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Elasticity Tensors in Nematic Liquid Crystals
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Abstract: The paper is discussing the contributions to the free energy of elastic distortions in a nematic liquid
crystal. These contributions are here given by tensors, which are represented by means of the components of the
director, the unit vector indicating the local average alignment of molecules, and by Kronecker and Levi-Civita
symbols. The paper is also discussing the elasticity of the second order and its contribution in threshold phenomena.
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1. Introduction

The equation of Oseen-Frank, which is providing the
free energy density in nematic liquid crystals [1,2], is
representing the part of that energy density coming
from an elastic deformation of the bulk of the
material. In such approach, the terms depending on
the deformations are multiplied by the three elastic
constants (Ki1, Kz, Ksz) of “splay”, “twist” and
“bend”. After, to this energy density, Nehring and
Saupe added two terms having elastic constants of
“mixed splay-bend” (Ki3) and of “saddle- splay” (Kza)
[3] . These terms, which have Kis, Kz as elastic
constants, are equivalent to contributions to the
surface free energy of the material, because they are
divergences of some vector functions of the director.
These contributions to surface energy are relevant for
nematic cells subjected to weak anchoring conditions
[4-6].

The elastic constants previously mentioned are
constants that multiply some scalar functions
obtained from the director, the unit vector giving the
local average alignment of the molecules, and from
its derivatives, in the form of rotors and divergences.
In this paper, we will discuss how the terms of the
free energy density in nematic liquid crystals can be
described by tensors, and how these tensors can be
represented using the director components and the
Kronecker and Levi-Civita symbols. This paper will
also discuss the terms of the second order and their
role in threshold phenomena [7,8].

2. The elastic deformation of a nematic

In an ideal nematic, the molecules are oriented, in
average, along the director, the macroscopic unit
vector n [9]. This alignment of molecules along a
common direction is proper of the nematic phase,

which, in this manner, is characterized by an
orientational order. This order disappears in the
isotropic phase. To describe the nematic phase, a
tensor order parameter is given as:

Qj =QU)[“i”j _%5ijj L

In (1), i and j are indices of the Cartesian frame of
reference; n; are the director components and Jj the
Kronecker symbol. Scalar Q depends on the
temperature and goes to zero in the isotropic phase.
Tensor Qj; can be a function of the position vector r.
Let us remember that in the macroscopic approach of
the continuum mechanics, this position vector does
not describe the positions of the single microscopic
molecules.

If the order parameter is depending on position r,
then we need to assume this dependence through the
director as follow:

Qi (r)=Q(r)(ni ("n j(r)—ééi,-j @

In the continuum approach, the deformation of the
bulk of the material is described by means of three
fundamental deformations [9]. They are the
deformations of splay, twist and bend. The features
of them are the following. In the splay, we have div n
# 0. In the bend, we have that rot n is perpendicular
to n. Then, in the twist deformation, rot n is parallel
ton.
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Oseen and Frank demonstrated that the density of the
free energy given by distortions in the second order of
n is represented by the three deformations:

fy = l[K1 (divn)? + K, (n-rot n)?
2 3)
+Kz(nxrotn )]

In (3), Ky is the elastic constant of splay, K> of twist
and Ks; of bend. Since it is possible to have
deformations of pure splay, or of twist or bend, each
of these elastic constants must be positive. If it were
not so, the undistorted deformation would not be that
having the minimum energy.

The elastic constants K; have the dimensions of a
force, as we can see, using pure dimensional analysis,
from Eq.3 where we have [Energy/L®] = [K][L™2],
and L is a length. Then [Energy/L] = [K]. Let us note
that n is a dimensionless quantity. K is of the order of
U/a, where U means a typical energy of interaction
between molecules (U ~ 2 Kcal/mole) and a is the
molecular dimension of length (a ~ 14 Z\). So, we
have [10]:

1.4x10 %erg

K -7
1.4x107"'cm

I

=10"dyne ()

For the liquid crystal PAA about 120°C, it is K; = 0.7
107¢ dyne, K =0.43 1075 dyne, K3 =1.7 107® dyne
[10].

