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ABSTRACT
The reduction of usable capacity of rechargeable batteries can be
mitigated during the charge process by acting on some stress fac-
tors, namely, the average state-of-charge (SOC) and the charge cur-
rent. Larger values of these quantities cause an increased degrada-
tion of battery capacity, so it would be desirable to keep both as low
as possible, which is obviously in contrast with the objective of a
fast charge.
However, by exploiting the fact that in most battery-powered sys-
tems the time during which it is plugged for charging largely ex-
ceeds the time required to charge, it is possible to devise appro-
priate charge protocols that achieve a good balance between fast
charge and aging.
In this paper we propose a charge protocol that, using an accurate
estimate of the charging time of a battery and the statistical prop-
erties of the charge/discharge patterns, yields an optimal trade-off
between aging and quality of service. The latter is measured in
terms of the distance of the actual SOC from 100% at the end of the
charge phase. Results show that the present method improves sig-
nificantly over other similar protocols proposed in the literature.

1. INTRODUCTION
The aging of a Li-Ion battery, intended as the loss of usable capac-
ity over time, depends on quantities such as temperature, depth of
discharge, average state of charge (SOC), and charge/discharge cur-
rent [1,2]. While the values of these quantities during the discharge
phase cannot be controlled because they are determined by the user
habits, the charge phase offers some margin for their control.
Firstly, battery charge is usually constrained to some standardized
schemes with pre-defined current and voltage charge profiles. In
the case of Li-ion batteries, the charge is based on the Constant
Current-Constant Voltage (CC-CV) protocol, characterized by a
well-defined charge process that cannot be altered. The CC-CV
constraint is motivated by cost (it requires simple hardware to be
implemented) and by safety reasons. While the CC-CV constraint
may appear as a limitation, it has some degrees of freedom (namely,
the charge current) that can be used to mitigate the aging.
Secondly, users do control the charge patterns; devices are often
connected to a plug (plug-in time) for a time much larger than the
time needed to charge the battery (charge time). This condition
impacts on the average SOC of the battery, which affects the ag-
ing [1]. There exist therefore an evident trade-off between (fast)
charge time and battery aging: the former requires larger charge
currents, which, however, degrade battery capacity in two ways:
directly, because aging depends on charge current; indirectly, be-
cause long plug-in times imply a larger average SOC in the battery.
Previous works have explored this trade-off without however tak-
ing all the required variables and constraints into account. In [3, 4]
only charge current or average SOC are considered, respectively.
In [5], both quantities are appropriately taken into account, but the

analysis is limited to a single cycle for which the actual plug-in
time is assumed to be known. Finally, [6, 7] propose solutions that
do not stick to the CC-CV scheme.
In this work we propose a CC-CV compliant charge protocol, which,
by taking into account all the relevant parameters, calculates an
optimal charge current based on a simple (and thus easily imple-
mentable in hardware) prediction of the plug-in time, in order to
achieve a “just-in-time” charge (i.e., with the smallest average SOC
and with the smallest possible current). While the key parameters
of the protocols are borrowed from [5], the introduction of a predic-
tion requires the introduction of a novel Quality of Service (QoS)
metric, calculated as the deviation from the 100% charge level. In
this way we can define an aging/QoS space in which the trade-off
between these two quantities can be explored.
Results in this Aging/QoS space show that the minimum current
just-in-time protocol that we propose (called ASAP), provides the
best trade-off under various user charge/discharge pattern statistics.
It is worth mentioning that the proposed protocol is general and not
tied to a particular type of battery-powered device. Although we
present some data relative to smartphones, the same protocol is ob-
viously suitable also for hybrid electric vehicles (HEVs), where ag-
ing is a primary metric due to the relative cost of the energy storage
devices.

