Processing of (BaSr)Fe₁₂O₁₉ for antenna miniaturization

C. Galassi, C. Capiani, P. Galizia* and C. Baldisserri

CNR-ISTEC, Via Granarolo, 64, 48018 Faenza (Italy)

* Poster Author

Abstract

Hexaferrites of M-type at high-frequency are investigated, owing to their higher ferromagnetic resonances as compared to traditional magnetic materials, thus ensuring a less dispersive behavior of the material at microwaves frequencies. Here we present the experimental work concerned with the ceramic process for the production of the barium-strontium hexaferrite (BSFO). The critical issue in the production of this material is to obtain a fully dense and homogeneous microstructure. These aspects have been addressed by introducing powder grinding processes, and by varying the cold consolidation conditions of the powders. A number of samples of the material have been produced, both for morphological and microstructural characterization and a demonstrator antenna, onto which conductive patches were applied, and the radiating properties of which were tested. Barium-strontium hexaferrite as supporting material for antennas - while allowing substantial device miniaturization – displays relatively high dielectric and magnetic losses.

Printed antenna with diameter 31.5 mm

Material synthesis

Barium-Strontium M-type hexaferrites: Ba_{0.75}Sr_{0.25}Fe₁₂O₁₉ (BSFO)

The powders after calcination doesn't shown a pure M-type hexaferrite phase, but some intermediate phase, such as BaO (\bigcirc) and Fe₂O₃ (\triangle), are still presented

Key step: Powders Milling

The wet Planetary Milling (PM) has the double scope of:

- increase the powders homogeneity in terms of particle size and shape
- increase the powders reactivity reducing the average particle size

Powders	as calcined	ball milled	PM 5 h	PM 10 h
Mean particle size (µm) weighted on number	45	40	30	26
Mean particle size (µm) weighted on volume	51	44	33	28

Densification

Forming:

- linear pressing into disk
- cold isostatic pressing at 300 MPa
 - → ρ_∞ ≈ 56 %

Sintering:

- Heating at 10 °C/min up to 1200 °C
- 1' soaking time
 - $\rightarrow \rho_{\%} > 90 \%$

Microstructure

Ba_{0.75}Sr_{0.25}Fe₁₂O₁₉ powder calcined at 900°Cx 6 h sintered at 1200°Cx1min

Ba_{0.75}Sr_{0.25}Fe₁₂O₁₉ powder calcined at 900°Cx 6 h milled for 10 h sintered at 1200°Cx1min

 $\rho_{\%} = 90 \%$

 $\rho_{_{\infty}} = 94 \%$

Pure M-type hezaferrite was produced by conventional ceramic process.

The quite dense microstructures don't shown abnormal grains and the fine microstructures are characterized by a grain size distribution lower than 2 µm.

Conclusion

The milling treatment allows to avoid macropores and get a slightly finer microstructure