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Abstract Biological systems are typically formed by different cell phenotypes,
characterized by specific biophysical properties and behaviors. Moreover, cells
are able to undergo differentiation or phenotypic transitions upon internal
or external stimuli. In order to take these phenomena into account, we here
propose a modelling framework in which cells can be described either as point-
wise/concentrated particles or as distributed masses, according to their bio-
logical determinants. A set of suitable rules then defines a coherent procedure
to switch between the two mathematical representations. The theoretical envi-
ronment describing cell transition is then enriched by including cell migratory
dynamics and duplication/apoptotic processes, as well as the kinetics of se-
lected diffusing chemicals influencing the system evolution. Finally, biologically
relevant numerical realizations are presented: in particular, they deal with the
growth of a tumor spheroid and with the initial differentiation stages of the
formation of the zebrafish posterior lateral line. Both phenomena mainly rely
on cell phenotypic transition and differentiated behaviour, thereby constitut-
ing biological systems particularly suitable to assess the advantages of the
proposed model.

Keywords multiscale modeling · hybrid systems · cell differentiation · cell
phenotypic transition · multiscale dynamics

1 Introduction

Biological systems are characterized by collective dynamics that arise from
individual behaviors and interactions through multiscale interconnected pro-
cesses. More specifically, the evolution of macroscopic cell aggregates, visible
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by looking at the totality of cells as a whole, results from the phenomenology
of the single component cells.

Entering in more details, collective cell movement is the principal migration
modes in morphogenesis, regeneration and cancer, and depend upon complex
cell-cell (and cell-tissue) interactions [16], [21]. In particular, most biological
systems are composed by multiple cell populations, or multiple clones of the
same population, with specific functions and migratory determinants. For in-
stance, few specialized cells typically behave as a patterning guidance for the
rest of the aggregate [21], [23]. These phenomena are mainly regulated by both
temporary activations and long-lasting differentiation processes, that are able
to define the leader individuals within the moving cell group [16].

A relevant example of such regulatory mechanisms is the so-called tip cell
selection and lateral inhibition, which establishes the leader endothelial cells
during physio-pathological vascularization. This process is mediated by se-
lected vascular endothelial growth factor (VEGF)-induced delta-notch signal-
ing pathways [24], [28], [29], [37] and references therein. Another example is
given by the epithelial-to-mesenchymal transition (EMT), which is instead
typical of different stages of morphogenesis and organogenesis in addition to
the development of carcinomas (i.e., tumors of epithelial origin, such as lung,
breast, ovarian, and prostate malignancies). This process, caused by a dra-
matic loss of cell-cell adhesive junctions, consists in the delamination (and in
the subsequent individual invasion of the mesenchyme also via proteolytic ac-
tivity) of groups of aggressive cells from epithelial layers [16]. In this respect,
EMT-like dynamics also comprehend those processes where the downregula-
tion of intercellular adhesive interactions results in cell detachment and in the
onset of single-cell modes of migration.

From a mathematical point of view, it is indeed desirable to develop mod-
elling structures able to capture and represent different cell behaviours as well
as the relative mechanisms of phenotypic transitions. In this respect, we here
present an innovative modelling approach, which allows a cell aggregate to
be described either as a set of pointwise/concentrated particles or through its
spatial mass density. Further, our mathematical environment allows to pass
from a localized to a distributed representation of the single component cells
by defining a proper bubble function, which represents the spatial mass exten-
sion of each individuals. In this respect, the basic idea is that cell transition
can be modeled through the substitution of a localized mass with the relative
bubble function, and viceversa (see the left panels in Fig. 1).

In order to apply the proposed approach to specific biological problems, the
resulting hybrid model is finally enriched with proper equations describing the
behavior of each cell clone, i.e., cell migratory dynamics, duplication/apoptosis
processes, as well as the kinetics of extracellular chemicals or other involved
phenomena (see again Fig. 1). In particular, in this context, selected chemical
stimuli may assume a relevant role both in influencing system dynamics and
growth/death processes and in triggering cell phenotypic differentiations, with
the consequent switch of cell mathematical representation.
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Fig. 1 Conceptual scheme of model: Our mathematical environment allows to account both
for cell phenotypic transitions and for cell migratory dynamics and patterning. Key features
of our approach are the use of different descriptive instances (i.e., localized vs. distributed)
for cells characterized by different behaviors and properties (i.e., activated vs. deactivated)
and the definition of a coherent procedure to describe cell phenotypic differentiations.

