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Elasticity Tensors in Nematic Liquid Crystals 
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Abstract: The paper is discussing the contributions to the free energy of elastic distortions in a nematic liquid 

crystal. These contributions are here given by tensors, which are represented by means of the components of the 

director, the unit vector indicating the local average alignment of  molecules, and by Kronecker and Levi-Civita 

symbols. The paper is also discussing the elasticity of the second order and its contribution in threshold phenomena. 
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1. Introduction  

The equation of Oseen-Frank, which is providing the 

free energy density in nematic liquid crystals [1,2], is 

representing the part of that energy density coming 

from an elastic deformation of the bulk of the 

material. In such approach, the terms depending on 

the deformations are multiplied by the three elastic 

constants (K11, K22, K33) of “splay”, “twist” and 

“bend”. After, to this energy density, Nehring and 

Saupe added two terms having elastic constants of 

“mixed splay-bend” (K13) and of “saddle- splay” (K24) 

[3] . These terms, which have K13, K24 as elastic 

constants, are equivalent to contributions to the 

surface free energy of the material, because they are 

divergences of some vector functions of the director. 

These contributions to surface energy are relevant for 

nematic cells subjected to weak anchoring conditions 

[4-6]. 

 

The elastic constants previously mentioned are 

constants that multiply some scalar functions 

obtained from the director, the unit vector giving the 

local average alignment of the molecules, and from 

its derivatives, in the form of rotors and divergences. 

In this paper, we will discuss how the terms of the 

free energy density in nematic liquid crystals can be 

described by tensors, and how these tensors can be 

represented using the director components and the 

Kronecker and Levi-Civita symbols. This paper will 

also discuss the terms of the second order and their 

role in threshold phenomena [7,8]. 

 

2. The elastic deformation of a nematic 

In an ideal nematic, the molecules are oriented, in 

average, along the director, the macroscopic unit 

vector n [9]. This alignment of molecules along a 

common direction is proper of the nematic phase, 

which, in this manner, is characterized by an 

orientational order. This order disappears in the 

isotropic phase.  To describe the nematic phase, a 

tensor order parameter is given as:  
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In (1), i and j are indices of the Cartesian frame of 

reference; ni are the director components and δij the 

Kronecker symbol. Scalar Q depends on the 

temperature and goes to zero in the isotropic phase. 

Tensor Qij can be a function of the position vector r. 

Let us remember that in the macroscopic approach of 

the continuum mechanics, this position vector does 

not describe the positions of the single microscopic 

molecules.   

 

If the order parameter is depending on position r, 

then we need to assume this dependence through the 

director as follow:  

 









 ijjiij nnTQQ 

3

1
)()()()( rrr    (2) 

 

In the continuum approach, the deformation of the 

bulk of the material is described by means of three 

fundamental deformations [9]. They are the 

deformations of  splay, twist and  bend. The features 

of them are the following. In the splay, we have div n 

≠ 0. In the bend, we have that rot n is perpendicular 

to n. Then, in the twist deformation, rot n is parallel 

to n. 
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Oseen and Frank demonstrated that the density of the 

free energy given by distortions in the second order of 

n is represented by the three deformations:  
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In (3), K1 is the elastic constant of splay, K2 of twist 

and K3 of bend. Since it is possible to have 

deformations of pure splay, or of twist or bend, each 

of these elastic constants must be positive. If it were 

not so, the undistorted deformation would not be that 

having the minimum energy.  

 

The elastic constants Ki have the dimensions of a 

force, as we can see, using pure dimensional analysis, 

from Eq.3 where we have [Energy/L3] = [K][L─2], 

and L is a length. Then [Energy/L] = [K]. Let us note 

that n is a dimensionless quantity. K is of the order of 

U/a, where U means a typical energy of interaction 

between molecules (U ~ 2  Kcal/mole) and a is the 

molecular dimension of length (a ~ 14 Ǻ). So, we 

have [10]: 
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For the liquid crystal PAA about 120°C, it is K1 = 0.7 

10─6 dyne,  K2 = 0.43 10─6 dyne,  K3 = 1.7 10─6 dyne 

[10]. 

Assuming K1 = K2 = K3 = K, we obtain the one-

elastic-constant approximation: 
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To determine the contribution to the free energy 

coming from the elastic deformation, Oseen and 

Frank used the following approach [9]. Let us assume 

the z-axis along the direction of director n, the x-axis 

perpendicular to the director and y-axis perpendicular 

to x- and z-axes, oriented according the right-hand 

rule. 

