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Abstract—This paper proposes a technique that allows to de-
couple the polynomial chaos equations for statistical interconnect
analysis. The methodology is based on a transformation that
renders the voltage and current polynomial chaos coefficients
decoupled. Hence, these new decoupled coefficients are computed
via repeated non-intrusive simulations. The advocated method
maintains comparable accuracy with respect to the state-of-the-
art approaches, nevertheless considerably easing the simulation
procedure. Comparisons against literature results are provided
to validate the proposed methodology.

Index Terms—Circuit modeling, circuit simulation, polynomial
chaos, SPICE, statistical analysis, tolerance analysis, transmission
lines, uncertainty.

I. INTRODUCTION

Modern interconnect designs often require statistical assess-

ments to account for the inherent manufacturing variability.

Circuit simulators (e.g., SPICE) usually provide features for

statistical analysis based on the Monte Carlo (MC) method [1].

However, the computational cost is large or even prohibitive

as the number of simulations required is typically on the order

of (several) thousands.

To overcome this issue, alternative approaches have been

recently investigated in this domain [2]–[9]. They are based

on the polynomial chaos (PC) framework [10], i.e. on the

representation of stochastic voltages and currents in terms of

expansion of orthogonal polynomials. The expansion coeffi-

cients directly provide relevant statistical information on the

interconnect behavior.

The PC-based methodologies can be divided into two

classes depending on the strategy for the calculation of the

coefficients: 1) pseudo-spectral [2] or collocation [3] methods

use high-dimensional integration or interpolation techniques,

respectively. They are non-intrusive and require to sample the

stochastic responses at given points. As such, they can be con-

sidered as clever sampling-based (i.e., MC-like) approaches.

Nevertheless, compared to standard MC, the effectiveness

rapidly decreases when a relatively large number of random

variables (RVs) is considered, even when sparse grids are

used [4]. Alternatively, 2) stochastic Galerkin method (SGM)-

based techniques [5]–[9] require the single simulation of

an augmented and coupled system of equations, which can

be possibly given a circuit interpretation [7]. Compared to

the sampling-based strategies, the overall problem dimension

increases less rapidly with the number of RVs, but it does not

have any advantageous sparsity pattern and yet requires the

generation of new equations or of the corresponding equivalent

circuit models, which might limit the applicability.

To mitigate the aforementioned problems, decoupling tech-

niques have been recently proposed [11], [12]. Nonetheless,

they rely on matrix approximations and only apply to Hermite-

chaos (i.e., Gaussian variability). In this paper, an alternative,

simple but yet effective decoupling technique is proposed. It is

no longer based on a SGM, but rather on the point matching of

PC equations via stochastic testing (ST) [13]. The advocated

methodology preserves the reduced problem size character-

izing the SGM, but with the considerable advantage that the

equations are decoupled and the simulations can be performed

iteratively in a non-intrusive manner. Validations against the

state-of-the-art SGM-based approach [7] are provided.

II. PROPOSED DECOUPLING TECHNIQUE

This section summarizes the key features of the PC-based

interconnect simulation and outlines the proposed decoupling

technique.

A. The Polynomial Chaos Expansion

For illustration purposes, the discussion is based on the

equations governing the behavior of a single lossless trans-

mission line affected by one Gaussian random parameter ξ,

i.e.

∂
∂z v(z, t, ξ) = −L(ξ) ∂

∂t i(z, t, ξ) (1a)

∂
∂z i(z, t, ξ) = −C(ξ) ∂

∂tv(z, t, ξ), (1b)

where z is the longitudinal coordinate and L and C are

the per-unit-length (p.u.l.) inductance and capacitance of the

line, respectively. The p.u.l. parameters, the voltage v and the

current i inherently depend on the random parameter ξ, thus

becoming stochastic themselves. The RV ξ is normalized so

that it is has zero mean and unit variance.

The rationale of PC is to approximate stochastic responses

(i.e., voltages and currents in this case) as expansions of

orthogonal polynomials [10]. For example, assuming a second-

order expansion and considering the first transmission-line
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equation (1a) produces

∂
∂z v0ϕ0(ξ) +

∂
∂z v1ϕ1(ξ) +

∂
∂z v2ϕ2(ξ)

≈ −L(ξ)
[
∂
∂t i0ϕ0(ξ) +

∂
∂t i1ϕ1(ξ) +

∂
∂t i2ϕ2(ξ)

]
,

(2)

where the dependence on z and t has been omitted for

notational convenience. The basis functions ϕ0, ϕ1 and ϕ2

are the first three normalized Hermite polynomials, i.e.

ϕ0(ξ) = 1, ϕ1(ξ) = ξ, ϕ2(ξ) =
1√
2
(ξ2 − 1).

