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since dynamic ridesharing has yet to be established as a valid alternative for private urban mobility, a 

high level of service is required. The combined effect of lower population density with high level of 

desired matching by users is substantially detrimental for the adoption of the service. Third, should the 

service provider decide to focus on just one type of user, it would have a negative long-term effect on 

the matching, leading to a higher discard rate of the service.  
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Introduction 

Congestion-related problems are one of the most important issues cities around the world have to face, 

and a transition to alternative and more sustainable means of transportation is necessary to improve 

unsustainable mobility systems (Whitmarsh and Nykvist, 2008). A growing number of dynamic 

ridesharing apps that exploit smartphones and GPS-location based technologies is becoming available 

in many cities and countries to help drivers and passengers arrange real-time shared rides and broker 

any related information and payment services (Chan and Shaheen, 2012; Anderson, 2014).  

Whatever their operating models or pricing mechanisms, ridesharing services operate as two-sided 

platforms to intermediate between the requirements of both communities of drivers and riders and to 

provide user-friendly and intuitive interfaces to encourage their adoption. As a matter of fact, 

ridesharing services are a relative new concept based on the sharing of personal trips between private 

users, in contrast with the traditional transportation industry that considers mainly the direct purchase 

of transportation services from professional drivers (e.g. taxi) or local public transportation companies.   

Therefore, dynamic ridesharing app providers face the same challenges as all other similar two-sided 

platforms, better summarized by the chicken and egg problem: “to attract buyers (passengers), an 

intermediary should have a large installed base of registered sellers (drivers), but these will be willing 

to register only if they expect many buyers (passengers) to show up” (Caillaud and Jullien, 2003).  

Hence, dynamic ridesharing services need to reach a critical number of users, especially in the initial 

phase, in order to provide a desirable level of matching between drivers and passengers and overcome 

the chicken and egg problem. In particular, each failed match has more negative impact on passengers, 

who have to find alternative means of transport with little notice.  

In this context, Lee and Savelsbergh (2015) investigated the effectiveness of using dedicated drivers as 

a way to overcome the issue of unmatched passengers. In particular, the authors observed that the 

higher the density of users, the lower the number of drivers, and the threshold beyond which drivers 

start decreasing is significantly lower wherever users are concentrated. As a matter of fact, ridesharing 
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services could implement different strategies of consolidating the demand in pick-up or meeting points 

in order to reduce the complexity of the coordination problem between drivers and riders (Furuhata et 

al., 2013; Stiglic et al., 2015). Consolidation of demand can also be achieved when selected group of 

individuals have the same destination, as in the case of employees of one company. This type of 

consolidation is beneficial to the process of matching users for two main reasons: first of all, 

participants share similar demographics and interests; and second, they make recurrent commuting trips 

(Naoum-Sawaya et al., 2015).  In addition, more sophisticated matching algorithms can improve the 

performance of ridesharing services (Agatz et al., 2011) and longer detours in the launch phase may be 

instrumental for maximizing the matches and support the creation of a critical mass of users (Kleiner et 

al., 2011).  

However, limited research is available to help identifying some of the key strategic factors that enable 

the adoption of a ridesharing technology, both internal and external to the ridesharing service, so that 

ridesharing service companies may be better assisted in assuming the right strategies to get both 

communities of clients on board. As a matter of fact, in the context of radical innovation, such as the 

case of dynamic ridesharing, forecasting the diffusion mechanism and identifying potential demand 

may support the decision making process of companies (Klasen and Neumann, 2011). 

To help overcoming the literature gap and the associated strategic implications, the objective of this 

work is to explore and understand the levers that may facilitate the diffusion of a new ridesharing 

service, thus highlighting the most important success factors and providing some insights on the extent 

to which possible strategies could boost the service diffusion based on such success factors.  

To this end, a System Dynamics (SD) model is developed by integrating existing diffusion models 

retrieved from the literature with the main findings of a case project to deliver a new ridesharing 

service. 

The paper is structured as follows. Firstly, we explore relevant literature pertinent to the definition of 

ridesharing services, to the problem of new technology diffusion with particular focus on two-sided 

platforms, and to the usage of SD for the identification of trends and patterns of technology adoption. 

Second, the project that funded the basis of our research is depicted, along with data collection 

performed to define different user needs and requirements. Then, the proposed SD model is explained 

together with the main results of simulations. A calibration phase is also provided in detail. 

Finally, both practical and theoretical implications are proposed and conclusions drawn.  

