different methods are presented to maintain a target space

body in the field of view (FOV) of cameras on a chaser spacecraft after the
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rendezvous phase. In these studies, estimation of the angular rate is not per-

formed. Both of the methods seem to be applicable over a relatively long time

period. The main drawback of methods that exploit stereo-vision cameras is40

that different phenomena (such as occlusions or disturbing reflections) cause

discontinuous tracking of the natural features of space objects. In spite of this,

recently, several authors have attempted to prove the effectiveness of these sys-

tems.

In [9] a 3D-model-matching technique, as used in [5], is combined with stereo-45

vision sensors. The considered method requires a large number of detected

features and a very detailed model of the failed satellite. In [10], a powerful

method based on stereo vision to track a non-cooperative spacecraft and to es-

timate its complete dynamic state is presented. The method does not require

any a-priori information about the target; however, it is assumed that the po-50

sitions of several features are always measurable. For that reason, although the

method has shown very good accuracy, it would be not applicable if occlusions

occur during tracking or if in some instant of time the detectable features are

less than three.

In [11], the tracking of a target body relative to a chaser is achieved via the55

prediction of the velocities of its features. This prediction is based on a kine-

matic model of the object. In this work, the problem of recovering the pose

and the angular rate of the object during occlusions is considered; however, no

results are shown in the case in which no features are detectable. Moreover,

when the number of detected features decreases, the precision of the estimation60

significantly decreases. The paper states, however, that the prediction is useful

for re-initializing the tracking.

The work presented in [12] considers the determination of the relative pose be-

tween a chaser and a larger target that are cooperative. This work is interesting

for two reasons: tracking is performed using stereo-vision cameras and when65

occlusions occur, although the attitude information is lost, the position of the

body is predicted using a mathematical model of the body itself. The tracking

can then continue after the occlusion periods; however, the pose of the object
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is not obtained in these periods. An important assumption underlying the co-

operativeness between the spacecrafts is that the positions of certain artificial70

features on the target (in the case considered, LEDs) are known a-priori.

Definitely, the current state of the art appears to be missing of fault-tolerant

methods for attitude estimation from features detected by means of stereo cam-

eras. The method proposed in this paper offers the possibility of recovering

attitude information of a space body such as a failed spacecraft; the continuity75

of the feature tracking is not required, so the method is applicable to recover the

object pose also if momentary failures in feature detection occur. The method

can also be applied in conditions similar to those in [12].

The fundamental assumption that allows the presented algorithm to succeed is

the ability to track several features (i.e., corners, edges, tips, or other recogniz-80

able parts) of the object using two cameras on a controlled chaser spacecraft.

Measurements must be available at least for frequent and short intervals of time.

Data samples should consist, in particular, of the Euclidean coordinates of the

features with respect to a reference frame with the origin in the center of mass

of the chaser. This hypothesis seems to be reasonable considering the previously85

mentioned state of the art.

Another assumption concerns knowledge of the relative positions between the

detected features. This knowledge can be achieved during tracking: if a 3D

model of the object is available, it is possible to associate the few detected

features with the corresponding points on the model. It is not necessary that90

the model be highly detailed, as only a small number of features need be rec-

ognized. For example, in [13], sequential photographs of a passive space body

provide knowledge of the pose of the camera with respect to a 3D model of

the object. This method allows recognition of the correspondences between de-

tected features and specific points on the model. If no model is available, the95

relative positions could be estimated by averaging many measurements and by

constraining the distances between detected features to be constant. This last

method is difficult to achieve because it would require that the tracking architec-

ture be capable of associating each feature with a unique label and recognizing
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it when it is detected.100

The principle underlying the procedure is as follows: once a corrupted attitude

signal is generated from the input data, it is possible to recover the signal by

converting this operation into a non-linear optimization problem under the as-

sumption that the original signal can be treated as the composition of a small

number of elementary signals. This approach is common in signal processing,105

especially in fields such as image recovery, signal decoding, and signal decon-

volution. This approach has also been successfully used for solving prognostic

problems related to mechanical systems such as gear boxes [14], [15]. However,

this technique has seldom been applied to the estimation of kinematic quantities

from raw data. Additionally, it uses one of the most effective existing approaches110

[16], i.e., the basis pursuit approach. This method is quite adaptable to situa-

tions in which signals are affected by noise (basis pursuit denoising); it has been

proven, through numerical simulations, to be very effective in the recovery of

attitude signals. The optimization problem is solved using a fast and reliable

algorithm, SALSA [17], an acronym of split augmented Lagrangian shrinkage115

algorithm.

Once the attitude is available, the angular rate can then be estimated via classi-

cal methods based on Kalman filtering, because of the strict correlation between

angular rate and attitude. However, this last aspect is not the main purpose

of the paper; the main intent consists instead in proposing a novel method for120

recovering the attitude from features also in the case of temporary losses of

measured data.

The remainder of this paper is organized as follows. In the second section, we

provide a general overview of the problem solved in this paper. Additionally,

we describe how a realistic input data set could be created when field measure-125

ments are not available; simulated data are also used to calculate an expected

output so as to validate the algorithm results. In the third section, the the-

oretical fundamentals of basis pursuit denoising are presented together with a

brief description of the algorithm used to solve the basis pursuit problem. In

the fourth section, we describe how all of the proposed theories are applied for130
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Figure 1: Third stage of Ariane 4, H10.

the estimation of the attitude of a generic body. Additionally, in section five,

we describe an unscented Kalman filter for estimating the angular rate, and

provide an example of the results of the procedure. Finally, section six presents

our conclusions.