2. BACKGROUND AND RELATED WORK
2.1 Battery charging
Charging a battery is an operation that has a great impact on battery
lifetime, even more than discharging [2]. Selecting the appropriate
charge protocol is thus a critical step, for both limiting the drift in
battery performance and for avoiding dangerous side effects such
as overtemperature and overcharging. The above mentioned CC-
CV protocol is considered the de-facto charging protocol for Li-
Ion batteries. It consists of two phases. In the first phase (CC),
the battery is charged at a constant current until its voltage reaches
a pre-determined limit; in the second phase (CV), the battery is
charged at a constant voltage until the current drops to a pre-defined
value.
The need to adhere to a standard protocol clearly rules out the
many complex schemes suggested for both aging-aware slow and
fast charge (e.g., [2, 6–8]). However, it is still possible to stick to
CC-CV and alter some of its characteristic parameters (namely, the
charging current and its distribution over time) in order to reduce
the degradation of batteries [8]. Such minor variants of the basic
CC-CV protocol would not violate its main electrical and safety
properties, nor would significantly increase its cost.

2.2 Battery aging
Life degradation of rechargeable batteries depends on four main
factors: (i) temperature, (ii) depth of discharge (DOD) at each cy-
cle, (iii) average state of charge (SOCavg) [1,9], and (iv) charge/dis-



charge current [1, 5]. Aging worsens with an increase of any of
these quantities.
While temperature can be assumed as more or less constant during
charge and DOD is meaningful only for discharge, the other two
parameters can be managed during the charge process. As a gen-
eral rule-of-thumb, the charge phase should ideally reach 100% by
the end of the plug-in time - this will yield the smallest average
SOC [4]. Some previous efforts for aging-aware charging schemes
have tried to achieve this objective in different ways. However, bat-
teries are often left in plug-in mode although fully charged, even
for a long time. Besides energy waste, this has a huge impact on
battery degradation, which is strongly affected by the SOCavg [1].
These may endanger the battery SOH (defined as ratio of the ca-
pacity of an aged battery with respect to the nominal capacity) and
consequently accelerate its permanent degradation. whose value,
for a generic time interval from t0 to t1, is given by the following
expression:

SOCavg =

∫ t1

t0

SOC(t)dt / (t1 − t0) (1)

For instance, [9] reports that, for LiFePO4 batteries, SOC should
be less than 60% in average for maintaining battery life acceptable.
In [3], it mitigates battery aging by considering only the charge cur-
rent, by calculating a minimum current that ensures a fully charged
battery at the end of a predicted plug-in time whenever it is greater
than the charge time needed in standard CC-CV mode. However
the non-linear relation charge current vs. charging time [7] re-
quired an analysis. On the other hand, [4] proposed a delayed start
time for charging batteries as late as possible in order to minimize
the SOCavg only. [5] both charge current and SOCavg were ana-
lyzed, reporting that the aging-optimal charge current is more re-
lated to battery usage rather than plug-in time, and that capacity
loss vs. charge current characteristic is not a monotonic function.
In [10], the authors proposed a method for automatically quantify-
ing battery aging in mobile devices without using external equip-
ment, by considering charge time and focusing on the middle re-
gion of the battery level where the plug-in time and SOC have a
nearly linear characteristic in the CC phase.
Aging is usually evaluated through the aggregate metric of the State-
of-Health (SOH), defined as the ratio of the capacity of an aged
battery and the nominal capacity. In this work, since we focus on
multiple charge cycles, we need a model that expresses the aging
for a single cycle. To this purpose we use the classical model of [9]
augmented as in [5] to account for charge and discharge current.
Battery degradation (L) in the i-th cycle is determined by the fol-
lowing expression:

Li = L0,i · e(Kic,i·Ich,i+Kid,i·Idis,i)

whereL0,i is the degradation factor provided by the Millner’s model
[9], which accounts for temperature, DOD, and SOCavg in the i-th
cycle, while the second term accounts for the charge/discharge cur-
rent (Ich,i and/Idis,i) in that cycle; Kic,i and Kid,i are empirical
coefficients extracted from datasheet information [5] or experimen-
tal data. By summing Li over M cycles we get the total loss of ca-
pacity LM . LM and SOH are both normalized, so they are simply
related as SOH = 1 − LM .
CC/CV requires relatively simple hardware to be implemented: the
charge begins with a constant current charge to some voltage level,
at which point the voltage caps and the current begins to decrease
until some current level is reached. Besides simplicity, CC/CV is
also driven by safety reasons, since it effectively manages the risk
of overcharging, which is quite dangerous in Li-Ion batteries.