The above polynomials are orthonormal with respect to the

inner product

〈f, g〉 = 1√
2π

∫ +∞

−∞
f(ξ)g(ξ)e−ξ2/2dξ, (3)

i.e. 〈ϕi, ϕj〉 = δij (Kronecker’s delta). The PC-expansion

coefficients (unknown and to be determined) directly provide

statistical information. For example, the average voltage re-

sponse is ≈ v0(t), whereas the variance is ≈ v21(t) + v22(t),
and similarly for the current.

To solve for the unknown PC coefficients, a deterministic

set of equations relating such coefficients is constructed.

Traditionally, by means of a SGM, a coupled augmented set

of equations is obtained [5]–[9]. These equations can be given

the interpretation of an equivalent augmented (i.e., multicon-

ductor) transmission line. A SPICE-compatible implementa-

tion [7] allows to compute the PC expansion coefficients via

a single simulation of an equivalent augmented network by

means of standard circuit-analysis software. Here, a different

approach is presented, which yields decoupled equations.

B. Decoupled Equations for the Expansion Coefficients

Assuming that a set of three distinct points {ξ0, ξ1, ξ2} in

the random space is available, and forcing (2) to hold strictly

for each of these points, leads to

∂
∂za00v0 +

∂
∂za01v1 +

∂
∂za02v2

= −L(ξ0)
[
∂
∂ta00i0 +

∂
∂ta01i1 +

∂
∂ta02i2

]
∂
∂za10v0 +

∂
∂za11v1 +

∂
∂za12v2

= −L(ξ1)
[
∂
∂ta10i0 +

∂
∂ta11i1 +

∂
∂ta12i2

]
∂
∂za20v0 +

∂
∂za21v1 +

∂
∂za22v2

= −L(ξ2)
[
∂
∂ta20i0 +

∂
∂ta21i1 +

∂
∂ta22i2

]
,

(4)

where amk = ϕk(ξm) (m, k = 0, 1, 2). The above system of

equations can be written in matrix form as⎡
⎣A

⎤
⎦
⎡
⎣v0v1
v2

⎤
⎦ = −

⎡
⎣L(ξ0)L(ξ1)

L(ξ2)

⎤
⎦
⎡
⎣A

⎤
⎦ ∂

∂t

⎡
⎣i0i1
i2

⎤
⎦ , (5)

where A is a matrix with the previously-defined entries amk.

The above equation is decoupled with respect to the “mod-

ified” voltage and current variables defined as⎡
⎣ u0(z, t)

u1(z, t)
u2(z, t)

⎤
⎦ =

⎡
⎣ A

⎤
⎦
⎡
⎣ v0(z, t)

v1(z, t)
v2(z, t)

⎤
⎦ , (6a)

and ⎡
⎣ j0(z, t)

j1(z, t)
j2(z, t)

⎤
⎦ =

⎡
⎣ A

⎤
⎦
⎡
⎣ i0(z, t)

i1(z, t)
i2(z, t)

⎤
⎦ (6b)

respectively. Therefore, A can be interpreted as a matrix that

transforms the PC coefficients v0,1,2 and i0,1,2 into the corre-

sponding uncoupled quantities u0,1,2 and j0,1,2, respectively.

Replacing (6) into (5) and into the analogous development

of (1b), yields the following relation for the uncoupled PC

coefficients of the voltage and current along the line:

∂
∂zum(z, t) = −L(ξm) ∂

∂tjm(z, t) (7a)

∂
∂z jm(z, t) = −C(ξm) ∂

∂tum(z, t), (7b)

m = 0, 1, 2. This implies that the uncoupled coefficients um

and jm are readily computed by solving the transmission-line

equations for the pertinent samples L(ξm) and C(ξm) of the

p.u.l. parameters.

The above procedure is readily extended to lossy multi-

conductor transmission lines and the transformation (6) is

applicable to all the voltages and currents within a given

network. Therefore, to compute the uncoupled PC coefficients,

it suffices to sample network responses at the pertinent match

points. Once all these coefficients are available, the classical

PC coefficients vm and im are retrieved via the inversion

of (6).

C. Choice of the Match Points

A suitable and convenient choice for the match points ξm
is represented by the nodes of a Gauss-Hermite quadrature

rule, which in turn correspond to the roots of the Hermite

polynomials. For the second-order expansion considered, these

are the roots of the third-order Hermite polynomial ξ3 − 3ξ,

i.e. ξ0 = 0, ξ1 = −√
3 and ξ2 = +

√
3. The corresponding

matrix A writes

A =

⎡
⎢⎣

1 0 − 1√
2

1 −√
3

√
2

1
√
3

√
2

⎤
⎥⎦

For problems with multiple random variables, the match

points are chosen as a subset of the nodes of the pertinent

multidimensional quadrature rule [13], so that the number of

points equals the number of unknown PC expansion coeffi-

cients.