 

We can distinguish six elemental distortions, linked 

to the director variation. Therefore, the deformations 

of splay, bend and twist can be described by means of 

six derivatives: 
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For small deformations, we have: 
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Then, we can write the density of the free energy 

coming from the distortion of the nematic according 

to the Hooke law, as a quadratic function of the 

deformation: 
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In (8), there are six elastic parameters Ki  and 36 

elastic parameters Kij. Anyway, using symmetries 

these numbers of parameter are reduced. For instance, 

the cylindrical symmetry of the nematic liquid crystal 

implies invariance for rotation about z-axis. So the 

energy is invariant during such rotation. Then, 

because of invariance for transformation x’= y, y’=–

x, z’= z, we have only two independent Ki parameters 

(K1, K2) and five independent  Kij  parameters (K11  

,K22 , K33, K 24, K 12 ). 

 

Moreover, we have the condition n = –n, which is 

telling that the director direction does not influence 

the features of the medium. In this case, it is 

necessary that transformation  z’ =–z, y’ =–y, x’ =–x, 

does not change the deformation of the three- 

dimensional structure. So we need K1 and K13 being 

zero. Also the mirror symmetry exists, and then, 

according to transformation  x’ = x, y’ = –y, z’ = z, 

we find K2 and K12 being zero. 

 

In this manner, in the elastic energy density of 

nematics we have just four coefficients: K11, K22, K33  

and K24 . However, the term multiplied by coefficient 

K24 is not proper of the bulk energy, because it is a 

contribution to the surface energy of the material [4]. 

Consequently, the Frank equation for the density of 

the elastic energy is given by the following elemental 

deformations [9]: 
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We can write (9) using rotor and divergence of 

director:  
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In the case of cholesteric nematics, 02 K . An 

additional contribution given by K2 n·rotn, is 

required in the second term of (10). So, instead of 
2

22 )( nn rotK  , we have 
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In fact, squaring the second term, the contribution of 

(K2 /K22)2 is not relevant, because it does not depend 

on the deformation. The ratio q0 = K2 /K22 is the 

modulus of the wave-vector of the cholesteric helical 

structure, having pitch P0 =2π/q0. In the case 

02 K , the equilibrium configuration of the 

cholesteric nematic is that having a spontaneous 

twisted  deformation. 

 

3. Elastic energy density, given by the derivatives  

ni,j = ∂ni  / ∂xj   
Following the Oseen – Frank approach, let us being 

more general. If the director n does not depend on 

position, the liquid crystal is undistorted and the free 

energy density is supposed equal to a certain quantity 

represented by f0, which is a quantity that does not 

change if the liquid crystals is subjected to a 

deformation.  

 

If n = n(r), the nematic is deformed. Let f  being the 

density of elastic energy which is created in the 

material. We have then that ni,j=∂ni /∂xj are different 

from zero. Let us suppose that these derivatives of n 

are enough for describing the distorted nematic, and 

then:  

 

)( , jinff     (11) 

 

If these derivatives are small, it is possible to consider 

a series in ni,j, so that:  

 

lkjiijkljiijo nnKnEff ,,,
2

1
    (12) 

 

In (129, the components of tensors E and K are given 

by: 
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These quantities are evaluated with respect the 

undistorted configuration, which is also that having 

the minimum energy. In (12), we have used Einstein 

notation which implies summation on a set of indices; 

for instance 
ji

jijijiji nEnE
,

,, . 

Let us write  E  and K, using combinations made by 

n, and the Kronecker δij and Levi-Civita εijk symbols.  

Since in a nematic,  n and ─n are equivalent, each 

term in (2) must be even in n. Let us remember that, 

for what is concerning the Kronecker symbol, it is  

1ij , if  i=j. It is 0ij if i≠j. In the case of the 

Levi-Civita symbol, we have 1ijk  if  i,j,k are in 

cyclic order; 1ijk  if i,j,k are not in cyclic order. 

Then, we have 0ijk  in the other cases. 

Moreover, the cross  product of two vectors a and b 

can be written as 
kjikij ba eba  , where ek  is a 

unit vector of the three unit vectors representing a 

Cartesian frame of reference.  

In the case of the rotor of the director, we can write it 

as:  

 

kjikij nrot en ,    (13) 

 

Let us consider tensor E. We can represent its 

components as:  

 

kijkijjiji nEEnnEE  321     (14) 

 

But E1 = E2 = 0, because the nematic is not polar. 