 

Literature Review 
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Ridesharing: definition and main characteristics  

The idea of ridesharing was first introduced during World War II in the US, with the aim of saving 

resources for the war effort, but it has since then evolved and spread all over the world and nowadays 

automated ridesharing systems exploits a wide variety of enabling technology, such as GPS and 

smartphones, to provide more services like route-finding and instant notifications, delivered through 

web-based and mobile applications (Siddiqi and Buliung, 2013). Moreover, the adoption of these 

technology-based matching services is fostered through the increasing penetration of social networks, 

mostly because social networks are lowering some psychological barriers preventing ridesharing 

between strangers during the early years of the industry (Gargiulo et al. 2015). In fact, active users of 

social networks have greater risk taking attitudes (Fogel and Nehmad, 2009). Hence, they are more 

keen on sharing a ride with people they have never met. 

Dynamic ridesharing has been defined as “a system that facilitates the ability of drivers and passengers 

to make one-time ride matches close to their departure time, with sufficient convenience and flexibility 

to be used on a daily basis”. Agatz et al. (2011) define dynamic ridesharing as “a system where an 

automated process employed by a ride-share provider matches up drivers and riders on very short 

notice, which can range from a few minutes to a few hours before departure time”. Levofsky and 

Greenberg (2001), states that “dynamic ridesharing systems consider each trip individually and are 

designed to accommodate trips to random points at random times by matching user trips regardless of 

the trip purpose”. The authors highlight some aspects that limit the adoption of dynamic ridesharing, 

such as the uncertainty of a return trip, safety concerns, and an overall lack of advertising effort. They 

also underline some important success factors for the diffusion of dynamic ridesharing services, such as 

Internet-based time-dependent dynamic matching systems and effective mechanisms to recruit the 

drivers. According to Furuhata et al. (2013), dynamic ridesharing “provides an automated process of 

ride-matching between drivers and passengers on very short notice or even en-route, specifying pick-up 

and drop-off locations and times based on the simple input of participants’ itineraries and schedules”.  

With this regard, the authors state that, depending on the type of ridesharing proposed by the matching 

agency, some issues may arise. For instance, if either pick-up or drop-off locations or both are not on 

the way of the driver’s route (detour ridesharing), drivers have to make real-time decisions on the 

convenience of the trip, since they incur in additional cost not paid by the passengers. 

Summing up the definition retrieved in literature, dynamic ridesharing is characterized by the following 

features:  
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1.! A third-party matching platform managing the interactions between the two users, drivers and 

passengers;  

2.! Ridesharing platforms make one-time ride matches, in the sense that matches are not repeated 

and take place at random points and at random times;   

3.! Ridesharing systems are flexible and can match users on very short notice;  

4.! The matching is proposed by accommodating users’ trips, regardless of the trips’ purposes 

Services like Uber and Lyft match users on a short notice and make one-time ride matches, but in 

reality, they directly match drivers with passengers, without taking into consideration the trip 

accommodation of both sides. In this sense, they fulfil the first three features highlighted, lacking the 

last one, and therefore cannot be considered dynamic ridesharing by this definition.  

The cost of ridesharing is a determinant factor for the adoption of this kind of services. For drivers for 

instance, the reimbursement fee should increase the convenience of sharing the ride as opposed to drive 

solo. This convenience could be achieved through both disincentives and monetary incentives for those 

who use ridesharing (Hwang and Giuliano, 1990). However, users have to make decisions based on a 

trade-off between the convenience given by the reimbursement fee and some of the inconveniences of 

dynamic ridesharing. The inconveniences might be related to losing privacy (Xu et al., 2015), having to 

coordinate with other users regarding the trip time and route (K. Arning, M. Ziefle, and H. Muehlhans, 

2013) or having to combine the car ride with other means of transportation (Hansen et al. 2010).   

Finally, Deakin et al. (2010) provided a synthetic and exhaustive background on the main features of 

dynamic ridesharing, as well as on the drawbacks and potentialities. The authors argue that dynamic 

ridesharing may require high cost of start-up and maintenance, covering marketing (e.g. incentives) and 

technical expenses (e.g. hardware and software).  

The main success factors and drawbacks to the introduction of dynamic ridesharing are shown in Table 

1. 

Author Success Factors Drawbacks 

Siddiqi and 

Buliung, 2013 

Availability of enabling technology (GPS and 

Internet-enabled smartphones)  

Building relationships with 

organizations/employers, to whom provide 

customized solutions, (e.g. sharing rides with 

colleagues) 

Cost inefficiencies 

Poor service levels 

Usability and technological 

limitations (e.g. interfaces) 

Security concerns 

Agatz et al. Availability of enabling technology (GPS and Risk of not finding a return trip 
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(2011) Internet-enabled smartphones) 

Fuel cost savings  

Positive word of mouth based on the success 

of matching algorithm 

Public incentives 

Offering service in high demand area 

Levofsky and 

Greenberg 

(2001) 

Availability of enabling technology (GPS and 

Internet-enabled smartphones) 

Aggressive advertising 

Enhanced security measures 

Fuel cost savings 

Time savings 

Poor service levels 

 

Xu et al. 

