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Compressive Spatio-Temporal Forecasting
of Meteorological Quantities and Photovoltaic Power

Akin Tascikaraoglu, Member, IEEE, Borhan M. Sanandaji, Member, IEEE,
Gianfranco Chicco, Senior Member, IEEE, Valeria Cocina, Filippo Spertino, Member, IEEE,

Ozan Erdinc, Member, IEEE, Nikolaos G. Paterakis, Member, IEEE, and João P. S. Catalão, Senior Member, IEEE

Abstract—This paper presents a solar power forecasting
scheme, which uses spatial and temporal time series data along
with a photovoltaic (PV) power conversion model. The PV conver-
sion model uses the forecast of three different variables, namely,
irradiance on the tilted plane, ambient temperature, and wind
speed, in order to estimate the power produced by a PV plant
at the grid connection terminals. The forecast values are obtained
using a spatio-temporal method that uses the data recorded from
a target meteorological station as well as data of its surrounding
stations. The proposed forecasting method exploits the sparsity
of correlations between time series data in a collection of sta-
tions. The performance of both the PV conversion model and
the spatio-temporal algorithm is evaluated using high-resolution
real data recorded in various locations in Italy. Comparison with
other benchmark methods illustrates that the proposed method
significantly improves the solar power forecasts, particularly over
short-term horizons.

Index Terms—Distributed generation, Forecasting, Solar irra-
diance measurement, Correlated data, Time series.
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I. INTRODUCTION

A. Spatio-Temporal Forecasting

A NY WEATHER variable can be forecasted with reason-
able accuracy only using its historical time series data.

In order to further improve the forecast performance, spatial
dependency of variables can also be used along with their tem-
poral information. For example, weather variables such as solar
irradiance, temperature, wind speed, and direction tend to show
high correlations among neighboring sites. Due to availabil-
ity of time series data over a large number of meteorological
stations, there is a recent increasing interest in using spatio-
temporal forecasting approaches [1], [2]. However, incorporat-
ing a large amount of data is generally challenging due to its
computational costs, particularly in very short-term forecasting
[3]. The trade-off between the amount of data to be included in
the forecasting process and the prediction performance has to
be addressed using advanced algorithms.

B. Related Work

Using spatial information in forecasting various meteoro-
logical quantities has drawn considerable attention in the last
decade. A large part of the literature on spatio-temporal fore-
casting has been devoted to wind speed and wind power esti-
mations. The main motivation behind such methods is as fol-
lows: the downstream wind profile is greatly influenced by the
upstream wind in a region, particularly in areas having certain
predominant wind patterns and directions. These strong spatial
correlations can be used to improve wind speed or power fore-
casts using spatio-temporal wind forecasting methods. Together
with the technological advances in communications, it is now
possible to collect data from multiple locations with desired
time samplings and then use this spatial information to improve
the forecasts [1], [4]–[6].

Recently, there have been also promising results incor-
porating spatial information in solar forecasting methods.
Photovoltaic (PV) power forecast considering correlated infor-
mation of power from a number of points was studied from
different points of views in the literature [7]–[9]. In order to
forecast the Global Horizontal Irradiance (GHI) at ground level
using spatio-temporal data, Dambreville et al. [10] used an
Autoregressive (AR) approach, Licciardi et al. [11] exploited
Artificial Neural Networks (ANN), where nonlinear Principal
Component Analysis (PCA) was used to decrease the compu-
tational burden, and Zagouras et al. [12] considered various



Fig. 1. Schematic map of the five considered PV plants.

models including ANN, Support Vector Machines (SVM),
Genetic Algorithm (GA) and linear models. The efficiency of
spatio-temporal approaches on very short-term forecasting of
solar irradiance was also investigated in several studies [13],
[14]. The other examples include a study on parameter shrink-
age in spatio-temporal irradiance forecasting models [15] and a
Hidden Markov model for variability and uncertainty forecasts
in PV systems, which accounts for the effects of geographic
autocorrelation [16]. Moreover, a probabilistic spatio-temporal
forecasting model for wind power as well as solar power
generation was presented in [17]. For a more detailed sur-
vey of spatio-temporal solar irradiance and power forecasting
approaches see also [18] and [19], among others.

C. Contribution of This Work

As can be seen from the literature examples given, using tem-
poral and spatial data might be useful in the forecasts of mete-
orological quantities. All of the available data are, therefore,
included in the forecasting models regardless of their individ-
ual contribution on the accuracy. Instead, assuming that a sparse
relational pattern usually exists among the correlations between
different time series, this study proposes a spatio-temporal fore-
casting scheme using only these highly correlated data in the
forecasting process. Exploiting such low-dimensional struc-
tures in forecasting can help improve the accuracy and decrease
the computational burden. This forecasting task can be formu-
lated as a linear inverse problem where a block-sparse signal
is to be recovered. The proposed approach is used to forecast
various variables including irradiance on the tilted plane, ambi-
ent temperature and wind speed recorded from five measuring
locations in South of Italy, abbreviated as Ga1, Ga2, Gi, Ma
and Ru. Figure 1 depicts the five PV plants. Each location has a
meteorological station located very close to the PV system, that
provides the ambient conditions for its corresponding PV plant.