The remaining part of the article is organized as follows. In Section 2, we
present the main model features, supported by a sample test application that
shows how the multiscale cell differentiation procedure works. Section 3 is then
devoted to the application of the model to some relevant biological problems,
i.e., avascular tumor expansion and invasion and zebrafish posterior lateral
line (pLL) development.

2 Modelling the localized/distributed switch

An aggregate of N cells can be mathematically described either as a set of
localized individual particles or through the spatial distribution of its mass
density, according to the phenomenon of interest. Such different cell represen-
tations may also coexist in the case of biological systems formed by different
cell lines or by distinct clones of the same cell lineage, whose specific prop-
erties and behaviour justify the convenience of adopting different descriptive
instances. In this respect, we here propose a mathematical framework that
allows both types of cell representations as well as rules for dynamic transi-
tion between them. In the following, we will refer to a generic two dimensional
domain Ω ⊆ R2: however, the methodology can be easily extended also to
three-dimensional environments.

Purely localized/pointwise description. From this point of view, each cell of the
aggregate is represented as a dimensionless point with concentrated mass m,
and identified by its position in space, i.e., xj(t) ∈ Ω with j = 1, . . . , N(t),
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where N(t) is the total number of cells, possibly varying in time following
suitable growth/death laws assuring that N(t) ∈ N for any t In this respect,
the configuration of the entire aggregate at a given time t is defined by the
following vector:

X(t) = {x1(t), x2(t), . . . , xN(t)(t)}, (1)

withN(t) ∈ N, and the mass of the whole aggregate is given byM(t) = mN(t).

Purely distributed description. On the other hand, the configuration of the
system can be completely described by defining a spatial mass density distri-
bution ρ(t, y) : R+ ×Ω → R+ such that∫

Ω

ρ(t, y)dy = M(t) ∀ t. (2)

In this respect, ρ has units µg/µm2, and the mass of the whole aggregate
M(t) ∈ R+, for any t, represents N(t) = ⌊M(t)/m⌋ cells. In this context,
M(t) possibly varies in time according to suitable growth/death laws for the
mass density ρ (such as, for instance, exponential or logistic laws).

Hybrid description. As already seen, a cellular system can be composed of
subpopulations which have equal biophysical properties (e.g., shape, dimen-
sion) but different behaviours. In these situations, it can be convenient to use
a distinct mathematical representation for each cell subgroup

X(t) = {x1(t), x2(t), . . . , xNL(t)};
(3)

ρ(t, y) :

∫
Ω

ρ(t, y)dy = MD(t) ∀ t,

i.e., to differentiate the aggregate in two subsystems: one composed of NL(t) ∈
N localized cells and the other formed by the distributed mass MD(t) ∈ R+,
such that mNL(t) + MD(t) gives the mass M(t) of the whole aggregate, for
any t. In particular, from a biological point of view, a localized/pointwise
description is more appropriate for activated/differentiated cells, whereas a
distributed representation, characterized by a lower level of individual details,
is more suitable for quiescent/undifferentated cell ensembles. Keeping in mind
the above-considerations, in this case, possible growth/death processes of each
clone are reproduced by defining proper laws for NL(t) ∈ N and ρ(t), respec-
tively. In particular, the duplication/apoptosis of localized cells results in step-
wise mass variations, whereas growth/death processes of the distributed part
of the aggregate result in continuous variations.

In a wide range of biological processes, individual cells undergo phenotypic
transitions, i.e., they can activate or deactivate. These mechanisms can be
reproduced in our framework by assuming a hybrid description of the system
and allowing a switch between the two cell descriptive instances: it is indeed
necessary to define a proper correspondence between the localized and the
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Fig. 2 Left panel: Representative morphology of a cell seeded on a planar substrate, image
taken from http://www.cell.com/pictureshow/cell-motility. Right panel: Selected form
of bubble function wx describing the mass extension of a cell centered in x = (x1, x2), see
Eq. (5).

distributed representation of a single cell. In this respect, let us first introduce
a function wx(y) : Ω×Ω → R+, that will be denoted as bubble function, such
that ∫

Ω

wx(y)dy = m. (4)