(2015) 

Availability of enabling technology (GPS and 

Internet-enabled smartphones) 

Fuel cost savings 

Time savings 

Inconvenience related to loss of 

freedom and privacy 

Security concern 

Arning et al. 

(2013) 

Fuel cost savings Lack of users’ flexibility (i.e. 

willingness to coordinate with 

others and accept detours)  

Hansen et al. 

(2010) 

Availability of enabling technology (GPS and 

Internet-enabled smartphones) 

 

Coordination and communication 

between users 

Psychological factors, such as 

scepticism about ‘consume 

without  ownership’ 

Security concerns 

Deakin et al. 

(2010) 

Availability of enabling technology (GPS and 

Internet-enabled smartphones) 

Offering service in high demand area 

Flexibility of trip scheduling (i.e. users do not 

have to commit to a fixed trip) 

Fuel cost savings 

Security concerns 

Risk of not finding a return trip 

Inconvenience related to loss of 

freedom and privacy 
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Time savings 

Table 1. Success factors and drawbacks of dynamic ride sharing services 

Technology adoption models 

There are several models available in the literature to explore the mechanisms of adoption of a new 

technology and the patterns of diffusion of a product or service by a community of users. Among them 

we find the Gompertz model (Gutiérrez et al., 2005), the logistic model (Richardson, 1991), the Fisher-

Pry model (Fisher and Pry, 1971), and the Bass diffusion model (Bass, 1969). 

In particular, the Bass diffusion model is used as a foundation for this work. The Bass diffusion model 

assumes that the growth of adopters of a new product or service is triggered by word of mouth between 

adopters and potential adopters. Word of mouth increases over time as the installed base of adopters 

increases. The Bass model overcomes the shortcomings of other models in depicting the S-shaped 

curve line of adoption for a new technology or innovation. Such barrier can be underlined in the fact 

that other models consider zero as an equilibrium, while for a diffusion process some initial population 

is necessary for the adoption from word-of-mouth to start. Therefore, diffusion is initiated through 

external sources of information whose effects are roughly constant over time and are best expressed by 

the effect of advertising, which causes a constant fraction of potential adopters to adopt the service.  

The Bass model has been applied to a variety of sectors, such as ICT, retail, agriculture, 

pharmaceuticals, and industrial goods. It has been deemed to be at the same time intuitive and showing 

high potential for predicting behaviour of a system (Daim e Suntharasaj, 2009).  

Two-sided platforms 

While diffusion models typically involve the analysis of just one community of consumers adopting a 

technology, for the study of the diffusion dynamics of a ridesharing service the interactions between 

drivers and riders must be considered in addition to the diffusion of the service among the users of each 

separate community. In fact, the value of two-sided platforms is dependent on the participation of users 

at both sides, since we can assume that the value for one side of participating in the platform increases 

with participation from the other side. This process is catalysed through the network externalities that 

develop between users, both inter-side externalities between the two groups and intra-side within the 

same side community. Roson (2005) highlights two sources of inter-side externalities: single 

interaction externality exists when one type of matching is realized between the two sides, and the 

quality of the matching improves with the possible alternatives. On the contrary, when more 

interactions are made possible by the presence of more partners (e.g. having access to different goods if 

more suppliers are available) the platform gains value from multiple interaction externality. The author 



 8 

argues that in case of single interaction externalities the numbers of agents in the opposite side may 

cause decreasing return on utility, as opposed to the multiple interaction case where returns could be 

constant. 

Modelling the technology diffusion problem with SD 

SD has proved itself to be an appropriate approach to help studying the process of innovation and 

technology adoption by communities of users and customers. Based on system thinking theory, SD is a 

modeling and simulation environment that assists in solving complex problems via representing a 

system as interconnected cause and effect variables in multiple reinforcing and balancing feedback 

loops (Sterman, 2000). SD has been used to understand complex problems in various industries and 

applications and, in particular, to capture the archetypical “growth and plateau” behaviors that 

characterise the S-curve line of technology adoption by a community of potential adopters. To this end, 

several works are available in the literature, such as the ones by Maier (1998), Milling (2002) and Tsai 

and Hung (2014). Most of these works share a common foundation in the original Bass technology 

diffusion model, which considers the rate of adoption as summation of two adoption rates, namely from 

word of mouth and from advertising, as per Equation 1 and Equation 2. 