Assuming K; = K; = K3 = K, we obtain the one-
elastic-constant approximation:

Fy =%K[(divn)2 +(rot n)z] (5)

To determine the contribution to the free energy
coming from the elastic deformation, Oseen and
Frank used the following approach [9]. Let us assume
the z-axis along the direction of director n, the x-axis
perpendicular to the director and y-axis perpendicular
to x- and z-axes, oriented according the right-hand
rule.

We can distinguish six elemental distortions, linked
to the director variation. Therefore, the deformations
of splay, bend and twist can be described by means of
six derivatives:
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on,/oy=ay;0on, [ox=2a
onloz=a;;on, loz=a, (6)
onloy=a,;on [ox=a,

For small deformations, we have:

n, =1
N, ~aX+a,y+a;z (7)
n, = a,X+a5y+a,Z

Then, we can write the density of the free energy
coming from the distortion of the nematic according
to the Hooke law, as a quadratic function of the
deformation:

g=Kg +1 Kij 8,3,
2 (8)
Ki=K;: i,j=12,..6

In (8), there are six elastic parameters K; and 36
elastic parameters Kj. Anyway, using symmetries
these numbers of parameter are reduced. For instance,
the cylindrical symmetry of the nematic liquid crystal
implies invariance for rotation about z-axis. So the
energy is invariant during such rotation. Then,
because of invariance for transformation x’=y, y’=—
X, z’= Z, we have only two independent K; parameters
(K1, K2) and five independent Kj parameters (K
Kaz, Kz K24, K12).

Moreover, we have the condition n = —n, which is
telling that the director direction does not influence
the features of the medium. In this case, it is
necessary that transformation z’ =z, y’ =y, x” =X,
does not change the deformation of the three-
dimensional structure. So we need K; and Kis being
zero. Also the mirror symmetry exists, and then,
according to transformation x’ =x,y’ = -y, 2’ = z,
we find K; and K2 being zero.

In this manner, in the elastic energy density of
nematics we have just four coefficients: Ki1, Kz, Kss
and Ka4 . However, the term multiplied by coefficient
K24 is not proper of the bulk energy, because it is a
contribution to the surface energy of the material [4].
Consequently, the Frank equation for the density of
the elastic energy is given by the following elemental
deformations [9]:
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1
g =2[Ky(ag +a5)” + Ky (ap —ay)?
2 9)

+Kaz(ag +2g)*]

We can write (9) using rotor and divergence of
director:

g= 1[Kll(olivn)2 + Ko (n-rotn)?
2 (10)

+Kgg(nxrotn)?]

In the case of cholesteric nematics, K, # 0. An

additional contribution given by K; n-rotn, is
required in the second term of (10). So, instead of

K,,(n-rotn)?, we have

9 = [Kn (divn)’?

+Ky(n-rotn+K,/Kp)? (107

+ K33(nX rotn)z]

In fact, squaring the second term, the contribution of
(K2 /K22)? is not relevant, because it does not depend
on the deformation. The ratio go = Ky /Ky is the
modulus of the wave-vector of the cholesteric helical
structure, having pitch Py =2n/qo. In the case

K, #0, the equilibrium configuration of the

cholesteric nematic is that having a spontaneous
twisted deformation.

3. Elastic energy density, given by the derivatives
Nij = oni / 0x;j

Following the Oseen — Frank approach, let us being
more general. If the director n does not depend on
position, the liquid crystal is undistorted and the free
energy density is supposed equal to a certain quantity
represented by fo, which is a quantity that does not
change if the liquid crystals is subjected to a
deformation.

If n = n(r), the nematic is deformed. Let f being the
density of elastic energy which is created in the
material. We have then that n;j=cn; /Ox; are different
from zero. Let us suppose that these derivatives of n
are enough for describing the distorted nematic, and
then:

f=1f(;) @
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If these derivatives are small, it is possible to consider
a series in nij, so that:

1
f=f+ Eijni,j +5Kijklni,jnk,l (12)

In (129, the components of tensors E and K are given
by:

of o f
Ei; = P s Ko =| ——=— | (12)
Nij ), on, ; on, .