2. Problem statement and tracking simulation135

The approach used to achieve our objectives uses identification algorithms

with simulated data as inputs. These data are created by applying mathemati-

cal models. In particular, two models have been created: a model for the target

and a model for the chaser. The model of the target is used to identify plausible

trajectories of some of its characteristic points. The realistic perspective target140

chosen is the third stage, H10, of the expendable launch system Ariane 4 [18]

(see figure 1). This object is 11.53m high, 2.66m in diameter, and 12000kg

in gross mass. Combining this model with that of the chaser, it is possible to

identify the relative orientation and position of the objects. It is also possible

to determine which points are visible from the chaser. The addition of noise145

to these trajectories provides a set of realistic data that serve as input to the

identification algorithms. Figure 2 presents the procedure described above. The
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Figure 2: Flowchart describing data creation and algorithm validation.

initial inputs are the target geometry, i.e., several points on the H10’s surface,

the Keplerian elements, and the control strategy of the chaser. Using this infor-

mation, the models generate the simulated data. In addition to the trajectory150

of the points, these data consist of the kinematic state of the target. This in-

formation is used to validate the results of the angular velocity reconstruction.

Simple equations describing the motion of an Earth artificial satellite are:

I ¨̄ρ =
Υ

‖ I ρ̄‖3
I ρ̄+

I S̄d (1)

J
b ¨̄ω +

b
ω̄×J bω̄ =

I C̄d (2)

In the first equation, known as the Kepler equation, I ρ̄ is the body mass center155

position in an Earth-centered inertial frame I, Υ is the planetary constant, and
I S̄d is the resultant of environmental forces.

Eq. 2, known as the Euler equation, contains the body rate bω̄ whose estimation

is the object of this article. All of the variables in equation 2 are expressed in

the body-fixed reference frame b, whose axes can be, for example, aligned with160

the principal axes for that body. In the remainder of the paper, we assume that

the reference b will fulfill this property.
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When the body is an uncontrolled object in space, such as a failed spacecraft,

space debris, or something similar,
bC̄d reduces to the sum of environmental

torques, which is (in general) very small, especially when J , i.e., the inertia165

tensor, has particular forms (e.g., the principal inertia tensor of an axisymmetric

body has two equal elements on the diagonal).

For example, when
bC̄d is a mathematical model of the gravity gradient torque,

the numerical integration of eq. 2 in a relatively short time interval shows that

the components of bω̄ are not significantly different from those obtainable using170

the analytic solution of eq. 2 with
bC̄d = 0 and J1 > J2 > J3 [19]:

bω1 = P cn[Ξ,Θ]

bω2 = Q sn[Ξ,Θ]

bω3 = R dn[Ξ,Θ] (3)

P, Q, R, and Θ are constants that depend on both the initial rate and the

inertia tensor; Ξ is a linear function of time; and cn, sn, and dn are the Jacobi

elliptic functions.

The absolute rate ω̄ of a generic body expressed in a body-fixed reference frame175

is strictly related to the frame orientation [20], as indicated by eq.4:

bω̄ = 2(q0 ˙̄q − q̄q̇0)− 2q̄× ˙̄q (4)

where q0 and q̄ are, respectively, the scalar and the vector components of the

unit quaternion q̃. The notation q̄× denotes the skew-symmetric matrix:

q̄× =


0 −q3 q2

q3 0 −q1
−q2 q1 0

 (5)

where q1, q2, and q3 are the components of q̄. Quaternions are very useful for

representing the orientation of a reference frame because the mapping is never180

singular. This property holds because of the introduction of a fourth dependent

parameter, whereas only three independent parameters are sufficient to uniquely

determine the orientation of the frame.
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An immediate consequence of the above-mentioned property is that the mapping

between quaternions and angular rate is singularity-free; therefore, eq. 4 can be185

conveniently rewritten as:

˙̄q =
1

2
(q̄× bω̄ + q0

bω̄) ∧ q̇0 = −1

2
q̄T bω̄ (6)

The attitude of the body, i.e., the orientation of the body-fixed reference frame

b in the inertial frame I, can then be represented in matrix form using the

following compact formula:

IATb =
(
q20 − q̄T q̄

)
I3 + 2q̄q̄T − 2q0q̄

× (7)

where I3 indicates the 3× 3 identity matrix.190

The matrix IAb belongs to the special orthogonal group of dimension 3, SO(3).

Knowledge of this matrix allows us to evaluate the position of any point w on

the benchmark body in a chaser-fixed (observer) frame ch with its origin on the

simulated chaser spacecraft:

chρ̄w = chAI(I ρ̄+ IAbd̄w) + chp̄I + η̄ (8)

where d̄w is the position of the w-th point relative to center of mass in the body-195

fixed reference frame, chp̄I is the position of the origin of the inertial frame in

the observer frame (i.e., the position of the Earth’s center from the observer’s

point of view), chρ̄w is the position of the w-th point in the observer frame, and

η̄ is white Gaussian noise representing uncertainty in the coordinates measured

by the stereo-vision sensor.200

Eq. 8 allows the calculation of a data set that could be used as an input for

the rate estimation algorithm. However, the availability of a series of point co-

ordinates at equidistant time instants cannot be assumed. In fact, it is easily

to assume that, in a specific time window, a certain number of features of the

body are completely hidden from the observer. This situation occurs whenever205

the observer cannot perform flybys of the body.

