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A TURBULENT APPROACH

TO THE DESCRIPTION OF MESO- AND MICROMIXING.
APPLICATION TO ACID-BASE REACTIONS IN TUBULAR REACTORS.”

Massimo PIPINO, Antonello A. BARRESI and Giancarlo BALDI

Dipartimento di Scienza dei Materiali e Ingegneria Chimica, Politecnico di Torino
Corso Duca degli Abruzzi 24, 10129 Torino, Italy

ABSTRACT

A new approach to the description of turbulence phenomena, based on a different interpretation of the Pao's
energy spectrum function, is proposed. An eddy distribution function, that can be used to estimate the
characteristic expected value of different turbulence-related properties, is obtained; the contribution of all the
eddies in the universal equilibrium range is taken into account. A modified three-stage micromixing model,
that can also account for the contribution of macro- and meso-mixing to the total reaction time, is presented.
The predictions of the model are compared with experimental results for acid-base neutralisation in a tubular
reactor, taken from literature.

INTRODUCTION

If chemical reactions are fast compared to mixing, macro-scale and micro-scale segregation of the
reactants may occur. These concentration non-homogeneities influence rate and selectivity of non-
first order and complex reactions, affect product properties (e.g. in precipitation and polymerisation)
and must be taken into account in scale-up, in the evaluation of reactor stability and in the study of
possible thermal run-away.

Mixing is accomplished through the following steps: convection by mean velocity, dispersion
by large eddies, reduction of the reactant segregation scale, deformation of the segregated lumps and
reduction of the segregation intensity by molecular diffusion.

In the literature these steps are grouped in macro-, meso- and micromixing: a clear distinction
between these three mixing modes is questionable; an attempt was proposed by Baldyga and Bourne
(1984a) who referred the various steps to different regions of the turbulent concentration spectrum.

The characteristic times of macromixing, Tmacro, MICTOMIXING, Tmicro, and reaction, Ty,, may be
evaluated and compared (Ranade and Bourne, 1991; Xi et al., 1991). The great part of the models
proposed up to now can deal only the cases in which either macromixing or micromixing is the rate
governing process, that i Tmico << Tkin < Tmacro> OF Tmacro << Tkin < Tmicro , DUt cannot predict the
correct performance of the reactor if both macro- and microscale segregation are important (Ranade,
1992). There have been only relatively few efforts of modelling the interaction between the reaction
and the whole mixing mechanism (Villermaux, 1989; Baldyga, 1989; Ranade and Bourne, 1991;
Thoma et al., 1991; Ranade, 1992; Fox, 1992); a case in which the characteristic times of erosion
(dispersive mixing), diffusion and reaction are comparable has been investigated by Klein ez al.
(1980).

In this work a new approach to the description of turbulent effects on mixing is proposed and
applied to a three-stage model, that can describe the effects of the different turbulence scales.

*
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THE NEW APPROACH TO THE DESCRIPTION OF TURBULENT PHENOMENA

In the following, homogeneous isotropic turbulence in an incompressible fluid will be
considered. We will move from the three-dimensional energy spectrum function proposed by Pao
and Corrsin to obtain an eddy distribution function that can account for viscous dissipation effects
out of the inertial subrange.

By means of this function a characteristic turbulent velocity and fluid element deformation will
be calculated; their application to modelling of meso- and micromixing will be presented in the next
paragraph.

The energy spectrum function £(%,f) may be obtained by the energy balance in the wavenumber
space:

S = Fh, )= 2vKE (k1) (1)

where F(k,f) is the energy transfer spectrum function, and the last term on the right-hand side
represents the energy dissipation spectrum.

In the universal equilibrium range, the time variation of the energy spectrum function is negligible,
and equation (1) may be written (in integrated form):

BE(k,1)
it

j:F(k,z)dk +2v[ K2E(k 1)k = 0 )

The closure hypothesis proposed by Pao (1965) assumes that the total energy flux transferred
from the eddies associated to the wavenumber range 0-k through the wavenumber k, which is the
first term in the left-hand side of equation (2), is proportional to the energy spectrum function.
Accordingly, using dimensional analysis, the following expression is obtained for the energy
spectrum:

E(k,t)= Ae?*k? exp(—iA—V—km) 3)
2 81/3
By considering that in the inertial subrange, where dissipation by viscous effects is negligible,

the well known Kolmogoroff spectrum function is:

E (k) = A €23 k53 4)
the energy spectrum function (3) may be written as:
E(k) = Ey(k,1) Mk, 1) (5)

M(k,f) represents the fraction of the total dissipation rate € due to the eddies associated to
wavenumbers greater than k: introducing the Kolmogoroff microscale A= (v3/g)1/4, it may be written
as:

Mk = oxp (34 (2.0 ©

In the following, we will consider stationary turbulence and so we will refer to M(k) only.