The forecast of each variable is carried out by using mea-
surements of target variables as well as two additional weather
variables (wind direction and humidity) from different mete-
orological stations in the proposed forecasting model. The
contribution of the variables from different meteorological sta-
tions on the forecasted values of target station is dynamically
determined for each of the next prediction horizons, thanks to
the proposed approach. In other words, contrary to the con-
ventional time series methods in which the pre-determined
input variables from each source are generally constant, the

proposed algorithm gives importance to the variables from cer-
tain stations that have shown similar characteristics to the target
variable in the recent prediction horizon. This adaptive feature
of the proposed algorithm always provides a more up-to-date
input set without realizing a time-consuming preliminary anal-
ysis for the best candidate variables and stations. Therefore,
the proposed approach accomplishes better performance rel-
ative to the constant model structures. Moreover, exploiting
highly-correlated data from different meteorological stations
enables us to capture the permanently varying weather condi-
tions caused by the daily, seasonal and annual meteorological
cycles, which improves the forecast accuracy for particularly
longer prediction times. It is also worth noting that the pro-
posed approach does not require an analysis on the cloud cover
and motions as opposed to relevant studies in solar forecasting
[20]–[22]. In fact, the effect of cloud motions on the expected
solar power is included in the forecasting algorithm when using
spatial data. In addition to the forecasting approaches, a PV
power conversion model incorporating the forecasts as inputs
is presented in this study in order to estimate the output power
produced by a PV plant [23].

D. Paper Organization

Section II describes the PV system and presents the PV
conversion model. In Section III, the forecasting problem is for-
mulated and the proposed forecasting method is introduced in
Section IV. The proposed method is applied to measured time
series data and the results are compared with real data and the
benchmark models in Section V. The last section includes some
concluding remarks and outlines the possible extensions.

II. ELECTRIC POWER EVALUATION

A. Description of the Grid-Connected PV System

For the calculations reported in this paper, the PV site Gi,
located in the Northwest of the area and subject to solar irra-
diance with high variations due to the passage of clouds, has
been considered as the target station. This permits to test the
performance of the forecasting model under variable condi-
tions. The real grid-connected PV system has a power rating
of 993.6 kWp at Standard Test Conditions (STC), global irradi-
ance GST C = 1kW/m2 and cell temperature TST C = 25 ◦C.
The PV arrays are placed on a metallic structure, which per-
mits the natural air circulation, feed two centralized inverters
with high efficiency (transformerless option). These inverters
are slightly undersized with respect to the rated peak power,
given that the 500-kVA inverter is supplied by a 552 kWp array
and the 400-kVA inverter is supplied by a 441.6 kWp array,
respectively.

The PV system is equipped with a local meteorological sta-
tion, in which the measured physical quantities are the global
irradiance Gtcell of a solar cell made of the same mate-
rial as the 230 Wp poly-crystalline silicon modules with tilt
angle of 30◦, horizontal global irradiance of the pyranome-
ter Ghpyr [W/m2], horizontal global irradiance Ghcell of the
two solar cells in crystalline silicon on the horizontal plane



[W/m2], ambient temperature Tamb [◦C], relative humidity
RH and wind speed ws [m/s]. For a detailed description of
the experimental setup see [24].

B. Definition of the PV Conversion Model

In defining the PV conversion model, it is important to take
into account the efficiencies referring to the main loss factors
affecting the PV system behavior. As mentioned in [25], the
main loss factors are summarized in the efficiencies defined by
the following bulleted points.

• Efficiency ηdirt is due to losses for soiling and dirt
(environmental pollution). To estimate the impact of
dirt/soiling accumulation, a 10-day summer period with-
out rain is considered. At the end of this period (10th

day), the horizontal solar irradiation is calculated from
the pyranometer and the solar cell. At the 11th day, the
rain appears and naturally cleans the sensors. Finally, at
the 12th day (clear-sky day), the solar irradiation is cal-
culated in such a way as to practically have the same
astronomical conditions of the 10th day. Therefore, differ-
ently from [26], the corresponding value of ηdirt for the
PV plant, located in a relatively clean environment (i.e.
away from mines, landfills, etc.), is determined according
to the following formula

ηdirt =
(Ha_rain − Hb_rain)

Ha_rain
· 100 (1)

where (Ha_rain) and (Hb_rain) are the values of the daily
irradiation in two clear-sky days, one after rain (12th

day) and the other before rain (10th day) respectively. As
results, the corresponding value of ηdirt is in the range
0.97–0.98.

• Efficiency ηrefl is due to reflection of the PV module
glass; the corresponding value used is 0.971, taken from
the PVGIS website [27].

• Efficiency ηth is due to the thermal losses �th with respect
to the STC, calculated as:

ηth = 1 − �th = 1 − γth · (TC − TST C) (2)

where γth is the thermal coefficient of maximum power
of the modules, dependent on the PV technology (for
crystalline silicon γth = 0.5%/◦C); TC is the cell tem-
perature, which can be calculated in a first analysis as in
[28] as a function of the ambient temperature Tamb, the
cell irradiance on the tilted plane Gtcell and the Normal
Operating Cell Temperature (NOCT) of 42–50 ◦C [29],
[30]. This is the mean temperature in outdoor operation
at GNOCT = 800 W/m2 and Tamb = 20 ◦C. In order
to obtain better approximation, the solar cell tempera-
ture is calculated here by the following formula, defined
in [31] from the application of neural network tools on
real monitored data, also taking into account the wind
speed ws:

TC = 0.943 Tamb + 0.028 Gtcell − 1.528 ws + 4.3.
(3)

TABLE I
INVERTER NO-LOAD POWER LOSSES AND LOSS COEFFICIENTS

This empirical equation, derived from the U.S. sites, has
a wide field of application and provides cell temperatures
with adequate accuracy also in Mediterranean sites [32].