Therefore, even without considering occlusions, if the body has only a small

number of features, e.g., four or five, there might be several time windows in
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which no information about the attitude is available, meaning fewer than three

points might be visible (at a given time) to the observer.210

A back-face culling [21] algorithm can be applied to identify the time instants

Figure 3: Illustration of the main back-face culling rule: a) visible point; b) hidden point

in which a generic point w is not observable.

In brief, the back-face culling algorithm consists of the evaluation of the angle

formed by the observation direction and the normal to the surface containing

the observed point. If the angle is acute, the point is visible. Fig. 3 provides an215

illustration of the aforementioned rule: the triad of axes is representative of the

observer; cases a) and b) show a visible point and a hidden point, respectively.

Using the above algorithm, it is possible to create a Boolean array χw for the

generic point w containing the visibility information. However, when the body

is not convex, this method does not produce reliable results. Many complex so-220

lutions [21] are available in the literature; they provide precise simulations with

bodies of any shape. For the purposes of this paper, however, coarse evaluation

of the occlusion period is sufficient.

According to the array χw, the attitude of the space debris, represented by

quaternions, must be calculated from the available trajectories of a group of225

points, expressed as a time-series of Euclidean coordinates. Calculation is pos-

sible whenever at least three triplets of coordinates of non-aligned points of the

benchmark body are available.

Given three different points in R3 belonging to a rigid body, one can define two

column vectors, v̄i and v̄u, whose cross product is the vector v̄j , which is per-230

pendicular to both. A third column vector, v̄k, can be simply obtained through
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another cross product between v̄i and v̄j . Then, the orientation of a body-fixed

reference frame F , which (in general) is different from the b reference frame,

with respect to the inertial frame I, is given by the following expression:

IAF =
[
v̂i v̂j v̂k

]
∈ SO(3) (9)

Vectors v̂i, v̂j , and v̂k are the unit vectors corresponding to v̄i, v̄j , and v̄k,235

respectively. As mentioned above, a non-singular mapping between an element

of the SO(3) group and a unit quaternion always exists; one of the four possible

ways to calculate the quaternion is as follows:

q̃ =


± 1

2

√
1 +A11 +A22 +A33

1
4q0

(A32 −A23)

1
4q0

(A13 −A31)

1
4q0

(A21 −A12)

 (10)

Eq. 10, in which Aij is an element of matrix FAI (the inverse of IAF ), provides240

evidence that the quaternion −q̃ represents the same orientation as q̃. This

property allows this representation to be singularity-free; however, the calcu-

lation process requires that more than one choice be made. This requirement

means that describing the evolution of the attitude of a body with four time-

continuous parameters is not trivial. Several algorithms can be developed to245

calculate quaternions q̃(tk) that can be interpolated using continuous curves for

a given temporal sequence of rotation matrices IAF (tk).

For example, an effective algorithm can be composed of the following steps:

1. calculate four quaternion components as a function of the elements of the

principal diagonal of IAF (tk) (e.g., q0 in eq. 10);250

2. evaluate the maximum value qmax, and then, calculate q̃(tk) according to

qh = qmax (a good example is again given by eq. 10 with qh = q0 );

3. apply the following rule to guarantee continuity (except when k = 0):

if qh(tk−1) < 0 then q̄(tk)← −q̄(tk)
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Note that this kind of algorithm fails when the time step is not constant; there-

fore, if there is any lack of information at some time instant regarding the

attitude of the body, the continuity of the quaternions cannot be guaranteed.255

Another problem that occurs is that for two distinct instants, the observer will

(in general) see different features of the objects; thus, it is necessary to assume

complete knowledge of all transformation matrices (constant) between all pos-

sible body-fixed reference frames F whose orientations with respect to I can be

evaluated via eq. 9.260

The above assumption coincides with assuming knowledge of the relative posi-

tions between all features, as the orientations of the body-fixed frames depend

on only these positions. If the number of features is B, the number of all possible

body-fixed reference frames is
(B
3

)
. When at least three features are observable,

time [s]

0 50 100 150 200

q 3

-1

0

1
0 50 100 150 200

q 2

-1

0

1
0 50 100 150 200

q 1

-1

0

1
0 50 100 150 200

q 0

-1

0

1

Figure 4: Raw attitude information
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the orientation F
∗
AI of one specific frame F∗ can be obtained through the above265

mentioned transformation matrices; the associated quaternion can also be ob-

tained using eq. 10. These methods consider feature visibility, which, combined

with coordinates calculated using eq. 8, are useful for calculating parts of time-

series of noisy quaternions. However, these time-series cannot be interpolated

using a unique continuous curve that correctly describes the evolution of the270

orientation of the body.

