Thick composite magnetoelectric films by electrophoretic deposition

Original

Availability:
This version is available at: 11583/2646490 since: 2016-08-23T21:16:55Z

Publisher:

Published
DOI:

Terms of use:
openAccess
This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright

(Article begins on next page)
Microstructural analysis of TiO$_2$-CoFe$_2$O$_4$ film

Pietro Galizia*, Davide Gardini, Carlo Baldisserri, Carmen Galassi
CNR - ISTEC (Faenza, Italy)

* Presenting author
EPD to produce nanostructured ME composite bilayers films

➢ Chemical reactions

➢ ME coupling effect
Results

CFO/TO: 98% relative density; 25vol% TiO$_2$; 75vol% CFO

PZTN: 95% relative density

Piezoelectric properties!
Contribution

EPD film on Ag-coated alumina
Sintered at 800°C x 1h

Ag-coated alumina was used to produce CoFe$_2$O$_4$ layer embedded in silver

Step:

a) Co-deposition CFO/TO
b) Drying and sintering
c) Deposition PZTN
d) Drying and sintering
e) Metallization
f) Poling

a) Co-deposition CFO/TO
b) Drying and sintering
c) Deposition PZTN
d) Drying and sintering
e) Metallization
f) Poling
Impact

The graphs show the frequency (Hz) versus permittivity (ε') and loss tangent ($\tan\delta$) for different materials:

- **ε' vs. Frequency (Hz)**
 - **M**
 - **E**
 - **PZTN**

- **$\tan\delta$ vs. Frequency (Hz)**
 - **$\tan\delta$**
 - **CFO**

The materials listed include:

- TiO_2
- PZTN
- CFO

These graphs are useful for understanding the electrical properties of these materials across a range of frequencies.
Thank you for your kind attention