Adoption rate from advertising = aP     (1) 

Adoption rate from word of mouth = ciPA/N    (2) 

Where P is the population of Potential adopters, A the population of Adopters, a the advertising 

effectiveness (adoption fraction from advertising), c the contact rate between individuals in a 

population, measured in people contacted per person per time period, i the adoption fraction from word 

of mouth, and N th total population. 

Potential adopters generate as much as cP contacts for each time period. Potential adopter interact with 

adopters and the probability that each potential adopter has to get in contact with an adopter is the 

fraction of total adopters A/N. Therefore, the total amount of interactions between adopters and 

potential adopters for each time period is cPA/N. However, only a portion i of these interactions turns 

out as a successful adoption. 

The theoretical background for the model proposed in this paper is also provided by some modified and 

refined application of the Bass model by Thun et al. (2000) who develop a SD model to understand the 

diffusion process of goods with network externalities. The utility of products with network externalities 

is a function of the installed base Bt, referred to as the cumulated amount of users at time t. The Utility 

is expressed through a dimensionless variable, namely: the average utility per user. This variable is a 

function of the number of interconnections (i.e. number of users divided by two) and a parameter that 
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determines the number of interconnections that are valuable to the user (i.e. relevant adopter fraction). 

Compared to the Bass model, the one by Thun et al. (2000) considers the adoption fraction as 

influenced by the average utility per user. In the first step of their process, the authors make a simple 

assumption that the two variables are equal. Then, they relax this assumption by including a parameter, 

the desired utility, which is used in comparison with the average utility. If average utility is higher than 

desired utility, all users adopt the product. Otherwise, only a portion of users adopts it. This portion 

depends on the gap between actual and desired utility (i.e. ratio average utility/desired utility) and on 

the risk individuals are willing to take for acting as first adopters. The same rationale is applied to the 

discontinuation fraction and discontinuation rate, which respectively represent the portion and the total 

amount of users that quit if the product fails their expectations. The discontinuation fraction is the 

complementary to one of the adoption fraction; the discontinuation rate is the discontinuation fraction 

multiplied by the installed base and smoothed over time by a parameter, named as “patience” that 

expresses the period of time users are willing to wait before discarding the product. 

Case Project and Research Methodology 

A SD model is developed to support a research project to design and test a dynamic ridesharing mobile 

platform capable of providing the best real-time matching for the two participating sides (drivers and 

riders) based on a trust metrics and preselected constraints, such as a maximum detour allowed from 

the original planned route for picking up a passenger.  

One of the primary objectives of the research project is to understand the levers that might facilitate 

fast and lasting adoption growth by both populations of drivers and riders via the formulation of a 

service diffusion SD-based model for ex-ante simulation of the potential successfulness of the proposed 

ridesharing service. 

For this purpose several tasks have been carried out.  

First, some main SD-based technology diffusion models available in the literature are studied. Then, 

data are collected through focus groups and an online survey. Second, the model is developed by 

integrating and modifying the two main foundation models, namely the Bass model and the one by 

Thun et al. (2000). Third, we calibrated the model by estimating the values of the parameters, 

according to the focus groups, the questionnaire and findings from the literature. Finally, we performed 

simulation runs over a time frame of 200 weeks. We used Vensim DSS by Ventana Systems for the 

simulation runs. 
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Data collection 

Two focus group sessions and one questionnaire are used as tools to gain knowledge on users’ 

requirements and behaviours to model the intra and interconnections between the users of the 

communities.  

•! Focus groups 

From 7 to 9 persons participate to each focus group and they are requested to both evaluate the 

service concept from their specific perspective and improve it by either adding or cutting 

functionalities. At the end of both sessions, the main user requirements and specifications are 

defined.  

•! Questionnaire 

The questionnaire is developed to understand the market potential of this service by means of 

asking users their predisposition to sharing car rides, their mobility habits, and their opinion on 

the features of the service, such as the fee and the maximum acceptable waiting time. 

Model development 

As previously mentioned, we developed the model via an integration and adaption of two foundation 

models. On the one hand, based on the concept that this service is a two-sided platform, the system is 

divided into two different populations of Drivers and Passengers, each one with separate, although 

similar, feedbacks and dynamics. 

On the other hand, the model provided by Thun et al. (2000) is modified according to some specific 

features of the ridesharing platform at issue, such as the existence of a reimbursement fee that 

passengers must reimburse to drivers. 

Calibration of the model 

The values of the parameters of the model are estimated through the usage of the mentioned focus 

group interviews, the administered online survey and previous literature. For instance, the sensitivity to 

the reimbursement fee of both drivers and passengers is calculated with the percentage of users that 

would adopt the service for different levels of the fee. Moreover, the parameter Patience is a proxy of 

the number of failed attempts to ridesharing that a driver or a passenger is willing to stand for. 