It has units µg/µm2 and models the spatial mass distribution of a cell whose
center is located in x ∈ Ω. In principle, there exist several possible options to
properly explicit the form of wx. However, as reproduced in Fig. 2, the typical
morphology of cells seeded on planar substrates can be well approximated by
the following bubble function:

wx(y) =


dw hc

r6c
( r2c − |x− y|2 )3, if |x− y| < rc;

0, otherwise;

(5)

where | · | identifies the modulus of a vector in the Euclidean norm. In the case
of our interest, dw ≈ 103 kg/m3 is the density of water (which is the main
constituent of cells [1]), rc = 15 µm is the mean cell radius and hc = 10 µm
is the cell “height”, established by considering that cells have to contain the
voluminous stiff nucleus (whose dimensions fall in the range 7 − 10 µm [1]).
These values allow to estimate the cell mass m = (π/4)dwhcr

2
c = 1.8 ·10−9 g =

1.8 · 10−3 µg, which is consistent with the measurements performed in [6].

Referring to the hybrid representation of an aggregate of mass M(t) given
in Eq. (3), let us now assume that, at a certain time t, the j-th cell individu-
ally described and located in xj(t) undergoes a phenotypic transition (i.e., a
deactivation), thereby requiring a switch of its mathematical representation.
Such a process can be implemented in our modelling framework by removing
the localized cell j, centered at xj , from the pointwise representation X and
by simultaneously adding the equivalent mass distribution function wxj(t) to
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the density ρ. Consistently, both the number of localized cells and the overall
mass of distributed cell have to be updated. In mathematical terms, we indeed
get the following relations:

NL(t
+) = NL(t)− 1;

MD(t+) = MD(t) +m;

X(t+) = X(t) \ {xj(t)} = {xi(t
+)}NL(t+)

i=1 ;

ρ(t+,y) = ρ(t,y) + wxj(t)(y) ∀ y ∈ Ω,

(6)

where the localized representation of the remaining NL(t
+) cells is renumbered

according to the following rule

xi(t
+) =

xi(t), if i < j;

xi−1(t), if i > j.
(7)

Remark. With respect to the characteristic time scales of other biological pro-
cesses (movement, duplication, death), cell phenotypic transitions can be con-
sidered an almost instantaneous phenomenon. In this respect, we assume that,
at each time t, cell differentiation results in an intermediate system configura-
tion, identified by the time notation t+.

In general, the above-described representation switch of cell j can be induced
both by a prescribed intracellular input (e.g., intrinsic law) or by an evolving
extracellular stimulus. In particular, from a biological point of view, cell pheno-
typic transitions are mainly triggered by molecular stimuli: for instance, high
levels of selected chemicals activate cells, whereas low enough concentration
of growth factors results in cell quiescence/deactivation. In this respect, let us
assume that the local concentration of a molecular substance drops below a
certain threshold in xs ∈ Ω at t: the above-described phenotypic differentia-
tion actually occurs only if there is a localized cell j placed in xs, i.e., if there
exists a j such that xj(t) = xs.

Let us then conversely assume that the same molecular variable exceeds the
given threshold in xs, thereby stimulating cell activation mechanisms which
require the inverse transition between the two mathematical descriptive in-
stances. In this case, the representation switch is possible only if there is a
sufficient amount of mass to have a localized cell centered in xs. This amounts
to have a sufficient mass density distribution over all the support of wxs , which,
as seen, describes the distributed mass of a possible localized cell placed in xs

(i.e., to have ρ(t,y) ≥ wxs(y), ∀y). If this condition is satisfied the cell phe-
notypic transition (and the corresponding representation switch) results from
the removal of the mass distribution wxs from the density ρ, the addition of a
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new localized cell NL + 1 placed in xs to the pointwise representation X, and
the update of both NL and MD:

NL(t
+) = NL(t) + 1;

MD(t+) = MD(t)−m;

X(t+) = X(t) ∪ {xs} = {xi(t
+)}NL(t+)

i=1 ;

ρ(t+,y) = ρ(t,y)− wxs(y) ∀ y ∈ Ω.

(8)

In this case, the localized representation is renumbered as follows

xi(t
+) =

xi(t), if i < NL(t
+);

xs, if i = NL(t
+).

(9)

The extension of the above-described procedure to the case of simultaneous
phenotypic differentiations can be done as follows. We assume that, at a given
time t, a set of P (t) localized cells and a given amount of distributed mass,
corresponding to Q(t) cells, change phenotype under selected extracellular
stimuli placed at {p1, . . . ,pP } and {q1, . . . ,qQ}, respectively (with ph,qk ∈ Ω
for any h = 1, . . . , P (t) and k = 1, . . . , Q(t)). In order to actually have these
transitions, we need that

(i) for each h, there exist a cell j such that xj(t) = ph;

(ii) ρ(t,y) ≥
Q(t)∑
k=1

wqk
(y) for all y ∈ Ω.

