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The Detrending Moving Average (DMA) algorithm has been widely used in its several variants for
characterizing long-range correlations of random signals and sets (one-dimensional sequences or high-
dimensional arrays) over either time or space. In this paper, mainly based on analytical arguments, the scaling
performances of the centered DMA, including higher-order ones, are investigated by means of a continuous time
approximation and a frequency response approach. Our results are also confirmed by numerical tests. The study is
carried out for higher-order DMA operating with moving average polynomials of different degree. In particular,
detrending power degree, frequency response, asymptotic scaling, upper limit of the detectable scaling exponent,
and finite scale range behavior will be discussed.
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I. INTRODUCTION

The increasing availability of massive volumes of scientific
and internet data requires new synthetic analysis techniques
to explore and identify interesting patterns, otherwise not
apparent particularly when viewed at large spatial and temporal
scales. These patterns have a twofold interest as they provide a
valuable insight for concrete hypotheses about the physical
processes underlying the observed data and an effective
reduction of size and dimension of the large data sets to
be analyzed [1–4]. Techniques tailored to the discovery of
complex patterns in high-dimensional data through visualiza-
tions, simulations, and various types of data-driven model
building have become critical to the agenda of the entire
statistical physicists and data analysts communities. Through
interpreting and analyzing these models, truly amazing pat-
terns emerging from the data can be discovered. Computational
methods are needed to quantify and characterize simultaneous
and mutually interacting sets of data (nonstationary time
series or spatial arrays) over multiple spatio-temporal scales
(e.g., individual, local, urban, regional, and global) and
dimensions (e.g., communication, financial, road, and energy).
New computational directions include but are not limited to
“nowcasting” and “entropic clustering” where information is
obtained by “short pieces” extracted from big data sequences
over time or space [5–8].

Investigate whether the intensity of some relevant quan-
tity is characterized by increasing or decreasing trends is
a common goal to current data science. In the simplest
operational definition, trends are observed when a regression
estimated over a data subset has a not negligible slope. For
example, in climatology, based on regular measurements from
weather stations and satellite data, temperature trends are
estimated from local to global scales [9–12]. In finance and
economics, technical rules and visualization tools based on
moving average trends are under continuous investigation and
improvement [13–16]. A main issue for the application of trend
estimates is related to the assumption of the model describing
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the underlying evolution process (e.g., linear or exponential).
Another critical aspect is the ability to distinguish whether
the trend or other stochastic component embedded in a
nonstationary time series arises from the intrinsic system
dynamics or from external forcing drives (see, e.g., Ref. [10]).
Hence, the availability of techniques having the simultaneous
ability of simulating trends and estimating long- and short-
range correlations in stochastic data sets is of relevance to
diverse scientific communities. The quantitative assessment
of their performances is thus a must to the communities of
scholars and practitioners.

As a way to characterize nonstationary data with trend,
the detrended fluctuation analysis (DFA) [17,18] and the
detrending moving average (DMA) analysis [8,19–21] have
been proposed to quantify long-range autocorrelations, multi-
fractal features [22–26], cross-correlation [27,28], and higher
dimensional fractals [29–32] either in the time or in the
space domain. According to the DFA, the time series is first
divided in boxes of equal lengths, then trends are estimated
as least-squares polynomial fitting of different orders m in
each nonoverlapping and equally spaced box of length n.
The DMA algorithm has been proposed as an alternative
technique to quantify long-range correlations. In the frequency
domain, the power spectral analysis is a well-established
methodological framework [33,34]. By estimating the slope
of the log-log plot of the power spectral density (PSD), a
wide range of scaling behavior can be characterized. However,
power spectral analysis may provide spurious estimates caused
by the nonstationarity of time series, such as embedded trends
and heterogeneous statistical properties.

Statistical performance (e.g., effects of nonstationarity,
nonlinear filters, and extreme data loss) of the DMA have
been investigated by a number of comparative studies [35–42].
However, the performances of DMA, especially higher-order
ones, and the relation between DMA and power spectral
analysis have not been investigated. Therefore, the aim of
this work is to understand such methodological features
by an analytical approach based on the continuous time
approximation and the single-frequency response of the DMA
already adopted for DFA in Ref. [43]. Based on the exact
calculation of the single-frequency response function under
the continuous time approximation, the direct connection
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between DMA and power spectral analysis can be derived.
Such relations are then exploited to derive a number of
scaling performance features such as detrending power degree,
frequency response, asymptotic behavior, upper limit of the
scaling exponent, and finite scale range behavior. The current
work aims at providing clear mathematical reasoning for these
properties and guiding principles to improve the detrending
methodologies.