that accounts for all relevant parameters, namely, average SOC, de-
viation of the SOC (here considered as depth-of-discharge), dis-
charge/charge current, and temperature (e.g., [9]), (b) an analytical
macro-model of CC-CV charge time based on a subset of these
quantities [11]. Thanks to the use of models, it is also possible to
explore the overall parameter space and identify the charging solu-
tion that best fits, from both battery aging and QoS point of view, a
specific user behavior that determines the discharge patterns.

3. METHODOLOGY

3.1 Characterization of the Charge Period
Figure 1 shows a generic charge-discharge cycle of a typical device,
and, specifically, the evolution of the battery SOC over time. Since
our focus is on the charge phase, in the figure the discharge time
has been compressed to better emphasize the charge phase.

Figure 1: Generic Charge-Discharge Cycle.

Starting from some value SOCeoc (end-of-charge) at the end of the
previous cycle 1 the discharge will evolve according to the user ac-
tivity on the device and will reach a value SOCeod (end-of-discharge)
at some point in time T i

charge (i-th charge cycle) when the user will
start charging the device. The difference ∆SOC = SOCeoc −
SOCeod represents the depth of discharge DODi of the i cycle.
The charge curve identifies the conventional CC-CV charge imple-
mented by typical chargers: as soon as the device is plugged, the
standard CC-CV protocol described in Section 2 is applied; in the
diagram, we assume that the CC and CV phase lasts tcc seconds
and tcv , respectively. Let Tcharge = tcc + tcv . It is clear that if
the time the device is plugged in (the plug-in time) exactly matches
Tcharge (e.g., the user polls the charge termination and disconnects
as soon as it is charged) there is no better way to charge: the de-
vice will be 100% charged in the smallest possible time. Needless
to say, this situation seldom occurs, and in most case the battery is
100% charged well before the device is unplugged, i.e. Tplug−in is
in general much larger that Tcharge. In these cases, the battery stays
plenty of charge for an amount of time equal to Tplug−in−Tcharge

(the time tstdby in the figure). Given the dependency of aging on
the average SOC, this is obviously detrimental for the aging of the
battery. This is particularly critical for mobile devices or HEVs,
where charging frequently occurs overnight.

3.2 Alternative Charge Protocols
Whenever plug-in time exceeds charge time, better solutions are
possible, as shown in Figure 2.
The options lie between two extremes:

• Delay the charge as much as possible, (dotted curve), using
the same nominal current as the standard charge so that the
charge ends just in time when the device is plugged out. We
called this schedule ALAP.

1SOCeoc will not necessarily be 100%



Figure 2: Alternative Charge Protocols.

• The other extreme (solid curve) starts the charge as soon as
the device is plugged in and modulates the current so as to
reach 100% charge at plug-out time. This implies clearly
using a smaller current during the CC phase. We called this
schedule ASAP.

Any scheme between these two extremes will use some delay in
the charge and a current Icc,min < Icc < Icc,nom. The ALAP
scheme obviously yields the smallest SOC (a smaller area below
the curve), whereas ASAP uses the smallest possible charge cur-
rent. Which one is best for aging depends on the relative weight of
the two quantities (SOC vs. charge current) on battery life degra-
dation. Therefore, it is possible to derive, for a given Tplug−in, an
aging-optimal schedule (i.e., by [5]) with a profile that lies in be-
tween ASAP and ALAP. These four CC-CV based protocols (Stan-
dard, ASAP, ALAP and the Aging-optimal) will be compared in
this work.