One example of the result of the evaluation of realistic attitude data is shown

in fig. 4: quaternion signals refer to the chosen benchmark body assumed at an

initial time bω̄0 = [10.2 0.72 −17.1] deg/s. The normalized vector of the three

principal moments of inertia has been set to J̄ = [0.7014 0.5762 0.4196]; note275

that the magnitude of the aforementioned vector does not influence the solution

of eq. 2. White Gaussian noise with zero mean and a standard deviation of 3 cm

was added to the Euclidean coordinates of the benchmark’s features. In fig. 4,

a noisy 4×m signal is illustrated; however, for each m-dimensional component,

only a number, p, of samples are real numbers. A number, m−p, of samples are280

missing because of deficient detection of the features of the benchmark (fewer

than three features are detectable).

The restoration of the complete signal q̃ ∈ R4×m can be split into the paral-

lel recovery of the time series of each quaternion component. Then, typical

compressed sensing techniques can be adopted to recover the four corrupted285

signals.

3. Basis pursuit and SALSA algorithm

In general, a noisy measured signal with missing samples s ∈ Rp can be

modeled as:

s = Hσ + η (11)

where σ ∈ Rm represents the unknown original signal, η represents the noise,290

and H is a p×m matrix that can be defined using the following expression:

HTH = diag(τ) (12)
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where τ is an array whose elements τj , j = 1, 2...,m are equal to zero when a

lack of attitude information is associated with the time instant tj . Otherwise,

τj is equal to one. Using these definitions, we find that H must be a matrix

whose columns are null when the column index corresponds to a time instant295

with a lack of attitude information. Additionally, it is easy to verify that the

following equation holds, HHT = Ip, where Ip is the p× p identity matrix.

The theory of compressed sensing addresses the problem of recovering a signal

that is approximately decomposable into a linear combination of a small number

of elementary functions of time. Given a large set of functions, a finite number300

of unit-norm signals, which are also called atoms, can be derived. Then, signal

recovery consists in finding the smallest number of atoms whose linear combina-

tion optimally fits the available measurements of the signal. All of the atoms are

grouped into a set that is called a dictionary. The dictionary synthesis matrix

Φ is defined as a representation of the linear mapping between certain complex305

coefficients c ∈ Cn and the original signal σ. An interesting dictionary is the

so-called Fourier dictionary ; the synthesis matrix Φ of this dictionary is given

by the following formula:

σk =

n−1∑
u=0

c(u)ei
2π
n uk ∀k = 0, 1, ...,m− 1 (13)

Φk,u = ei
2π
n uk ∀k = 0, 1, ...,m− 1 ∧ ∀u = 0, 1, ..., n− 1 (14)

When m is equal to n, the linear mapping Φ : Cn → Rm becomes the so-called

inverse discrete Fourier transform (IDFT) multiplied by the normalization con-310

stant n. Additionally, it is possible to define the dictionary analysis matrix Φ∗

as the conjugate-transpose of Φ, showing that when m = n the linear mapping

Φ∗ : Rm → Cn becomes the so-called discrete Fourier transform (DFT). This

property holds because of the orthogonality of the matrix Φ. We define the

coherence parameter as follows:315

ϑ = max
ι6=κ

∣∣∣∣∣
m−1∑
k=0

Φk,ιΦk,κ

∣∣∣∣∣ (15)
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where the Fourier dictionary is found to be completely incoherent (ϑ = 0).

Coherence is a useful property for a dictionary because it is a measure of the

linear independence of the atoms; intuitively, signal recovery is easier if the

atoms are all orthogonal.

Based on these definitions, eq. 11 can be conveniently rewritten as:320

s = HΦc+ η = Φ̃c+ η (16)

Eq. 16 proposes the problem of estimating the coefficient vector c from a noisy

signal with missing samples s. A problem that is optimal to recover the signal

could be stated as follows:

arg min
c
‖c‖0 subject to ‖s− Φ̃c‖2 ≤ ε0 (17)

where ε0 is a reasonable tolerance of the estimation error and the l0-norm is

defined as the number of non-zero elements of the argument. Unfortunately,325

obtaining a solution to this problem requires searching for a solution among

all possible combinations of the non-zero elements of c. For this reason, it is

appropriate to use a relaxation of the problem, which leads to the following

problem:

arg min
c
‖c‖1 subject to ‖s− Φ̃c‖2 ≤ ε1 (18)

where ε1 depends on ε0 and the l1-norm is defined as the sum of the elements330

of the argument. Note that the problem in eq. 18 is convex; thus, it has only

one suitable solution, if a solution exists. However, a more convenient method

to solve this problem is to write it in its Lagrangian form:

arg min
c

1

2
‖Φ̃c− s‖22 + λ‖c‖1 (19)

The regularization parameter λ depends on ε1; it is defined as a penalization

parameter : when λ is equal to zero, the entire noise vector will be preserved335

and contained in the found coefficients. For higher values of λ, the signal will

be smoother but the recovery will be less accurate.

The problem stated in eq. 18 is known as the basis pursuit denoising problem,
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while the one stated in eq. 19 is known as the lasso problem.

After re-normalization of the columns, the dictionary associated with the syn-340

thesis matrix Φ̃ has a non-null coherence ϑ. However, the condition of having

a null coherence is not mandatory: as stated in [22], the fundamental condition

that assures that an exactly sparse signal can be optimally recovered with most

of the existing algorithms is that the exact recovery coefficient ERC is greater

than 0. The ERC defines the extent to which a subset of linearly independent345

atoms in a dictionary is different from any other subset in it. Thus, altought

the coherence is not null, it is sufficient that the signal can be represented as a

combination of atoms that are not too similar to others in the dictionary.

