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Angelo	Raffaele	Meo	

Accademia	delle	Scienze	di	Torino	

	

ON	THE	P	VS	NP	QUESTION:	

A	PROOF	OF	INEQUALITY	

Summary	

The	 analysis	 discussed	 in	 this	 paper	 is	 based	 on	 a	well‐known	NP‐complete	 problem	
which	 is	 called	 “satisfiability	 problem	 or	 SAT”.	 From	 SAT	 a	 new	 NP‐complete	 problem	 is	
derived,	which	 is	 described	 by	 a	 Boolean	 function	 called	 “core	 function”.	 In	 this	 paper	 it	 is	
proved	 that	 the	 cost	 of	 the	 minimal	 implementation	 of	 core	 function	 increases	 with	 n	
exponentially.	Since	 the	synthesis	of	 core	 function	 is	an	NP‐complete	problem,	 this	 result	 is	
equivalent	to	proving	that	P	and	NP	do	not	coincide.		

1. INTRODUCTION	

A	brief	description	of	the	definitions	and	properties	well	known	among	the	scientists	of	
modern	 computational	 complexity	 theory	which	will	 be	made	 reference	 to,	 is	 presented	 in	
this	section.		

P	denotes	the	class	of	all	the	decision	problems	which	can	be	solved	in	polynomial	time.	

NP	 denotes	 the	 class	 of	 all	 the	 decision	 problems	 f	 satisfying	 the	 property	 that	 the	
function	check(f)	analyzing	a	witness	of	the	decision	problem	is	polynomial	time	decidable.	

“P=NP?”,	or,	in	other	terms,	“Is	P	a	proper	subset	of	NP?”,	is	one	of	the	most	important	
open	questions	in	modern	computational	complexity	theory.	

A	decision	problem	C	in	NP	is	NP‐complete	if	it	is	in	NP	and	if	every	other	problem	L	in	
NP	is	reducible	to	it,	in	the	sense	that	there	is	a	polynomial	time	algorithm	which	transforms	
instances	of	L	into	instances	of	C	producing	the	same	values.		

The	importance	of	NP‐completeness	derives	from	the	fact	that,	 if	we	find	a	polynomial	
time	 algorithm	 for	 just	 one	NP‐complete	 problem,	 then	we	 can	 construct	 polynomial	 time	
algorithms	 for	 all	 the	 problems	 in	NP	 and,	 conversely,	 if	 any	 single	NP‐complete	 problem	
does	not	have	a	polynomial	time	algorithm,	than	no	NP‐complete	problem	has	a	polynomial	
time	solution.	

The	 analysis	 discussed	 in	 this	 paper	 will	 be	 based	 on	 a	 well‐known	 NP‐complete	
problem	which	is	called	“satisfiability	problem	or	SAT”.	

Given	 a	 Boolean	 expression	 containing	 only	 the	 names	 of	 a	 set	 of	 variables	 (some	 of	
which	may	be	complemented),	the	operators	AND,	OR	and	NOT,	and	parentheses,	is	there	an	
assignment	 of	TRUE	 and	FALSE	 values	 to	 the	 variables	which	makes	 the	 entire	 expression	
TRUE?	
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It	 is	well	known	that	the	problem	remains	NP‐complete	also	when	all	the	expressions	
are	written	in	“conjunctive	normal	form”	with	3	variables	per	clause	(problem	3SAT).	In	this	
case,	the	analyzed	expressions	will	be	of	the	type:	

	 F=(	x11	OR	x12	OR	x13	)	AND	

(	x21	OR	x22	OR	x23	)	AND	

	

…………	AND	…………	

	

(	xt1	OR	xt2	OR	xt3	)		

(1)

where:	

t	is	the	number	of	clauses	or	triplets;	

each	xij	is	a	variable	in	complemented	or	uncomplemented	form;	

each	variable	can	appear	multiple	times	in	the	expression.	

If	the	deterministic	Turing	machine	is	assumed	as	the	computational	model,	with	{0,1,b}	
as	 its	 set	 of	 input	 symbols,	 the	 input	 data	 appearing	 on	 the	 tape	 at	 the	 beginning	 of	
computation	can	represent	the	data	of	expression	(1)	in	the	following	way:	

b	b	<binary	code	of	number	of	variables>	<separator>b	

or	

	 s11	n111	n112	n113……..	n11mb	

s12	n121	n122	n123……..	n12mb	

s13	n131	n132	n133……..	n13mb	

s21	n211	n212	n113……..	n21mb	

……………….	

st3	nt31	nt32	nt33……..	nt3mb	

	

(2)

where:	

b	is	the	blank	symbol;	

t	is	the	number	of	triplets;	

sij	denotes	the	sign	of	variable	xij		

(with	sij	=	1	denoting	that	xij	is	preceded	by	operator	NOT);	

nijk	denotes	 the	k‐th	 component	of	 the	binary	code	<nij1	nij2	…	nijm>	 representing	 the	
name	of	variable	xij	;		

the	 binary	 code	 of	 the	 number	 nv	 of	 variables	 is	 needed	 in	 order	 to	 determine	 the	
number	m	of	binary	digits	necessary	to	represent	the	names	of	variables	according	the	rule		

m	=	minimum	integer	not	less	than	log2	nv	

Notice	that,	by	neglecting	the	bits	of	the	binary	code	of	the	number	of	variables	and	the	
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bits	of	the	separator,	the	number	of	input	bits	on	the	tape	will	be	

	 t∙3∙(1+minimum	integer	not	smaller	than	log2	(3∙t))	 (3)

since	the	maximun	value	of	the	number	of	variables	is	3∙t.	

The	 properties	 of	 Turing	machines	 processing	 the	 bit	 string	 described	 by	 (2)	 will	 be	
analyzed	 in	 this	 paper	with	 reference	 to	 a	 family	 {Cn}	 of	 Boolean	 circuits,	 where	Cn	 has	n	
binary	inputs	and	produces	the	same	binary	output	as	the	corresponding	Turing	machine.	

The	 equivalence	 between	 a	 deterministic	 Turing	machine	M	 processing	 some	 input	x	
belonging	to	{0,1}n	and	an	n‐input	Boolean	circuit	Cn	is	well	known.	It	is	also	known	that	the	
number	 of	 gates,	 or	AND,	OR,	NOT	 operators	 appearing	 in	 circuit	Cn,	 is	 polynomial	 in	 the	
running	time	of	the	corresponding	Turing	machine.	

2. THE	CORE	FUNCTION	

In	the	case	of	satisfiability	problem	with	3	variables	for	clause,	Boolean	circuit	Cn	has	n	
(=t)	sets	of	inputs	which	the	binary	data	described	in	(2)	are	applied	to.	(Of	course,	the	binary	
code	of	 the	number	of	 variables	 and	 the	 separator	 are	not	needed).	The	output	of	Cn	 (with	
n=t)	will	take	the	value	TRUE	when,	and	only	when,	there	is	an	assignment	of	values	TRUE	
and	FALSE	to	variables	making	expression	(1)	TRUE.	

In	order	to	simplify	analysis,	circuit	Cn	will	be	decomposed	into	two	processing	layers	as	
shown	 in	Fig.	1,	where	 ,	as	usual,	 the	number	t	of	 triplets	plays	 the	role	of	symbol	n	 in	 the	
standard	analysis	of	complexity	theory.		

In	the	following	analysis,	we	shall	use	the	symbol	t	when	it’s	necessary	to	remember	the	
number	of	triplets	and	n	in	the	other	cases.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Fig.	1	

Decomposition	of	Boolean	circuit	Cn	into	compatibility	layer	and	core	layer	

	

Compatibility	layer	

	

Core	layer	(Core	Function)	

c(1,1;2,1)	 c(1,1;2,2)	 c(t‐1,3;t,3)	

		s11	n111	n112	n113……..	n11m		.	.	.	.	.	.	.	.	.	.	.	.	.	.	.	.	.	st3	nt31	nt32	nt33……..	nt3m	

output	
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A	variable	j	of	triplet	i	will	be	defined	as	“compatible”	with	variable	k	of	triplet	h	when,	

and	only	when	either		

 the	sign	sij	of	the	former	variable	is	equal	to	the	sign	shk	of	the	latter,		

or		

 the	 name	<nij1	nij2	…nijm>	 of	 the	 former	 is	 different	 from	 the	 name	<nhk1	nhk2	
…nhkm>	of	the	latter.		

From	that	definition	it	follows	that	two	“not	compatible”	variables	have	different	signs	
and	the	same	name;	therefore,	their	AND	are	identically	FALSE.	

The	compatibility	layer	is	composed	of	3∙t∙(3∙t‐3)/2	identical	cells,	one	for	each	pair	of	
variables	belonging	to	different	triplets.	

	

As	shown	in	Fig.	2,	the	inputs	of	a	cell	will	be	the	sign	sij	and	the	name	<nij1	nij2	…nijm>	
of	 variable	 j	 of	 triplet	 i,	 and	 the	 sign	 shk	 and	 the	 name	<nhk1	nhk2	…nhkm>	of	 variable	k	 of	
triplet	h.	The	output	of	 the	same	cell	c(i,j;h,k)	will	be	TRUE	when,	and	only	when,	 the	 two	
variables	are	compatible	between	themselves.	

	

	 	 	 TRUE	⇔	xij	is	compatible	with	xhk	
c(i,j;h,k)=	
	 	 	 FALSE	⇔	xij	is	not	compatible	with	xhk	

	
	

	

	

	

	

	

	

	

Fig.	2	

Compatibility	Cell	

	

Variable	c(i,j;h,k)	will	be	called	a	compatibility	variable	or	simply	a	compatibility.	