3.3 Effect of Estimated Plug-In Times
The comparative analysis of the charge protocols would be a rel-
atively straightforward exercise if we focus on a single cycle and
rely on the knowledge of the plug-in time Tplug−in; this was the
analysis done in [5], where all the Tplug−in were assumed to be
known. However, the exact plug-in time is not generally known
in advance; for this reason we improve the algorithm in [5] by in-
cluding a predictor. In fact, if Tplug−in in Figure 1 is actually an
estimate of the actual plug-in time, the analysis becomes non-trivial
due to the intrinsic inaccuracy on the estimation. Two are the main
consequences of this inaccuracy, which we discuss in the following
sections.

3.3.1 Quality of Service
One first impact of imprecise prediction is that the protocol might
not succeed in fully charging the battery. In other terms, we need
to include in the analysis the user perception of the quality of the
charge process. This quality of service (QoS) is intuitively mea-
sured as the percentage of charge at plug-out time. QoS is obvi-
ously in contrast with aging: any “fast” charge that aims at increas-
ing the chance of full charge will stress the battery both in terms of
high charge current and average SOC. In terms of QoS alone, it is
immediate to see that, as a rule-of-thumb, early-starting protocols
will reach faster SOC close to the 100% even in the case of under-
predicted plug-in times. Therefore, for a given value of Tplug−in,
the standard protocol will provide the best quality, followed by the
ASAP charge; the aging-optimal one will lie between ASAP and
ALAP, which yields the worst charge quality. However, depending
on the accuracy of the estimates and the actual length of plug-in
time, the difference between the standard protocols and the other
ones might result in being negligible, achieving similar QoS while
keeping the above mentioned benefits in terms of aging. Because
it yields a higher SOC in the cases where the actual plug-in time is

shorter than the average: the ASAP SOC curve always lies above
the ALAP one. However, the difference is mainly evident at the
beginning (corresponding to large underestimations of Tplug−in.
whereas the two curves become indistinguishable towards the end
of the charge. Again, the optimal QoS/aging tradeoff might lie be-
tween these two extremes. (and the CV time is normally larger
than the CC one). An accurate evaluation of these effects requires
an appropriate simulation framework and the relative models in or-
der to determine the best charge protocol, for a set of representative
“workload” models, i.e., user plug-in patterns.

3.3.2 Impact of Mispredictions
From the previous section, it is evident that the actual ranking among
the various protocols in the QoS/aging space depend on the accu-
racy of the plug-in time estimates. Figure 3 shows the impact of
mispredictions on both QoS and aging.

Figure 3: Impact of Mispredictions: Overprediction (a) and
Underprediction (b).

The case of an overprediction (Figure 3-(a)), i.e., the predicted
Tplug−in is longer than the actual one, is the most critical case. If
the overprediction is modest (Case 1), the impact is limited; all the
considered protocols follow the CC-CV template, such mispredic-
tion will likely occur during the CV phase, which takes a significant
portion of the overall charge time but contributes only to approxi-
mately 10% of the total SOC for a standard charge current [7]. In
these cases, mispredictions will therefore result in an moderately
incomplete charge. However, when the overprediction is sizable
(Case 2), as a limit case, the ALAP protocol might even reach a
charge close to 0%, which is of course not acceptable. As already
discussed, in general early-starting protocols such as the standard
and ASAP tend to be less sensitive to the accuracy prediction. The
case of underprediction (Figure 3-(b)), conversely, is less critical.
It has no impact on the QoS but only on the aging, in terms of (i)
an extra period of time in which the battery stays fully charged, and
(ii) an unnecessarily large current used to charge it. From the above
discussion, it is evident that the most important requirement for the
predictor is to avoid large overpredictions. Section 3.5 will discuss
the possible strategies to implement the predictions.