Among the techniques traditionally adopted for analyzing
nonstationary time series and array, the DMA has proven the
ability to link the “short pieces (patterns)” of data to physical
concepts like “self-organized criticality” and “information en-
tropy” [6–8]. Despite (or because of) the ability demonstrated
by the DMA method to reduce dimensionality and increase
information gain in large data arrays, a strong analytic effort
is needed to establish the computational potential of these
methods and in particular of DMA (of zeroth and higher orders,
as a function of time and frequency) beyond the empirical
tests.

The above issues motivated us in the preparation of this
work, relevant in order to ascertain correctness of a large
number of empirical studies based on DMA. In fact, despite
this method’s being widely adopted, many questions yet are
open in relation to the fundamental properties that might easily
lead to misinterpretation and lack of statistical significance in
data analysis of current interest.

The organization of this paper is as follows. In Sec. II the
main computational steps of the DMA are briefly recalled
together with a brief discussion highlighting the relevance
of the high-order detrending methods and the limits of
detrending performance in scaling analysis. In Sec. III and in
the Appendixes, the analytical derivation of the performance
characteristic mainly based on frequency response reasoning
is reported. A comparison of the results obtained for the DMA
to the DFA ones is offered throughout.

II. DETRENDING MOVING AVERAGE ALGORITHM

As already stated above, the focus in this work is on
the DMA operating with moving average polynomials of
different degree. However, before entering the details of the
present study, the basic elements of the DMA analysis will be
summarized. The main ingredient of the DMA algorithm is
the generalized variance σ 2

DMA(n) of the time series {y(i)}Ni=1
with respect to the trend {ỹn(i)} at scale n:

σ 2
DMA(n) = 1

N − n + 1

∑
i

[y(i) − ỹn(i)]2, (1)

where ỹn(i) is defined as a time-dependent average function
of y(i). In the simplest case, called backward DMA, ỹn(i) can
be estimated as the ordinary moving average:

ỹn(i) = 1

n

n−1∑
k=0

y(i − k), (2)

and the range of the summation in Eq. (1) is from n to N . For
random walk-type processes with diffusive behavior, such as
the fractional Brownian motion, the power-law increase of the
root-mean-square deviation σDMA(n) with the moving average

window size n,

σDMA(n) ∼ nα, (3)

provides an estimate of the scaling exponent α and thus of
the Hurst exponent H [20,21]. For long-range correlated time
series {x(i)}Ni=1 with nondiffusive behavior, such as fractional
Gaussian noise (fGn), the integrated series (cumulative sum),
y(i) = ∑i

j=1 x(j ), as a sample path of a random walk driven
by {x(i)} is investigated and quantified in terms of the scaling
exponent α.

As a generalization of Eqs. (1) and (2), the high-order
DMA (DMAm) has been proposed where the trends {ỹn(i)}
are defined in terms of moving average polynomials of degree
m [21]. In this framework, the DMA algorithm with the
conventional moving average given by Eq. (2) is referred to as
the zeroth-order DMA (DMA0).

In the case of the centered DMAm, the coefficients of the
mth degree polynomials with moving average window over
a range [i − (n − 1)/2,i + (n − 1)/2], where n is assumed to
be an odd number, are given by

⎡
⎢⎢⎢⎢⎣

ãn,0(i)

ãn,1(i)
...

ãn,m(i)

⎤
⎥⎥⎥⎥⎦ = B−1

m (i,n)

⎡
⎢⎢⎢⎢⎢⎣

∑i+(n−1)/2
i ′=i−(n−1)/2 y(i ′)∑i+(n−1)/2

i ′=i−(n−1)/2 i ′ y(i ′)
...∑i+(n−1)/2

i ′=i−(n−1)/2 (i ′)my(i ′)

⎤
⎥⎥⎥⎥⎥⎦, (4)

where B−1
m (i,n) is the inverse matrix of

Bm(i,n) =
i+(n−1)/2∑

i ′=i−(n−1)/2

⎡
⎢⎢⎢⎣

1 i ′ · · · (i ′)m

i ′ (i ′)2 · · · (i ′)m+1

...
...

. . .
...

(i ′)m (i ′)m+1 · · · (i ′)2m

⎤
⎥⎥⎥⎦.