The effectiveness of the service is measured with the quality of the matching proposed. To this aim, the 

findings from Agatz et al. (2011) related to the success rate as a function of the penetration rate of the 

service are integrated as parameters of the simulation. Agatz et al. (2011) provided a simulation on the 
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metropolitan area of Atlanta, a sprawling region that can resemble most of the main metropolitan areas 

in the world.  

The ridesharing service diffusion model 

The complete model is given in Figure 1. The most important variables and feedback loops are 

explained in the next sections, while the full list of equations is given as a Supplemental Material. 

 
Figure 1 Ridesharing adoption model 

Adoption rate from advertising and partnering 

Two factors can trigger the growth of the population from external sources. The first factor is 

represented by the advertising and partnering effectiveness, while the second one is the value of the fee 

that is reimbursed to the driver. Both populations adopt the service as a result of the effect of the 

advertising and the partnering actions, such as discounted car insurance premiums for drivers or 

free/discounted tickets for museums and other amenities for riders. The rate at which the two 

populations adopt the service as an effect of partnering depends on the maturity of the service in the 

market. Therefore, we introduce an initial start-up period during which the app increases its partner’s 

base, leading to the full potential of partnering effectiveness after 100 weeks (2 years). 

As far as the second factor is concerned, it can be noted that the service fee has an opposite effect on 

the two populations, since its increase will incentive Drivers to enter the service and Passengers not to 

adopt it, and vice versa. The adoption rate is not directly related to the value of the fee, but is mediated 

by another variable, named as “Fee sensitivity”, which shows how many Passengers and Drivers are 
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adopting if the service fee is increased or decreased. The parameter Fee sensitivity is a lookup table, 

that was retrieved from the results of the survey to the users. The values of the parameter Fee are 

retrieved from a specific question of the survey, asking which is the most appropriate reimbursement 

for drivers for a 10 km long trip. Users could choose between 1.5 ! ( 0.15 !/km) and more than 5 ! (we 

assumed 0.6 !/km).  In the SD model, the amount of potential users for each level of the fee is equal to 

the cumulative percentage of users who gave their preference up to the correspondent level. Fee 

sensitivity is opposite for the two populations, since the highest rate of adoption for drivers takes place 

with the highest fee, and vice versa for passengers. 

 

The adoption rate for Drivers and Passengers is shown in Equation 3 and 4. 

Drivers AR from partnering and advertising =  Potential Drivers * (Fee sensitivity on drivers(Fee)) *  

(Partnering and advertising effectiveness on drivers*Time/100)   Equation 3. 

Passengers AR from partnering and advertising = Potential Passengers * (Fee sensitivity on 

Passengers(Fee)) * (Partnering and advertising effectiveness on passengers*Time/100)    Equation 4. 

Adoption rate from WoM  

Word of mouth (WoM) plays a very important role in the diffusion of this kind of services, especially 

in a period where social media are thriving and multiplying the probability of contacts between users 

(Kietzmann and Canhoto, 2013). WoM is strictly related to the effectiveness of the service itself, 

represented by the probability that any user has to receive or give a ride. To model the effectiveness of 

the service we introduce the variable Matching (Equation 5), as a function of the penetration rate of the 

service, following the findings from Agatz et al. (2011). The variable “Matching” does not relate to the 

actual quality of the matching algorithm, which is considered as a given feature of the service.  

Matching=k(Penetration rate)  Equation 5 

It has to be noted that the correlation between Matching and Penetration rate is non-linear, meaning 

that the highest increase in the effectiveness of the matching takes place in the first. The non-linearity 

was constructed by means of interpolating the findings by Agatz et al. (2011), using their three 

combination of participation rate-matching success, and adding a fourth one by setting a 100% 

matching success with the 100% participation rate.  The result is logarithmic correlation between 

success of matching and participation (penetration) rate (Equation 6), with a R2 = 0.99068: 

Success of matching = ln(Participation rate) * 0.0878 + 1.0071  Equation 6 

From the derivative of this equation, it is clear that there is a much higher improvement of the matching 

at the beginning of the growth curve, when participation rate is still considerably low.  To account for 
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this in the lookup table, and therefore to avoid major errors in the calculation of the matching success, 

we inserted more points when participation rate lies below 1%.  Figure 2 shows the lookup table with 

the non linear correlation. 

 

 
Figure 2 Look up table Penetration rate-Matching 

In the original model, the adoption fraction is seen as a constant variable; in our model instead this is 

dependent on the effectiveness of the service, therefore it is set as equal to “Matching”.  