It is important to stress that the methodology is general and

applies to any distribution type. It suffices to use the proper

Gaussian quadrature rule (e.g., Gauss-Legendre or Gauss-

Jacobi for uniform and beta distributions, respectively) for the

generation of the match points and the related transformation

matrix. Moreover, it should be noted that these do not depend

on the specific problem, thanks to the normalization of the

RVs, but only on the number of RVs and their distribution

type. Therefore, match points and transformation matrices for

a wide range of problems are pre-computed and made available

offline.
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III. VALIDATION AND NUMERICAL RESULTS

This section validates the advocated decoupling procedure

by means of comparisons with literature results available

in [7]. Comparisons against MC analysis are available therein

and therefore not shown here. All the simulations are carried

out in HSPICE [14] on an ASUS U30S laptop with an Intel(R)

Core(TM) i3-2330M, CPU running at 2.20 GHz and 4 GB of

RAM.

A. Single Transmission-Line Network
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Fig. 1. Transmission-line network considered for the first application
example.

The first application considers the transmission-line network

in Fig. 1, where the variability is provided by three microstrip

substrate parameters: thickness, permittivity and loss tangent,

each exhibiting an independent Gaussian variation with a

relative standard deviation of 10%. The voltage source is a

trapezoidal pulse with an amplitude of 1 V, rise/fall times of

200 ps, and a width of 2.6 ns.

Fig. 2 shows in the top panel the average of the voltage vout
transmitted to one of the far-end terminations (see Fig. 1).

The solid line is the result computed in [7] via the simulation

of the equivalent augmented network, whereas the markers

have been obtained by means of the proposed decoupled

technique. Since K = 10 PC expansion coefficients are used

for each voltage and current within the circuit, the former case

requires the simulation of a network that is 10 times larger,

whereas the latter case requires 10 simulations of the original

network for the calculation of the uncoupled coefficients. The

bottom panel provides a comparison on the estimation of the

standard deviation instead. Excellent agreement between the

state-of-the-art SGM-based technique and the novel approach

is established.

B. Coupled Transmission-Line Network

The second example deals with the coupled transmission-

line structure in Fig. 3, where the variability is in the geometry
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Fig. 2. Average (top panel) and standard deviation (bottom panel) of the
voltage vout transmitted to the far-end termination of the network of Fig. 1.
Solid lines: results from the SGM-based simulation; markers: results obtained
with the proposed decoupled technique.
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Fig. 3. Coupled transmission-line network for the second application
example.

of the microstrip lines: the trace width, thickness and separa-

tion, together with the substrate thickness, are considered as

four independent Gaussian RVs with a 10% relative standard

deviation. The voltage source produces a Gaussian pulse with

a peak of 1 V and a width of 0.177 ns at half amplitude.

As in the previous example, Fig. 4 compares the average

(top panel) and standard deviation (bottom panel) computed

with both the coupled state-of-the-art implementation (solid

lines) and the decoupled methodology (markers). Here, K =
15 PC expansion terms are considered. Very good accuracy

between the two methods is again revealed.

C. Performance Assessment

Tab. I collects the main figures concerning the performance

of the PC-based simulations for the considered application

examples. It is important to recall that, denoting as K the

number of PC expansion terms, the state-of-the-art SGM

.
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Fig. 4. Average (top panel) and standard deviation (bottom panel) of the
far-end crosstalk voltage vFX in the network of Fig. 3. Curve identification
is as in the inset of Fig 2.

implementation requires a single simulation of a network

which is K times larger. The ST-based approach requires

K separate simulations of the original network at the match

points of the RVs. In Tab. I, the time tsim taken by a single

simulation run of the original network is also provided. The ST

figure includes the time to iteratively call the circuit simulator

and to apply the inverse transformation. This explains why the

overall simulation time is slightly larger than K · tsim.

In addition, it is worth noting how the simulation time of

the SGM-augmented network is lower, despite the network

being larger. This is due to the efficient handling of the

coupled equations within SPICE and renders the SGM-based

approach more efficient from a pure computational point of

view. Nevertheless, for a fair comparison, it is relevant to point

out that the ST-based approach is much simpler to implement

and does not require the generation of the equivalent circuit

models and of the overall augmented network.

TABLE I
COMPARISON BETWEEN ST- AND SGM-BASED PC SIMULATIONS.

test case K tsim (single run) ST-based SGM-based

Fig. 1 10 1.7 s 20.9 s 7.5 s

Fig. 3 15 1.0 s 21.0 s 15.8 s

IV. CONCLUSIONS

This paper presents a simple yet effective transformation

that decouples the PC coefficients of voltages and currents

in the circuit-level simulation of high-speed interconnects

with random properties. The approach is based on the point

matching of the governing equations of stochastic transmission

lines. A transformation matrix for the voltage and current

PC coefficients is constructed by evaluating the polynomial

basis function at the match points. This considerably eases

the simulation procedure as it now merely amounts to per-

forming repeated simulations of the original network at the

match points of the RVs. Compared to other sampling-based

approaches, the advocated technique limits the amount of

simulations to the number of PC-expansion terms. However,

it is also shown that the state-of-the-art implementation based

on the SGM is still more efficient from a pure computational

viewpoint.
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