• Efficiency ηmism takes into account the I-V mismatch
losses assuming that the bottleneck effect globally leads
to 97% of the power rating declared by the manufacturer
for all the PV modules in the PV array. This loss is a con-
sequence of the weakest modules in the series connection
inside the strings and of the weakest strings in the parallel
connection inside the PV array [33].

• Efficiency ηcable includes the DC cable losses, with the
value of 0.99 considered according to good design criteria
[34].

On the basis of the previous efficiencies, the available power
at the maximum power point is achieved by [23]:

Pmpp = Prated (Gtcell − Glim) ηdirtηreflηthηmismηcable

(4)

where Glim is the irradiance limit below which the output is
vanishing (the limit 17.7 W/m2 is assumed for the specific
polycrystalline silicon module used, determined by interpola-
tion of the points found in the module data sheet). Finally,
considering the efficiency ηMP P T of the maximum power point
tracker, and thanks to the model of the power conditioning
unit for grid connection, the AC power injected into the grid
is calculated as [28]:

PDC = ηMP P T Pmpp (5)

PAC = PDC − (
P0 + cL · PAC + cQ · P 2

AC

)
(6)

where P0 is the no-load power losses along the operation, cL

and cQ are the linear and quadratic loss coefficients, respec-
tively. The corresponding numerical values are indicated in
Table I. For the calculations indicated above, the entries Tamb,
Gtcell and ws are taken from the forecasts and used to deter-
mine the AC power PAC .

To check the accuracy of the PV power conversion model,
the measurements of in-plane irradiance Gtcell, ambient tem-
perature Tamb, and wind speed ws are used as inputs to the
above-described model. Then, the power delivered to the grid,
as the main output, can be compared with the energy-meter
readings of the PV plant. Thanks to a statistical analysis includ-
ing only the periods of correct operation of the inverters [35],
the average value of the deviations is ≈6% in July, and ≈4% on
an annual basis.

III. MODEL STRUCTURE

The underlying assumption in an AR model is that a lin-
ear combination of the previous values of a system can be



used to model its output variable. One can generalize this
approach to deal with multivariate time series. Let’s assume
that there are measurements from P output variables (p =
1, 2, . . . , P ) (e.g., solar irradiance at particular weather station).
These output variables might be measurements of V variables
(v = 1, 2, . . . , V ) recorded at S locations (s = 1, 2, . . . , S),
where P = V × S. Define ys,v

t as the measured value of the
v-th variable at the s-th location at time t (t = 1, 2, . . . , M +
n). Let yv∗,s∗

be any target output variable. A Multivariate
Autoregressive (M-AR) is written as

yv∗,s∗
t =

V,S∑
v=1
s=1

n∑
i=1

yv,s
t−ix

v,s
i + ev∗,s∗

t , (7)

where n is the order, xv,s
i (∀i, v, s) are the regression coef-

ficients, and ev∗,s∗
t is the noise component (usually assumed

Gaussian).
Let N := nP . Expand (7) to the framework given in (8),

shown at the bottom of the page. The goal of the training stage
is to calculate model coefficients x ∈ R

N that best explain the
observations b ∈ R

M and A ∈ R
M×N , considering the noise

component e. Apparently and based on (8), the coefficients of
x are gathered in a block structure. In other words, the vector
coefficients for each unique variable appear in one vector-block
of length n.

IV. COMPRESSIVE SPATIO-TEMPORAL FORECASTING

(CSTF)

It is evident from the literature that using spatially distributed
irradiance data generally improves the accuracy of the temporal
forecasts, particularly enabling to detect cloud advection, which
is not possible with data from only one location. Contrary to the
widely-used approach in the literature in which the number of
exogenous locations to be included in the forecasting is chosen
by investigating the relationship between the shifted solar irra-
diance time series of locations with a time-lagged correlation
analysis, it is assumed in this study that only a few meteorolog-
ical stations, among all stations, have a significant correlation
with any given meteorological station. Such relational pat-
terns have been also observed and exploited in wind speed
forecasting [36]. Under the assumption of sparsity of the inter-
connections, therefore, x has a particular shape. Precisely, x

⎡
⎢⎢⎢⎢⎣

yv�,s�

n+1

yv�,s�

n+2

...
yv�,s�

n+M

⎤
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b∈RM

=
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. . .
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...
. . .

...
... . . .

...
y1,1

n+M−1 . . . y1,1
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M

⎤
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A∈RM×N

⎡
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1

...
x1,1

n

...