(5)

Thus, the moving average polynomial of degree m is
expressed as

ỹn,m(i) = ãn,0(i) + ãn,1(i) i + · · · + ãn,m(i) im, (6)

where i = 1 + (n − 1)/2, . . . ,N − (n − 1)/2 and the coeffi-
cients {ãn,m} in Eq. (6) are not constant, as they in fact are
dependent on i (see Fig. 1). To estimate σ 2

DMA(n) [Eq. (1)] in
the centered DMAm, the moving average polynomial {ỹn,m(i)}
is used as the trend {ỹn(i)} and the range of summation in
Eq. (1) is from 1 + (n − 1)/2 to N − (n − 1)/2. The current
investigation is limited to even-order centered DMA; in fact
the 2kth- and (2k + 1)th-order centered DMA, where k is
a nonnegative integer, have been proven to be equivalent
in [21,44].

As an illustrative example in Fig. 2, the trends calculated by
using the third-order DFA (left panels) and the second-order
DMA (right panels) are shown. One can note that the DFA
trend shows discontinuous jumps at the end points of each box.
Conversely, the DMA trend exhibits seemingly continuous
behavior. This is a crucial difference between DFA and
DMA.

To date, the performance of the zeroth-order DMA
algorithm (DMA0) has been extensively studied [35–40].
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FIG. 1. Illustration of the moving average polynomial of degree
m (bottom) for centered DMAm [Eqs. (4) and (6)], where n is equal
to 11 for all the cases. (a) Zeroth-order (m = 0, corresponding to the
conventional moving average); (b) first order (m = 1); and (c) second-
order (m = 2). In the top three rows, the center point (red points) on
each polynomial fit (black lines) in a local moving average window
(gray shaded areas) is defined as the higher-order moving average
point, and the moving average polynomial {ỹn,m(i)} is calculated by
point-by-point sliding of the window. On the other hand, for the
backward DMA [given by Eq. (2)], the far right point in the window
is defined as the moving average reference point. Note that, in the
centered DMA, {ỹn,0(i)} in DMA0 (bottom left) and {ỹn,1(i)} in DMA1

(bottom middle) are identical.

Conversely, the fundamental properties of the higher-order
DMA (DMAm with m � 1) have not been completely
investigated [21]. To fill this knowledge gap and understand the
methodological performances of DMAm, we study the prop-
erties of the high-order DMA based on analytical arguments
and numerical tests. Furthermore, the results of the study will
be thoroughly compared to DFA. In the remainder of this
section, based on preliminary numerical results, we provide
an overview of the issues involved in the performance of the
high-order DMA.

A. Importance of high-order detrending

When real-world long-range correlated series with non-
stationary trends should be analyzed, high-order detrending
is needed to detect the meaningful scaling exponents of the

stochastic fluctuations embedded in the intrinsic or extrinsic
trends. To illustrate this situation, let us consider the following
case studies of artificial time series generated by (i) the sum
of a fGn with H = 0.3 and a quadratic deterministic trend
[Fig. 3 (top left)] and (ii) the sum of a fGn with H = 0.3
and a cubic stochastic trend [Fig. 3 (bottom left)] obtained
as the interpolation of Gaussian generated points by a cubic
spline.

In Fig. 3 (top and bottom right), the log-log plots of the
centered DMA0, DMA2 and DFA1, DFA2, DFA3 versus n

are respectively shown. As one can note [Fig. 3 (top right)],
the plots of the DMA0 show spurious scaling behavior as
suggested by the slope much steeper than H = 0.3 at large
values of n. The steep slope is due to the adverse effect of
the deterministic quadratic trend component. Conversely, the
DMA2 plot shows a scaling behavior with the correct slope
H = 0.3 over the whole range of n, which demonstrates that
the moving average polynomial of second degree {ỹn,2(i)}
is not affected by the deterministic quadratic trend. Similar
results are also found for DFA. In particular for the case (ii)
[Fig. 3(bottom)], one can note that the upper boundary of the
scaling range of DFA3 (or DMA2) is approximately one order
larger than that of DFA1 (or DMA0). As a conclusion, the
general result of the investigation is that higher-order DFA
and DMA can reduce the adverse effect of the quadratic and
cubic trend, by extending the scaling range towards higher
values of n (Fig. 3).

To date the detrending ability of the DMA with respect
to embedded polynomial trends has not been analyzed and
understood in depth. Therefore, in this paper, we will ana-
lytically show the detrending ability of DMA with respect
to different trends and compare the performance with the
DFA.

As a final remark, given the relevance of the above issues, it
is convenient to introduce a figure of merit for scaling methods
to remove a polynomial trend that we will refer to as detrending
power degree.

B. Upper limit of detectable scaling exponents

Next, the relationship between the upper limit of detectable
scaling exponent α and the degree of the moving average
polynomial is investigated. Though one can expect that upper
limit would exist [43], this aspect has not been systematically
studied and thus will be analytically derived by using the
single-frequency response function of DMA. Before illus-
trating the analytical results, the numerical results obtained
for both DMA and DFA will be briefly discussed in this
subsection.