The	 core	 layer	 processes	 only	 the	 9∙t∙(t‐1)/2	 compatibility	 variables	 c(i,j;h,k)	 and	
produces	the	global	result	of	computation.	

As	 the	 circuit	 Cn,	 also	 the	 global	 Boolean	 function	 implemented	 by	 Cn	 may	 be	
decomposed	into	two	layers	of	functions.	At	the	compatibility	layer,	the	function	implemented	
by	a	cell	may	be	written	as	follows	(by	using	the	symbols	∗,	+,	and	!	for	representing	AND,	OR	
and	NOT	operators,	respectively):		

	 	

	

Compatibility	cell	

sij	nij1	nij2	n113……	nijm		 	 	 	shk	nhk1	nhk2	nhk3……	nhkm	

c(i,j;h,k)	
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	 c(i,j;h,k)	=	sij∗shk	+	!sij∗!shk+	 (equal	sign)	

+	nij1∗!nhk1	+!nij1∗nhk1	+	 	

+	nij2∗!nhk2	+!nij2∗nhk2	+	 (at	least	one	bit	in	the	

…………………………	 variables	names	different)	

+nijm∗!nhkm	+!nijm∗nhkm	

(4)

The	Boolean	function	implemented	by	the	core	layer	will	be	called	the	“Core	Function”	
of	order	t,	where	t	is	the	number	of	triplets.	It	will	be	denoted	with	the	symbol	CF(t)	(or	CF(n)	
).	The	core	function	can	be	determined	by	proceeding	as	follows.	

Consider	one	selection	of	variables	appearing	in	(1),	one	and	only	one	for	each	triplet,	
for	all	the	triplets.	Let	

	 <1i1>,	<2i2>,	…,<tit>	 (5)

with	i1,	i2	,	….,	it	∈	{1,	2,	3}	

be	the	indexes	<number	of	triplet,	number	of	variable	in	the	triplet>	of	the	selected	
variables.	 They	 will	 be	 called	 “characteristic	 indexes”.	 Let	 Πk	 be	 the	 product	 of	 all	 the	
compatibility	variables	relative	to	the	k‐th	of	selections	(5):	

	 Πk	=	c(1,i1;	2,i2)∗c(1,i1;	3,i3)∗...	

...∗c(t‐1,it‐1;	t,	it)	
(6)

The	core	function	can	be	defined	as	the	sum		

	 kk	 (7)

of	the	products	(6)	relative	to	all	the	selections	(5).	

For	example,	in	the	case	of	CF(3),	the	core	function	can	be	defined	as	follows:	

	 CF(3)	=	c(1,1;2,1)∗c(1,1;3,1)∗c(2,1;3,1)	+	

c(1,1;2,1)∗c(1,1;3,2)∗c(2,1;3,2)	+		

c(1,1;2,1)∗c(1,1;3,3)∗c(2,1;3,3)	+	

c(1,1;2,2)∗c(1,1;3,1)∗c(2,2;3,1)	+		

	

...(other	22	products)...	+	

	

c(1,3;2,3)∗c(1,3;3,3)∗c(2,3;3,3)	

(8)	

It	 is	 easy	 to	 prove	 that	 there	 is	 an	 assignment	 of	 value	TRUE	 or	 FALSE	 to	 variables	
appearing	 in	Eq.	(1)	which	make	 the	value	of	(1)	 equal	 to	TRUE	when,	and	only	when,	 the	
core	function	takes	the	value	TRUE.	

Notice	that	the	processing	work	of	the	cell	of	Fig.	2	 increases	as	a	polynomial	function	
P(t)	of	the	number	of	the	variables	since	the	increment	of	the	length	of	the	code	of	the	name	is	
logarithmic.	Therefore,	the	total	processing	work	of	the	compatibility	layer	increases	as:	

9∙t∙(t	–	1)∙P(t)	
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where	9∙t∙(t	–	1)/2	is	the	total	number	of	the	compatibility	cells.	

Besides,	the	problem	solved	by	the	core	layer	is	clearly	in	NP,	because	it	is	easy	to	verify	
a	witness	solution.	It	follows	that,	since	the	compatibility	layer	polynomially	reduces	an	NP‐
complete	problem	(3SAT)	to	the	problem	solved	by	the	core	layer,	the	core	function	describes	
a	new	NP‐complete	problem.		

Some	interesting	properties	of	core	function	have	been	discussed	in	ref.	(23).	

3. A	THEOREM	OF	BOOLEAN	MONOTONIC	FUNCTIONS	

Let	f(x1,x2,	 ...,	xt)	be	an	isotonic	Boolean	function,	that	is	a	Boolean	function	which	can	
be	implemented	with	only	AND	and	OR	gates,	applied	to	uncomplemented	literals	x1,	x2,	…,	xt.	
It	was	believed	that	 the	minimum	cost	 implementation	of	f(x1,x2,…,xt)	always	contains	only	
OR	and	AND	gates,	but	A.Razborov	proved	that	there	are	isotonic	functions	whose	minimum	
cost	implementation	contains	also	NOT	gates	(see	ref.	(8)	).	

However,	there	is	on	upper	bound	on	the	comparison	of	the	costs	of	the	minimum	cost	
implementations	with	and	without	NOT	gates.	It	is	specified	by	the	following	theorem.	

3.1. THEOREM	

Let	Imin	be	one	of	 the	minimum	cost	 implementations	of	 the	 isotonic	Boolean	 function	
f(x1,	x2,...,xt),	the	cost	being	defined	as	the	total	number	of	AND,	OR	or	NOT	gates.	Let	Cmin	be	
the	cost	of	Imin.	

There	 exists	 always	an	 implementation	 J	 of	 f	 containing	only	AND	and	OR	gates	 such	
that		

	 cost	(J)	<=	2∙Cmin	+	t	 	

In	order	 to	prove	 this	 theorem,	 let	us	divide	 the	gates	of	 implementation	 Imin	of	 f	 into	
different	levels.	

At	 level	1	 we	 place	 the	 gates	 all	 inputs	 of	which	 coincide	with	 the	 complemented	 or	
uncomplemented	input	variables	xi	or	!xi	(where	!xi	denotes	the	complement	of	variable	xi)	.	

Level	2	contains	the	gates	whose	inputs	coincide	with	input	variables	or	outputs	of	level	
1	gates.	

In	general	terms,	 level	q	contains	the	gates	whose	inputs	coincide	with	input	variables	
or	outputs	of	levels	less	than	q.	

We	can	transform	Imin	into	J	by	deleting	NOT	gates	and	adding	new	AND	or	OR	gates	as	
follows.	

We	start	from	level	1.	

For	any	level	1	AND	gate	we	add	an	OR	gate	whose	inputs	are	the	complements	of	the	
inputs	of	the	considered	AND	gate	(Fig.	3).	Similarly,	for	any	level	1	OR	gate	we	add	an	AND	
gate	whose	inputs	are	the	complements	of	the	corresponding	OR	gate.	

By	virtue	of	 such	operations,	 for	any	output	u	 of	 the	 level	1	gates	a	new	node	will	be	
available	in	the	new	circuit	we	are	generating	whose	value	will	be	!u.	
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Fig.	3	

The	transformation	of	gates	of	level	1	

	

As	a	second	step	of	processing,	for	any	level	2	AND	gate	of	implementation	Imin	we	shall	
add	an	OR	gate	whose	 inputs	are	 the	complements	of	 the	 inputs	of	 the	corresponding	AND	
gate,	in	both	the	cases	in	which	these	inputs	coincide	with	input	variables	of	f	or	with	outputs	
of	level	1	gates	(Fig.	4).	

	
	

	

	

	

	

	

	

Fig.	4	

The	transformation	of	gates	of	level	2	

	

A	similar	transformation	will	be	applied	to	all	level	2	OR	gates.		

As	 an	 example,	 the	 two	 level	 subnetwork	 of	 Fig.	 5	 will	 be	 transformed	 into	 the	
subnetwork	of	Fig.	6.	Notice	that	at	the	outputs	of	J	not	only	the	outputs	v	and	w	of	Imin	will	be	
available,	but	also	their	complements	!v	and	!w.	

	

The	preceding	operations	will	be	applied	to	all	the	levels	of	implementation	Imin,	in	the	
order	of	increasing	levels.	 It	 is	apparent	that,	 if	 for	any	input	variable	xi	also	!xi	 is	available,	
the	number	of	gates	of	J	is	less	than	twice	the	number	of	gates	of	Imin.	

	 	

∗	

a				!b				c	

u	

+

!a				b				!c	

!u	

+

a				!b				c	

u	

∗	

!a				b				!c

!u	

∗	

a				!b				u	

v	

+

!a	 		b	 		!u

!v

+

a 		!b	 		u

v	

∗	

!a				b				!u	

!v	
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Fig.	5	

A	two	level	subnetwork	

Fig.	6	

The	transformation	of	the	subnetwork	

	

At	 level	0,	 before	 the	 gates	 of	Fig.	6,	 t	NOT	 gates	might	be	necessary	 to	 generate	 the	
complemented	 input	 variables	 !xi.	 Therefore,	 t	 has	 been	 added	 in	 the	 statement	 of	 the	
theorem.	

This	 theorem	will	be	very	 important	 in	order	 to	 simplify	 the	analysis	of	 core	 function	
circuits.		

4. PROPERTIES	OF	CORE	FUNCTION	

It	is	easy	to	prove	the	following	properties	of	core	function.	

4.1. PROPERTY	1	

Core	function	is	totally	isotone.	

4.2. PROPERTY	2	

Any	 product	 (6)	 is	 a	 prime	 implicant	 of	 core	 function	 (that	 is,	 a	 product	 of	
compatibilities	(“PoC”)	which	implies	core	function	and	no	other	term	of	it).		