...

xV,S
1

...
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n

⎤
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︸ ︷︷ ︸
x∈RN

⎫⎪⎬
⎪⎭Block 1
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⎪⎭Block P

+

⎡
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ev�,s�

n+1

ev�,s�

n+2

...
ev�,s�

n+M

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
e∈RM

(8)

has a few non-zero entries gathered in few blocks. This structure
is known as block-sparse. The number of these non-zero blocks
equals to the number of stations that significantly contribute
to the output in the corresponding time period. The proposed
Compressive Spatio-Temporal Forecasting (CSTF) method has
the capability of changing the number of non-zero blocks and
the value of the coefficients in these blocks for each prediction
time horizon. For instance, data from only reference loca-
tion might be used for a certain prediction period for higher
accuracy. Hence, the proposed model behaves like a temporal
model, if no reasonable correlations are observed between the
reference location and other locations in the previous prediction
time. For any given station, the following optimization can be
performed in order to obtain the desired x vector:

min
x

‖b − Ax‖2 subject to (x is block-sparse). (9)

A. Background on Compressive Sensing (CS)

Under the assumption of signal sparsity and under given con-
ditions on matrix A [37], CS enables the recovery of a signal
from its underdetermined measurement set. A vector of length
N with K non-zero entries is called K-sparse where K <
N . CS provides algorithms for recovery of such vector from
its measurements b = Ax ∈ R

M . The matrix A ∈ R
M×N is

called the measurement matrix with M < N . Apparently, there
exist many possible solutions to the underdetermined equation
b = Ax; however, if only one solution is suitably sparse, CS
algorithms are guaranteed to recover that solution under some
specific conditions on A. Several recovery guarantees have
been proposed in the CS literature. The Restricted Isometry
Property (RIP) [38], the Exact Recovery Condition (ERC), and
mutual coherence [39] are among the most important proposed
conditions on A.

B. Uniform CSTF

Tools from CS are used to recover a block-sparse x. Let x ∈
R

N be a concatenation of P vector-blocks xi ∈ R
n, i.e.,

x = [xtr
1 · · · xtr

i · · · xtr
P ]tr, (10)

in which N = nP . A vector x ∈ R
N is called block K-sparse

if it has K < P non-zero blocks. Among the various extensions
of the conventional CS tools, the Block Orthogonal Matching



Algorithm 1. The BOMP algorithm for block-sparse recovery

Require: A, b, {ni}P
i=1, stopping criteria

Ensure: r0 = b, x0 = 0, Λ0 = ∅, l = 0
repeat

1. match: hi = Atr
i rl, i = 1, 2, · · · , P

2. identify support: λ = arg maxi ‖hi‖2

3. update the support: Λl+1 = Λl ∪ λ
4. update signal estimate:

xl+1 = arg mins:supp(s)⊆Λl+1 ‖b − As‖2,
where supp(s) indicates the blocks
on which s may be non-zero

5. update residual estimate: rl+1 = b − Axl+1

6. increase index l by 1
until stopping criteria true
output: x̂ = xl = arg mins:supp(s)⊆Λl ‖b − As‖2

Pursuit (BOMP) algorithm is used [40], [41]. To find a block-
sparse solution to the equation b = Ax, the formal steps of
BOMP are listed in Algorithm 1, where A ∈ R

M×N is a
concatenation of P matrix-blocks Ai ∈ R

M×n (∀ni = n) as

A = [A1 · · · Ai · · · AP ]. (11)

Due to the block sparsity of x, the vector of observations b
can be given as a combination of the columns of A, with the
selections of the columns occurring in clusters. BOMP aims to
determine the participating indices by correlating the b against
the columns of A and comparing the correlations among dif-
ferent blocks. When a significant block has been identified, its
influence is removed from b and the correlations are recalcu-
lated for the remaining blocks. This process repeats until the
residual equals zero [41].

C. Nonuniform CSTF

In a uniform CSTF, the assumption is that a meteorological
station and the stations in its vicinity can be modeled using AR
models of the same order. A more generalized CSTF algorithm
is presented in this section, where the AR models of different
orders are considered. This algorithm distinguishes between the
meteorological stations with different cross-correlation levels

⎡
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x∈RN
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⎫⎪⎬
⎪⎭Block P

+
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ev�,s�
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⎥⎥⎥⎥⎦
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e∈RM

(12)

with the target station. Let ni be the order for the i-th station for
i = 1, 2, . . . , P . An Nonuniform Multivariate Autoregressive
(NM-AR) version of (8) can be written as shown in (12), shown
at the bottom of the page, where nmax ≥ maxi ni and N :=∑P

i=1 ni. This model structure results in a block-sparse vector
with blocks of different length. Let x ∈ R

N as a concatenation
of P vector-blocks xi ∈ R

ni where N =
∑P

i=1 ni.
Given {ni}P

i=1, the BOMP Algorithm 1 can be employed for
the recovery of x with Ai ∈ R

M×ni . With the objective of find-
ing the set of order {ni}P

i=1, a correlation analysis is used in
which the correlation coefficients for the consecutive time lags
up to the prediction horizon between the target and other meteo-
rological stations are calculated. Then the orders accomplishing
the best forecasting performance are adjusted considering the
calculated correlation coefficients and assigning numbers to
the order of each variable of each station proportional to the
magnitude of its correlation.

V. CASE STUDY OF FIVE METEOROLOGICAL STATIONS

IN ITALY

In this section, the proposed CSTF algorithm is applied by
considering Gtcell, Tamb and ws measured at five locations in
Italy. These locations are suitable choices as: (i) solar irradi-
ance trends exhibit relatively high values and (ii) the stations are
located at mutual distances, from about 5 km to about 140 km,
making it interesting to consider correlated data.