Figure 4(a) shows the scaling exponents α estimated by
mth-order DFA when sample time series with 1/f β slope are
analyzed. For the DFA, the relation α = (β + 1)/2 holds in a
range 0 < α < m + 1, and the upper limit of detectable scaling
exponent α is equal to m + 1 [43].

On the other hand, as shown in Fig. 4(b), the upper limit
of detectable scaling exponents of DMA0 and DMA2 are,
respectively, two and four. Therefore, one can conclude that,
in both DFA and DMA, higher-order detrending allows one to
extend the upper limit of detectable scaling exponents.
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FIG. 2. Illustration of trends estimated by the DFA3 (left panels) and the centered DMA2 (right panels). The box widths for the DFA3 trend
estimates are equal to 49 (top) and 99 (bottom). The moving average windows for the DMA2 are equal to 49 (top) and 99 (bottom).

III. ANALYTICAL DERIVATION OF THE DMA
PERFORMANCE FEATURES

In this section, the methodological performances, discussed
and illustrated by using the numerical results briefly illustrate
in the previous section, will be analytically derived. It is worth
noting that by using the approach proposed in this section, it
would be possible to study properties of a wide class of random
walk analysis including the several variants of the DMA.

A. Detrending power degree

In this subsection, we study the detrending power degree
of the centered DMA, whose relevance for scaling analysis
was discussed in Sec. II A. In particular, we will show that
the degree of the moving average polynomial {ỹn,m(i)} in
DMA is also related to the degree of the detectable polynomial
trend embedded in the long-range correlated time series. More
precisely, it will be shown that, when the integrated time series
y(i) is analyzed, the mth-order DMA can correspondingly
remove polynomial trend with degree m in the original time
series x(i).

Let us consider the sum of two uncorrelated time series
xA(i) and xB(i), the superposition law of the mean square
deviation holds [42]:

σ 2
DMA(n)A+B = σ 2

DMA(n)A + σ 2
DMA(n)B, (7)

where σ 2
DMA(n)A, σ 2

DMA(n)B , and σ 2
DMA(n)A+B denote the mean

square deviation corresponding to xA(i), xB(i), and xA(i) +
xB(i), respectively. Therefore, if a time series is given by the
sum of a fGn and a polynomial trend, the additive property

of the mean square deviations holds. Therefore, the effect of
the polynomial trend can be separated and investigated. We
consider the mth-order centered DMA, where m is assumed to
be a nonnegative even integer. To simplify the calculation, we
assume a continuous function of t over the range −T/2 � t �
T/2 with length (scale) T and calculate the mth-order moving
average at t = 0. Note that, by parallel translation, arbitrary
situation of the polynomial trend in a moving average window
can be described in the following form. Thus, without loss
of generality, by considering only a single point at t = 0, we
can study the general properties of DMA. Let us consider a
polynomial function with degree q, x(t) = c0 + c1t + · · · +
cqt

q , as the trend component in the original time series, and
analyze its integrated function as

y(t) = c0t + c1

2
t2 + · · · + cq

q + 1
tq+1 =

q∑
k=0

ck

k + 1
t k+1. (8)

To calculate the value of the moving average polynomial at
t = 0, one needs first to calculate the coefficients {ak} of the
least-squares polynomial by minimizing

I ({ak}) =
∫ T/2

−T/2

(
q∑

k=0

ck

k + 1
t k+1 −

m∑
k=0

akt
k

)2

dt. (9)

Then, by using {ak} and substituting t = 0 into the integrand
in Eq. (9), the square deviation from the moving average
polynomial at t = 0 is given by a2

0 . Finally, as shown in the
Appendix A, we obtain

a2
0 = 0 for q � m, (10)
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FIG. 3. Scaling analysis of nonstationary time series with smooth trends. (Top) A sample time series generated by the sum of fractional
Gaussian noise with α = 0.3 and a quadratic trend component. (Bottom) A sample time series generated by the sum of fractional Gaussian
noise with α = 0.3 and a cubic spline trend in which 10 equally spaced points with Gaussian random numbers are interpolated by a cubic
spline.

which means that the moving average polynomial of degree
m coincides with (q + 1)th-degree polynomial trend y(t) after
integration. Thus, its generalized variance is equal to zero.
In other words, if we evaluate the detrending power degree
based on the order of the analyzed polynomial function x(t) =∑q

k=0 ck tq , the detrending power degree of the centered
DMAm is equal to m. In contrast, the detrending power degree
of mth-order DFA is equal to m − 1.