If all these conditions are satisfied, we have

NL(t
+) = NL(t)− P (t) +Q(t),

MD(t+) = MD(t) +m(P (t)−Q(t)),

X(t+) = X(t) \ {p1, . . . ,pP (t)} ∪ {q1, . . . ,qQ(t)} = {xi(t
+)}NL(t+)

i=1 ,

ρ(t+,y) = ρ(t,y) +

P (t)∑
h=1

wph
(y)−

Q(t)∑
k=1

wqk
(y) ∀ y ∈ Ω,

(10)

where the localized representation is renumbered according to the rules given in
Eq. (7) and (9). Finally, the generalization to more cell populations is straight-
forward.

Remark. If the condition for a distributed-to-localized cell transition is simulta-
neously satisfied in two or more points of the domain, resulting in an overlap
of the corresponding bell functions, only a single cell differentiation occurs,
whose location is randomly established.
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Fig. 3 Cell phenotypic differentiations (with the coherent switches between the corre-
sponding mathematical descriptions) induced at successive instants by localized extracel-
lular signals within initially quiescent cell systems. Setting 1: Cell aggregate composed
by 95 detached bell functions w( · ). Setting 2: Cell aggregate formed by 95 overlapping
bell functions w( · ). Setting 3: Cell colony characterized by a homogeneous mass density
wmax = max

y∈R2
{w( · )(y)}. At t1, a cell phenotypic transition is triggered in a single point q1,

differently located within each aggregate. As a result, in all settings, a localized individual
forms, surrounded by a round area with decreased mass density (which corresponds to the
support of the bell function wq1

). Successively, at t2, cell activation is stimulated in three
different points for each aggregate. In the case of the initial configuration 3, cell phenotypic
transitions are observed in all the three locations. For settings 1 and 2, cell activation ac-
tually occurs only in q3 and in q4: in both cases, the mass density distributed over the
support of wq2

is in fact not sufficient to constitute a differentiated individual. Finally, at
t3, the firstly activated cell located in q1 is assumed to turn back to the quiescent state
as its period of differentiation has terminated: therefore, in all system configurations, the
initial mass distribution is locally recovered.

2.1 Test simulation: dynamical change of cell representation

Before including in the picture intercellular interactions, it is useful to give an
example of cell phenotypic transitions in the case of a colony whose cells do not
move but undergo only differentiation at selected instant times. In particular,
in all simulations, we start with a spheroid of initially quiescent cells, which
are represented by a distributed density whose amount is equal to 95 m (i.e.,
to the mass of 95 cells). The exact initial mass configuration is arranged to
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obtain 3 different settings (the domain Ω is resized accordingly, see the left
panels in Fig. 3):

Setting 1: it consists of a set of 95 disjoint bubble functions, i.e.,

ρ(0,y) =
95∑
j=1

wxj(0)(y) ∀ y ∈ Ω, (11)

where wx is defined in Eq. (5) and, for any pair (h, k) of first-nearest
neighboring cells, |xh − xk| = 30 µm > rc;

Setting 2: it consists of a set of 95 overlapping bubble functions, i.e., Eq. (11)
holds but with the condition |xh −xk| = 15 µm = rc for any pair (h, k) of
first-nearest neighbors;

Setting 3: it consists of a round compact colony with homogeneous density
equal to wmax = max

y∈R2
{wx(y)} = dw hc = 10−5 µg/µm2, which is the

maximal value taken by the bubble function wx(y) (see Eq. (5)), and whose
overall mass is equal to 95m, as in previous cases. In this case, we indeed
have

ρ(0,y) =

wmax, ∀ y ∈ Brag (120, 120);

0, otherwise,
(12)

where Brag (120, 120) is the ball centered in (120 µm, 120 µm) with radius

rag =
√
95m/(πwmax) = 73.8 µm. It is worth noting that, in case of

homogeneous distribution of cells, wmax is the minimum value of mass
density that allows the switch from a distributed to localized representation
of cells.

Referring to the hybrid system representation given in Eq. (3), in all the above-
described settings we have that NL(0) = 0, MD(0) = 95m, X(0) = ∅.