Same-side and cross-side WoM 

Adoption from word-of-mouth spreads over two kinds of effects that are considered in the model: the 

same side effects Drivers-Drivers and Passengers-Passengers, and the cross-side effects Drivers-

Passengers and Passengers-Drivers.  In other words, Passengers will adopt as a result of word of mouth 

from both their peers (other Passengers) and members of the other population group (Drivers).  

The same-side adoption from word of mouth is established as in the original Bass model.  The cross-

side adoption from word of mouth is as per Equations 7 and 8. 

Adoption from cross-side D-P = Contact rate*Passengers Adoption fraction*Potential 

Passengers*Drivers/Drivers Total population   Equation 7 

Adoption from cross-side P-D = Contact rate*Drivers Adoption fraction*Potential 

Drivers*Passengers/Passengers Total population   Equation 8 
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Discard rate 

The effectiveness of the service is not only related to the adoption fraction, but also to the Discard 

Fraction, its direct opposite. In fact, in the same way that users adopt if the matching works, they will 

disinstall the app or quit the service if it does not. Taking from the model of Thun et al. (2000), every 

two-sided platform has to generate a utility for both group of users so that users would stay in the 

platform if their desired utility is matched by the service. The discard fraction is therefore directly 

proportional to the ratio of the perceived utility experienced by the user and its desired utility. In our 

model the utility is given by the effectiveness of the service expressed through the variable “Matching”, 

as per Equation 9. 

IF THEN ELSE(Matching >=Desired matching  ,0 ,1-Matching /Desired matching  ) Equation 9 

The discard rate DR is smoothed over a “Patience” parameter which expresses the time that users are 

willing to wait for the service efficiency to improve, as per Equation 10. 

Discard fraction *Adopters/Patience  Equation 10 

The same equations are used to express the discard fraction and the discard rate for both population 

groups (i.e. Drivers discard rate is equal to Discard Fraction Drivers*Drivers/Patience Drivers) but  

with different parameters. In fact, Passengers are likely to be more exposed to the consequences of a 

failed matching because they have less options of transportation and are more risk averse. Hence the 

two parameters, namely Desired Matching and Patience, are set at higher values for riders than for 

drivers. 

 

Scenario simulations and analyses 

The parameters of the model, their range of values and the base case values are shown in Table 2. 

Parameter Range Base case 

Fee  0.15-0.6 !  0.35 !  

Partnering and advertising effectiveness 
on drivers 

0-0.005  0.001 

Partnering and advertising effectiveness 
on passengers!

0-0.005 0.001 

Desired Matching P! 0.01-1 0.8 

Desired Matching D! 0.01-1 0.7 

Patience P! 0-26 weeks 2 

Patience D! 0-26 weeks 4 

Table 1 Parameters of the model 
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Simulations start from an initial population of 30 Drivers and 10 Passengers. 

The base case simulation shows that market saturation is not reached within the simulation time frame, 

and that Drivers grow at a faster pace. Both populations reach the tipping point soon after the discard 

rate starts decreasing, as the adoption rate follows a linear growth (Figure 3 and 4). Discard rate 

decreases as soon as matching success reaches the level of matching required by the user (i.e. Desired 

matching).    

 
Figure 3 Population growth for the base case scenario 
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Figure 4 Drivers discard and adoption rate for base case scenario 

For the base case scenario, it is necessary to reach a 10% penetration rate to reach the level required by 

both population (passengers require a higher level of matching).  

 
Figure 5 Different penetration rate required to achieve the desired matching for the base case scenario 
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The manipulation of the external factors has a direct effect on the time it takes for the service to reach 

the tipping point or, in other words, the point in time when the positive loop dominate the negative ones 

and the innovation spreads very quickly.  

Figure 6 and 7 compare the S-shaped curve line growths of the communities of Drivers and Passengers 

for different parameter settings.  

 
Figure 6 Drivers community growth with different external parameters settings 
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Figure 7 Passengers community growth with different external parameters settings 

An increased partnering effectiveness, either on drivers or passengers, has a substantial positive effect 

on both populations’ growth, because it enables to build critical mass more quickly on one population 

without negative effects on the other. As seen in the graphs, the effect of the partnering action is greater 

than the effect induced by any increase or decrease in the service fee. As far as the fee of the service is 

concerned, not surprisingly we found that setting the service fee at the maximum level, shown in 

simulation run “Increase fee”, would generate more adoption from drivers and less adoption from 

passengers. However, when setting the fee at the minimum level (simulation run “Decrease fee) both 

communities do not grow and thus the adoption curve never reaches the tipping point. This apparently 

counterintuitive result can be explained in light of the gap in the required effectiveness of the service 

by the two populations, as Passengers have a higher desired matching and therefore usually higher 

discard rate during the first weeks of adoption, when the matching proposed does not meet the desired 

matching. Hence, if the ridesharing company should intend to attract more passengers by offering a 

lower service fee, it would potentially cause a higher overall discard rate (compared to the base case) 

with negative outcomes on the penetration rate, which is the independent variable for improving the 

level of matching proposed. As a consequence, even more passengers could abandon the service and 

the reinforcing loop created by the adoption from word-of-mouth could cease to take place.   
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In order to further assess what factors could affect the failure or success of the service, we also have to 

take a look at the endogenous variables responsible for the adoption from Word of Mouth. In this case, 

the levers of control are the following: 