In a simplified turbulence representation, in which only the inertial behaviour of the eddies is
taken into account, M(k) would be a cumulative distribution function giving the contribution of the
eddies associated to wavenumbers higher than k to the spectrum. This is the interpretation that will
be utilised in the following; it is more general and more widely applicable than the one previously
proposed (Pipino et al., 19922a) and obtained using less stringent hypotheses.

The differential distribution function R(%) may be readily obtained; remembering that according
to Tennekes and Lumley (1972) an eddy of wavenumber k is defined as a disturbance containing
energy between 0.62k and 1.62k, it follows:

R(k) = M(0.62k) - M(1.62k) @)

The behaviour of R(k) and M(k) is shown in Figure 1.
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The shape of the curves and
consequently the position of the maximum of
R(k) is slightly influenced by the value
adopted for the 4 constant in equations (3)
and (4). The Kolmogoroff spectrum constant
is affected by some uncertainty (Hinze,
1975): Tennekes and Lumley (1972, pg.
271) suggest the value 1.5 (and this value
was adopted by the authors in previous
works and also by Bourne and co-workers);
in this work the value 1.7 that allows the best
agreement with Pao's experimental data (see
Hinze, 1975; pg. 255), will be employed.

The use of the eddy distribution
functions defined above allows a new
approach to the description of turbulent
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phenomena. Every "inertial" quantity or 0
effect that is a linear function of an energy,
dependent on the wavenumbers and
expressible in the form:

(8)

g =gk Figure 1. The M(k) [——] and R(k) [-----] functions.

may be associated to a characteristic value

g*, that takes into account the contribution of the eddies of different scales (Pipino ez al., 1992b).
Referring to wavenumbers as integration limits, this characteristic value may be calculated

from:

g*= [ sk 2L dk ©

Characteristic turbulent length and velocity

In what follows, we differentiate between the scales of turbulence and the "physical” properties
of the eddies.

We adopt the term "scale" for a quantity related to the spectral analysis of turbulence (for
example as defined in Hinze, 1975) and usually derived from dimensional analysis: we will refer to
the length scale A= £ -! and to the velocity scale u,= g!/3k 13,

On the other side, if we assign a "physical" size to the eddies associated to wavenumber k, we
follow Tennekes and Lumley (1972) in posing / = 27tk -! as the characteristic dimension of the eddy.

The "physical" turbulent velocity (i.e. the root mean square of the velocity fluctuations) of the
eddies associated to wavenumber k is (Hinze, 1975):

w'(k,t)y=JkE(k,1) (10)
Equation (10) must be consistent with the correlation chosen for /. Following Tennekes and
Lumley (1972, pg. 259) in adopting the eddy influence as contained between 0.62k and 1.62k, it is
possible to derive for #"%(k,f) an expression corresponding to equation (10).
From (10) and (4) it follows:

ul2(k,t)=17¥3%k23 (11)

and applying equation (9):

u'2*=— j:u,.’nz(k,t)%cﬂc (12)

finally:



u™* = 1.66 (ve)l4 (13)

This is the characteristic turbulent velocity, calculated taking into account the weighted
contribution of all the eddies in the universal equilibrium range.

This characteristic velocity is useful for modelling the convective and distributive mixing
stages, and the reduction of the scale of segregation, caused by the largest eddies (with a scale larger
than the Kolmogoroff's one). As it will be shown later, this approach allows also the modellisation of
the cases in which large scale concentration disuniformities occur.

In the same way, we can obtain a characteristic wavenumber as the one corresponding to the
maximum of the R(k) function: it represents the eddy having the greatest importance in the spectrum.
We obtained for it the value 13X, which is very close to the value 12 Ax indicated by Baldyga and
Bourne (1984a) as the most effective eddy in the engulfment process.

Deformation of the fluid elements

Baldyga and Bourne (1989) have recently shown that, in many cases, in turbulent liquid media
(Sc<4000), diffusion and reaction in deforming laminated structures may not be the rate controlling
stage, and do not even affect the product distribution, because the micromixing process is governed
by the "engulfiment", that is by the rate of formation of the fine laminated structures. On the other
side, the previous stages are important when acid-base neutralisations or, in general, almost
instantaneous reactions occur.

Several models have been proposed to describe the deformation kinematics (see Hinze, 1975,
Ranz, 1979; Ottino et al., 1979; Angst et al., 1982; Bolzern and Bourne, 1983; Baldyga and Bourne,
1984b and Xi et al., 1991), but they all only take into account the effect of the eddies in the viscous
subrange. It must be considered that the segregated fluid lumps, even if they are smaller than the
Kolmogoroff eddies, may be engulfed and deformed by eddies both in the inertial and in the viscous
subrange; moreover, if we assign a "physical” size to the eddies associated to the wavenumber k, it is
possible to outline that just the eddies larger than the fluid lump can engulf and deform it.