At a given time t1, an external input stimulates cell phenotypic transition
in a single point (q1 = (171.6 µm, 141.4 µm) in the case of setting 1, q1 =
(85.8 µm, 70.7 µm) in the case of setting 2, and q1 = (92.4 µm, 80.3 µm) in
the case of setting 3). As reproduced in Fig. 3, for all system configurations, a
sufficient amount of distributed mass is located over the support of wq1

(i.e.,
ρ(t1,y) ≥ wq1

(y), ∀y ∈ Ω), so that cell activation actually occurs leading
to the corresponding switch between the mathematical cell descriptions. In
particular, in the first two settings, q1 is exactly located in the center of one
of the bubble functions used to establish the initial condition of the aggregate,
whereas in the third setting q1 falls within the colony, which, as already said,
is characterized by a high enough constant density to allow cell differentiation
(see Eq. (12)). As a result, in all settings (but with a clear evidence in the case
of setting 3), the localized cell formed in q1 is surrounded by a round area of
radius rc characterized by a reduction of the local mass density: it corresponds
to the support of the bell function wq1

whose density has been subtracted to
the overall continuous distribution.
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Successively, at t2, analogous local signals simultaneously stimulate each
aggregate in three different points (i.e., q2 = (300 µm, 320 µm), q3 = (309.4 µm,
107, 2 µm) and q4 = (151.2 µm, 225.4 µm) in the case of setting 1, q2 =
(150 µm, 160 µm), q3 = (154.9 µm, 53.6 µm) and q4 = (75.6 µm, 112.7 µm) in
the case of setting 2, and q2 = (144.2 µm, 152.2 µm), q3 = (148.2 µm, 70.5 µm)
and q4 = (84.2 µm, 114.1 µm) in the case of setting 3), see Fig. 3. In the case
of the initial configuration 3, cell phenotypic transitions are observed in all the
three stimulated points. For settings 1 and 2, cell activation actually occurs
only in q3 and in q4: in both cases, the mass density distributed over the
support of wq2

is in fact not sufficient to constitute a localized differentiated
individual.

Finally, we further assume that a localized cell maintains its activated sta-
tus only for a limited period: after that, it returns to a quiescent/deactivated
condition. At t3, for all settings, the firstly activated cell located in q1 is as-
sumed to turn back to the quiescent state as its period of differentiation has
terminated: therefore, in all system configurations, the initial mass distribution
is locally recovered, see Fig. 3. It is useful to remark that, in these test simu-
lations, both the times and the points of the above-described cell phenotypic
transitions have been randomly chosen.

3 Modelling the interaction dynamics

A key feature of the proposed hybrid modelling framework is the possibility to
define a proper evolution law for each subpopulation according to its specific
behavior. In this respect, in this section, we enrich the above-proposed proce-
dure with proper cell migratory dynamics and proliferation/death processes.

Let us consider a biological system composed by two clones of the same cell
lineage, whose biophysical properties and behaviour justify the convenience
of a hybrid representation of the system (see Eq. (3)). In particular, referring
to the above-considerations, we adopt a localized/pointwise description for
specialized/differentiated cells, and prefer a distributed representation of the
rest of the system, i.e., for unspecialized/undifferentated individuals. In this
respect, the set of localized individuals evolves following a system of first order
ODEs, while the dynamics of the distributed part of the aggregate is regulated
by the local form of a mass balance equation:

dxj(t)

dt
= vL(xj(t)), j = 1, . . . , NL(t),

∂ρ(t,y)

∂t
+∇ · (ρ(t,y) vD(t,y)) = Γ (t,y),

(13)

where xj and ρ are defined in Eq. (3), and vL and vD are the velocity of the two
cell clones, respectively. The term Γ is the proliferation/apoptosis rate of the
distributed part of the aggregate. As already said, possible duplication/death



Coherent switch between mathematical cell representations 11

processes of localized individuals can be implemented by defining a proper
evolution law for their number NL. In Eq. (13), we have assumed that the
velocity of moving individuals and not their acceleration is proportional to the
sensed forces: this is the so-called overdamped force-velocity assumption, that
holds for extremely viscous regimes, such as biological environments (see [30]
for a detailed comment). Then, assuming that, in general, cell dynamics are
established by both a directional motion and by intercellular interactions, in
Eq. (13), we set

vL(xj(t)) = v̂L(xj(t)) +

NL∑
i=1

m KLL(xi(t)− xj(t))+

+

∫
Ω

KLD(ξ − xj(t))ρ(t, ξ) dξ;

vD(y) = v̂D(y) +

NL∑
i=1

m KDL(xi(t)− y) +

∫
Ω

KDD(ξ − y)ρ(t, ξ) dξ.