3.4 Metrics
In order to consistently explore the QoS/aging space, we define
normalized metrics for the two quantities.
Concerning aging, the metric is naturally tracked by the battery
SOH = 1 − LM , as already discussed in Section 2,



which measures the overall capacity loss. The aging model of Sec-
tion 2 accounts for multiple cycles and is also normalized, so we
can use SOH = 1−L(m) as a normalized aging factor, where m
is a reference number of cycles.
QoS, as already mentioned, is intuitively related to the percentage
of full charge achieved in the charge process. That is, the user
ideally wants to achieve 100% in every cycle. Although we want a
normalized metric, we can envision two slightly different variants
of quality metric:

• Average Quality Q1, defined as the average (over M charge
cycles) deviation from the full charge condition. Defining
∆SOCi

c = 1−SOCi
eoc for cycle i, Q1 is obtained by aver-

aging ∆SOCi
c over the M cycles:

Q1 = 1 −
∑M

i=1 ∆SOCi
c

M

Q1 is a normalized term; it equals 1 only if 100% of the cy-
cles reach 100% charge. Therefore, it might be smaller than
1 even for standard charging. Notice that it suffices to con-
sider average SOC in the metric since ∆SOCi

c ≥ 0 (i.e.,
it is not possible to overcharge), that is, there is no substan-
tial difference between two sequences of ∆SOCi

c with same
average and different standard deviations.

• Average Maximum Error Q2; this metric is parameterized
with respect to a value ε, representing the maximum desired
deviation from the full charge. It is simply defined as the
percentage of charge cycles in which SOCeoc is within the
bound, i.e.:

Q2(ε) =
# of cyclesSOCi

eoc > (1 − ε)

M

Q2 is also a normalized quantity; it equals 1 only if 100%
of the cycles reach a 100 − ε charge. Although Q2 is still
an average metric, it emphasizes the cycle-by-cycle quality
rather than the overall average quality represented by Q1.

For the exploration of the aging/QoS tradeoff, we will assess the
various protocols in a bi-dimensional space SOH/Q, where Q is
either Q1 or Q2(ε).

3.5 Plug-In Time Prediction
As discussed in Section 3.3.2, accurate predictions are key for the
definition of a protocol with an acceptable QoS. Predicting the fu-
ture values of a quantity (in our case, plug-in time) based on its
history falls under the widely studied statistical problem of time se-
ries prediction, which has applications basically in any discipline.
Solutions to this problem range from simple regressions to state-
space models and learning-based solutions based on neural net-
works [12]. In our specific context, the prediction of plug-in times
has both constraints and specificities that push towards simple pre-
diction strategies. The constraints are related to the overhead of
the implementation of the prediction; computationally expensive
algorithms imply a relevant energy overhead and force the use of a
software implementation on the device, and prevent thus the use of
a pure hardware, device-independent solution (e.g., in the charger).
The specificities concern the fact that the charge process for pop-
ular battery-powered “devices” such as mobile devices and HEVs
exhibit some structure that allow a statistical a priori characteriza-
tion of the plug-in times. The latter tend in fact to follow two well
defined patterns [13, 14]:

• Unimodal charge: A typical value (usually between 6 and
8 hours) with relatively narrow tails (±2 hrs), that can be

statistically described by a bell-shaped distribution such as a
Gaussian or a log-normal one; this case is representative of a
nightly charge pattern (Figure 4-(a)).

• Bimodal charge: two typical values (one around 2 to 3 hours,
the other as in the unimodal case), which can be described by
a bimodal distribution, representative of a mix of a shorter
daily charge and a longer nightly charge (Figure 4-(b)).

Figure 4: Unimodal (a) and Bi-Modal (b) Charge Patterns.

In the unimodal case, a very simple predictor that track the average
value of like the moving average (simple or exponential) performs
well enough. In this case, in fact, the average value of the distribu-
tion is representative of the universe as it denotes the most typical
value. For the bimodal case, where the average is not representa-
tive, a different mechanism is required. In the example of Figure
4-(b), for instance, the average will lie around 350-400 minutes, a
value with a very low probability of occurrence. One possibility is
that of fitting the data to the bimodal distribution using a maximum
likelihood estimator (e.g., [4]), a relatively expensive computation.
In our case, we leverage another property of the charge patterns,
that is, the dependence of charge duration on the time of day. It has
been observed that the majority of short charge cycles occur during
daytime, whereas the long charges occur during night time. This is
conceptually shown in Figure 5-(a): most charge events lie in the
dark shaded areas, while only a few outliers fall outside them (light
shaded areas).