•! Patience and Desired Matching represent the level of service required by the user. In other 

words, this is the utility perceived that affects both the discard rate and the adoption fraction; 

•! Contact rate increases the contact between adopters and non adopters and will result 

presumably in more adoption from word of mouth. 

Univariate and multivariate analyses re illustrated in the next sections.  

Patience and Desired Matching 

Figure 8 shows the adoption growth associated to different settings in the desired matching, assuming 

the same increase or decrease for both population, finding significant effects on the matching level, 

both positive and negative. Further simulations have been performed in order to account for the 

possibility that drivers are more demanding than passengers regarding the effectiveness of the matching 

service, an assumption opposite to the one made during the development of the model. In this case, the 

adoption curve would still achieve a tipping point, but with less adopters. This could be a direct 

consequence of the service fee: the fee sensitivity assigned to the level used for this simulation 

corresponds to more drivers than passengers keen on adopting the service.  

 
Figure 8 Effect of desired matching on drivers’ adoption 
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The parameter Patience has a similar influence on the outcome of the simulations. Figure 9 shows the 

results for passengers’ adoption with different parameter settings. In particular, simulation runs named 

“longer patience” and “shorter patience” depicts what happens when patience is respectively doubled 

and split in half for both populations; two further simulations are run to test whether longer patience on 

only one population may have different outcomes. As a matter of fact, it appears that positive 

consequences for passengers take place if drivers are more patient.  

 
Figure 9 Passengers’ adoption for different Patience settings 

Figure 10 shows a comparison between the different influences of the two parameters. By comparing 

the two parameters, it can be noted on the one hand that a lower desired matching supports the 

population growth more than a longer patience. On the other hand, a higher desired matching 

jeopardizes the growth less than a shorter patience.  
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Figure 10 Effects of both patience and Desired Matching on Drivers' adoption 

 

In order to further test the relative importance of the two parameters, we performed simulation runs by 

modifying the two parameters with the opposite sign, as seen in Figure 11. For instance, we increased 

Desired matching by 10% while extending the Patience, and vice versa.  

 
Figure 11 Drivers' adoption, Desired matching and Patience 
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From these simulations results it can be then assumed that a lower desired matching is more beneficial 

to the success of the service than a longer patience. As we can see from simulation run “Desired 

matching + 10% and longer patience”, when users are willing to wait longer time for an effective 

service, the adoption curve is higher than in the base case scenario, since less users will abandon the 

service from the beginning. However, a higher desired matching directly reflects on the period in time 

when the matching proposed finally reaches the desired level and users cease to leave the service. 

Graphically, this fact is represented by the adoption curve beginning to grow more steeply (i.e. reaches 

the tipping point). Figure 12 depicts this situation.    

 
Figure 12 Effect on Matching of different combination of Desired matching and Patience 

Also, the simulation run “Desired matching -10% and shorter patience” generates an interesting 

argument. In fact, this combination of the two parameters has a negative impact in the first weeks of 

simulation period on the matching provided by the service. As a matter of fact, the matching in this 

case remains lower compared to the other simulations shown in Figure 12 until week 103, when it 

equals the Base case scenario Matching, and week 120, when it finally overcomes the Matching from 

simulation “Desired matching + 10% and longer patience”. We can explain this occurrence by 

considering that a shorter patience leads to higher overall withdrawal rate from the service within the 

first weeks, when the proposed effectiveness of the service is not able to match the desired one. On the 
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other hand however, a lower fraction of adopters abandons the service if the desired matching is low 

enough, with positive effect on the speed to which the matching proposed improves during time.  

Nevertheless, the results of the combined simulations Desired matching-Patience are heavily influenced 

by the relative changes made to the parameters in the simulation runs.        

Contact rate  

The simulation shows that an increase in the Contact rate largely improves the Adoption from WoM 

and the total population growth rate in the first weeks, and the system reaches the total population of 

adopters with a contact rate of 0.05. In Figure 13 the effects on drivers adoption from WoM and total 

adoption are shown. 