4.3. PROPERTY	3	

Since	 the	 different	 selections	 of	 each	 of	 variables	 (5)	 are	 3,	 the	 number	 of	 prime	
implicants	of	the	core	function	is	equal	to	3t	.	Each	of	these	prime	implicants	is	essential	(that	
is,	 it	 does	 not	 imply	 a	 sum	 of	 other	 prime	 implicants)	 and	 it	 is	 the	 product	 of	 t∙(t‐1)/2	
compatibilities.	

	 	

∗	

a				!b				c	

u	

+	

w	

!	

v	

d	

∗	

a 		!b	 		c

u	

+

w	!v

d	

!u	

+	

!a				b				!c	

∗	

v	

!d

!w	
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5. PRODUCTS	OF	COMPATIBILITIES	

In	the	next	section,	reference	will	be	made	to	the	following	definitions.	

5.1. DEFINITION	OF	SPURIOUS	COMPATIBILITIES	PAIR	

A	pair	of	compatibility	variables	{c(h,k;l,m),	c(p,q;r,s)}	is	defined	as	a	spurious	pair	if	

(	h	=	p	and	k	≠	q	)	

or	 (	h	=	r	and	k	≠	s	)	

or		 (	l	=	p	and	m	≠	q	)	

or		 (	l	=	r	and	m	≠	s	)	

	

In	a	graphic	scheme:		

	

	

	

	

	

For	 example,	 the	 pair	 {c(1,1;2,1),	 c(1,2;3,1)}	 is	 a	 spurious	 pair	 since	 the	 triplet	1	 is	
associated	to	two	different	indexes	of	variables	(1	and	2).	

5.2. DEFINITION	OF	SPURIOUS	PRODUCTS	OF	COMPATIBILITIES	

A	 spurious	 product	 of	 compatibilities	 (spurious	 PoC)	 is	 a	 product	 of	 compatibility	
variables	containing	the	elements	of	one	or	more	than	one	spurious	pair.	

For	example,	the	PoC	

c(1,1;2,1)∗c(1,2;3,1)∗c(2,1;3,1)		

is	a	spurious	PoC	since	it	contains	the	elements	of	the	spurious	pair	

{c(1,1;2,1),	c(1,2;3,1)}	

5.3. DEFINITION	OF	IMPURE	PRODUCTS	OF	COMPATIBILITIES	

A	PoC	 containing	 one	 or	more	 complemented	 variables	will	 be	 defined	 as	 an	 impure	
PoC.	 In	 particular	 a	 term	T	 of	 CF	 (that	 is,	 a	PoC	 implying	 CF)	 that	 contains	 one	 or	 more	
complemented	variables,	will	be	defined	as	an	impure	term.		

5.4. DEFINITION	OF	CORE	OF	A	POC	

The	product	of	all	the	uncomplemented	variables	of	T	will	be	defined	as	the	core	of	T.	

5.5. DEFINITION	OF	MARK		

Consider	a	not	spurious	subset	of	compatibilities	satisfying	the	property	that	each	of	the	
indexes	of	triplet	appears	at	least	once	in	some	variable.	The	product	of	the	variables	of	such	a	

c(	h,	k		;	l,	m	)	

c(	p,	q		;	r,	s	)	

= ≠

c(	h,	k		;	l,	m	)	

c(	p,	q		;	r,	s	)	

= ≠

c(	h,	k		;	l,	m	)	

c(	p,	q		;	r,	s	)	

= ≠

c(	h,	k		;	l,	m	)	

c(	p,	q		;	r,	s	)	

= ≠or	 or	 or	
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subset	 will	 defined	 as	 a	 “mark”	 of	 the	 prime	 implicant	 of	 which	 it	 contains	 a	 subset	 of	
compatibilities.	

For	example,	in	the	case	of	CF	(4),	the	PoC	

	 M	=	c(1,a;2,b)∗c(1,a;3,c)∗c(1,a;4,d)	 (9)

(where	a,	b,	c,	d	are	elements	of	{1,2,3})	

is	a	mark	of	the	prime	implicant	

	 P=	c(1,a;2,b)∗c(1,a;3,c)∗c(1,a;4,d)∗c(2,b;3,c)∗c(2,b;4,d)∗c(3,c;4,d)	 (10)

since	all	the	indexes	of	triplet	appear	at	least	once	in	(9).		

5.6. DEFINITION	OF	SPURIUS	MARK		

A	spurious	PoC	 in	which	all	 the	 indexes	of	 triplet	appear	at	 least	once	will	be	called	a	
“spurious	 mark”.	 Notice	 that	 a	 spurious	 mark	 may	 be	 the	 mark	 of	 more	 than	 one	 prime	
implicant.	For	the	example,	in	the	case	of	CF(3),	

c(1,1;2,1)∗c(1,1;3,1)∗c(1,1;2,2)	

is	a	spurious	mark	of	both	the	prime	implicants	

c(1,1;2,1)∗c(1,1;3,1)∗c(2,1;3,1)	

and	

c(1,1;2,2)∗c(1,1;3,1)∗c(2,2;3,1)	

An	impure	PoC	whose	core	is	a	(possibly	spurious)	mark	will	be	a	defined	as	a	(possibly	
spurious)	impure	mark.	 	

5.7. DEFINITION	OF	EXTENDED	PRIME	IMPLICANTS	

A	 term	T	of	 core	 function,	 that	 is,	 an	 implicant	 of	 core	 function	 (a	 product	 of	 literals	
implying	 core	 function),	 contains	 all	 the	 uncomplemented	 literals	 of	 a	 prime	 implicant.	
Therefore,	 it	 may	 be	 defined	 as	 an	 “extended	 prime	 implicant”	 (only)	 to	 remember	 that	 it	
contains	all	the	compatibilities	of	a	prime	implicant.		

It	may	be	a	spurious	extended	prime	implicant	or	an	impure	extended	prime	implicant	
or	both	a	spurious	and	impure	extended	prime	implicant.	

Notice	 that	 an	 extended	 prime	 implicant	 can	 be	 viewed	 as	 a	 (possibly	 spurious	 or	
impure)	mark.	

5.8. DEFINITION	OF	REMAINDER	

A	PoC	which	is	neither	a	(possibly	spurious	or	impure)	mark	nor	an	(extended)	prime	
implicant	will	be	called	a	“remainder”.	A	remainder	can	be	associated	to	one	or	more	prime	
implicants,	of	which	it	contains	a	subset	of	compatibilities.	

For	example,	in	the	case	of	CF(4)		

	 R	=	c(2,b;3,c)∗c(2,b;4,d)∗c(3,c;4,d)	 (11)

is	a	remainder	of	the	prime	implicant	(10).	
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A	remainder	R	may	be	associated	to	more	than	one	prime	implicant.	For	example,	in	the	
case	of	CF(3),	R=c(2,1;3,1)	is	a	remainder	of	the	prime	implicants	

	 P1	=	c(1,1;2,1)∗c(1,1;3,1)∗c(2,1;3,1)	

P2	=	c(1,2;2,1)∗c(1,2;3,1)∗c(2,1;3,1)	

P3	=	c(1,3;2,1)∗c(1,3;3,1)∗c(2,1;3,1)	

(12)

On	the	definitions	of	mark	and	remainder	the	following	properties	are	based.	

5.9. PROPERTY	4	

A	not	spurious	mark	M	specifies	a	corresponding	prime	implicant	P	uniquely.	Indeed,	if	
all	the	indexes	of	triplet	appear	in	M,	the	product	(6)	is	completely	defined.	

We	shall	write	

P	=	I(M)	

to	state	that	P	is	the	prime	implicant	specified	by	M.	

As	already	mentioned,	a	remainder	R	does	not	specify	a	corresponding	prime	implicant	
uniquely.	 In	 the	 example	 relative	 to	 CF(3)	 above	 described,	 three	 prime	 implicants	
correspond	 to	R	=	c(2,1;3,1),	 as	 shown	by	(12),	 since	a	single	 index	of	 triplet	 is	missing	 in	
that	 remainder.	 In	general,	 if	z	 triplets	are	not	 involved	 in	R,	 there	are	3z	different	ways	of	
involving	the	missing	triplets.		

Hence	the	following	property	follows.		

5.10. PROPERTY	5	

A	not	spurious	remainder	R	in	which	the	indexes	of	z	triplets	are	missing	corresponds	to	
3z	different	prime	implicants.	

Finally,	 the	 following	 property	 can	 be	 proved.	 The	 proof	 is	 not	 too	 difficult	 and	 it	 is	
omitted	for	the	sake	of	brevity.	

5.11. PROPERTY	6	

Let	P1	 and	P2	 be	 two	PoC’s	 such	 that	P1∗P2	 is	 equal	 to	 a	 prime	 implicant	P	 of	 a	 core	
function.	Either	P1	or	P2	is	a	mark	of	P.	
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6. THE	EXTERNAL	CORE	FUNCTION	

Let	Ij	be	a	prime	implicant	of	CF(n).	The	external	core	function	relative	to	Ij,	ECF(n,Ij),	is	
defined	as	the	sum	of	all	the	minterms	of	CF(n)	which	imply	Ij	and	no	other	prime	implicant	Ik	
of	CF	(n)	with	k≠j.	(Remember	that	a	minterm	of	a	Boolean	function	F	is	a	product	of	all	the	
variables	of	F,	some	complemented	and	some	uncomplemented,	implying	F).	

Of	course,		

	 ECF(n,Ij)	=	Ij∗k≠j	(!Ik)	 (13)

where	!Ik	denotes	the	complement	of	Ik	,	i.e.	(NOT	Ik).	