Analogously, for q > m, the square deviation from the
polynomial trend takes a nonzero value. For instance, when
m = 0 and q = 1, we get

σ 2
DMA(n) ≈ c2

1

576
n4, (11)

and, when m = 2 and q = 3, we get

σ 2
DMA(n) ≈ 9c2

3

5 017 600
n8. (12)

These results demonstrate that the polynomial trend with
degree q > m exhibits a spurious scaling behavior. Therefore,
when the sum of a fractional Gaussian noise and a polynomial
function with degree q > m is analyzed by the centered
DMAm, a crossover in the plot of log σDMA(n) versus log n

appears according to the superposition law [Eq. (7)].

The numerical results plotted in Fig. 3 confirm the above
findings.

B. Frequency response

In this subsection, by using the power spectral density of a
fGn and the frequency response of DMA, we will investigate
the properties of DMA when fractional Gaussian noises are
analyzed. It has been rigorously shown that the PSD of a fGn,
increment process of a fractional Brownian motion with the
Hurst exponent H , is given by [45–47]

S(ω) = σ 2 sin(Hπ )�(2H + 1)|ω|1−2H , (13)

where ω is the angular frequency, σ 2 is the scale parameter of
fGn, and � is the gamma function.

To evaluate the frequency response of DMA, we first calcu-
late the single-frequency response function under a continuous
time approximation. The single-frequency response function
provides an analytical approximation of the generalized
variance when a single-frequency signal component having
amplitude A and frequency f is analyzed. Note that, as given
in Appendix B, it is possible to calculate the exact form of
the single-frequency response function without the continuous
time approximation. However, to simplify the calculation and
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FIG. 4. Scaling exponent α for a time series with power spectral density 1/f β analyzed, respectively, by (a) first-, second-, and third-order
DFA and (b) zeroth- and second-order DMA. Mean values of 30 samples are plotted.

to compare with the previous study of DFA [43], we here use
the continuous time approximation.

Let us thus consider the single frequency component,
x(t) = A cos (2πf t + θ ), a continuous-time signal that after
integration can be written as

y(t) = A

2πf
sin(2πf t + θ ), (14)

where the constant integration term has been neglected. For
the purpose of simplicity, the following calculation will be
limited to the interval [−T/2,T /2] of length T corresponding
to the scale n in the discrete-time notation. To investigate the
frequency response of the centered DMA, we estimate the
square deviation at t = 0 with respect to the moving average
polynomial of degree m. To gain more insight into the DMA,
it is valuable to note the difference in the calculation of the
single-frequency response between DFA and DMA. In the
previous study on DFA [43], to calculate the single-frequency
response function, the mean square deviation in a partitioned
window (box) over [−T/2,T /2] is assumed [see Eq. (12) in
Ref. [43]], because the statistical property of each window is
identical. In contrast, in the case of DMA, the square deviation
at only a single point (t = 0) is assumed, because the statistical
property at each point is identical. This may be an advantage
of DMA, because the estimate of the mean square deviation in
DMA has a better statistical symmetry than that in DFA.

In the centered DMA, the moving average polynomial is
obtained by minimizing the following function:

I ({a0,a1, · · · ,am})

=
∫ T/2

−T/2

{
A

2πf
sin(2πf t + θ ) −

m∑
i=0

ai t
i

}2

dt, (15)

where the coefficients {ai} of the polynomials are determined
by solving the following equation:

∂I ({ai})
∂aj

= 0, (16)

with i,j = 0,1, . . . ,m.

The square deviation 
2 with respect to the moving average
polynomial at t = 0 is given by


2
t=0(T ,f,A,θ ) =

(
A

2πf
sin θ − a0

)2

, (17)

that, by averaging the phase θ in over [0,2π ], could be
approximated by



2
(T ,f,A) = 1

2π

∫ 2π

0

2

t=0(T ,f,A,θ ) dθ, (18)

where we refer to 

2

as the single-frequency response function

(more analytical details about 

2

are shown in Appendix C).

The square root of 

2
(T = n,f,A) can provide the analyt-

ical approximation of the σDMA(n) when a single-frequency
component is analyzed. From the curves plotted in Fig. 5, one
can note that the DMA0 shows a single-frequency response
similar to the DFA1 (see also Fig. 14 in Ref. [43]) and that
the DMA2 exhibits a single-frequency response similar to the
DFA3. The fine structure of the single-frequency response is
informative of the fundamental properties and the performance
of the DMA in the time and frequency domain.

C. Asymptotic scaling behavior

In this subsection, we will demonstrate that, on the basis
of the single-frequency response calculated in Sec. III B, the
PSD of a linear stochastic process can be converted into the
root mean square deviation σDMA(n).