According to the statistical theory of initial, relative turbulent diffusion (Hinze, 1975), for short
diffusion times, the relative diffusion between two fluid points (i.e. their mean square distance s2) is

related to the velocity difference correlation W(s,,)=w,(s,,1)w,(s,,1) :

§2 =52 + W(s,, )12 (14)
In order to make a spectral analysis of W, we can consider s, as the dimension of the eddy
associated to wavenumber k, and we can write the velocity difference correlation as a function of
wavenumber and time as W(k,7).
Two different correlations can be found for W in the inertial and in the viscous subrange.
If kAx>>1 (viscous subrange):

W(k,1)= -é%soz (15)

and if AAx<<1 (inertial subrange):

W(k,t)=8.25(ss,)*? (16)
Deformation due to the larger eddies in the inertial subrange is small in comparison of that
caused by the viscous subrange eddies, and as a first approximation it has been neglected previously
(Barresi et al., 1992), but its contribution may be significative.
The relative importance of viscous and convective effects, in an eddy associated to the
wavenumber k, may be estimated by the eddy Reynolds number defined as:

Re, = M4(k1) (17)
v
Thus Re; may be employed in order to build a function able to interpolate the two asymptotic
behaviours and describe the velocity correlation in the intermediate range:
4
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W(k, 1) (3 So) 1+ Re, (8.25 28 54273) 1+Re, (18)

Applying equation (9), it follows:

W 0108 (19)
S v
The variable thickness of the fluid lamella may be calculated as proposed by Baldyga and
Bourne (1984b):
2 5 172
A o1 W e ([143W | (20)
d, 25,2 25,2

Substituting equation (19) in equation (20), the rate of shrinkage of the fluid lump is obtained. As
expected, equation (19) describes a slower shrinkage than equation (15), that considers all the eddies
in the viscous subrange.

EXAMPLES OF APPLICATION TO MESO- AND MICROMIXING MODELLING

Turbulent mixing in a tubular reactor

In a tubular reactor where the two flows containing the reactants A and B are fed separately,
coaxially and isokinetically, an highly segregated cone-shaped zone is formed at the outlet of the
inner tube (Baldyga and Tovstiga, 1988).

The scale of segregation must be reduced until a mesomixed situation is reached before
diffusion and reaction become important.

The characteristic time of this stage, that we will call f7,, "turbulent mixing time", may be
readily estimated from the characteristic turbulent velocity #'* defined by equation (13). If d, is the
diameter of the inner tube, and consequently the initial diameter of the highly segregated
B-containing zone, the characteristic time is the one required for the eddies to bring a lump of
A-species from the boundary to the centre of the B-rich stream:

d,
Loy =— 21
I @
and, substituting equation (13) in equation (21):
I = 03014, (ve)y V4 (22)

slightly shorter than that previously calculated (Pipino ef al., 1992a).

A different formulation of equation (22) may be given, evidencing the influence of the
operative parameters. Substituting the expression proposed by Lawn (1971) for the turbulent energy
dissipation on the pipe axis:

3
u;

£=4.6 (23)

where D, is the diameter of the external tube and the shear velocity is #, = 0.2 V" Re'V/8 | we can
write:
D.d,

try =0.52 Re‘z””—f’\;— (24)
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The behaviour of equation (24) is
shown in Figure 2 (of course the validity is
limited to the case d<D,). It is interesting to
observe that the dependence of 77, on the
Reynolds number becomes weaker at higher
Re values and with small tubes. Such an
observation agrees with the experimental
results of Bourne and Tovstiga (1988) and
Bolzem et al. (1985) where a proportionality
between the length of the segregated zone
and the diameter d; of the inner tube (Re =
25,000+60,000) has been observed.

In order to improve the predictions of
the model, further informations on the g
field, especially concerning the radial
distribution, are needed. In fact, flow
disturbances due to the feed tube and
additional turbulence generation caused by
local velocity gradients may occur, as
suggested by the results of Bourne and Maire
(1992). Preliminary experimental and
computational results evidence that the

o L i 1
10,000 20,000 30,000 40,000 50,000 860,000

Re

Figure 2. Dependence of the turbulent mixing time on the
operating parameters.
D dfv=1000 [ 1; 500 [

1; 100 [--ee].

thickness of the inner tube is also an important parameter, because a wake forms due to the thick

trailing edge.

It must be noted that the present model is sensitive to the initial volumetric ratio of the
segregated reactants (equation (24) depends on both D, and d), while many models in literature do
not have this property (Ranade, 1992). It may be observed that it has some affinities with the

engulfment stage of the EDD model
proposed by Baldyga and Bourne (1984a),
but in that model the characteristic time is the
time constant of the eddy with the shortest
mean lifetime.