Therefore, the dictionary associated to Φ̃ was chosen for the recovery of quater-

nions. It has been found that the sparsity of the original signal to be recovered350

is an important property if the basis pursuit is to be the most efficient strategy

for signal recovery. It is difficult to demonstrate that the quaternions’ compo-

nent signals have a sparse frequency spectrum. Eq. 3 and eq. 6 show that (in

general) the quaternion components should not be exactly sparse; however, they

should have very few frequency components that have a significant amplitude.355

Numerical simulation confirms this statement if quaternions represent the ori-

entation of a body free from external torques [23].

The algorithm chosen by the authors to solve the problem in eq. 19 is an adapted

version of the so-called split augmented Lagrangian shrinkage algorithm, which

is also known by its acronym, SALSA [17]. The two most important theoretical360

contributions to the algorithm are so-called variable splitting and the use of the

augmented Lagrangian function. Variable splitting simply consists of introduc-

ing a new variable v = c in the optimization problem. On the other hand, the

second contribution of SALSA consists of introducing in the Lagrangian formu-

lation of the problem an extra weight to the constraint v − c = 0.365

The application of these two contributions leads to the following formulation of

the problem:

arg min
c,v

1

2
‖Φ̃c− s‖22 + λ‖v‖1 +

µ

2
‖c− v − l‖22 (20)

16



where µ ≥ 0 is another penalization parameter and l is an appropriate constant

value.

In this formulation of the problem, the high value of the parameter µ forces370

the equality of c and v, compensating for the introduction of a new auxiliary

variable. However, the problem in eq. 20 is difficult to solve because both

variables, c and v, are in the norm. One way to address this issue is to minimize

the function for only one variable while holding the other fixed; this is repeated

alternately for the two variables for a fixed number of iterations. This algorithm375

is the proposed SALSA algorithm. The algorithm consists of the following

operations once λ, µ, and some arbitrary initial guesses v0 and l0 are chosen:

• cν+1 = arg minc ‖Φ̃c− s‖22 + µ‖c− vν − lν‖22

• vν+1 = arg minv λ‖v‖1 + µ
2 ‖cν+1 − v − lν‖22

• lν+1 = lν − (cν+1 − vν+1)380

• ν ← ν + 1

These basic steps can be solved in a closed form: the first step represents a

classic constrained least-squares optimization problem, as the function to be

minimized is a strictly convex quadratic function. The solution is as follows:

cν+1 = (Φ̃∗Φ̃ + µIn)−1(Φ̃∗s+ µ(vν + lν)) (21)

The second step is minimization of a function that is a pure denoising function,385

meaning that the parameter λ is the regularizer of the equivalence condition

between a known vector cν+1 − lν and the variable v: if λ = 0, v = cν+1 − lν ; if

λ is bigger than zero, it induces sparsity in v. The closed-form solution to this

kind of problem is well known [24]. Specifically, when the regularizer is applied

to the l1-norm, the solution is the so-called soft-thresholding function.390

Then, the solution to the second step is:

vν+1 = soft

(
cν+1 − lν ,

λ

µ

)
(22)
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To obtain a simpler algorithm, this method can be slightly modified, according

to [25], by changing the variables uν = vν + lν . Thus, eq. 21 can be written as

follows:

cν+1 = (Φ̃∗Φ̃ + µIn)−1(Φ̃∗s+ µuν) (23)

Using the matrix-inverse lemma, and the following properties:395

HHT = Ip (24)

Φ̃Φ̃∗ = nIp (25)

the expression 23 can be turned into

cν+1 =

(
1

µ
In −

1

µ(µ+ n)
Φ̃∗Φ̃

)
(Φ̃∗s+ µuν) = uν +

1

µ+ n
Φ̃∗(s− Φ̃uν) (26)

which leads to:

cν+1 = uν +
1

µ+ n
Φ∗[HT s− diag(τ)Φuν ] (27)

This equation shows that because a fast transform that maps coefficients to

signals and vice-versa exists (i.e., the direct and inverse fast Fourier transform),

the explicit computation of Φ and Φ∗ can be avoided, which allows the algorithm400

to be very fast and efficient.

Then, the final algorithm obtained (gathering all of the equations presented in

this section) is a follows:

• uν+1 = soft(cν − lν , λ/µ) + lν

• cν+1 = uν + 1
µ+nΦ∗[HT s− diag(τ)Φuν ]405

• lν+1 = uν+1 − cν+1

• ν ← ν + 1

To implement the algorithm, it is still necessary to choose values for λ and µ,

and to specify the initial guesses for c0 and l0.
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4. Attitude recovery410

Eq. 10 shows that the two opposite quaternions represent the same attitude

of a body. Therefore, the methods described in the previous sections are not

directly applicable to recovery of quaternion signals (such as those represented

in fig. 4).