Moreover: 
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This is a pseudoscalar, being the nematic helicity 

[11,12].  Since the energy is a scalar,  nn rot  can 

be present in it, when this contribution is squared or if 

the nematic is a cholesteric nematic. In this case, the 

material is spontaneously showing a deformed 

configuration of the fundamental state having the 

minimum energy.  

For tensor K we have Kijkl=Kklij, because it is present 

in the term 
lkjijkli nnK ,,
; so we can write: 

 

4567123 CCK jkli     (16) 

 

In (16), we have:  

 

ikljjlkiijlk

k ljilkji

nnKnnKnnK

nnKnnnnKC





*
33

*
2

21123





 

 

jkiljlik

klijilkjjkli

KK

KnnKnnKC





76

5
*
444567





  

Since ni ni = 1, we can see that in (16) just some 

terms survive. They are:   
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Let us demonstrate the first (I). Using the Levi-Civita 

symbol for the cross product, we have:  
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Note that we have to sum on j. So, the following 

relation exists:   
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Therefore: 
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We used the fact that the director is a unit vector and 

then the derivative of its modulus is zero. (II) and 

(III) contain factor 0)(2 ,  iijjii nnnn . Then, 

all the terms we are re-writing in the following 

formula are null, so as their sum:  
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The surviving terms which are contributing to the elastic energy are:  
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We have  [7]: 
22
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Finally, we have:  
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We can change the symbols for the coefficients, to see that this expression is that of the free energy density proposed 

by  Oseen – Frank, with the saddle-splay term too.  
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As previously told, K11, K22, K33 e K24 are the elastic constants of  splay, twist, bend, and saddle-splay. The last term 

in (21), if we consider the Gauss theorem, is a contribution to the surface energy. Then, the density energy of the 

bulk is depending on the three elastic constants of splay, twist and bend. If we consider also  the helicity, the free 

energy becomes:  
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If we have not splay and bend, and only twist is present, Equation (22) is minimized by: 

 

nn rot
K

E


22

   (23) 

 

Then, in the case we have helicity (E ≠ 0), the configuration of the director which is minimizing the energy is a 

distorted one. As previously told, this happens in the cholesteric liquid crystals. From now on, we assume a nematic 

having  E = 0. 

 

4. The analysis of Nehring and Saupe  

Let  n  be the director and ni,j , ni,jk  the derivatives of first and second order. Let us suppose a free energy density 

depending on these derivatives  kjiji nnff ,, ,  and represent it as a series of  ni,j  and  ni,jk: 

 

mlkjimlkjinmlkjinmlkjikjikjilkjilkji nnNnnMnLnnKff ,,,,,,,0     (24) 

 

Being tensor L multiplying derivatives of the second order, it must be:   

 

jkikji LL     (25) 

 

As we have done before, let us represent the components of tensors  L, M and N, using n, δij and εijk. Let us start 

from L and determine its contribution to energy. Being  n and ─n equivalent, the terms different from zero are: 

 

 jikkijkjikjikji nnLnLnnnLL   321  

 

Then:  

 

kjjkjkkjjjiikjikjikjikji nnLnnLnnLnnnnLnL ,3,3,2,1,     (26) 
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Again, let us remember that ni ni = 1, and therefore: 

 

kjiijikijii nnnnnn ,,,, ;0     (27) 

 

Using (27), the first term in (26) becomes 
2

,, )( kikkjikji nnnnnn  . The second becomes  jijijjii nnnn ,,,  ,  

The third is equivalent to: 
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Equation (26) can be written as  

 

   nn divdivLnLnLnnLnL jjjijikkjikji 3
2

,3
2

,2
2

,1, 2)(2)()(     (28) 

 

We have already found the first three terms of (28), when we have discussed the tensor K. These terms can be added 

to those previously given. But in (28) we have a new term which is contributing to the surface term, like that having 

as elastic constant K24. This term is usually written with the constant  K13, defined as the elastic constant of splay-

bend [13,14].  

Supposing  M = 0  and  N = 0 , (24) becomes: 

 

lkjilkjikjikji nnKnLff ,,,0     (29) 

 

Therefore, after renormalizing the constants:  
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This is the free energy density of Nehring-Saupe [3].   

However, we have also the terms coming from 

tensors M and N , to consider as sources of elastic 

constants, it they are different from zero. To dealt 

with them we need a second order analysis.  

 

5. Second order analysis 

We have seen in the previous section, that the free 

energy density, as given by Nehring and Saupe, 

including the term with elastic constant K13, is 

originated from tensors K and L. However, other 

terms exist that we have not yet discussed. To analyse 

them let us follow the approach given in [7]. In this 

reference, the free energy density is supposed a 

function of deformations as:    

 kjiji nnff ,, ,  

 

That is, we assume as deformation sources, the first- 

and second-order derivatives of the director, 

generalizing the approach of the previous section. 