The	global	 external	 core	 function	of	order	n,	or	ECF(n),	will	be	defined	as	 the	 sum	of	
ECF(n,	Ij)’s	relative	to	all	the	prime	implicants	Ij	of	CF(n):	

	 ECF(n)	=	∑j	ECF(n,	Ij)	 (14)

The	importance	of	external	core	function	derives	from	the	following	analysis.	

6.1. THEOREM	1	

	Let	T	be	a	term	(or	extended	prime	implicant)	of	CF(n).	It	must	be	the	product	of	all	the	
compatibilities	of	a	prime	implicant	Ij	of	CF(n)	and	other	compatibilities,	that	is,		

T	=	Ij∗X		

where	X	is	a	possibly	empty	PoC,	which	can	also	be	written	as	T	=	T(Ij)	

All	the	minterms	of	T(Ij)	contained	in	ECF(n)	are	minterms	of	ECF(n,Ij).	

Indeed,	for	any	k	≠	j,	

	 T(Ij)∗ECF(n,Ik)	=	Ij∗X∗Ik∗l≠k	(	!Il	)	=	0	 (15)

6.2. THEOREM	2	

Let	 T	 be	 a	 term	 of	 CF	 (n)	 implying	 two	 or	 more	 prime	 implicants	 of	 CF(n)	 as,	 for	
example,	

T	=	T	(Ij,	Ik)	

The	number	of	minterms	of	

T(Ij,Ik)	belonging	to	ECF(n)	is	equal	to	0.	

Indeed,	

	 T(Ij,	Ik)∗ECF(n,	Ih)	=	0	 (16)

for	any	h.	

The	 preceding	 theorems	 1	 and	 2	 are	 nearly	 obvious.	 On	 the	 contrary,	 the	 following	
theorem	3	appears	rather	complex.	
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6.3. THEOREM	3	

Let	T	=	T	(Ij)	=	Ij∗X	be	a	term	of	CF	(n)	which	is	spurious	for	a	single	compatibility	X.	

If	 NMT(F)	 denotes	 the	 number	 of	 minterms	 of	 Boolean	 function	 F	 ,	 the	 number	 of	
minterms	of	Ij∗X	contained	in	ECF(n,Ij	)	is		

	
∗ ∗ , 	 	 ∙ , 	 (17)

Proof	

The	number	of	minterms	of	T	contained	in	ECF(n,Ij)	is	equal	to	the	number	of	minterms	
contained	in	

	 Ij∗X∗ECF(n,Ij)	=	Ij∗X∗k≠j(!Ik)	=	Ij∗X∗(A∗(!X)+B)	=	Ij∗X∗B	 (18)

where	A	and	B	are	two	antitone	functions	(that	is,	two	monotone	functions	which	can	be	
described	with	complemented	variables	only)	containing	neither	X	nor	!X.	

The	number	of	minterms	of	ECF	(n,	Ij)	is	equal	to	the	number	of	minterms	contained	in		

	 Ij∗k≠j	(!Ik)	=	Ij∗A∗(!X)	+	Ij∗B	 (19)

Besides,	

	 NMT	(Ij∗B)	=	2∗NMT	(Ij∗X∗B)	 (20)

since	X	appears	neither	in	B	nor	in	Ij.		

The	statement	of	this	Theorem	3	derives	from	the	comparison	of	(18),	(19)	and	(20).	

By	proceeding	in	the	same	way	it	is	possible	to	generalize	the	preceding	Theorem	3	as	
follows.	

6.4. THEOREM	4	

Let	

Ij∗X1∗X2∗…Xm	

are	m	spurious	compatibilities.		

The	number	of	its	minterms	contained	in	ECF(n,	Ij)	is	

	 NMT(Ij∗X1∗X2∗...∗Xm∗ECF(n,	Ij))	<=	 ∙NMT(ECF(n,	Ij))	 (21)

Proof	

For	the	sake	of	brevity,	the	proof	of	(21)	is	restricted	to	the	case	m=2.	

In	this	case	we	can	write:	

	 ECF(n,	Ij)	=	Ij∗A∗(!X1)+Ij∗B∗(!X2)+Ij∗C∗(!X1)∗(!X2)+Ij∗D	 (22)

where	functions	A,	B,	C,	D	do	not	contain	variables	X1	or	X2.	

Notice	that		

X1∗X2∗ECF(n,	Ij)	=	X1∗X2∗Ij∗D		
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and	(X1∗X2∗D)	contains	¼	of	the	minterms	of	D.	

From	these	two	remarks	the	statement	of	Theorem	4	derives.	

	

	

The	 following	 Theorems	 5	 and	 6	 are	 analogous	 to	 preceding	 Theorems	 3	 and	 4,	
respectively.	

6.5. THEOREM	5	

Let	T=T	(Ij)	an	impure	term	of	CF(n)	characterized	by	a	single	impure	variable	(!X)	:	

T	=	Ij∗(!X)	

The	number	of	minterms	of	ECF(n,Ij)	contained	in	T	is		

	
∗ ! ∗ , ∙ , 	 (23)

where	K(n)	is	positive	and	less	than	1	and	it	is	a	quickly	decreasing	function	of	n.	The	
proof	of	Theorem	5	and	the	properties	of	function	K(n)	are	discussed	in	Appendix	1.	

6.6. THEOREM	6	

Let	T=T(Ij)	an	impure	term	of	CF(n)	characterized	by	m	impure	variables:	

T=Ij∗(!X1)∗(!X2)∗…(!Xm)	

The	number	of	minterms	of	ECF(n,Ij)	contained	in	T	is		

		
∗ , ∙ , 	 (24)

Also	Theorem	6	is	discussed	in	Appendix	1.	

Notice	that	NMT(ECF(n,Ij))	=	NMT(ECF(n,Ik))	for	any	j	and	k.	It	will	be	called	NMT1.	
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7. THE	REFERENCE	ARCHITECTURE	

Fig.	7	shows	 the	network	which	will	 implement	core	 function.	 It	 is	 characterized	by	a	
number	of	subnetworks	each	of	which	has	 the	structure	shown	by	Fig.	8.	As	an	alternative,	
the	network	of	Fig.	7	might	be	composed	by	a	single	network	of	the	type	of	Fig.	8.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Fig.	7	

The	Reference	Architecture	

	 	

+	

∗	 ∗	 ∗ ∗	.	.	.	.	.	.

.	.	.	.	..	.	.	.	. .	.	.	. .	.	.	.	.	.	.	.	.

+	 + +	

∗	 ∗ ∗

+

.	.	.	.	.	.

.	.	.	.	.	.
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The	circuit	presented	 in	Fig.	8	will	be	called	a	 “primary	composite	addendum	(PCA)”.	
Every	Fi	will	be	called	a	“primary	composite	addendum	factor”	(PCAF).	

	

	

	

	

	

	

	

	

	

	

	

	

	

Fig.	8	

The	primary	composite	addendum	

	

If	the	number	of	PCA's	of	the	minimum	cost	implementation	of	CF(n)	increased	with	n	
according	 to	 an	 exponential	 law,	 also	 the	 cost	 of	 this	 implementation	 would	 increase	
according	to	an	exponential	 law,	 the	cost	being	represented	by	 the	number	of	AND	gates	at	
the	bottom	of	Fig.	7.	

Therefore,	the	following	analysis	refers	to	the	case	in	which	the	number	of	PCA's	of	the	
minimum	cost	implementation	of	CF(n)	increases	with	n	according	to	a	polynomial	law.	

Besides,	 reference	will	 be	made	 to	 the	 following	 definitions.	 The	merit	 of	 a	 (possibly,	
impure	or	spurious)	prime	implicant	Pi	of	CF(n)	will	be	defined	as	the	number	of	minterms	of	
ECF(n)	 that	Pi	 covers	and	 the	merit	of	a	PCA	will	be	defined	as	 the	number	of	minterms	of	
ECF(n)	that	this	PCA	covers.	

We	 shall	 discuss	 the	 properties	 of	 the	PCA	which	 contains	 the	 maximum	 number	 of	
minterms	of	ECF(n).	It	will	be	called	PCAMAX.	

It	 is	 easy	 to	 prove	 that	 the	 number	 of	minterms	 of	ECF(n)	 contained	 in	 the	 function	
implemented	by	PCAMAX	increases	with	n	as	3n.	Besides,	also	the	number	of	prime	implicants	
of	CF(n)	implemented	by	PCAMAX	increases	with	n	as	3n.		

	 	

+	 + + +	

∗

.	.	.	.	.	.

	F11														F12	.	.	.	.	.	.	.	F1l	

F1																F2																																																																	 Fk‐1																	Fk	

PCAMAX
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8. SYNTHESIS	OF	MAXIMUM	MERIT	PCA	

Consider	the	decomposition	of	the	maximum	merit	PCA	into	k	factors		

F1,	F2,	F3...,Fk		

(Fig.	8).	Consider	also	the	partial	product	

F2‐k	=	F2∗F3∗.	.	.∗Fk	

where	the	symbols	F2,	F3,	..,	Fk,	above	used	to	denote	processing	units	have	the	meaning	
of	their	corresponding	Boolean	values,	as	will	be	done	in	the	future	when	such	a	choice	will	
not	generate	confusion.	 	 	 	 	 	

Obviously,	the	value	of	the	maximum	merit	PCA,	that	is,	the	function	implemented	by	it,	
will	be	

val(PCAMAX)	=	F1∗F2‐k	

Let	 P1,	 P2,	 ...,Pv	 be	 the	 prime	 implicants	 of	 function	 F1	 and	 Q1,	 Q2,...,Qw	 the	 prime	
implicants	of	function	F2‐k	.	Obviously,	the	value	of	the	maximum	merit	PCA	will	be	the	sum	of	
all	the	v∗w	products	Pi∗Qj.	Some	of	these	products	will	be	equal	to	0;	the	other	ones	will	be	
(possibly,	impure	or	spurious)	implicants	of	CF(n).		