A. Data Description

Data averaged each 15 min, gathered from five meteorolog-
ical stations in Italy including Ga1, Ga2, Gi, Ma and Ru, are
used in the study. The simulations are carried out for three
variables including Gtcell, Tamb and ws for whole year 2012;
however, the forecasting results are presented for the irradi-
ance data only, which is the most influencing variable on the
power calculations, in order to avoid data redundancy. Also, the
forecasting results are shown for the target station Gi for two
different representative time periods to observe the prediction
performance clearly; one in the winter season from February
1, 2012 to February 7, 2012 and the other in the summer sea-
son from July 1, 2012 to July 7, 2012 (a period of 7 days). For
these periods, training subsets from 11th day of the previous



month (i.e., January and June, respectively) to the 24th day (a
period of 14 days) and model selection subsets from 25th day
of the previous month to the 31st day (a period of seven days)
are considered.

B. Comparison With the Benchmark Methods

For temporal forecasting, the persistence model is used as
the first choice. In persistence model the last measurement
is used as the next forecast. It is worth noting that the rela-
tively short forecast horizon (three hours) adopted in this study
makes persistence method a good candidate as a benchmark
model for solar irradiance forecasts [42], [43] since this method
gives very reasonable results for particularly short terms [44].
Furthermore, in order to increase the efficiency of persistence
model as well as other approaches, the irradiance data are
divided into two subsets, i.e., daytime and nighttime, and only
the daytime data are used in the forecasting process while the
nighttime data are assumed to be zero. For the purpose of
choosing the start and end times of daylight, the correspond-
ing values belonging to the last day of model selection subset
are adopted and these times are kept constant during the next
prediction horizon.

Also an AR model is considered, in which the optimal order
values are obtained using the model selection subset. In the
forecasting stage, multi-step predictions are carried out in a
recursive manner for seven consecutive days with three hour-
ahead updates. In other words, each forecasted value is used in
the next consecutive forecast; the input data set is also updated
at every prediction horizon, both of these help the model exhibit
the latest trend of irradiance profile. The results for these mod-
els are given in Figs. 2 and 3, respectively. As can be seen, the
persistence method gives values which remain constant at the
time of forecast. These are appeared as step changes in solar
irradiance at the beginning of each forecast. Due to the “quasi-
stationary” characteristic of solar irradiance in each three-hour
period, reasonable forecasts are achieved with such a simple
method. Then, including a number of recent values in the con-
sidered AR model enables higher-accuracy forecasts compared
to the persistence model.

A forecasting approach combining Wavelet Decomposition
and Neural Network (NN) is also presented for comparisons.
In this model, the solar irradiance series is decomposed by the
Wavelet Transform (WT) into a given number of components
at different frequency bands. Forecast of each band is then per-
formed simultaneously employing the ANN method and final
forecast is obtained with the aggregation of these individual
forecasts (see [45] for further details). As seen from Fig. 4,
the combined model outperforms the AR model due to its
capability of modeling the nonlinearity in the irradiance data.

In addition to the basic temporal models, two methods based
on spatial information are employed in the comparisons. The
first model, which is proposed Bilgili et al. [46], applies the
solar irradiance data from the five stations to an ANN model.
The latter model uses Least Squares (LS) method to calculate
the coefficients of an M-AR model. Including spatial informa-
tion enhances the prediction accuracy compared to the temporal
models, as shown in Figs. 5 and 6.

Fig. 2. Persistence forecasting of two data sets.

Fig. 3. AR forecasting of two data sets.

C. Nonuniform CSTF

The nonuniform CSTF algorithm is then applied. The consid-
ered prediction time horizon is 3 hours in the simulations, thus
a vector x is calculated every 12 steps as each step is 15 min-
utes. A recursive approach is adopted in the predictions. The
solar irradiance forecasts at time n + M + 1 for the stations



Fig. 4. WT-ANN forecasting of two data sets.

Fig. 5. Multi-input NN forecasting of two data sets.

(ŷi
n+M+1, ∀i) are included in A for forecasting the solar irradi-

ance at time n + M + 2 (ŷi
n+M+2, ∀i). This process continues

for 12 steps while entries of A are continuously changed with
the observations for each prediction time.

The prediction accuracy is substantially improved compared
to the temporal and spatio-temporal benchmark models for both
data sets, as shown in Fig. 7. In order to clearly observe the

Fig. 6. LS M-AR forecasting of two data sets.

Fig. 7. Nonuniform CSTF forecasting of two data sets.

superiority of the proposed model, the two widely-used error
metrics are presented for the solar prediction methods consid-
ered in this study for the whole year 2012 in Table II. Mean
Absolute Error (MAE) gives the mean of the absolute value of
the deviation between the real and forecasted data, and Root
Mean Squared Error (RMSE) assigns a higher weight to large
error values by squaring them. Moreover, the Normalized Root



TABLE II
ERROR METRICS OF DIFFERENT METHODS FOR THE WHOLE YEAR 2012

Mean Squared Error (NRMSE) is provided to present a scale-
independent error metric. Note that the considered error mea-
sures are negatively oriented and the smaller the values are, the
better the forecast is. Evidently, the proposed nonuniform CSTF
method outperforms other approaches tested. Considering the
NRMSE, the nonuniform CSTF approach provides a reduc-
tion of 53%, 41% and 30% compared to the persistence, AR,
and WT-ANN models, respectively, and a reduction of 27%
compared to the LS-based ST model. Table II also shows the
forecast skill, which represents the forecast error obtained by
relating the forecast accuracy of the models to that of the per-
sistence model. A forecast skill of 1.0 implies an unattainable
perfect forecasting, and a forecast skill of 0.0 indicates a per-
formance similar to the persistence method. Besides, negative
values show lower forecasting accuracies compared to the per-
sistence method. Detailed explanations and applications of the
forecast skill can be found in Ref. [47].