 

 

 

The virtual variation δf  of the density of the free energy f , close to equilibrium, can be described to the second order 

as:  
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In (31), we find the variations of the first- and second-order derivatives of director n. In the linear theory of 

elasticity, in (31) we have to consider just the derivatives of the first-order, neglecting those of higher order. If the 

second-order is involved too, tensors λ, μ must be expanded in terms of the sources of deformation, ni,j and ni,jk. 

Therefore:  
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In (32)  λ°, μ°  are tensors depending just on the components ni but not dependent on ni,j  and  ni,jk, The same for 

tensors A, B, C, D, H, M, N and O.  

Using (32) in (31), we see that only λ° is described by terms of the first order, whereas A, μ° have terms of the 

second order, B, C, M of the third and D, H, O  of the fourth order.  

We could ask ourselves if, in (32), it is also necessary a term of the form Fijklmp nk,lmp, which is of the same order of  

D and H. In the approach we are following here, this term is not coming from the sources of deformation we are 

considering. And then, we do not include it, or other similar to it, in (32). The criterion is that λij and μijk are 

expanded only in terms of the deformation sources, as defined in (31).  

Let us take into account the general property of the mixed second-order derivatives of continuous function g:  
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Equation (33) ensures that [7]: 
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Moreover, from symmetry considerations [7]: 
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Using (32) in (31), according to (33’) and (34), we have [7]: 
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Usually, common nematics are not polar or chiral and then, in (35), odd terms in n and helicity nn rot  are not 

present. Therefore, for common nematics tensors λ°, B e C are null. 

Then, we have only: 

 

http://www.ijsciences.com/


 

 

 

Elasticity Tensors in Nematic Liquid Crystals

 

 
 

 

http://www.ijSciences.com                           Volume 5 – July 2016 (07) 

61 

mpljkiijklmprqpmlkjiijklmpqr

qplmkjiijklmpqlkjiijkljkiijk

nnNnnnnH

nnnDnnAnf

,,,,,,

,,,,,,

0

2

1

4

1

2

1

2

1



 

   (35’) 

 

Let us expand tensors in (35’), using (ni,δij,εijk). After expanding the tensors, the terms that survive are (given in 

covariant form, that in using divergence and rotor): 
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If we have only ni,j as source of deformation, (35’) becomes: 
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In this case, the term with K13 does not appear, in 

agreement with the elastic theory of the first order as 

given by Oseen-Frank. Therefore, if we consider K13, 

and also K24, we can ask ourselves what are the other 

terms we need to consider too, to have the expression 

of f coherent to the second order approach given in 

[7]. In we assume (36a) and (36b), we have the well-

known splay, twist and bend distortions coming from 

terms due to tensors μ° and A. However, we have 

many terms from tensors N, D and H (many of them 

are null because of the parity of n and pseudoscalarity 

of (n · rot n)). Let us note also that some terms are 

coming from both N and D, or from D and H, or from 

the three tensors at the same time. 

 

In the three Tables I-III given after the References we 

show the contributions to the density of the free 

energy of a nematic liquid crystal coming from N, D 

and H. In the first of the three tables, the terms are 

coming from N. In the second table we have 

contributions coming from D, and those marked by * 

are shared with N. In the third table we have the 

contributions to the density of the free energy coming 

from H (terms marked by * are shared with D, 

whereas those marked by ** are shared with N and 

D).  

6. Second-order elasticity close to a threshold 

If we use for a nematic liquid crystal the theory of the 

first-order elasticity, we have only three constants to 

deal with. Whereas, if we use the theory of the second 

order, we have a quite larger number of elastic 

constant. Then, the use of such theory turns out to be 

unworkable. In fact, the elasticity of the second order 

can become quite simple, when it is involved in a 

threshold phenomenon, when the nematic is changing 

its configuration from an undistorted to a distorted 

one. 

 

Let us remember that the most common experimental 

condition to study the nematic is that of creating a 

cell composed by two plane-parallel glass slides, 

spaced a few microns, in which the nematic is  

inserted by capillarity. The two inner surfaces of the 

cell may have the same or different treatments, in 

order to induce the desired nematic configuration 

(planar, homeotropic or hybrid). The cell can be 

placed in a thermostat with appropriate optical 

windows for the observation under polarized 

microscopy of the phases or of the material 

configurations.  