The	number	of	minterms	of	ECF(n)	covered	by	each	of	these	implicants	will	be	defined	
as	its	merit.	

Notice	that	any	product	Pi∗Qj	“must”	be	an	implicant	of	CF(n)	(possibly,	extended	with	
spurious	 or	 impure	 variables).	 Otherwise,	 the	 considered	 solution	 would	 not	 be	 a	 correct	
implementation	of	CF(n).	

	Fig.	9	shows	the	symbols	which	will	be	used	in	the	following	analysis.	

An	 arc	 connecting	 node	Pi	with	 node	Qj	denotes	 that	 the	 product	Pi∗Qj	 is	 a	 (possibly	
impure	or	spurious)	implicant	of	CF(t).	For	example,	this	is	the	case	of	arcs	P1	–	Q1,	P1	–	Q2,	P2	
–	Q1,	P2	–	Q2	in	Fig.	9.	The	labels	of	the	arcs	I0,	I1,	I2,	I3,	I0’	(perhaps,	the	same	as	I0),	I1’	are	the	
names	 of	 the	 prime	 implicants	 represented	 by	 those	 arcs.	 A	 missing	 arc	 denotes	 that	 the	
corresponding	product	is	equal	to	0;	thus,	for	example,	P1∗Q3	=	0	or	P4∗Q3	=	0.	

Notice	 that	 an	 arc	might	 be	 labelled	with	 the	product	 of	 two	or	more	different	 prime	
implicants,	as	in	the	case	of	P4	–	Q4	which	has	been	labelled	with	the	product	I3∗I4.	However,	
as	already	proved,	the	merit	of	the	product	of	two	or	more	prime	implicants	is	equal	to	0.		
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Fig.	9	

The	Prime	Implicants	produced	by	a	PCAMAX	

	

Three	different	cases	are	worth	mentioning.	

Case	1.	

Both	P3	and	Q3	are	marks,	and	I(P3)	=	I(Q3).	Of	course,	in	this	case,	I2	=	I(P3)	=	I(Q3).	
Notice	that,	by	virtue	of	Property	6	of	previous	Section	5,	if	P3∗Q3	is	not	equal	to	0,	at	least	one	
of	these	two	terms	is	a	mark	of	the	generated	prime	implicant.		

	

Case	2	

P2	is	a	mark	and	Q2	is	a	remainder.	Obviously,	I1	=	I(P2).	The	considered	arc	is	oriented	
from	P2	to	Q2	in	order	to	remember	that	P2	is	the	“origin”	of	the	arc,	that	is,	the	mark	of	the	
corresponding	prime	implicant.	

This	is	also	the	case	of	the	arcs	P1	–	Q1,	P1	–	Q2,	P2	–	Q1.	

Notice	 that	 in	 Case	 1	 both	 P3	 and	 Q3	 might	 be	 considered	 as	 origins	 of	 the	 prime	
implicant	I2	=	P3∗Q3.		

	

Case	3	

P5	is	a	mark	of	a	prime	implicant	I(P5)	while	Q5	is	a	mark	of	a	different	prime	implicant	
I(Q5)≠	 I(P5).	 Since	 the	 produced	 prime	 implicant	 I5	 coincides	with	 I(Q5),	 the	 arc	 has	 been	
oriented	from	Q5	which	is	considered	as	the	origin	of	the	arc.	

 
- - - - - - - - - 

 
Since	 the	number	of	prime	 implicants	 implemented	by	PCAMAX	 increases	with	n	as	3n,	

also	the	number	of	origins	born	in	the	decomposition	of	Fig.	5	increases	with	n	as	3n.	

P1	

P2	 Q2	

Q1I0	

I1

Q3	P3	 I2

Q4	P4	 I3∗I4

Q5	P5	 I5
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Assume	 that	 the	 number	 of	 origins	 labeled	 as	Qj	 is	 larger	 than	 the	 number	 of	 origins	
labeled	as	Pi.	In	this	case,	of	course,	the	number	of	Qj	origins	increases	with	n	as	3n.	The	case	
in	which	 the	number	of	Qj	 origins	 is	 less	 than	 the	number	of	Pi	 origins	 can	be	 treated	 in	 a	
similar	way.	

We	can	organize	the	Qj	origins	as	follows.	

Let	us	start	from	an	origin	Q11	and	a	node	P1	such	that	Q11∗P1	≠0	

Collect	all	the	origins	Q12,	Q13,	…	such	that	Q1j∗P1	≠	0.	Of	course,	for	all	the	remaining	Qij,	
Qij∗P1=0.	

Now	consider	a	new	P2	and	a	new	Q21	 such	that	Q21∗P2≠	0.	Collect	all	 the	origins	Q22,	
Q23,…such	 that	 Q2j∗P2≠	 0.	 Repeat	 the	 same	 procedure	 till	 all	 Pi’s	 and	 all	 Qij’s	 have	 been	
involved.		

In	Appendix	2	 it	is	shown	that	the	number	of	such	subsystems	cannot	increase	with	n	
exponentially,	if	we	accept	the	hypothesis	that	the	number	of	minterms	of	ECF(n)	contained	
in	PCAMAX	 increases	with	n	as	(3n)∙NMT1(n).	It	follows	that	the	prime	implicants	of	at	least	
one	 of	 the	 subsystems	 must	 cover	 a	 number	 of	 minterms	 of	 ECF(n)	 increasing	 with	 n	 as	
(3n)∙NMT1(n).	We	can	define	this	subsystem	as	“the	most	effective	subsystem”.	

9. THE	SYNTHESIS	OF	THE	MOST	EFFECTIVE	SUBSYSTEM	

Let	us	assume	that	<P1,{Q1j}>	is	the	most	effective	subsystem.	
Assume	that	Q11	is	complete	in	all	the	compatibilities	which	characterize	it	with	respect	

to	the	other	Qij’s.	
For	example	,	if	index	<1,1>	(	input	1	of	triplet	1)	appears	in	Q11	and	index	<1,2>	(input	

2	 of	 triplet	 1)	 appears	 in	 Q12,	 then	 Q11	 contains	 all	 the	 compatibilities	 involving	 <1,1>.	
Similarly,	 each	 of	 the	 other	Q1j’s	 is	 complete	 in	 all	 the	 indexes	 which	 characterize	 it	 with	
respect	to	the	other	Q1j’s.	

Such	subsystem	will	be	defined	as	“complete”.	
A	simple	example	of	a	complete	subsystem	relative	to	CF(3)	is:	

	 P1	=	c(2,1;3,1)	

Q11	=	c(1,1;2,1)	∗	c(1,1;3,1)	

Q12	=	c(1,2;2,1)	∗	c(1,2;3,1)	

Q13	=	c(1,3;2,1)	∗	c(1,3;3,1)	

(25)

If	the	considered	subsystem	is	complete,	its	merit	is	exactly	the	sum	of	the	numbers	of	
minterms	of	ECF(n)	contained	in	all	the	products	P1∗Q1j	‘s.		

Since	 the	number	of	prime	 implicants	 implemented	by	PCAMAX	 increases	with	n	as	3n,	
also	the	number	of	origins	born	in	the	decomposition	of	Fig.	9	increases	with	n	as	3n.	

Let	us	assume	that	one	origin	Qij	 is	not	complete	in	all	the	compatibilities	involving	an	
index	which	does	not	appear	in	other	origins	of	the	same	subsystem.	For	example,	in	the	case	
of	 subsystem	 (25)	 of	 CF(3),	 assume	 that	Q11	 does	 not	 contain	 c(1,1;3,1).	 In	 that	 case,	P1	
should	 contain	 c(1,1;3,1)	 and	 the	merits	 of	Q12	 and	Q13	would	 be	 reduced	 to	 half	 of	 their	
original	value	(because	of	Theorem	3	of	Section	6).	
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In	more	general	terms	consider	the	following	complete	system	relative	to	CF(6):	

	 P1	=	c(1,1;2,1)∗c(1,1;3,1)∗c(2,1;3,1)	

Q11	=	 c(1,1;4,1)∗c(1,1;5,1)∗c(1,1;6,1)∗	

c(2,1;4,1)∗c(2,1;5,1)∗c(2,1;6,1)∗	

c(3,1;4,1)∗c(3,1;5,1)∗c(3,1;6,1)∗	

c(4,1;5,1)∗c(4,1;6,1)∗c(5,1;6,1)	

Q12	=	.	.	.	.		

Q13	=	.	.	.	.	

.	.	.	.	.	.	.	.	

	

Assume	that	c(1,1;4,1)	is	cancelled	in	Q11.	As	a	consequence,	P1	must	be	multiplied	by	
c(1,1;4,1)	in	order	that	P1∗Q11	is	still	an	implicant	of	CF(6).	

This	modification	 implies	 a	 reduction	of	 the	merits	of	many	P1∗Q1k’s	 according	 to	 the	
following	rules:	

1) the	merits	of	1/3	of	them	remain	unchanged	
2) the	merits	of	2/3	of	them	are	multiplied	by	1/2.	

Therefore,	 the	 total	 merit	 of	 the	 considered	 subsystem	 will	 be	 reduced	 of	
(1/3)∙1+(2/3)∙(1/2)=2/3		

Then	 assume	 that	 both	 the	 compatibilities	 c(1,1;4,1)	 and	 c(1,1;5,1)	 are	 cancelled	 in	
some	of	Q1k’s	and	P1	is	multiplied	by	c(1,1;4,1)∗c(1,1;5,1).	