If the amplitude spectrum {A(fk)}, where fk is the fre-
quency of kth harmonic component, is known, the single-

frequency response function 

2

provides an estimate of
σDMA(n) as follows:

σDMA(n) =
[�N/2�∑

k=1

c(fk) 

2
(n,fk,A(fk))

]1/2

, (19)
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FIG. 5. Single-frequency response functions 

2
(T ,f,A) of zeroth- and second-order DMA, where T is the window length, A is the

amplitude of a Fourier component with frequency f . (a) 

2
(T ) versus scale T with f0 = 10−3 and A0 = 1. (c) 


2
(f ) versus frequency f with

T = 103 and A0 = 1.

where c(fk) describes the effect of discrete time sampling:

c(f ) = (πf )2

sin2(πf )
. (20)

[See Ref. [43] for a detailed derivation of Eqs. (19) and (20).]
Furthermore, by using Eqs. (13) and (19), the scale

dependence of σDMA(n) for fGn can be analytically estimated.
As a representative example, we consider the asymptotic
behavior of the DMA2. When n � 1/f , the single-frequency

response function 

2

[Eq. (18)] of DMA2 can be expanded as



2
(n,f,A) = C1A

2f 6n8 + O(n10), (21)

with the constant C1 = π6/627 200. On the other hand, by
taking the limit n → ∞, we obtain

lim
n→∞ 


2
(n,f,A) = C2A

2

f 2
(22)

with the constant C2 = (8π2)−1.
Based on Eqs. (21) and (22), 


2
(n,f,A) can be separated

in two branches by



2
(n,f,A) ≈

{
C1A

2f 6n8 for n <
fc

f
C2A

2

f 2 for n � fc

f

, (23)

where fc = 2801/4

π
. If the power spectral density of a discrete

sample of fGn is a 1/f -sloped function:

Sx(f ) = A2
0

f β
(24)

for f � 1/2, σDMA(n) can be estimated by assuming Eq. (23)
and c(f ) ≈ 1 as

σ 2
DMA(n) ∼

∫ 1/2

0



2
(n,f,A)

∣∣∣∣
A2=A2

0/f
β

df

≈ C1

∫ fc/n

0
f 6n8

(
A2

0 f −β
)
df

+C2

∫ 1/2

fc/n

1

f 2
A2

0f
−β df

=
(

C1
f

7−β
c

7 − β
+ C2

f
−β−1
c

β + 1

)
nβ+1 − C2

2β+1

β + 1
,

(25)

where it is assumed β < 7. For n 
 1 and −1 < β < 7, the
first term of Eq. (25) is dominant, thus it results in

σ 2
DMA(n) ∼ nβ+1, (26)

which implies the following relationship:

α = β + 1

2
. (27)

Moreover since β = 2H − 1 for fGn, it turns out that α

coincides asymptotically with H of fGn. By using the same
approach, analogous asymptotic laws can be derived for the
high-order DMAm.

D. Upper limit of detectable scaling exponent

The power-law tail structure of 

2
(n,f,A) ∼ f γ−2 nγ for

n � 1/f determines the upper limit of the detectable scaling
exponent α given by α < γ/2. If α > γ/2, namely, γ − β −
1 < 0, the σDMA(n) can be evaluated as

σ 2
DMA(n) ∼

∫ fc/n

0
f γ−2nγ

(
A2

0 f −β
)
df

=
(

A2
0

[
f γ−β−1

γ − β − 1

]fc/n

f =0

)
nγ

≈
(

A2
0

[
f γ−β−1

γ − β − 1

]ε

f =0

)
nγ

∼ nγ , (28)
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FIG. 6. Scale dependence of the root mean square deviation from trend, σDMA(n) with order of the moving average polynomials equal to
zero and two, obtained by Monte Calro (circles) and analytical (solid lines) approach. Artificially generated time series with given scaling
exponent α are used for the numerical tests.

where 0 < ε � fc/n is chosen such that[
f γ−β−1

γ − β − 1

]fc/n

f =ε

�
[

f γ−β−1

γ − β − 1

]ε

f =0

.

Thus, the estimated scaling exponent is independent of β, and
given by α = γ /2.

For n � 1/f , the single-frequency response of the DMA0,
DMA2, and DMA4 can be expanded in power of n, re-

spectively, as 

2
(n,f,A) ∼ f 2n4, ∼ f 6n8, ∼ f 10n12, respec-

tively, (see Appendix C). Therefore, the scaling exponents
α detectable by these methods are bounded by 2, 4, and 6,
respectively. Finally, one can conjecture that the upper limit
of the detectable scaling exponent α by 2kth-order centered
DMA, where k is a nonnegative integer, would be 2k + 2.