Figure 5: Time vs. Duration of Plug-In: Conceptual regions (a)
an Example Pattern of three Users (b).

The outliers lying in the region denoted with “U” correspond to an
underprediction (long charges during daytime), which we saw be-
ing less critical for QoS. Those in the region denoted with “O” are
instead overpredictions (short charges during nightly hours), which
affect QoS more seriously. An example falling in this region for
a portable device could be a short charge after working hours and
before going out at night time. Figure 5-(b) shows the example
of 30 days of charge events relative to three users for a smart-
phone. We notice that the events map quite well to the expected
two-region pattern; in fact, similar data and distribution absolutely
comply with those reported in [4, 15]. Generally, the plug-in and
charging time are limited to a few hour during daytime, while they
are much longer during the night.



Based on these observations our plug-in time predictor uses the in-
formation about the time of day and the history as follows. We keep
two separate moving averages MAday and MAnight for daily and
nightly history, respectively; each MA averages the last five plug-in
times in the respective hourly intervals defining “day” and “night”.
These intervals have been defined by calibration based on the be-
havior of different users: “day” is between 6am and 7pm, whereas
“night” covers the remaining hours. The prediction of the next
plug-in time is simply obtained as Tplug−in = MAday if the start
of charge occurs during the “day”, and Tplug−in = MAnight oth-
erwise. This simple scheme provides quite good accuracy resulting
in a QoS comparable to that of the regular CC-CV charge with the
nominal current.

4. SIMULATION RESULTS
4.1 Simulation Setup
We implemented a simulator of battery cycles in Matlab that eval-
uates the battery life by considering the relevant aging parameters.
It can generate synthetic charge/discharge cycles according to pre-
defined distributions of their relevant parameters (DOD, discharge
time, and plug-in time).
For the discharge phase, we consider three different battery usage
patterns corresponding to three DOD values: C (conservative, with
an average DOD = 25%), M (moderate, average DOD = 50%), and
A (aggressive, average DOD = 75%). Since the focus of this pa-
per is on the charge phase, the discharge current profile is always
the same for a given DOD value (A,M,C) in order to avoid that the
results are affected by the discharge phase thus altering the evalua-
tion of the charge protocols. The simulator can generate Tplug−in

traces according to Gaussian and bimodal distributions.
For each charge phase, we calculate the aging and QoS for the
charge protocols discussed in Section 3 (Standard, Aging-Optimal,
ALAP, and ASAP) according to the estimated Tplug−in. The SOC
at the end of the charging phase SOCeoc is used as initial SOC for
the next discharge cycle.
The battery cell used in our experiments is the A123 Systems Li-
Ion ANR26650m1; it has a 2.5Ah nominal capacity and a 3.3V
nominal voltage. The operating temperature is set to 35oC. We ex-
tract the parameters for building the aging model from its datasheet
[16].

4.2 Prediction Accuracy
A preliminary experiment is concerned with the accuracy of the
Gaussian and bimodal predictor. Figure 6 shows the distribution
of the prediction error for the Tplug−in distributions. The figure
shows that the predictor achieves good performance for both distri-
butions: 64% (84%) and 68% (87%) of the predictions are within
one hour (two hours) error for the Gaussian and bimodal distribu-
tion, respectively.
4.3 Charge Protocols Comparison
4.3.1 Impact of DOD

Our first experiment shows how different discharging profiles affect
the final aging and QoS results. We generated four traces: three for
each of the A, M, C profiles, and an extra one (“mixed”) containing
an equal amount of A, M, C cycles. All the traces have the same
Tplug−in with bimodal distribution in the charging phase. The sim-
ulation cycle life in this experiment is 1000 cycles, equivalent to
about a 2-year lifetime. Due to lack of space, in this experimentwe show only results for the metric Q1. Q2 has an almost identical
layout in the SOH/QoS space, in which (1, 1) represents the ideal
point where the aging has the smallest value and there is a 100%
charge quality.