Note that various variables apart from the target variable are
incorporated in the LS M-AR model and in the proposed model.
The type of the exogenous variables to be included as an input
is determined by analyzing the cross-correlations between the
target variable and other variables in the training stage. If the
correlation exceeds a threshold value for a given variable, this
variable is included in the input data set in order to increase
the forecasting accuracy. With this objective, temperature and
humidity values are used for irradiance forecasts in addition to
irradiance data in order to take advantage of high correlations
between these variables. Also, irradiance, humidity and wind
direction are considered for temperature forecasts while tem-
perature and wind direction series are included in wind speed
forecasts. Moreover, the order of each variable is chosen in the
model selection stage by analyzing the cross-correlations and
comparing the results obtained for different order values. In
other words, the order values are calculated based on the corre-
lation coefficients and then fine-tuned by trial and error method
through experiments. It is important to state that the type and
order of the variables are determined once in the training and
model selection stages and then kept constant during the test
periods.

Figure 8 shows the coefficient vectors for the proposed
method at the training stage for both seasons. As seen, only
a few blocks are non-zero in each season, resulting in a block-
sparse x. In other words, only some of the variables from some
stations are dominant for the given period. As an example, it
can be observed from Fig. 8 that the most contributing data
in the forecasts of the first three-hour period for both seasons
is the irradiance data taken from target meteorological station

Fig. 8. The coefficient vector at the training stage. The red dashed lines define
15 vector-blocks (three variables from five meteorological stations) of the
coefficient vector.

at time t − 1 (the first blue solid line), which has a magnitude
of over 0.7 for both cases. It is obvious that these high mag-
nitudes are the result of the very high correlation between the
consecutive values of the same variable, which is also consistent
with the main idea of persistence and AR models. The humidity
measurement from station Ru at time t − 1, which corresponds
to the zero value in the rightmost blocks in Fig. 8, on the
contrary, does not make a contribution to the forecasts in the
related periods. It can be highlighted that the contribution level
of each variable from different stations is first determined con-
sidering the correlation between the target variable and all the
available data in the training and model selection stages. The
block-sparse structure (i.e., the location and magnitude of non-
zero blocks) is changed slightly in the subsequent coefficient
vectors.

The CSTF model has a relatively short computational time,
taking about 0.6 seconds for each 12 steps in the MATLAB
environment on a 2.0 GHz, quad-core i7 processor PC with
8GB of RAM. Compared to the benchmark methods used in
this paper, for instance, this time is almost half of the time
required by the WT-ANN model to get comparable predic-
tion accuracy. It is noted that in addition to the forecasts
of irradiance, ambient temperature and wind speed, the pro-
posed approach can be used effectively for a wide range of
short-term forecasting applications, including wind direction,
rainfall, electric load demand and even urban and highway
traffic volumes, thanks to its very flexible structure and fast
response time. The existing strong correlations between the
time series of such measurements in both spatial and tempo-
ral dimensions would help the proposed algorithm improve the



Fig. 9. Nonuniform CSTF forecasting of two temperature data sets.

Fig. 10. Nonuniform CSTF forecasting of two wind speed data sets.

related forecasts without increasing the computational burden,
as in the results presented in this paper.

D. PV Power Predictions

Similar to the irradiance forecasts, ambient temperature and
wind speed are also forecasted with the proposed forecasting
algorithm with some modifications, as shown in Figs. 9 and

TABLE III
STATISTICAL ERROR MEASURE OF OTHER VARIABLES AND POWER

FOR THE WHOLE YEAR 2012

Fig. 11. Nonuniform CSTF forecasting of two power data sets.

10. The error metrics for these variables are given in Table III.
Lastly, the predicted data of all three variables are applied to the
power conversion model in order to estimate the output power
produced by the PV plant. As seen from Fig. 11, the forecasted
values are mostly consistent with the real data. The calculated
error measures for power, shown in Table III, validate the effec-
tiveness of the proposed models, which comes from exploiting
all available data in an optimum manner.

VI. CONCLUSION

This study proposes a solar power forecasting scheme which
uses spatial and temporal time series data as well as a PV power
conversion model. The PV power conversion model uses the
forecast of three different variables, namely, irradiance on the
tilted plane, ambient temperature and wind speed, in order to
estimate the output power produced by a PV plant. The forecast
values are obtained with a spatio-temporal forecasting approach
that includes data from a target meteorological station and its
surrounding stations. The comparison results against a set of
benchmark methods show that the CSTF approach significantly
increases the accuracy of short-term forecasts. Furthermore, the
calculated power forecasts show that the PV power conversion
model provides accurate modeling together with the forecasts
of above-mentioned three variables. As a future direction, the



effectiveness of the forecasts with a higher number of meteo-
rological stations for especially longer prediction horizons will
be investigated. Examining the possible contributions of incor-
porating the residual prediction errors and/or their forecasts in
the proposed model is considered as another future study.

REFERENCES

[1] L. Xie, Y. Gu, X. Zhu, and M. G. Genton, “Short-term spatio-temporal
wind power forecast in robust look-ahead power system dispatch,” IEEE
Trans. Smart Grid, vol. 5, no. 1, pp. 511–520, 2014.

[2] R. Bessa, A. Trindade, and V. Miranda, “Spatial-temporal solar power
forecasting for smart grids,” IEEE Trans. Ind. Informat., vol. 11, no. 1,
pp. 232–241, Feb. 2015.