These quantities are evaluated with respect the
undistorted configuration, which is also that having
the minimum energy. In (12), we have used Einstein
notation which implies summation on a set of indices;

for instance E;;N; j = ZEij ;.
i

Let us write E and K, using combinations made by
n, and the Kronecker ¢ and Levi-Civita eijx Ssymbols.
Since in a nematic, n and _n are equivalent, each
term in (2) must be even in n. Let us remember that,
for what is concerning the Kronecker symbol, it is

5”. =1,if i=j. Itis 5ij = 0iif i#. In the case of the
Levi-Civita symbol, we have Eijk =1 if ijkarein
cyclic order; & = —1 if i,j,k are not in cyclic order.

Then, we have &y = 0 in the other cases.
Moreover, the cross product of two vectors a and b
can be written as axb = Eij aibjek , Where ey is a

unit vector of the three unit vectors representing a
Cartesian frame of reference.

In the case of the rotor of the director, we can write it
as:

rotn =egyn; ;€ (13

Let us consider tensor E. We can represent its
components as:

E; =Enn; +E8; +E; n&y (19)

But E1 = E; = 0, because the nematic is not polar.
Moreover:

Eijnij = Es NéxijNi j

15)
=—En-rotn
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This is a pseudoscalar, being the nematic helicity
[11,12]. Since the energy is a scalar, N-TOt N can
be present in it, when this contribution is squared or if
the nematic is a cholesteric nematic. In this case, the
material is spontaneously showing a deformed
configuration of the fundamental state having the
minimum energy.

For tensor K we have Kj=Kuij, because it is present

in the term K 5, n; ;N ;; S0 we can write:

Kijki =Ci23+C e, (19)

In (16), we have:
C123 = Klni njnk n| + Kzni nj5k|

* *
+ Kznkn|5ij + K3nink5j, + Ksnjn,5ik

C4567 = K4nin|5 k + K4n nk5| + K55 5k|
+Kgoidji + K760

Since ni nj = 1, we can see that in (16) just some
terms survive. They are:

K3njn|5ikni,jnkl| = K3njn,ni’jn
. 0]
= Kz (nxrotn)?

K504, Ny = K(divn)® an

K65|k5|n nk|+K 5,|5kn nk|

(i)
= Kgn, N1 + Kyn jnj

Let us demonstrate the first (I). Using the Levi-Civita
symbol for the cross product, we have:

(nxrotn), = &4, &N

jlm
Note that we have to sum on j. So, the following
relation exists:

& €jim = OuOin =9

m

Oy

km
Therefore:

(nxrotm), =n; n; —n;

We used the fact that the director is a unit vector and
then the derivative of its modulus is zero. (1) and

(1) contain factor 2nn; ; =0,;(nn;) =0. Then,

all the terms we are re-writing in the following
formula are null, so as their sum:

Kimingne ning in+ Koninogng i + K NNSN N+ Kgning oun

i Mo + K4nin|5jkni,'nk,|

+K,nnoyn; in = Kinngnening iy + Koningnginy +Konnn;n, +K AN NG Ny

+K,ninn; ;n jI+K n,nn;n, =0
The surviving terms which are contributing to the elastic energy are:
K;(nxrotn)? + Kg(divn)® + Kgn, in ; + KN ;ny, @)
We have [7]:
2 2
NN ; =N ;n;, +(n-rotn)” +(nxrotn)® (18)

NN = (divn)? —div(n divn+nxrotn) (19

Finally, we have:

http://www.ijSciences.com Volume 5 — July 2016 (07)
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(K, + K, + K,)(divn)® + K, (n-rotn)® + (K; + K, )(nx rotn)?
(20)

— (K¢ + K;)div(ndivn +nxrotn)

We can change the symbols for the coefficients, to see that this expression is that of the free energy density proposed
by Oseen — Frank, with the saddle-splay term too.