As	a	 consequence	of	 these	modifications	 the	merits	of	 the	P1∗Q1k’s	will	be	changed	as	
follows:	

1) the	merits	of	1/9	of	them	will	remain	unchanged;	
2) the	merits	of	4/9	of	them	will	be	multiplied	by	1/2;	
3) the	merits	of	4/9	of	them	will	be	multiplied	by	1/4.	

Therefore,	the	total	merit	of	P1∗∑Q1k	will	be	multiplied	by	4/9=(2/3)2.	

In	 more	 general	 terms,	 it	 is	 easy	 to	 prove	 that	 if	 q	 compatibilities	 necessary	 to	
completeness	are	missing	in	Q1k	the	total	merit	of	the	considered	subsystem	will	be	reduced	
to	the	extent	of	(2/3)q.		

	 In	general	terms,	a	subsystem	characterized	by	m	fixed	indexes	in	Pi	may	contain	3n‐m	
prime	implicants	(or	less).	Therefore,	if	this	subsystem	is	complete,	its	total	merit	may	reach	
the	value		

M	=	3n‐m∙NMT1(n)	

If	q	compatibility	are	missing,	the	merit	becomes	(2/3)q∙M	

Very	 few	 not	 complete	Qij’s	 would	 reduce	 the	 merit	 of	 the	 considered	 subsystem	 to	
values	 not	 compatible	 with	 the	 hypothesis	 that	 the	 merit	 of	 the	 subsystem	 increases	 as		
3n∙NMT1(n).	Neither	q	nor	m	can	be	increasing	functions	of	n.	
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10. THE	SYNTHESIS	OF	A	COMPLETE	SUBSYSTEM	

Assume	that	PCAMAX	is	a	complete	subsystem	of	CF(n)	covering	a	number	of	minterms	
of	ECF(n)	of	the	order	of	3n∙NMT1(n).	In	this	case	

F2‐k	=	Q1+Q2+…+Qz	

where	z	increase	with	n	as	3n	and	each	Qi	is	a	mark	and	it	is	complete	in	all	the	indexes	
which	characterize	it.	

Now	consider	the	decomposition	

F2‐k	=	F2∗F3‐k	

where	F2	and	F3‐k	can	be	written	as	sums	of	their	prime	implicants		

F2	=	R1+R2+…	

F3‐k	=	S1+S2+…	

It	is	easy	to	prove	that	F2	and	F3‐k	must	contain	at	least	(z‐1)	marks,	that	is,	in	the	best	
case	 the	decomposition	of	F2‐k	 produces	 the	 reduction	by	one	unit	 of	 the	number	of	marks	
contained	in	F2‐k.		

Indeed,	assume,	for	example,	that		

R1∗S1	=	Q1	

R2∗S2	=	Q2	

where	R1,	R2,	S1	and	S2	are	all	remainders.	It	is	easy	to	verify	that	if	R1,	R2,	S1	and	S2	are	
all	remainders,	R1∗S2∗Pi	and	R2∗S1∗Pi	are	not	implicants	of	CF(n).	

Indeed,	for	example,	if	CF(5)	is	the	considered	core	function	and	

	 Pi=c(1,1;2,1)∗c(1,1;3,1)∗c(2,1;3,1)	

Q1=c(1,1;4,1)∗c(1,1;5,1)∗c(2,1;4,1)∗c(2,1;5,1)∗c(3,1;4,1)∗c(3,1;5,1)∗c(4,1;5,1)	

Q2=c(1,1;4,2)∗c(1,1;5,1)∗c(2,1;4,2)∗c(2,1;5,1)∗c(3,1;4,2)∗c(3,1;5,1)∗c(4,2;5,1)	

R1=c(1,1;4,1)∗c(1,1;5,1)∗c(2,1;4,1)∗c(2,1;5,1)∗c(4,1;5,1)	

(which	is	a	remainder	since	<3,1>	is	missing)	

S1=c(2,1;4,1)∗c(2,1;5,1)∗c(3,1;4,1)∗c(3,1;5,1)∗c(4,1;5,1)	

(which	is	a	remainder	since	<1,1>	is	missing)	

R2=c(1,1;4,2)∗c(1,1;5,1)∗c(2,1;4,2)∗c(2,1;5,1)∗c(4,2;5,1)	

(which	is	a	remainder	since	<3,1>	is	missing)	

S2=c(2,1;4,2)∗c(2,1;5,1)∗c(3,1;4,2)∗c(3,1;5,1)∗c(4,2;5,1)	

(which	is	a	remainder	since	<1,1>	is	missing)	

	

(26)

The	product	Pi∗R1∗S2	does	not	 imply	Pi∗Q1	 since	c(3,1;4,1)	 is	missing	and	 it	does	not	
imply	P1∗Q2	 since	 c(1,1;4,2)	 is	 missing,	 while	 the	 product	Pi∗R2∗S1	 does	 not	 imply	Pi∗Q1	
since	c(1,1;4,1)	is	missing	and	it	does	not	imply	Pi∗Q2	since	c(3,1;4,2)	is	missing.	
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Similarly,	the	decomposition		

F3‐k‐=	F3∗F4‐k	

in	the	best	case	produces	the	reduction	by	one	unit	of	the	number	of	marks	contained	in	
F3	.	

It	follows	that	the	decomposition		

F1∗F2∗…∗Fk.	

can	 generate	 the	 reduction	 of	 the	 number	 of	marks	 by	k‐1,	but	 it	 requires	 at	 least	k	
gates,	the	OR	gates	of	Fig.	8.		

It	 is	worth	remarking	that	 the	preceding	considerations	hold	also	 in	 the	case	of	quasi‐
complete	subsystems	in	which	the	absence	of	one	or	more	of	the	few	compatibilities	 in	a	Qj	
determines	the	presence	of	the	same	compatibility	in	Pi.	

For	example,	 in	the	case	described	by	the	set	of	equations	(26),	 if	Pi	were	modified	as	
follows:	

P’i=c(1,1;2,1)∗c(1,1:3,1)∗c(2,1;3,1)∗c(3,1;4,1)∗c(3,1;4,2)	

the	double	decomposition	

(R1+R2+G)∗(S1+S2+G)	

(where	R1,R2,S1	and	S2	are	remainders)	would	be	possible.	

However,	 in	 this	 case,	 the	merits	 of	P’i∗R1∗S1	 and	P’i∗R2∗S2	 (as	well	 as	 the	merits	 of	
many	other	implicants)	are	reduced	to	the	half	of	NMT1(n).	

Also	 in	 this	 case	 one	 gate	 makes	 it	 possible	 to	 reduce	 the	 merit	 of	 the	 considered	
subsystem	of	one	unit	NMT1(n).	

The	 product	 F1∗F2∗…∗Fk	 may	 produce	 other	 marks	 in	 addition	 to	 those	 generated	
inherently	by	the	product	F1∗F2∗…∗Fk.	Indeed,	one	or	more	marks	of	CF(n)	can	be	implicants	
of	some	Fj	.	

For	 example,	 consider	 function	F1	 implemented	 by	 the	 first	 of	PCAF's	 represented	 in	
Fig.	10.		

F1	is	the	output	of	an	OR	gate.	Indeed,	if	it	were	the	output	of	an	AND	gate,	this	might	be	
merged	together	with	the	AND	gate	producing	the	output	of	the	considered	PCAMAX	with	the	
reduction	of	the	cost	by	one	unit.	

Let	F11,	F12,	…,	F1l	be	the	inputs	of	this	OR	gate	(Fig.	10).	In	its	turn,	node	F11	contains	a	
mark	or	a	sum	of	marks	as	the	product	of	functions	F111,	F112,	F113,	…	
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Fig.	10	

The	decomposition	of	primary	composite	addenda	

	 	

The	considerations	above	developed	on	the	AND	gates	producing	PCAMAX	(at	the	bottom	
of	Fig.	10)	apply	also	to	the	AND	gate	producing	F11.	This	gate	can	generate	h‐1	origins	at	the	
cost	of	h	gates	,	that	is,	the	OR	gates	producing	F111,	F112,	F113…		

11. CONCLUSION	

In	order	to	implement	the	sum	of	T	prime	implicants	of	core	function,	the	subnetwork	
PCAMAX	must	employ	more	than	T	gates.	Since	the	number	of	prime	implicants	implemented	
by	PCAMAX	 increases	with	n	as	3n,	 the	 cost	 of	 the	minimal	 implementation	of	 core	 function	
CF(n)	increases	with	n	as	3n.	Since	the	synthesis	of	core	function	is	an	NP‐complete	problem,	
this	result	is	equivalent	to	proving	that	P	and	NP	do	not	coincide.		

	 	

+

∗

	F11													F12	.	.	.	.	.	.	F1l	

F1																		F2‐k	

PCAMAX

∗	

	F111									F112			.	.	.	.	.		F11m	
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12. APPENDIX	1	

12.1. PROOF	OF	THEOREM	5	

If	we	consider	all	the	prime	implicants	of	ECF(n,I1)	and	collect	all	the	prime	implicants	
which	contain	(!X),	where	X	is	variable	not	contained	in	I1,	we	can	write:	

ECF(n,I1)	=	I1	∗k≠1	(!Ik)	=	I1∗((!X)∗F+G)		

where	 F	 and	 G	 are	 two	 antitone	 functions	 (that	 is,	 Boolean	 functions	 which	 can	 be	
written	as	sums	of	products	of	only	complemented	variables)	not	containing	variable	X.	