Reaction time of very fast reactions in a
tubular reactor

The total reaction time, comprehensive
of the mixing time necessary to reduce the
scale of segregation below the Kolmogoroff
scale, the deformation and the diffu-
sion/reaction time, may be calculated by
means of a three-stage micromixing model.
The details of the model and its parametric
sensitivity have been presented elsewhere
(Barresi ef al., 1992). In this case the equa-
tions for the turbulent mixing time and for
the variations of the lamina thickness will be
substituted by equations (22) and (20),
obtained with the new proposed approach.

The bimolecular, instantaneous,
second-order reaction, A+B—P, will be
considered and carried out in the tubular

t, s
2

1.5

0.5

Figure 3. Comparison of the experimental results by
Pohorecki and Baldyga (1983) [e] and the predictions of
the three-stage micromixing model.

, this work; Barresi ef al. (1992).

tyy 1s also shown: ——, this work; ---- Barresi ef al.

.......

(1992). Re= 13,000, D, =0.04; d,=5.2.10% m.




reactor with coaxial feeds previously
described. The equations describing |Table 1. Model equations for the diffusion and reaction stage.
diffusion and reaction in the shrinking
lamellae, in dimensionless form, are
shown in Table 1. The meaning and the
advantages of the proposed choice of

dimensionless variables have been oC, __1_( dy )2 o*C, _MC.C
discussed elsewhere (Barresi er al, oT  Sc\ d ), ax? A~EB
1992)
The predictions of the model may 0Cp _ _l_(ﬂ)z PCi_pl cao C.C
be compared with the experimental 0T Sc\d Js 0X? o) 8
results obtained by Pohorecki and
Baldyga (1983), who, in an Fa%
experimental apparatus similar to the [—-J =1+0.2857*T2 — ((1+0.285n*T2)2 - 1)
one here considered, measured the d,
global mixing-and-reaction time for the
NaOH-HC! neutralisation  reaction Initial and boundary conditions:
(kr=108 m3 kmol! s! at 293 K) T=0 -1<X<0 C;=0 Cz=1
In Flgur'e 3 th.e .ﬁrst version of the? T=0 O<X<E Ci=1 Cs=0
three stage micromixing model (Barresi 750 X=-1,¢ 8C/oX=0 (i=A.B)

et al., 1992) and the modified one,
proposed in this work, are compared. A
final conversion of 99% has been
considered and equal thickness of the C,=cilcy X = 2x/dy T=(e/ v)?n2
lamellae of the two species assumed. M = (V/e)2 12 Con ke =d./d

The model is able to predict the (vie) Bt & = dildy

Dimensionless variables:

experimental results satisfactorily: it has
to be evidenced that no best-fitting parameters have been introduced. A better agreement, especially
at low reactant concentration ratios, is observed if the modified model using the new turbulent
approach is employed.

Mixing and reaction in continuous and semi-batch stirred reactors

The previously described model is extensible to the description of fast and complex reactions
and single and double jet precipitation in continuous and semi-batch stirred reactors. It may also be
easily adopted to handle the slice configuration, that in stirred tank reactors seem to be a more
realistic assumption than the lamellar structure (Xi et al., 1991).

In these cases the hydrodynamics is much more complicated, and the variation in the local
value of the power dissipation must be taken into account. Work is currently in progress in this
direction.

CONCLUSIONS

A new approach to the description of turbulent phenomena has been proposed. It allows the
evaluation of the characteristic turbulent velocity, the characteristic eddy size and other turbulence-
related quantities, taking into account the contribution of all the eddies in the universal equilibrium
range.

By adopting this approach, a modified version of the three-stage micromixing model has been
presented. The model has been applied to the description of almost-instantaneous reactions in
coaxially fed tubular reactors and is able to handle both meso-scale and micro-scale segregations.

The model is extensible to other reaction systems and reactor configurations, and in particular

it may be applied also to continuous and semi-batch tank reactors.
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NOTATION

A Kolmogoroff spectrum constant, -

C; dimensionless concentration of the
i-species, -

c concentration of the i-species, kmol m-3

d lamina thickness, m

D, diameter of the outer tube, m

d; diameter of the inner tube, m

E(k,t) three-dimensional energy spectrum
function, m3 s2

F(k,t) three-dimensional transfer spectrum
function, m3 s3

g(k,t) generic turbulence-dependent quantity,

k wavenumber, m!

k, reaction kinetic constant, m3 s-1 kmol-!

/ eddy physical size, m

M modified Damkholer number, -

M(k) cumulative eddy distribution function, -

R(k) differential eddy distribution function, -

Re  Reynolds number, -

Re;,  eddy Reynolds number, -

s distance between pairs of fluid points,
m

Sc Schmidt number, -

T dimensionless time co-ordinate, -

t time, s
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u'(k) root-mean-square of the turbulent ve-
locity of the k-associated eddy, m s-!

gy shear velocity, m s
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Greek letters
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