1 . 1 1
fei = > K, (divn)? 3 K,,(n-rotn)® + 5 K (nxrotn)® e

- (K,, + K,,)div(ndivn+nxrotn)

As previously told, Ki1, K2, Kaz € Ko are the elastic constants of splay, twist, bend, and saddle-splay. The last term
in (21), if we consider the Gauss theorem, is a contribution to the surface energy. Then, the density energy of the
bulk is depending on the three elastic constants of splay, twist and bend. If we consider also the helicity, the free
energy becomes:

1 .2 1 2 1 2
f=f,—En-rotn+=K,,(divh) +=K,,(n-rotn)° + =K, (nxrotn
0 2 11( ) 2 22( ) 2 33( ) 22)

— (K9 + Kyg)div(ndivn +nxrotn)

If we have not splay and bend, and only twist is present, Equation (22) is minimized by:
E
——=n-rotn (23)
22
Then, in the case we have helicity (E # 0), the configuration of the director which is minimizing the energy is a
distorted one. As previously told, this happens in the cholesteric liquid crystals. From now on, we assume a nematic

having E =0.

4. The analysis of Nehring and Saupe
Let n be the director and ni;, nijx the derivatives of first and second order. Let us suppose a free energy density

depending on these derivatives f = f (ni,j ,ni]jk) and represent it as a series of nij and njjx:
f="fo+Kiji M j M+ Lijk Mk + Mijkimn Mk Nmn + Nijkim i Mo 24)
Being tensor L multiplying derivatives of the second order, it must be:
Lijk = Likj (25)

As we have done before, let us represent the components of tensors L, M and N, using n, dij and sij. Let us start
from L and determine its contribution to energy. Being n and _n equivalent, the terms different from zero are:

Lic=Lnnn +L,n 8, +L(n &, +ns,;)

Then:

Lijk N = L n, n, NN, +L,n, N +L3nj Nk +L;n, Nk (26)

http://www.ijSciences.com
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Again, let us remember that n; n; = 1, and therefore:

N =0 5 Nienij=—nnjk @

2
Using (27), the first term in (26) becomes M N; N N; 5, = —(nk ni,k) . The second becomes M 1N; ;5 =—N; ; 1N; ;
The third is equivalent to:

ninj i =(inj); —ming; =div(ndivn)-(nj ;)
Equation (26) can be written as

Lijk niljk =— Ll(nk niyj)z + Lz(niyj)z +2L3 (njyj)2]+ 2L3 div (n div n) (28)

We have already found the first three terms of (28), when we have discussed the tensor K. These terms can be added
to those previously given. But in (28) we have a new term which is contributing to the surface term, like that having
as elastic constant Ky. This term is usually written with the constant Kjs, defined as the elastic constant of splay-

bend [13,14].
Supposing M =0 and N =0, (24) becomes:

f=fo+Ln e tKiju NNy @9

Therefore, after renormalizing the constants:

fus =T, +%[K11(div n)> +K,,(n-rotn ) + K, (nxrot n)2]+

(30)

—(K,, + K,, ) div (n divn+nxrotn )+ K, div(n divn)

This is the free energy density of Nehring-Saupe [3].
However, we have also the terms coming from
tensors M and N , to consider as sources of elastic
constants, it they are different from zero. To dealt
with them we need a second order analysis.

5. Second order analysis

We have seen in the previous section, that the free
energy density, as given by Nehring and Saupe,
including the term with elastic constant Kis, is
originated from tensors K and L. However, other

terms exist that we have not yet discussed. To analyse
them let us follow the approach given in [7]. In this
reference, the free energy density is supposed a
function of deformations as:

f= f(ni‘j ik
That is, we assume as deformation sources, the first-

and second-order derivatives of the director,
generalizing the approach of the previous section.