[3] A. Tascikaraoglu and M. Uzunoglu, “A review of combined approaches
for prediction of short-term wind speed and power,” Renew. Sustain.
Energy Rev., vol. 34, pp. 243–254, 2014.

[4] M. He, L. Yang, J. Zhang, and V. Vittal, “A spatio-temporal analysis
approach for short-term forecast of wind farm generation,” IEEE Trans.
Power Syst., vol. 29, no. 4, pp. 1611–1622, Jul. 2014.

[5] J. Dowell, S. Weiss, D. Hill, and D. Infield, “Short-term spatio-temporal
prediction of wind speed and direction,” Wind Energy, vol. 17, no. 12,
pp. 1945–1955, 2014.

[6] J. Dowell and P. Pinson, “Very-short-term probabilistic wind power fore-
casts by sparse vector autoregression,” IEEE Trans. Smart Grid, vol. 7,
no. 2, pp. 763–770, Mar. 2016.

[7] C. Yang et al., “Multitime-scale data-driven spatio-temporal forecast of
photovoltaic generation,” IEEE Trans. Sustain. Energy, vol. 6, no. 1,
pp. 104–112, Jan. 2015.

[8] V. P. Lonij, A. E. Brooks, A. D. Cronin, M. Leuthold, and K. Koch,
“Intra-hour forecasts of solar power production using measurements from
a network of irradiance sensors,” Solar Energy, vol. 97, pp. 58–66, 2013.

[9] D. Yang, C. Gu, Z. Dong, P. Jirutitijaroen, N. Chen, and W. M. Walsh,
“Solar irradiance forecasting using spatial-temporal covariance structures
and time-forward kriging,” Renew. Energy, vol. 60, pp. 235–245, 2013.

[10] R. Dambreville, P. Blanc, J. Chanussot, and D. Boldo, “Very short term
forecasting of the global horizontal irradiance using a spatio-temporal
autoregressive model,” Renew. Energy, vol. 72, pp. 291–300, 2014.

[11] G. Licciardi, R. Dambreville, J. Chanussot, and S. Dubost,
“Spatiotemporal pattern recognition and nonlinear PCA for global
horizontal irradiance forecasting,” Geosci. Remote Sens. Lett., vol. 12,
pp. 284–288, 2015.

[12] A. Zagouras, H. T. Pedro, and C. F. Coimbra, “On the role of lagged
exogenous variables and spatio–temporal correlations in improving the
accuracy of solar forecasting methods,” Renew. Energy, vol. 78, pp. 203–
218, 2015.

[13] D. Yang, Z. Ye, L. H. I. Lim, and Z. Dong, “Very short term irradiance
forecasting using the lasso,” Solar Energy, vol. 114, pp. 314–326, 2015.

[14] A. W. Aryaputera, D. Yang, L. Zhao, and W. M. Walsh, “Very short-
term irradiance forecasting at unobserved locations using spatio-temporal
kriging,” Solar Energy, vol. 122, pp. 1266–1278, 2015.

[15] D. Yang, Z. Dong, T. Reindl, P. Jirutitijaroen, and W. M. Walsh, “Solar
irradiance forecasting using spatio-temporal empirical kriging and vector
autoregressive models with parameter shrinkage,” Solar Energy, vol. 103,
pp. 550–562, 2014.

[16] D. S. Callaway and M. D. Tabone, “Modeling variability and uncertainty
of photovoltaic generation: A hidden state spatial statistical approach,”
IEEE Trans. Power Syst., vol. 30, no. 6, pp. 2965–2973, Nov. 2015.

[17] J. E. B. Iversen and P. Pinson, “Resgen: Renewable energy scenario
generation platform,” in Proc. IEEE PES Gen. Meeting, 2016, to be
published.

[18] J. Boland, “Spatial-temporal forecasting of solar radiation,” Renew.
Energy, vol. 75, pp. 607–616, 2015.

[19] M. Diagne, M. David, P. Lauret, J. Boland, and N. Schmutz, “Review
of solar irradiance forecasting methods and a proposition for small-scale
insular grids,” Renew. Sustain. Energy Rev., vol. 27, pp. 65–76, 2013.

[20] J. Zeng and W. Qiao, “Short-term solar power prediction using a support
vector machine,” Renew. Energy, vol. 52, pp. 118–127, 2013.

[21] P. Mathiesen, J. M. Brown, and J. Kleissl, “Geostrophic wind depen-
dent probabilistic irradiance forecasts for coastal california,” IEEE Trans.
Sustain. Energy, vol. 4, no. 2, pp. 510–518, Apr. 2013.

[22] Y. Chu, H. T. Pedro, M. Li, and C. F. Coimbra, “Real-time forecasting
of solar irradiance ramps with smart image processing,” Solar Energy,
vol. 114, pp. 91–104, 2015.

[23] V. Cocina, “Economy of grid-connected photovoltaic systems and com-
parison of irradiance / electric power predictions vs. experimental
results,” Ph.D. dissertation, Politecnico di Torino, Italy, 2014.

[24] F. Spertino, P. Di Leo, and V. Cocina, “Accurate measurements of solar
irradiance for evaluation of photovoltaic power profiles,” in Proc. IEEE
Grenoble PowerTech (POWERTECH’13), Grenoble, France, Jun. 16–20,
2013.