Let	

K(n)∙NMT(ECF(n,I1)	)	

be	the	number	of	the	minterms	of	ECF(n,I1)	contained	in	(!X)∗F	

and	

(1‐K(n))∙NMT(ECF(n,I1)	)	

be	the	number	of	the	minterms	of	ECF(n,I1)	contained	in	G	and	not	contained	in	(!X)∗F.	

Now	consider	an	impure	term	

T=T(I1)	=	(!X)∗I1	

Since	 the	 number	 of	 minterms	 of	T	 contained	 in	 (!X)∗G	 is	 the	 half	 of	 the	 minterms	
contained	in	G,	the	number	of	minterms	of	T	contained	in	ECF(n,I1)	is	

	 NMT(	(!X)∗I1∗ECF(n,I1)	)	=	NMT(I1∗(!X)∗F+I1∗(!X)∗G)	<	

<	(K(n)	+	(1/2)∙(1‐K(n)	)∙NMT(ECF(n,I1)	)	=	

=	(1/2	+	K(n)/2	)∙NMT	(ECF(n,I1)	)	
(27)

where	sign	<	is	due	to	the	fact	that	F	and	G	have	common	minterms.	

12.2. PROOF	OF	THEOREM	6	

Assume	that	the	number	of	minterms	of	ECF(n,I1)	containing	(!X1)	(	or	(!X2)	)	is	equal	
to	K(n)∙NMT(ECF(n,I1)).	

It	 is	 easy	 to	 verify	 that	 the	 number	 of	 minterms	 of	 ECF(n,I1)	 containing	 both	 the	
variables	(!X1)	and	X2	is	

NMT(ECF(n,I1)∗(!X1)∗X2)	<=	K(n)∙(1‐K(n))∙NMT(ECF(n,I1))	

Similarly,	

NMT(ECF(n,I1)∗(!X2)∗X1)	<=	(1‐K(n))∙K(n)∙NMT(ECF(n,I1))		

NMT(ECF(n,I1)∗X1∗X2)	<=	(1‐K(n)	)∙(1‐K(n))∙NMT(ECF(n,I1))	

NMT(ECF(n,I1)∗(!X2)∗(!X1))	<=	K(n)∙K(n)∙NMT(ECF(n,I1))	

It	follows	that	the	number	of	minterms	of	T(I1)	=	(!X1)∗(!X2)∗I1	contained	in	ECF(n,I1)	
is	less	or	equal	to	

K(n)∙(1‐K(n))∙NMT(ECF(n,I1))/2	+		

(1‐K(n))∙K(n)∙NMT(ECF(n,I1))/2	+	
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(1‐K(n)	)∙(1‐K(n)	)∙	NMT(ECF(n,I1))/4	+		

K(n)∙K(n)∙NMT(ECF(n,I1))=	

Therefore,	the	number	of	minterms	of	T(I1)	=	(!X1)∗(!X2)∗I1	contained	in	ECF(n,I1)	is		

less	or	equal	to	

∙NMT(ECF(n,I1)	)	

which	is	equivalent	to	eq.	(21)	for	m=2.	

The	 extension	 to	 any	 value	 of	 m	 can	 be	 easily	 performed	 by	 applying	 the	 same	
technique.	

12.3. EVALUATION	OF	K(N)	

In	order	to	evaluate	K(n)	consider	the	simple	case	of	n=3	with	

I1	=	c(1,1;2,1)∗c(1,1;3,1)∗c(2,1;3,1).	

In	this	case	

ECF(3,I1)	=	I1∗(!I2)∗(!I3)∗…∗(!I27)	

where	

!I2	=	!c(1,1;2,1)+!c(1,1;3,2)+!c(2,1;3,2)	

!I3	=	!c(1,1;2,1)+!c(1,1;3,3)+!c(2,1;3,3)	

!I4	=	!c(1,1;2,2)+!c(1,1;3,1)+!c(2,2:3,1)	

!I5	=	!c(1,1;2,2)+!c(1,1;3,2)+!c(2,2;3,2)	

!I6	=	!c(1,1;2,2)+!c(1,1;3,3)+!c(2,2;3,3)	

!I7	=	!c(1,1;2,3)+!c(1,1;3,1)+!c(2,3;3,1)	

!I8	=	!c(1,1;2,3)+!c(1,1;3,2)+!c(2,3;3,2)	

!I9	=	!c(1,1;2,3)+!c(1,1;3,3)+!c(2,3;3,3)	

!I10	=	!c(1,2;2,1)+!c(1,2;3,1)+!c(2,1;3,1)	

.	

.	

.	

!I27	=	!c(1,3;2,3)+!c(1,3;3,3)+!c(2,3;3,3)	

Consider	the	two	following	functions:	

H	=	!c(1,1;2,2)	+	

+!c(2,2;3,1)∗!c(	1,1:3,2)∗!c(1,1;3,3)+	

+	!c(2,2;3,1)∗!c(1,1;3,2)∗!c(2,2;3,3)+	

+!c(2,2;3,1)∗!c(2,2;3,2)∗!c(1,1;3,3)+	

+!c(2,2;3,1)∗!c(2,2;3,2)∗!c(2,2;3,3)	

F	=	I1∗(!I2)∗(!I3)∗(!I7)∗(!I8)∗…(!I27)	
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from	which	the	following	equation	derives:	

ECF(3,I1)	=	F∗!c(1,1;2,2)+F∗H	

where	F	and	H	do	not	contain	variable	c(1,1;2,2).	

Function	ECF(3,I1)	is	the	sum	of	the	three	following	functions:	

F1	=	!c(1,1;2,2)∗F∗(!H)	

F2	=	!c(1,1;2,2)∗F∗H	

F3	=	c(1,1;2,2)∗F∗H	

These	functions	are	disjoint	in	the	sense	that	Fi	contains	none	of	the	minterms	contained	
in	Fj	with	j	<>	i	.	Therefore,		

NMT(ECF(3,I1))	=	NMT(F1)	+	NMT(F2)	+	NMT(F3)	

	 Since	function	F	 is	antitonic	in	all	the	variables	contained	in	H,	 for	any	minterm	of	F1	
there	is	a	minterm	of	F2	.	Therefore,	

NMT(F1)	<=	NMT(F2)	

Besides,	

NMT(F2)	=	NMT(F3)	

Therefore,	

K(3)	=	(NMT(F1)	+	NMT(F2))	/	NMT(ECF(3,I1))	<=	(2/3)	

In	more	general	terms	

K(n)	<=	(2/3)	

	

Consider	a	prime	implicant	P	of	F	and	assume	that	it	contains	q	minterms	of	ECF(3,I1).	

The	product	F∗(!c(1,1;2,2)	)	produces	q/2	minterms	of	ECF(3,I1),	since	the	minterms	of	
F	containing	c(1,1;	2,2)	are	not	minterms	of	F∗!c(1,1;2,2).	

The	 same	 prime	 implicant	P	 of	 F	 produces	 a	 variable	 number	 of	 minterms	 after	 the	
multiplication	by	each	of	the	five	addenda	of	H.	For	example	,	the	multiplication		

P∗!c(2,2;3,1)∗!c(1,1;3,2)∗!c(1,1;3,3)	

produces	q/8	minterms	of	ECF(3,I1)	if	P	contains	none	of	the	three	variables	

!c(2,2;3,1)	;	 	 !c(1,1;3,2)	;	 	 !c(1,1;3,3)		

but	it	produces	q	minterms	of	ECF(3,I1)	if	it	contains	all	the	three	considered	variables.	
Besides,	 the	minterms	generated	by	 the	product	P∗!(c(2,2;3,1))∗!(c(1,1;3,2))∗!(c(1,1;3,3))	
must	be	added	to	those	generated	by	the	other	addenda	of	H.	

It	is	apparent	that	K(3)	is	larger	than	0,5.	

Besides,	it	is	a	function	which	decreases	when	n	increases.	

Indeed,	when	n	increases,	the	number	of	addenda	of	H	increases.		
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13. APPENDIX	2	

In	 order	 to	 understand	what	will	 be	 proved	 in	 this	 Appendix	 assume,	 for	 the	 sake	 of	
simplicity,	that	there	is	a	single	PCA	 in	the	implementation	of	CF(4)	and	therefore	PCAMAX	=	
CF(4).	

Assume	also	that	the	PoC’s	Pi	take	the	following	values:	

P1=c(1,1;2,1)∗c(1,1;3,1)∗c(2,1;3,1)	

P2=c(1,1;2,1)∗c(1,1;3,2)∗c(2,1;3,2)	

P3=c(1,1;2,1)∗c(1,1;3,3)∗c(2,1;3,3)	

P4=c(1,1;2,2)∗c(1,1;3,1)∗c(2,2;3,1)	

.	

.	

.	

P27=c(1,3;2,3)∗c(1,3;3,3)∗c(2,3;3,3)	

Let	the	origins	associated	to	P1	be	the	following	ones:	

Q11	=	c(1,1;4,1)∗c(2,1;4,1)∗c(3,1;4,1)	

Q12	=	c(1,1;4,2)∗c(2,1;4,2)∗c(3,1;4,2)	

Q13	=	c(1,1;4,3)∗c(2,1;4,3)∗c(3,1;4,3)	

Now	consider	the	Q2j’s	associated	to	P2	:	

Q21	=	c(1,1;4,1)∗c(2,1;4,1)∗c(3,2;4,1)	

Q22	=	c(1,1;4,2)∗c(2,1;4,2)∗c(3,2;4,2)	

Q23	=	c(1,1;4,3)∗c(2,1;4,3)∗c(3,2;4,3)	;	

the	Q3k’s	associated	to	P3	

Q31	=	c(1,1;4,1)∗c(2,1;4,1)∗c(3,3;4,1)	

Q32	=	c(1,1;4,2)∗c(2,1;4,2)∗c(3,3;4,2)	

Q33	=	c(1,1;4,3)∗c(2,1;4,3)∗c(3,3;4,3)	;	

and	so	on	as	concerns	the	others	Qjk’s.	

