Electrophoretic deposition of bilayer composite films based on CoFe2O4 and Nb-doped PZT

Original
Electrophoretic deposition of bilayer composite films based on CoFe2O4 and Nb-doped PZT / Galizia, P; Ciuchi, Iv; Albertini, F; Casoli, F; Gardini, D; Baldisserri, C; Galassi, C. - ELETTRONICO. - (2015). ((Intervento presentato al convegno Nanotech 2015 tenutosi a Bologna (Italy) nel 25-27 November 2015.

Availability:
This version is available at: 11583/2646558 since: 2016-08-24T16:48:09Z

Publisher:

Published
DOI:

Terms of use:
openAccess
This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright

(Article begins on next page)
Abstract

The magnetoelectric (ME) composites with piezoelectric and magnetostrictive materials are of interest in the smart manufacturing and mechatronics field as actuators/transducers, sensors, antennas, filters, non-volatile memories, etc. Spinel cobalt ferrite (CFO), a highly magnetostrictive material and niobium-doped lead zirconate titanate (PZTN), a piezoelectric perovskite phase are chosen as constituent phases for ME composite. The production process is designed in order to avoid the chemical reaction between the piezoelectric and magnetostrictive materials, to prevent the formation of percolation chains of the magnetostrictive phase, and to maximize the mechanical coupling at the interface between the two phases. In this study, the electrophoretic deposition (EPD) is a low cost and flexible technique to shape nanoparticles into multilayered heterostructures. The combination of different materials by EPD, showing promising ME coupling, can be regarded as a useful, preliminary approach in the search of novel ME materials for many applications, potentially with great industrial and technological benefits.

In this work, composite bilayer CFO/PZTN thick films were deposited on platinum coated alumina by EPD from ethanol-based colloidal suspensions. Good adhesion and compaction of the green film were achieved by optimization of deposition voltage and time, and high density of the film and minimized interphase reactions occurred after sintering. The chemical activity between the two layers was controlled through the batches composition and it could lead to the synthesis of complex engineered structures. The deposited volume, the mixing of dielectric and magnetic phases and the density and ordering of the films have been verified by electron scanning microscopy after heat treatment. The ferroelectric, piezoelectric and magnetic properties were tested on the sintered films.

Sensations

1 - Cobalt Ferrite [1-3]

- Stoichiometry (spinel): $\text{CoFe}_2\text{O}_4$
- Particle Size: 5.27 $\mu$m
- Solid Loading, wt%: 15.0
- Electrical Conductivity: 2 $\mu$S cm$^{-1}$
- £-potential: 15.6 mV

2 - Lead zirconate titanate [4, 5]

- Stoichiometry (perovskite): $\text{Pb}_{0.988}\text{Zr}_{0.52}\text{Ti}_{0.48}\text{Nb}_{0.024}\text{O}_3$
- Particle Size (DLS): 185 nm
- Solid Loading, wt%: 15.0
- Electrical Conductivity: 2 $\mu$S cm$^{-1}$

Electrophoretic Deposition [6]

EPD tests were performed in a plane-parallel cell geometry (1 cm electrodes spacing) and setting cathodic modality with constant DC potential up to 60 V vs. a 20 cm$^2$ SS secondary electrode.

1 - First EPD-CFO film on Pt-coated alumina:

CFO suspension was deposited at 50 V x 100 s. After drying the sample was fired at 500 °C x 15 min. Good adhesion and compaction of the green film were achieved by optimization of deposition voltage and time, and high density of the film and minimized interphase reactions occurred after sintering.

2 - Second EPD-PZTN film on first EPD-CFO layer:

PZTN suspension was deposited under 60 V x 15 s. After drying the sample was sintered at 900 °C x 30 min.

Conclusions

- Magnetoelectric composite bilayer films based on spinel cobalt ferrite and perovskite Nb doped PZT was produced by electrophoretic deposition.
- The microstructure analysis was performed by SEM/EDS and XRD.
- The electrical and magnetic characterization confirm a good quality of the composite layers.
- Future work is going to develop the coupling between magnetic and electric ordering.

References


Contact author: pietro.galizia@istec.cnr.it (Pietro)