E. Finite scale range behavior

The asymptotic behavior of the DMA when sample series of
fGn are analyzed has been discussed on the basis of the single-
frequency response function. In many practical situations, it is
also important to understand the finite-range scale dependence
of σDMA(n). This issue will thus be investigated in this
subsection.

By using Eqs. (13) and (19), the scale dependence of
σDMA(n) can be calculated for fGn. As shown in Fig. 6 (solid
lines), the predictions based on the analytical arguments are in
good agreement with the numerical estimates obtained by the
Monte Carlo approach. Through the analytical approach based
on the single-frequency response function, we can precisely
characterize the scaling behavior of fGn when analyzed by

DMA. In Fig. 7 the scale dependence of σDMA(n) and its local
slope are shown together with results obtained for DFA. The
asymptotic convergence of the slope to the true value of α

is very slow when α ≈ 0, as shown in Fig. 7(a). The local
slopes at values of the scales log10 n < 1.5 show oscillating
behavior for DMA, which results from the oscillation seen
in the single-frequency response of DMA [Fig. 5(a)]. It is
worthy of note that it would be very difficult to observe such
fine structure of the σDMA(n) by using the Monte Carlo-based
approach.

By the similarity of the single-frequency response func-
tions of centered DMAm and DFAm+1 [see Fig. (5)], both
methods show the similar finite scale range behavior in scales
log10 n > 1.5.

IV. CONCLUSION

We studied methodological properties of high-order cen-
tered DMA, and on the basis of analytical arguments and
numerical tests, we have demonstrated the following: (1) mth-
order centered DMA can remove up to mth degree polynomial
trend in the original time series before integration; (2) The
single-frequency response functions of DMA0 and DMA2
have similar structure of DFA1 and DFA3, respectively; (3)
The scaling exponent α estimated by centered DMA coincides
asymptotically with the Hurst exponent H ; and (4) The
upper limit of the detectable scaling exponent α by mth-order
centered DMA is m + 2.

It has been shown in Ref. [35] that the detrending pro-
cedure in DFA is based on discontinuous polynomial fitting,
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FIG. 7. Scale dependence of σDMA(n) and its local slope. σDMA(n) is analytically evaluated based on the single-frequency response function.

which involves a nonlinear high-pass filter. Because of this
nonlinearity, well-established linear analysis methods, such as
the frequency response based on frequency domain analysis,
cannot be used on the DFA to investigate its methodological
properties. To overcome this difficulty, a method based on
the single-frequency response was recently proposed [43].
According to this method, the single-frequency response func-
tion is calculated through the analysis of a single-frequency
component in the time domain and can help to gain deeper
insight into the performance of DFA including higher-order
cases [43]. In this paper, this approach has been applied
to the investigation of DMA methodology. Our results have
demonstrated that the performance of mth-order centered
DMA, where m is a nonnegative even integer, is very well
comparable with that of (m + 1)th-order DFA. It has been
demonstrated that the zeroth-order centered DMA has a good
performance to characterize long-range correlation and fractal
scaling behavior [35,41]. In practical applications to real-world
time series, the higher detrending power degree would be very
important to improve estimation accuracy and to validate the
observed scaling behavior [24,48]. Hence, our results would
facilitate further application of higher-order DMA.

In addition, our approach is applicable to other DMA-
based analysis methods. To date, zeroth-order DMA has
been extended to higher dimensional data analysis [30],
cross-correlation analysis [28,49], multifractal analysis [22],
and multifractal cross-correlation analysis [50]. Including
higher-order DMA, our approach could contribute to a deeper
understanding of the methodological properties of such DMA-
based analysis methods.
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APPENDIX A: DERIVATION OF EQ. (10)

To obtain the least-squares polynomial by minimizing
Eq. (9), we solve the following equations:

∂I ({ai})
∂aj

= 0, (A1)
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where i,j = 0,1, . . . ,m. When j is even (j = 0,2, . . . ,m), we
get⎡

⎢⎢⎢⎢⎣
ρ0 ρ2 · · · ρm

ρ2 ρ4 · · · ρm+2

ρ4 ρ6 · · · ρm+4
...

...
...