Absolute error hours

-4 -3 -2 -1 0 1 2 3 4 5

N
u
m

b
e
r

0

50

100

150

200

Prediction error under Gaussian distribution

Absolute error hours

-4 -2 0 2 4 6

N
u
m

b
e
r

0

50

100

150

200

Prediction error under Bimodal distribution

Under prediction proportion Over prediction proportion

51%

59%

Under prediction proportion Over prediction proportion

49%

41%

Number of bins = 30

Number of bins = 30

Figure 6: Error Distribution of the Predictor.
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Figure 7: SOH vs. Q1 with Different DOD Types.

Figure 7 illustrates the effect of the different DOD levels. The
Standard protocol always reaches the best quality value (near 1),
but it has the worst SOH (due to large average SOC). Expectedly,
larger discharge depth exacerbates the aging. ALAP and Aging-
optimal exhibit better SOH thanks to a decreased SOCavg; how-
ever, since the sequence of Tplug−in values is the same for the four
DOD profiles, as DOD increases the SOC at the start of a charge
also decreases, and therefore a larger number of charge events does
not achieve a 100% SOC. ASAP exhibits the best trade-off, as it is
the closest to (1,1); moreover, it is also almost insensitive to DOD:
all the points are very clustered.

4.3.2 Impact of Tplug−in Distribution
A second experiment aims at showing how different Tplug−in dis-
tributions affect the aging and QoS metrics when considering dif-
ferent charge protocols. We set as discharging profile mixed (A,M,C)
DOD trace in order to average out different user behaviors. Five
traces of 1000 cycles were simulated for both Gaussian and bi-
modal distributions.
Figures 8 and 9 show the results for Q1 and Q2(10%), respec-
tively. Again, ASAP yields the optimal SOH/QoS trade-off under
both Tplug−in distributions, consistently with the results of Figure
7. Q2 appears to be more demanding than Q1 as a quality met-
ric for ALAP and Aging-Optimal, which exhibit a quite low QoS.
The Standard charge exhibits a 50% loss of capacity, while ASAP
results in only a 20% loss of capacity with a marginal loss in qual-
ity (1% to 3% depending on the chosen metric). Expectedly, the
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Figure 9: SOH vs. Q2 with Different Tplug−in Distributions.

Aging-Optimal is the best in terms of aging (about 15% loss), but
it achieves this at the price of a Q1 < 90% and Q2 < 75%.
Concerning sensitivity to the distribution, for ASAP it is only slightly
larger than the Standard one, yet much smaller to the sensitivity
of the other two protocols.

4.3.3 Results On Real Traces
The third experiment refers to the real traces from three users (U1,
U2, and U3) logged from a smartphone. The simulation time here is
only about 40 days, so the aging is less sizable; however, the results
are consistent with those obtained with longer synthetic traces.
Figure 10 shows the results for bothQ1 andQ2(10%), for the three
users and the four charge protocols, visually grouped in the figure
for the sake of clarity. The results are consistent with the previous
section: ASAP provides the best trade-off, with a very similar qual-
ity to Standard and a marginally lower SOH than Aging-Optimal,
while ALAP yields to worst tradeoff. Notice again that Q2 is al-
ways a more stringent metric than Q1.

5. CONCLUSIONS
Battery aging is a phenomenon which must be kept under control
because it affects the usable capacity.
In this paper we propose a battery charge protocol that, using an
accurate estimate of the charging time of a device and the statistical
characteristics of the discharge patterns, can reach an optimal trade-
off between aging and QoS, by improving significantly over other
similar protocols proposed in the literature.
The results in this Aging/QoS space show that the minimum current
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Figure 10: SOH vs. Q1 & Q2 with Real Traces.

just-in-time protocol we proposed, called ASAP, provides the best
trade-off under various user charge/discharge pattern statistics.
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