The virtual variation Jf of the density of the free energy f, close to equilibrium, can be described to the second order

as:

5151 gm0 0"

5ni,j 5ni,jk

http://www.ijSciences.com
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5ni,jk :/Iijé‘ni,j +luijk5ni,jk (31)
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In (31), we find the variations of the first- and second-order derivatives of director n. In the linear theory of
elasticity, in (31) we have to consider just the derivatives of the first-order, neglecting those of higher order. If the
second-order is involved too, tensors 4, g must be expanded in terms of the sources of deformation, nij and nij.
Therefore:

L0
i =25 A N+ Biikim Neim + Cijmp Ny M
+ Dijklmpq nk,Im np,q + Hijklmpqr nk,I nm,p nq,r
(32)
0
i = Hiikt Miim Mom + Nikime Mimpt Oijkimpg Mim Mg

In (32) 4°, u° are tensors depending just on the components n; but not dependent on n;;j and nij, The same for
tensors A, B, C, D, H, M, N and O.

Using (32) in (31), we see that only 4° is described by terms of the first order, whereas A, x#° have terms of the
second order, B, C, M of the third and D, H, O of the fourth order.

We could ask ourselves if, in (32), it is also necessary a term of the form Fijump Nkimp, Which is of the same order of
D and H. In the approach we are following here, this term is not coming from the sources of deformation we are
considering. And then, we do not include it, or other similar to it, in (32). The criterion is that 4 and wik are
expanded only in terms of the deformation sources, as defined in (31).

Let us take into account the general property of the mixed second-order derivatives of continuous function g:

d%y 0%y
= (33)
8ni’j6nk,|m 6nk1|m6ni’j
Equation (33) ensures that [7]:
Bijklm =M Kmij Dijklmpq = Oklmiqu (33)

Moreover, from symmetry considerations [7]:

Aiiki = Adij: Cijkimp = Cijmpki = Ckiijmp : Dijkimpg = D pakimij

Hiikimpgr = Hitijmpgr = Hijmkigr = Hijkigrmp = Harkimpij = Hmpklijgr

(34)
Using (32) in (31), according to (33”) and (34), we have [7]:
f=2° ° L A B 1C
= A5 Nt oy ni,jk"’E i N Mo Bijan Nij nk,lm+§ imp Vij Mt Minp
1 1 1 (35)
+ED ijkimpq ni,j n k,Im n p,q+ZH ijKimpar ni,j nk,I n m,p nq,r-l_EN ijkimp ni,jk nI,mp

Usually, common nematics are not polar or chiral and then, in (35), odd terms in n and helicity n-rotn are not

present. Therefore, for common nematics tensors 2°, B e C are null.
Then, we have only:

http://www.ijSciences.com
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1 1
0
f=u ijkni,jk+E A N nk,I+EDijklmpq N Meom Mog
35%)
1 1 (
"‘ZH ikmpar Nij Mt Mg nq,r+EN i ik Wi mp

Let us expand tensors in (35), using (ni,dij¢ij). After expanding the tensors, the terms that survive are (given in

covariant form, that in using divergence and rotor):

f,=A (divn)’ + A, (n-rotn )’ + A,(nxrotn )’

+ A, div(n divn +nxrotn)

(36a)

f, =40 (divn )’ + g, (n-rotn §* + 4, (nxrotn )’

+ 1, div(n divn )— g, div(n divn+nxrotn )

If we have only n;; as source of deformation, (35°) becomes:

(36b)

1
f=a5n +§Ai,-k. NNy (36)

In this case, the term with Ki3 does not appear, in
agreement with the elastic theory of the first order as
given by Oseen-Frank. Therefore, if we consider Kis,
and also K24, we can ask ourselves what are the other
terms we need to consider too, to have the expression
of f coherent to the second order approach given in
[7]. In we assume (36a) and (36b), we have the well-
known splay, twist and bend distortions coming from
terms due to tensors u° and A. However, we have
many terms from tensors N, D and H (many of them
are null because of the parity of n and pseudoscalarity
of (n - rot n)). Let us note also that some terms are
coming from both N and D, or from D and H, or from
the three tensors at the same time.

In the three Tables I-111 given after the References we
show the contributions to the density of the free
energy of a nematic liquid crystal coming from N, D
and H. In the first of the three tables, the terms are
coming from N. In the second table we have
contributions coming from D, and those marked by *
are shared with N. In the third table we have the
contributions to the density of the free energy coming
from H (terms marked by * are shared with D,
whereas those marked by ** are shared with N and
D).