ρm ρm+2 · · · ρ2m

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

a0

a2 − c1
2

a4 − c3
4

...
am − cm−1

m

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

0
0
0
...
0

⎤
⎥⎥⎥⎥⎦, (A2)

where

ρk = 2
∫ T/2

0
t k dt = 2−k

k + 1
T k+1. (A3)

Because a unique solution should exist in the case of the least
squares method, we obtain

a0 = 0, (A4)

a2k = c2k−1

2k
for k = 1,2, · · · m/2. (A5)

APPENDIX B: EXACT CALCULATION OF THE
SINGLE-FREQUENCY RESPONSE

FOR DISCRETE TIME SERIES

To obtain the single-frequency response function, we have
used a continuous time approximation. As we demonstrated in
this paper, the single-frequency response function calculated
under this assumption can help to gain deeper insight into the
performance of DMA. However, it is also possible to calculate
the exact form of the single-frequency response when discrete
time series is analyzed, although the amount of calculation
is somewhat large. In this Appendix, we provide some exact
formulas of the single-frequency response function.

To obtain the single-frequency response function at scale
n = 2n′ + 1 for centered DMA, let us consider discrete-time
series {x(i)},

x(i) = A cos(2πf i + θ ), (B1)

in the range [−n′,n′]. In this case, the integrated series is given
by

y(i) =
i∑

j=−n′
x(i)

= A sin{πf (i + n + 1)} sin{πf (i − n) + θ}
sin(πf )

. (B2)

To calculate the moving average polynomial at i = 0, we first
obtain coefficients {ak} of the least-squares polynomial with
degree m by minimizing

I ({aj }) =
n′∑

i=−n′

(
y(i) −

m∑
k=0

aki
k

)2

. (B3)

After the determination of {ak}, the mean-square deviation at
i = 0 is given by


2
d(n,f,A,θ ) =

(
y(i) −

m∑
k=0

aki
k

)2

. (B4)

By averaging the phase θ in this equation over [0,2π ],
we finally obtain the single-frequency response function



2
d(n,f,A) for the discrete-time series {x(i)}.
For instance, in the zeroth-order case at scale n = 2n′ + 1,

the exact form of the single-frequency response function is
given by



2
d(n′,f,A) = A2

16(2n′ + 1)2 sin4(πf )
{4n′2 + 4n′ + 2 − (2n′ + 1)2 cos(2πf )

+ (4n′ + 2) cos[2πf (n′ + 1)] − (4n′ + 2) cos(2πf n′) − cos[2πf (2n′ + 1)]}, (B5)

and in the second-order case, by



2
d(n′,f,A) = A2

128(2n′ + 1)2(4n′2 + 4n′ − 3)2 sin8(πf )
(3(8n′3 + 12n′2 − 2n′ − 3) sin(πf )

+ (−8n′3 − 12n′2 + 2n′ + 3) sin(3πf ) + 3(2n′2 + 7n′ + 6) sin[πf (1 − 2n′)]

+ 3(2n′ − 1){(2n′ + 3) sin[πf (2n′ + 1)] − (n′ − 1) sin[πf (2n′ + 3)]})2. (B6)

The functional forms of the single-frequency response functions for discrete-time and continuous-time cases are illustrated
in Fig. 8, where one can note that, except for differences at very small scales, the single frequency response function calculated
under the continuous-time approximation in Sec. III is in excellent agreement with its exact result.

APPENDIX C: SINGLE-FREQUENCY RESPONSE FUNCTION OF DMA

1. Zeroth-order and first-order centered DMA

a0 = A sin θ sin(πf T )

2π2f 2T
, (C1)



2
(T ,f,A) = A2{sin(πf T ) − πf T }2

8π4f 4T 2
(C2)
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FIG. 8. The single-frequency response function of mth-order centered DMA for A = 1 and f = 0.01.

= π2A2f 2T 4

288
+ O(T 6) (T � 1/f ). (C3)

2. Second-order and third-order centered DMA

a0 = −3A sin θ {π2f 2T 2 sin(πf T ) − 5 sin(πf T ) + 5πf T cos(πf T )}
4π4f 4T 3

, (C4)



2
(T ,f,A) = A2{2π3f 3T 3 + 3(π2f 2T 2 − 5) sin(πf T ) + 15πf T cos(πf T )}2

32π8f 8T 6
(C5)

= π6A2f 6T 8

627 200
+ O(T 10) (T � 1/f ). (C6)

3. Fourth-order and fifth-order centered DMA

a0 = 15A sin(θ )

16π6f 6T 5
{π4f 4T 4 sin(πf T ) + 14π3f 3T 3 cos(πf T ) − 77π2f 2T 2 sin(πf T ) + 189 sin(πf T )

− 189πf T cos(πf T )}, (C7)



2
(T ,f,A) = A2

512π12f 12T 10
[−8π5f 5T 5 + 105πf T (2π2f 2T 2 − 27) cos(πf T )

+ 15(π4f 4T 4 − 77π2f 2T 2 + 189) sin(πf T )]2 (C8)

= π10A2f 10T 12

8 851 949 568
+ O(T 14) (T � 1/f ). (C9)
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