It	is	easy	to	verify	that	any	product	Pi∗Qik	is	a	prime	implicant	of	CF(4)	and	all	the	prime	
implicants	of	CF(4)	are	 implemented	by	products	Pi∗Qik’s.	However,	no	product	Pi∗Qjk	with		
i	≠	j	is	an	implicant	of	CF(4)	and,	therefore,	the	considered	∑	Pi∗∑	Qjk	is	not	a	correct	PCA.	

For	example,	the	product	

P1∗Q21	=	c(1,1;2,1)∗c(1,1;3,1)∗c(2,1;3,1)∗c(1,1;4,1)∗c(2,1;4,1)∗c(3,2;4,1)	

is	not	an	implicant	of	CF(4).		
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Four	solutions	can	be	adopted	to	solve	this	problem.	
	
1. To	multiply	Q21	by	a	compatibility	or	a	product	of	compatibilities.	

For	example:	

Q’21=Q21∗c(3,1;4,1)	

This	choice	implies	the	reduction	of	the	merit	of	P2∗Q21	to	the	extent	of	one	half.	

2. To	multiply	P1	by	a	compatibility	or	a	product	of	compatibilities.	
For	example:	

P’1=P1∗c(3,1;4,1)	

This	choice	implies	the	reduction	of	the	merits	of	P1∗Q12	and	P1∗Q13	to	the	extent	of	one	
half.	

3. To	 multiply	 Q11	 by	 a	 complemented	 compatibility	 or	 a	 product	 of	 complemented	
compatibilities.	
For	example:	

Q’21=Q21∗!c(1,1;3,1)	

This	choice	implies	the	reduction	of	the	merit	of	P2∗Q21	to	the	extent	of	one	half.	

4. To	 multiply	 P1	 by	 a	 complemented	 compatibility	 or	 a	 product	 of	 complemented	
compatibilities.	
For	example:	

P’1=P1∗!c(3,2;4,1)	

This	 choice	 implies	 the	 reduction	 of	 the	 merits	 of	 P1∗Q11,	 P1∗Q12	 and	 P1∗Q13	 to	 the	
extent	of	one	half.	

	

Similar	considerations	can	be	applied	to	all	the	products	

Pi∗Qjk	with	 i<>j.	 These	 considerations	 prove	 a	 quickly	 decreasing	 value	 of	 the	whole	
merit	of	the	considered	PCA.		

In	order	to	discuss	this	problem	in	more	general	terms,	consider	the	case	of	Pi,	Pj	and	Qik	
under	 the	 hypothesis	 that	 the	 numbers	 of	 variables	 involved	 in	 Pi	 and	 Pj	 are	mi	 and	mj	
respectively	(with	mi<=mj)	and	that	n‐mj	is	an	increasing	function	of	n.	

For	the	sake	of	simplicity,	without	any	loss	of	generality,	consider	the	following	example.	

Pi=c(1,1;2,1)∗c(1,1;3,1)	

Pj=c(1,1;2,1)∗c(1,1;3,2)	

Qik=c(1,1;4,1)∗c(1,1;5,1)∗c(1,1;6,1)∗c(2,1;4,1}∗c(2,1;5,1)∗c(2,1;6,1)∗c(3,1;4,1)∗	

∗c(3,1;5,1)∗c(3,1;6,1)∗c(4,1;5,1)∗c(4,1;6,1)∗c(5,1;6,1)	

In	order	to	transform	Pj∗Qik	into	an	implicant	of	core	function	CF(6)	one	can	adopt	the	
above	 described	 rule	1	 consisting	 in	 adding	 a	 suitable	 product	 of	 compatibilities	 to	Qik	 as	
follows.	

Q’ik=Qik∗c(3,2;4,1)∗c(3,2;5,1)∗c(3,2;6,1)	
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Such	 an	 operation	 implies	 a	 reduction	 of	 the	 merit	 of	 Pi∗Qik	 to	 the	 extent	 of		
1/2(n‐m)	=	1/8	where	m=	mi=mj=3.	

In	this	example	only	one	of	variables	of	Pi	(variable	3,1)	is	different	from	a	variable	of	Pj	
(variable	 3,2).	 It	 is	 easy	 to	 verify	 that,	 if	 the	 number	 of	 variables	 different	 in	 Pi	 and	 Pj	
increases,	the	merits	of	Pi∗Qik	and	Pj∗Qjk	more	quickly	decrease.	

It	follows	that	by	applying	previous	rule	1	origin	Q’ik	gives	no	valuable	contribution	and	
can	be	ignored.	

Now	 consider	 again	 the	 above	 stated	 problem	 of	Pi,	Pj	 and	Qik	 and	 assume	 that	 it	 is	
solved	by	applying	rule	2.	

In	this	case		

P’j	=	Pj∗c(3,2;4,1)∗c(3,2;5,1)∗c(3,2;6,1)	

This	choice	implies	the	reduction	of	the	merits	of	all	the	Qjk’s,	with	the	exception	of	Qj1,	
by	different	orders	of	magnitude.	It	is	easy	to	prove	the	following	general	relation:	

merit(P’j∗∑k	Qjk)	=	merit(Pj∗∑k	Qjk)∗(2/3)p	

where	p=n‐m1.	(The	proof	is	easy	but	long	and	it	is	omitted	here	for	the	sake	of	brevity).	

It	 follows	that	the	merit	of	Pi∗∑k	Qik	can	increase	as	3p∙NMT1(n),	but	the	merits	of	all	
the	other	Pj∗∑k	Qjk	(with	j<>i)	can	increase	only	as	2p∙NMT1(n).	If	the	merit	of	PCAMAX	must	
increase	 as	 3n∙NMT(n),	 Pi∗∑k	 Qik	 alone	 must	 increase	 as	 3n∙NMT1(n).	 Indeed,	 the	
contributions	of	the	other	subsystems	Pj∗∑kQjk	(with	j<>i)	are	not	sufficient.	

The	above	stated	properties	make	reference	to	subsystems	<Pi∗∑k	Qik>	characterized	by	
the	fact	that	the	number	mi	of	variables	involved	in	Pi	does	not	increases	as	n.	Indeed,	if	n‐mi	

is	a	constant,	 the	merit	of	 the	considered	subsystem	 increases	as	K∙NMT1(n),	where	K	 is	a	
constant	and	it	appears	to	be	very	small	with	respect	to	the	objective	3n∙NMT1(n).	Therefore,	
it	can	be	ignored	unless	the	number	of	such	subsystems	is	of	the	order	of	3n.	

However,	also	if	the	number	of	such	subsystems	increases	as	3n,	 it	 is	easy	to	prove,	by	
applying	the	above	stated	properties,	that	the	total	merit	of	their	sum	is	negligible.	

Rule3	and	rule	4	are	more	effective	from	the	point	of	view	of	the	levels	of	merit	which	
can	be	reached.	However,	the	following	property	can	be	proved.	

The	 number	 of	 subsystems	 <Pi,∑ikQik>	 of	 PCAMAX	 cannot	 increase	 according	 an	
exponential	law.		

A	formal	proof	of	the	above	analyzed	property	can	be	developed	as	follows.	

Let	 NS	 be	 the	 number	 of	 subsystems	 generated	 by	 selecting	 a	 number	 of	 Pi’s	 and	
associated	Qij’s.	

Let	 NC	 be	 the	 number	 of	 correction	 PoC’s,	 that	 is,	 sequences	 of	 variables	 of	 CF(n)	
containing	at	least	one	complemented	variable	necessary	in	order	that	Pi∗Qjk	is	equal	to	0	 if		
i	≠	j	 .	It	is	apparent	that	any	subsystem,	with	a	single	exception,	must	be	characterized	by	at	
least	 one	 correction	 PoC	 and	 that	 a	 subsystem	 must	 be	 characterized	 by	 at	 least	 one	
correction	PoC	different	from	the	correction	PoC’s	of	the	other	subsystems.	Therefore,	

NC	>=	NS∙(NS	–	1)/2	–	1	

It	is	also	apparent	that	the	length	L	of	the	longest	correction	PoC	must	be	such	that	

2L	–	1	>=	NC	
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Now	assume	that	the	number	of	subsystems	increases	according	an	exponential	law	of	
the	type:	

NS	=	Y∙hn	

From	this	assumption	the	following	equations	derive:	

NC	=	Y∙hn∙(	Y∙hn	‐	1)	/2	≈	Y2∙h2n	

L	≈	log2	NC	≈	log2	(	Y2∙h2n	)	≈	2∙log2Y	+	2∙n∙log2h	

Because	of	the	presence	of	L	complemented	variables	in	the	correction	PoC	,	the	number	
of	minterms	covered	by	a	subsystem	is	reduced	of	a	 factor	equal	to	about	1/(2L).	Since	L	 is	
less	than	the	half	of	the	number	3∙n∙(n‐1)/2	of	variables,	it	is	easy	to	prove	that	the	number	
of	minterms	covered	by	the	sum	of	all	the	subsystems	is	less	than	

1/2	(L/2)∙NMT(ECF(n))	≈	1/	(	Y∙hn	)∙NMT(ECF(n))	

Therefore,	the	number	of	minterms	covered	by	the	sum	of	all	the	subsystems	increases	
as		

(3n/hn)∙NMT(ECF(I1,n)		

	against	the	hypothesis	that	NMT(PCAMAX)	increases	as		

3n∙NMT(ECF(I1,n)		
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