Let us consider a flat deformation of the nematic, that 

is, one which is obtained for example in a cell with 

opposite conditions, homeotropic on one of the walls 

and planar on to the other (this is the so-called hybrid 

HAN-cell. We can use a frame of reference (x,z) with 

the origin on the wall with homeotropic anchoring, 

the x-axis parallel to that wall, and the z-axis 

perpendicular to it. 

 

Figure 1 shows how the molecules can be in the HAN 

cell. They lie in the xz-plane, and are anchored 

parallel to the upper wall and perpendicular to the 
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lower wall. In the intermediate part of the cell, the 

director forms an angle different from 0° and from 

90°, with respect the z-axis. 

 

 
Figure 1: Configuration of the molecules at the walls of a HAN cell  
in strong anchoring conditions.  

 

 

 

Locally, the director n  is given by: 

 

n = i sin(Ө) + k cos(Ө)        (37) 

 

In (37), Ө(z) is the angle shown in the Figure 1. 

Vectors i and k are the unit vectors of axes. 

If we imagine to decrease the cell thickness d, the 

deformed configuration becomes unstable and the 

cell, if we suppose that the planar anchoring is 

stronger than the homeotropic one, assumes the 

planar configuration. Or, if we assume the 

homeotropic anchoring stronger, the cell assumes the 

homeotropic configuration. The transition that occurs 

in the HAN cell, when we are reducing the thickness 

of the liquid crystal, is from a distorted configuration 

to the undistorted planar (P) or homeotropic (H) 

configuration (see Figure 2).

 

 

 
Figure 2: Decreasing the cell thickness, we can see the distorted HAN configuration becoming a planar or 

homeotropic undistorted configuration shown on the right of the image.   

 

In order to describe the occurrence of a limit for the mechanical stability of the HAN cell, due to the decrease of the 

cell thickness d, the free energy density must be given as a function of angle Ө.  Close the threshold of the passage 

from the HAN configuration to the undistorted P or H configurations, we have Ө changing its value. However, the 

value of this angle depends on the positon of the director in the cell, that is, on z. So let us take as the parameter for 

studying the problem, the maximum angle assumed by the director with respect to z-axis and call it Өmax. If the 

planar anchoring is strong, this angle can also be of 90°. In fact, we can think the angle Ө as a function of z, and 

therefore as a function Ө = Өmax g(z/d).  

 

Now, let us consider some terms from Tables I-III, and write them in covariant form [7]:   
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Using (37), these terms become: 
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In (39a)-(39d), we used dzd /


. Let us suppose a transition from HAN to H configuration. Near the threshold, 

Өmax0, and then the contributions of the smallest order in Өmax are coming from the term 

2












in (39b). Let us 

stress that  

2












 is of the second order in Өmax, whereas the other contributions vanish more rapidly, when Өmax 

goes to zero. As a consequence, we have an additional term to the free energy density which can be written as: 
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In the framework of the theory of elasticity here discussed, only  K* is the new elastic constant of the second order 

which survives in a threshold phenomenon. In this case, the free energy density becomes:   
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Let us note that the first five elastic constants have dimensions of energy divided by length; the elastic constant K* is 

an energy times a length.  Let us evaluate its order as made for (4). We have [Energy][L─3] = [K*][L─4], where L is a 

length. Then [Energy][L] = [K*] and then the order of K* is  U·a. If U is the typical energy of molecular interaction 

and a the typical length of molecules, we  have:  
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Let us consider the deformation as Ө = Өmax g(z/d). Let ς=z/d be the dimensionless variable. Deformation are of the 

following orders:   
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We can define ξ the dimensionless derivative (slope) of g with respect to ς, that is ,g , and the dimensionless 

curvature  κ  of this function as approximated by ,g . We will have:  
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Then:  
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22
max4

22
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We can evaluate the thickness d of the cell for which the term with K* becomes relevant. This happens when the two 

terms in (42), are comparable:   
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We have that the thickness d for which K* is relevant 

depends on the square ratio between curvature and 

slope of the deformation, a ratio which is depending 

on the anchoring conditions of the cell. As a 

conclusion we can tell that, in certain anchoring 

conditions of the cell, the term with elastic constant 

K* cannot be neglected in evaluating the threshold 

value of the cell thickness.  
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Tables I-III: These three Tables are giving the contributions to the density of the free energy of a nematic liquid 

crystal coming from tensors N, D and H, respectively.  In the second Table, contributions coming from D marked by 

* are those shared with N. In the third Table, contributions to the free energy density coming from H, marked by *, 

are shared with D, whereas those marked by ** are shared with N and D. 
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