6. Second-order elasticity close to a threshold

If we use for a nematic liquid crystal the theory of the
first-order elasticity, we have only three constants to
deal with. Whereas, if we use the theory of the second
order, we have a quite larger number of elastic

http://www.ijSciences.com
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constant. Then, the use of such theory turns out to be
unworkable. In fact, the elasticity of the second order
can become quite simple, when it is involved in a
threshold phenomenon, when the nematic is changing
its configuration from an undistorted to a distorted
one.

Let us remember that the most common experimental
condition to study the nematic is that of creating a
cell composed by two plane-parallel glass slides,
spaced a few microns, in which the nematic is
inserted by capillarity. The two inner surfaces of the
cell may have the same or different treatments, in
order to induce the desired nematic configuration
(planar, homeotropic or hybrid). The cell can be
placed in a thermostat with appropriate optical
windows for the observation under polarized
microscopy of the phases or of the material
configurations.

Let us consider a flat deformation of the nematic, that
is, one which is obtained for example in a cell with
opposite conditions, homeotropic on one of the walls
and planar on to the other (this is the so-called hybrid
HAN-cell. We can use a frame of reference (x,z) with
the origin on the wall with homeotropic anchoring,
the x-axis parallel to that wall, and the z-axis
perpendicular to it.

Figure 1 shows how the molecules can be in the HAN
cell. They lie in the xz-plane, and are anchored
parallel to the upper wall and perpendicular to the
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lower wall. In the intermediate part of the cell, the Locally, the director n is given by:
director forms an angle different from 0° and from
90°, with respect the z-axis. n =isin(0©) + k cos(0) 37)
z In (37), ©(2) is the angle shown in the Figure 1.

Vectors i and k are the unit vectors of axes.
If we imagine to decrease the cell thickness d, the
deformed configuration becomes unstable and the

S%“ cell, if we suppose that the planar anchoring is

d .
stronger than the homeotropic one, assumes the
‘ O O O O O planar configuration. Or, if we assume the
H homeotropic anchoring stronger, the cell assumes the
o X homeotropic configuration. The transition that occurs
Figure 1: Configuration of the molecules at the walls of a HAN cell in the HAN cell, when we are reducing the thickness
in strong anchoring conditions. of the liquid crystal, is from a distorted configuration
to the undistorted planar (P) or homeotropic (H)
configuration (see Figure 2).

_= . = T == o= = =
T == I = e = ame T

ioﬂﬁoﬂﬂoﬂ”oﬂooﬂoﬁoﬂ I 0 0000
Figure 2: Decreasing the cell thickness, we can see the distorted HAN configuration becoming a planar or
homeotropic undistorted configuration shown on the right of the image.

In order to describe the occurrence of a limit for the mechanical stability of the HAN cell, due to the decrease of the
cell thickness d, the free energy density must be given as a function of angle ©. Close the threshold of the passage
from the HAN configuration to the undistorted P or H configurations, we have © changing its value. However, the
value of this angle depends on the positon of the director in the cell, that is, on z. So let us take as the parameter for
studying the problem, the maximum angle assumed by the director with respect to z-axis and call it Omax. If the
planar anchoring is strong, this angle can also be of 90°. In fact, we can think the angle © as a function of z, and
therefore as a function © = Omax g(z/d).

Now, let us consider some terms from Tables I-111, and write them in covariant form [7]:
n.n . =(grad divn)® ; n . n, =(V>n)?
i,ij " k,kj g ’ i,jj " ikk
2 2 . 4 (38)

Using (37), these terms become:

L] 4 . 2 oo oo 2
(grad div n)® = cos? ®(®j +sin2®(®j @+sin’ ®(®) (39a)
L] 4 L 1) 2
(V2n)?= (@) + (@) (39b)
e\ 4
(n V2 n)Z: (@j (39¢)
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o \ 4
(nxrotn)' =cos* G)(G)] (39d)

In (39a)-(39d), we used ® =d /dz . Let us suppose a transition from HAN to H configuration. Near the threshold,