 
Figure 13 Effects of contact rate on Drivers adoption from WoM and total adoption 

Discussion of results 

The presented simulation runs and case scenarios analysis suggest three main considerations with 

regard to the most important levers that are likely to boost and control a successful diffusion of a 

dynamic ride sharing service. 

First, the service is expected to work effectively in urban areas that are densely populated, such as city 

centres and congested urban environments. This is likely due to higher Contact rate and increased 

Matching because drivers are able to frequently reach their riders and quickly serve their urban trip 

destinations.  

Second, the Desired matching represents the minimum service requirement. If this is not met, users 

would quit the service. Since dynamic ridesharing has yet to be established as a valid alternative for 

private urban mobility, it is assumed that users are less willing to “forgive” any failures in the service, 

and, therefore, the base case takes into account a high level for this parameter. The effect of a high 

level of desired matching is substantially detrimental for the adoption of the service. This evidence 
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suggests the need for an efficient backup service that would replace a failed matching between private 

drivers and passengers, such as a discounted taxi service.  

Third, the parameter Patience appears to have similar influence on Drivers and Passengers’ adoption, 

with obvious positive effect if users are more willing to wait for the matching to reach the desired level 

of service. Furthermore, this parameter needs to be taken into account in combination with the Desired 

matching. In fact, under certain circumstances, we showed that Patience could represent an even 

stronger barrier for the diffusion of a ridesharing service.    

Fourth, the two populations can grow at a different pace under certain circumstances, and it is possible 

to enhance the adoption of the service by focusing on one population only. In particular, drivers are 

more important to the service, and hence it appears that increasing the fee of the service to please the 

drivers is beneficial to the service. Moreover, a more effective partnering action on drivers leads to 

more adoption by passengers as well.  However, the analysis shows that if the service provider would 

decide to focus only on the Passengers’ side by means of decreasing the fee, it would generate a 

negative effect on the matching, leading to a higher discard rate.  

This work and associated lessons learnt originate both theoretical and practical implications. 

From a research perspective, this is a contribution to the exploration of the applicability of SD to the 

domain of two-sided platforms (Rochet and Tirole, 2003; Armstrong, 2006). In fact, the proposed SD 

model proves itself a valid methodology to study the complex relationships between the interactive 

communities of two-sided digital services. 

For managers and practitioners of two-sided digital services, this work can assist in the definition of the 

service design and value proposition and in the identification of the main levers of control for a more 

consistent business model. This is better elucidated while looking for instance at the combined and 

opposite effect generated by Patience and Desired matching, requiring the ridesharing platform 

management to accurately survey users to understand their requirements in terms of desired level of 

service and willingness to wait for “better times”.  

Moreover, ridesharing companies need to monitor continuously the actual effectiveness of the service 

against the predicted one. In fact, as shown by some scenario simulation, a low matching by the service 

in the first weeks does not necessarily translate into long-term failure of the service. Therefore, 

ridesharing companies need also to check for the tipping point of the adoption curve and the relative 

improvement of the matching rather than its absolute values.  

Conclusion 
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This work investigates diffusion of a ridesharing service as a two-sided platform where two types of 

users, namely drivers and passengers, get together to enhance the effectiveness of the service itself, 

triggering network externalities. This problem has been tackled by means of a SD model, a 

methodology that has proven its effectiveness for capturing the mechanisms of diffusion of innovations 

and new products. The model integrates a refined version of the Bass diffusion model with a new SD 

model elaborated for understanding the diffusion of products with network externalities, and it is 

divided into two different populations of Drivers and Passengers, each one with separate, although 

similar, feedbacks and dynamics. 

The values of the input parameters have been retrieved from focus groups and a survey administered to 

a panel of users. 

Results show that without the initial boost to the population growth provided by advertising,  the 

service can not prove to be successful. The externalities that take place between the two sides are 

expressed by the variable Matching, which is substantially affected by the penetration rate of the 

service, calculated as the sum of Drivers and Passengers communities. Based on the assumption that 

users require a high level of desired matching, to increase the penetration rate the ridesharing platform 

should offer the service only in urban areas showing a high concentration of users and hence a high 

contact rate. Moreover, it should focus on the partnering and advertising action, especially toward the 

population of Drivers. In addition to the high level of desired matching, an even stronger potential 

barrier to the success of the service could be related to the short patience expressed by users that do not 

want to wait for a more effective service. The most effective way to reduce these barrier is to propose a 

backup service that is offered to users when the platform is not able to find a proper matching. 

Future research will be directed towards further validation of the parameters, and the refinement of the 

model, including new variables representing other facets of the problem such as the backup service or 

alternative modes of transport.  
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