Actually, the recovery of the missing samples for these kinds of signals does not,415

in general, lead to the recovery of a continuous attitude signal. In fact, once the

sign of the first value of the quaternions is chosen, the signs of the other (sub-

sequent) values are not freely selectable: when the signs are randomly selected,

the attitude signal, in general, presents abrupt changes. However, having fixed

the sign for the first value, a unique sequence of choices that leads to a smooth420

signal exists. In other words, the assumption concerning the sparsity of the

quaternions is valid only if the sign of each value of the quaternions is properly

selected. This selection is often made by exploiting known algorithms, an ex-

ample of which was presented in section 2. Unfortunately, these algorithms are

not applicable when the quaternions have missing samples.425

One approach to this problem consists of recovering all possible signals produced

by all possible choices of value signs of the signals. This principle is based on

the hope of finding some criterion to identify the unique smooth signal that

represents the body attitude.

The quaternion signals that have missing samples can be considered a set of N430

pieces. Excluding the first piece, all of the other pieces may be marked with a

Boolean label. If no changes have been made to the sign of the values of the

input pieces, all of the labels are set to zero. On the contrary, whenever a sign

change is applied to the values of a specific piece, the Boolean label switches

to one. Thus, by sorting all the N − 1 digits, a set of labels that uniquely435

characterizes the relationship between a generic sequence and the original input

sequence can be composed.

Based on these considerations, note that the number of all possible different

signals must be 2N−1. These signals contain the same piece of information re-
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garding the attitude of the body.440

Once all of the signals have been recovered, we must determine which criterion

can be used to identify the correct signal.

For example, we can assume that the searched signal is the sparsest signal from

among the recovered signals. This assumption is supported by numerical sim-

ulations. In particular, when changing the initial conditions of the benchmark445

debris, the quaternions are always very sparse. Furthermore, it is intuitive that

signals with abrupt variations have a more complex frequency spectrum than

smooth signals. Clearly, if the noise has a large amplitude, the quaternions

are not more sparse; however, in this case, it seems impossible to separate the

attitude information from the noise using any method.450

The sparsity of the h-th signal can be quantified using, for example, a penalty

score calculated as follows:

PS = const1‖ch‖0 + const2‖ch‖1 (28)

where const1 and const2 are two constant gains, and ch is the vector of the co-

efficients of the Fourier transform of the recovered h-th signal. Any reasonable

score can be used to make classifications of the signals. The score used herein455

has been proven to be valid using numerical simulations.

Using this principle, we find that if the number N of pieces of quaternions is

large, the total number of piece-wise signals that should be recovered would

increase exponentially, which would make the explained idea inapplicable. For

example, the quaternions shown in fig. 4 present a number of pieces N = 28 for460

each element, which means that the overall number of signals that should be

recovered would be roughly one hundred million.

A good method for making the recovery procedure feasible consists of prelim-

inarily considering a relatively small number N ′ << N of pieces, and then,

recovering all of the resulting 2N
′−1 signals. This technique allows us to make a465

preliminary selection of the best signals. Once one or more signals are selected

using the score in eq. 28, complete recovery is performed by adding new pieces

with both possible signs. Specifically, every intermediate recovery is followed by
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discarding the worst recovered signals. At the end of this procedure, only the

best signal remains.
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Figure 5: Preliminary phase, N ′ = 5: raw data (crosses) and recovered signal (red line)

470

Considering the quaternions shown in fig. 4, a number N ′ = 5 pieces of q0

is considered. Note that the number N ′ cannot be excessively low because defi-

cient information in terms of measurements leads to poor preliminary recovery.

In fig. 5 recovery for sixteen signals is shown. Each signal is characterized by a

set of boolean labels that specifies the relationship between the signal itself and475

the original input, marked with 0000.

In fig. 6, a bar chart showing the penalty scores for the recovered signals is pre-

sented. Intuitively, the sparsest recovered signals are those marked with 1100

and 1111 (see also fig. 5). However, it is difficult to predict which of the two

signals is actually the best. Therefore, they are both preserved for the next480

phase, in which the 6-th piece of q0 is added to the two best recovered signals

(see fig. 7 for an example).
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Figure 6: Values of penalty scores; best recoveries in blue correspond to 1111 and 1100 label

sets
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Figure 7: Introduction of a new piece of quaternion: the component is added to the best

recovered signals with opposite sign

The new signals could be recovered using the same method as used in the pre-

liminary phase. Therefore, a new score calculated using eq. 28 can be associated
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Figure 8: Final best recovery of the quaternion: raw data (blue crosses) and recovered signal

(red line)

with each recovered sequence so as to eliminate the worst cases. This process485

can be stopped when all of the available input data are exploited. The complete

recovered q0 signal is shown in fig. 8.

Fig. 9 presents the complete recovery of four different quaternion signals derived
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Figure 9: Attitude recovery performed for different benchmark conditions (see tab. 1).

23



CaseID J1 J2 J3 ω01 ω02 ω03 εθ

1) 0.618 0.707 0.345 7.200 5.525 -1.624 0.507

2) 0.601 0.446 0.664 8.400 -0.263 2.860 0.520

3) 0.657 0.489 0.574 7.200 5.914 6.023 0.712

4) 0.518 0.461 0.720 6.000 6.600 4.440 0.582

M. unit: [ ] [ ] [ ] [deg/s] [deg/s] [deg/s] [deg]

Table 1: pitch angle error for different conditions of the benchmark (algorithm’s output in

fig. 9); standard deviation of the measurement noise is equal to 5 cm

from distinct sets of initial angular rates and inertial properties of the bench-

mark spacecraft. The benchmark motion simulation has been run for 1500 s.490

Only the final parts of the signals are shown ir order to better illustrate the

output quality. For these cases the standard deviation of the noise added to the

feature coordinates has been increased to 5 cm.