2
Omax—>0, and then the contributions of the smallest order in Omax are coming from the term (@) in (39b). Let us

2
stress that (@j is of the second order in ©max, Whereas the other contributions vanish more rapidly, when ©Omax

goes to zero. As a consequence, we have an additional term to the free energy density which can be written as:
LX) 2
K" (VZn)?’= K*((Bj

In the framework of the theory of elasticity here discussed, only K* is the new elastic constant of the second order
which survives in a threshold phenomenon. In this case, the free energy density becomes:

f :%{Kﬂ(div n)? + Ky (n-rot n)? + Kag (Nx rot n)2}+

(40)
+ Ky div(n divn)— (K, + Ky, )div (n divn+nxrot n)+ K" (V2 n)?

Let us note that the first five elastic constants have dimensions of energy divided by length; the elastic constant K* is
an energy times a length. Let us evaluate its order as made for (4). We have [Energy][L™>] = [K*][L™], where L is a
length. Then [Energy][L] = [K*] and then the order of K* is U-a. If U is the typical energy of molecular interaction
and a the typical length of molecules, we have:

K*=1.4x10"erg-1.4x107cm = 2x10%erg-cm = 2x10dyne- cm?

Let us consider the deformation as © = Omax g(z/d). Let ¢c=z/d be the dimensionless variable. Deformation are of the
following orders:

d ded® 1de 1
= @="2—=""%2-0
dz  dzde dd¢ d mexJ.g

(41)
50 g_dcd(1do) 1.
dz2 dzdeld dg) g2 M™%

We can define ¢ the dimensionless derivative (slope) of g with respect to ¢, that is 9., and the dimensionless

curvature « of this function as approximated by g ... We will have:

[ ] 1 (X} 1
O~ E®max§ ; Ox

d_2®max K

Then:
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K
fzdz axéZ ﬁmx’(2 (42)

We can evaluate the thickness d of the cell for which the term with K* becomes relevant. This happens when the two
terms in (42), are comparable:

2
K K*x K*x
i ®max ~ @ > d*~ W .2
d d* K ¢
We have that the thickness d for which K* is relevant field. Journal de Physique 11, 2(10), 1881-1888. DO

; http://dx.doi.org/10.1051/jp2:1992241
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on the anchoring conditions of the cell. As a second-order elasticity and surface terms. Il Nuovo Cimento
conclusion we can tell that, in certain anchoring D, 12(9), 1259-1272. DOl
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1) M i M g 2) ;51 i 3) M al
4) H; 0l 5) ;51 6) MR T
7 Py T 8) 1Ty T 9) M T
10) n nm 11) nnmmn, n,
Table I
1) MR Py N g 2) R Py Ty g 3) LR
4) WA A R 5) MR Ty 1y 6) MR g T g
7 nn; iy Mg 8) MR g T, 9) MRy R g
10) nn. mn 11) nn N, 12) nn g n
13) A T My 14) n My 15) mA; N M g ®
16) nz.nf__knj_kn;__ﬁ* 17) ”;”;;k”;;”u* 18) njnjknﬁnm*
19) W Ty T, T o 20) Wy R, i T, 21) WA Ty Py P
22) nn L,y n, * 23) nn NN
Table 11
1) M Py Py 2) m M Ty Py 3) M, NP Ty
4) 1y P Ty Ty 5) Rty Py 6) ;MG Py Ty *
7 n R T T * 8) A * 9) My My T *
10) M, 1 Py Ty * 11) n M M * & 12) n M My Ry * %
13) nR I 1y Py Ty * 0 14) I Ty T, * 15) R R, P T, ®
16) nnm o mn, *= 17) LRI . * 18) mnm o n, *
19)nnn n n, .0 ** 20)nnn nn, n  ** 13)nnmnn, n n 0 **

Table IIT

Tables I-111: These three Tables are giving the contributions to the density of the free energy of a nematic liquid
crystal coming from tensors N, D and H, respectively. In the second Table, contributions coming from D marked by

* are those shared with N. In the third Table, contributions to the free energy density coming from H, marked by *,
are shared with D, whereas those marked by ** are shared with N and D.
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