[25] A. Reinders, V. Van Dijk, E. Wiemken, and W. Turkenburg, “Technical
and economic analysis of grid-connected PV systems by means of
simulation,” Progr. Photovoltaics, vol. 7, pp. 71–82, 1999.

[26] M. Gostein, J. R. Caron, and B. Littmann, “Measuring soiling losses at
utility-scale PV power plants,” in Proc. 40th IEEE Photovoltaic Spec.
Conf. (PVSC’14), 2014, pp. 0885–0890.

[27] Joint Research Centre of the European Commission. Photovoltaic
geographical information system (PVGIS) [Online]. Available:
http://re.jrc.ec.europa.eu/pvgis/apps4/pvest.php =0pt

[28] F. Spertino, F. Corona, and P. Di Leo, “Limits of advisability for master–
slave configuration of DC–AC converters in photovoltaic systems,” IEEE
J. Photovoltaics, vol. 2, no. 4, pp. 547–554, Oct. 2012.

[29] T. Markvart, Solar Electricity. Hoboken, NJ, USA Wiley, 2000, vol. 6.
[30] IEC, Crystalline Silicon Photovoltaic (PV) Array. On-Site Measurement

of I-V Characteristics, International Standard IEC 61829, 1998.
[31] G. TamizhMani, L. Ji, Y. Tang, L. Petacci, and C. Osterwald,

“Photovoltaic module thermal/wind performance: Long-term moni-
toring and model development for energy rating,” in Proc. NCPV
Solar Program Rev. Meeting, 2003, pp. 936–939, [Online]. Available:
http://www.nrel.gov/docs/fy03osti/35645.pdf. Accessed on: Jan. 15,
2016.

[32] R. Chenni, M. Makhlouf, T. Kerbache, and A. Bouzid, “A detailed model-
ing method for photovoltaic cells,” Energy, vol. 32, no. 9, pp. 1724–1730,
2007.

[33] F. Spertino and J. Sumaili Akilimali, “Are manufacturing I-V mismatch
and reverse currents key factors in large photovoltaic arrays?” IEEE
Trans. Ind. Electron., vol. 56, no. 11, pp. 4520–4531, Nov. 2009.

[34] F. Spertino and F. Corona, “Monitoring and checking of performance in
photovoltaic plants: A tool for design, installation and maintenance of
grid-connected systems,” Renew. Energy, vol. 60, pp. 722–732, 2013.

[35] G. Chicco, V. Cocina, P. Di Leo, and F. Spertino, “Weather forecast-based
power predictions and experimental results from photovoltaic systems,”
in Proc. IEEE Int. Symp. Power Electron. Elect. Drives Autom. Motion
(SPEEDAM’14), 2014, pp. 342–346.

[36] B. M. Sanandaji, A. Tascikaraoglu, K. Poolla, and P. Varaiya, “Low-
dimensional models in spatio-temporal wind speed forecasting,” in Proc.
Amer. Control Conf. (ACC’15), 2015, pp. 4485–4490.

[37] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol. 52,
no. 4, pp. 1289–1306, Apr. 2006.

[38] E. Candès, “The restricted isometry property and its implications for
compressed sensing,” Comptes rendus-Mathématique, vol. 346, no. 9–10,
pp. 589–592, 2008.

[39] J. Tropp, “Greed is good: Algorithmic results for sparse approximation,”
IEEE Trans. Inf. Theory, vol. 50, no. 10, pp. 2231–2242, Oct. 2004.

[40] B. M. Sanandaji, T. L. Vincent, and M. B. Wakin, “Compressive topology
identification of interconnected dynamic systems via clustered orthogo-
nal matching pursuit,” in Proc. 50th IEEE Conf. Decis. Control, 2011,
pp. 174–180.

[41] B. M. Sanandaji, T. L. Vincent, and M. B. Wakin, “A review of sufficient
conditions for structure identification in interconnected systems,” in Proc.
16th IFAC Symp. Syst. Identif., 2012, pp. 1623–1628.

[42] C. Voyant, C. Darras, M. Muselli, C. Paoli, M.-L. Nivet, and P. Poggi,
“Bayesian rules and stochastic models for high accuracy prediction of
solar radiation,” Appl. Energy, vol. 114, pp. 218–226, 2014.

[43] E. W. Law, A. A. Prasad, M. Kay, and R. A. Taylor, “Direct normal irra-
diance forecasting and its application to concentrated solar thermal output
forecasting–a review,” Solar Energy, vol. 108, pp. 287–307, 2014.

[44] A. Tascikaraoglu, A. Boynuegri, and M. Uzunoglu, “A demand side man-
agement strategy based on forecasting of residential renewable sources:
A smart home system in turkey,” Energy Build., vol. 80, pp. 309–320,
2014.

[45] A. Tascikaraoglu, M. Uzunoglu, and B. Vural, “The assessment of the
contribution of short-term wind power predictions to the efficiency of
stand-alone hybrid systems,” Appl. Energy, vol. 94, pp. 156–165, 2012.

[46] M. Bilgili, B. Sahin, and A. Yasar, “Application of artificial neural net-
works for the wind speed prediction of target station using reference
stations data,” Renew. Energy, vol. 32, no. 14, pp. 2350–2360, 2007.

[47] R. H. Inman, H. T. Pedro, and C. F. Coimbra, “Solar forecasting methods
for renewable energy integration,” Progr. Energy Combust. Sci., vol. 39,
no. 6, pp. 535–576, 2013.