The conditions of each of the cases are listed in tab. 1. The latter table presents

also root-mean-square errors (RMSE) for each attitude recovery in terms of the495

corresponding ZYX Euler angles (error in the pitch angle: εθ). Table. 2 illus-

trates the RMSE for other six different recoveries. The outputs relative to these

last scenarios are not shown as they do not provide remarkable information for

a deeper understanding of the algorithm capabilities.

From a brief analysis of the data presented in tab 1 and in tab 2 it appears500

that errors are in the order of 5 · 10−1 deg for pitch angles. In particular, the

mean value of RMSE in the considered cases is equal to 0.611 deg, while the

error range is from 0.506 deg to 0.813 deg

Making for instance a comparison with the method presented in [10] which,

altought is a very effective method, is not fault-tolerant, the errors made in505

estimating attitude are comparable. In [10], the noise added to the feature

coordinates is dependent by the distance between chaser and target along the

direction of the focal axes of the cameras. Indeed, the noise is added at pixel

level. Multiplying the amplitude of this noise for a reference value of the afore-
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CaseID J1 J2 J3 ω01 ω02 ω03 εθ

5) 0.295 0.781 0.551 7.200 0.253 -13.198 0.612

6) 0.531 0.473 0.703 8.400 0.545 0.458 0.597

7) 0.719 0.658 0.224 6.600 1.296 9.557 0.513

8) 0.745 0.512 0.427 6.000 -7.620 12.000 0.567

9) 0.742 0.521 0.421 -3.000 4.800 -2.700 0.814

10) 0.371 0.743 0.557 3.000 -4.800 -2.100 0.566

M. unit: [ ] [ ] [ ] [deg/s] [deg/s] [deg/s] [deg]

Table 2: pitch angle error for different conditions of the benchmark; standard deviation of the

measurement noise is equal to 5 cm

mentioned distance we can roughly obtain an idea of the corresponding order of510

magnitude of the noise at coordinate level. Considering 10−4 of noise amplitude

at pixel level, which coarsely corresponds to 1 cm for a distance of 100 m, the

estimation method in [10] produces errors in pitch angle that are under 2.5 deg

(90th percentile). Considering instead 10−5 of noise amplitude at pixel level,

which corresponds approximately to 1 mm for a distance of 100 m, the obtained515

error decreases to 2 · 10−1 deg (90th percentile).

On the other hand, the attitude recovery method proposed in this paper pro-

duces errors (without Kalman filtering) in the pitch angle that are in the order

of 5 · 10−1 deg, having 5 cm of noise amplitude at coordinate level. After a

comparison with the current state of the art, this result is quite encouraging520

with a view on future practical applications of this method.

Finally, certain considerations regarding the sample period should be made:

the value strictly depends on the type of sensor chosen for tracking the features

of the body. The recovery is reliable if the sampling frequency is sufficiently

higher than the highest significant frequency in the quaternion signal. Fortu-525

nately, most torque-free space bodies have a slowly oscillating attitude; thus,

tracking sensors such as simple cameras often have a high acquisition frequency.

For example, a sampling frequency equal to 1Hz is considered sufficient.
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5. Angular rate estimation

The estimation of the rate from attitude information, i.e., from eq. 4, re-530

quires the evaluation of the quaternion’s derivative. Numerically performing

the derivative of the estimated signal produces unacceptable results because the

recovered attitude signal still contains high frequency noise, which is drastically

amplified in the numerical derivative. To solve this issue, an unscented Kalman

filter (UKF) was implemented. The discrete-time nonlinear dynamic system,535

xt+1 = f (xt) + θt = xt + ∆t


1
2Ω
(
bω̄t
)
bq̃t

03×1

diag
(
J̄t
)−1 [bω̄t × (diag

(
J̄t
)
bω̄t
)]

03×1

+ θt (29)

yt = h (xt) + et = bq̃t ⊗ oq̃t + et (30)

served as framework for the UKF. In eq. 29 the state vector xt =
[
bq̃t

oq̃t
bω̄t J̄t

]T
contains: the unit quaternion bq̃ that describes the attitude between a principal

body frame b and the inertial frame I; the offset quaternion oq̃ that describes

the attitude between a generic body frame F and b; bω̄ the angular velocity of540

the body frame with respect to b; the column array J̄ which entries are the nor-

malized principal moments of inertia of the target body. Moreover, ∆t indicates

the time step.

Ω
(
bω̄k
)

=


0 − bω1 − bω2 − bω3

bω1 0 bω3 − bω2

bω2 − bω3 0 bω1

bω3
bω2 − bω1 0

 (31)

Ω
(
bω̄k
)

is a skew-symmetric matrix (see eq. 31) and θt is the process noise.

Regarding eq. 30, yt = q̃t is the measurement vector, the operator ⊗ represents545

the quaternion multiplication, and et is the measurement noise. This equation

states that the attitude of a generic body frame F may be expressed as the con-

catenation of the attitude of the body frame b plus a constant offset quaternion.
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The UKF at first generates a set of points called sigma points. These sigma

points are created exploiting the unscented transformation which is a method550

for calculating the statistics of a random variable which undergoes a non lin-

ear transformation [26] [27]. The application of the UKF may be performed as

follows:

Calculate sigma points:

Xt = [x̂t . . . x̂t] +
√
α
[
014×1

√
Pt −

√
Pt

]
(32)

Prediction:

X−t+1 = f (Xt) (33)

x̂−t+1 = X̂t+1wm (34)

P−k+1 = X̂t+1W
[
X̂t+1

]T
+Qt (35)

Update:

Y −t+1 = h
(
X−t+1

)
(36)

ŷ−t+1 = Y −t+1wm (37)

St+1 = Y −t+1W
[
Y −t+1

]T
+Rt (38)

Ct+1 = X−t+1W
[
Y −t+1

]
(39)

Computation of the Kalman gain:

Kt+1 = Ct+1S
−1
t+1 (40)

x̂t+1 = x̂−t+1 +Kt+1

(
yt+1 − ŷ−t+1

)
(41)

Pk+1 = P−k+1 −Kt+1St+1K
T
t+1 (42)

where α is a constant that takes into account scaling parameters and adjusts

the spread of the sigma points while wm and W are respectively a vector and a555

matrix of weights associated with the points. P represents the state covariance

matrix, Q the process noise covariance matrix and R represents the measure-

ment noise covariance matrix. In this case at each completion of the so-called
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Figure 10: Final estimation of the angular rate after Kalman filtering the recovered quater-

nions in fig 9. Reference values of the angular rate components are represented with dashed

lines

.

Kalman loop the principal moments of inertia are normalized as well as the

quaternions involved. This brute-force approach is not an optimal one but is560

proven to work generally well [28] [29].

An example of the final result of Kalman filtering the surrogate quaternion

measurements is depicted in fig. 10: the components of the estimated angular

rate are compared to the ones obtained via simulation of the benchmark (see

section 2).565

The four shown results refer to the benchmark conditions listed in tab. 1. The

estimation algorithm has been also applied to the other recovered quaternions

corresponding to benchmark conditions listed in tab. 2. To show the perfor-

mances of the whole approach, the final RMSE relative to each component of

the estimated rate and pitch angle (after Kalman filter convergence) are listed570

in tab 3. Analyzing the data shown in tab. 3 it appears that the errors in the

angular rate estimation are approximately between 10−2 deg/s and 10−1 deg/s.
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CaseID εω1
εω2

εω3
εθ

1) 0.029 0.015 0.019 0.261

2) 0.080 0.036 0.098 0.244

3) 0.032 0.045 0.036 0.398

4) 0.093 0.085 0.016 0.144

5) 0.048 0.092 0.118 0.374

6) 0.053 0.099 0.036 0.495

7) 0.016 0.015 0.048 0.194

8) 0.017 0.041 0.051 0.238

9) 0.030 0.038 0.041 0.576

10) 0.008 0.016 0.065 0.173

M. unit: [deg/s] [deg/s] [deg/s] [deg]

Table 3: angular rate and pitch angle estimation error after Kalman filtering; standard devi-

ation of the measurement noise is equal to 5 cm
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Thus, the results obtained with the presented algorithm are again comparable

with the results obtained in [10]. In that work the angular rate estimation error

has been assessed between 10−2 deg/s and 10−1 deg/s. However, these val-575

ues have been obtained starting from data affected by the minimum considered

noise amplitude (10−5 at pixel level). In the presented work a large 5 cm noise

amplitude has been considered at coordinate level.

From tab. 3, a new mean value of the error in pitch angle estimation has been

evaluated (0.3 deg). As expected, the attitude estimation accuracy has been580

furtherly improved after the non-linear Kalman filtering stage.

Finally, to show the convergence properties of the designed unscented Kalman

filter, the time behavior of mean and maximum angular rate estimation error

(in the ten considered scenarios) is illustrated in fig. 11. From fig. 11, it can be

noted that the error level stabilizes at about 1000 s.585

6. Conclusions

A method to recover the attitude and the angular rate of an uncooperative

spacecraft, or, more generally, of a space rigid body has been developed using

the trajectories of several features of the object. Trajectories must be identified

using stereo-vision sensors placed on a chaser spacecraft. It is not necessary590

that trajectories be captured at a constant sampling frequency; however, a fi-

nite number of time windows in which the sample frequency is constant must

exist. Piecewise signals containing partial and corrupted information regarding

the attitude of the target body can be recovered using an algorithm that ex-

ploits optimization techniques. There are no stereo-vision based methods in the595

current state of the art that are able to efficiently perform this recovery during

occlusion periods (no measurements available). The recovery of sparse signals

in the presence of Gaussian measurement noise has been successfully performed

using a basis pursuit denoising approach.

The use of an unscented Kalman filter allows accurate estimation of the angular600

rate of the studied object starting from a complete recovered attitude signal.
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The accuracy of the final results of the whole approach is comparable to the one

obtained with methods that are not fault-tolerant.

Interestingly, when using this algorithm, some techniques that are currently

used in the field of signal processing are used for the measurement of kinematic605

quantities that are useful in various applications in the areas of mechanics, con-

trol, and aerospace.
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