(14)
Specifically, the functions v̂L : R2 7→ R2 and v̂D : R2 7→ R2 implement the
directional contribution to cell velocity, which may arise from environmental
determinants, e.g., the local concentration/stiffness of the extracellular ma-
trix components (haptotaxis/durotaxis) or on the spatial distribution of some
diffusive chemicals (chemotaxis).

The sum and integral terms in Eq. (14) represent instead the velocity com-
ponents due to direct intercellular interactions. In this respect, the kernels
Kαβ : R2 7→ R2 (where α, β,∈ {L,D}) define how a localized cell (if α = L)
or a distributed infinitesimal mass (if α = D) is influenced in its dynamics
by a specialized cell (if β = L) or by an infinitesimal unspecialized mass (if
β = D). In this respect, there exist several possibilities to specify the form
of Kαβ . However, hereafter we employ the following set of assumptions: (i)
intercellular interactions involve cell-cell adhesion, due to the expression of
cadherin adhesive molecules, and cell-cell repulsion, which reproduces cell re-
sistance to compression; (ii) the resulting velocity components give an effect
along the direction connecting the interacting elements, depending for instance
on their relative position; (iii) intercellular interactions are isotropic and occur
only within limited cell neighborhoods (metric interactions). In particular, re-
pulsive interactions activate only within a cell repulsive neighborhood defined
by a mean cell diameter, dr, that determines the minimal space occupied by a
cell (which is consistently equal to 2 rc, where rc has been defined in Eq. (5)).
On the opposite intercellular adhesive forces occurs over a cell neighborhood
defined by the maximal distance reached by cell mobile adhesive structures
(i.e., filopodia and pseudopodia), identified by da (as represented in Fig. 4).
In this respect, it is consistent to assume da > dr, as wandering cells are able
to extends membrane protrusions sufficiently far from their main body. The
hypothesis of isotropy applies to cells characterized by a homogeneous distri-
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bution of receptors or adhesive molecules all over their membrane. Summing
up, defining as Fαβ

r cell intrinsic resistances to compression and as Fαβ
a the

measures of the amount of expressed and activated cadherins, we can write:

Kαβ(|r|) = Kαβ(|r|) r

|r|
= Kαβ [dr, F

αβ
r , da, F

αβ
a ](|r|) r

|r|
. (15)

In this respect, it is worth to note that the interaction distances are set to be
independent from the specific cell phenotype (i.e., da and dr are in common for
all cell subpopulations taken into account). The strengths of the interacting
forces may instead vary according to the type of interacting elements. Analo-
gous interaction terms have been introduced in [12] and [13] where a hybrid
discrete/continuous representation of a two-population system is obtained by
employing a measure-theoretic approach. Other examples of non-local integro-
differential models to describe selected dynamics of heterogeneous cell aggre-
gates are proposed in [3], [4] and [26]. In particular, in [3] and [4], cell movement
is determined by adhesive forces: using a continuous approach, the authors
represent cell adhesion with an integral term over a sensing region, which is
defined as the area over which a cell can sense the surrounding environment.
In [26], instead, the dynamics of both homogeneous and heterogeneous aggre-
gates are given by a non-local PDE model which includes both attracting and
repelling signals directly transmitted over different interaction ranges.

We then turn to apply the resulting complete model to a couple of biological
phenomena: i) selected phenomenologies of the avascular growth and invasion
of a solid tumor spheroid and ii) the stage of the formation of the zebrafish
posterior lateral line. It is worth to note that the aim of the following numerical
realizations is to show the advantages of the proposed modelling approach in
realistic biological contexts, however without claiming to be exhaustive in the
description of the phenomena of interest.

3.1 Avascular tumor growth and invasion

The evolution of a tumor spheroid can be characterized by tumor finger forma-
tion or spreading of metastasis (cell scattering). In both cases, the malignant
mass is formed by two clones of cancer cells, that have equal geometrical
dimensions but distinct behaviour: a differentiated/metastic group of indi-
viduals (hereafter labeled by “M”), activated by a given amount of growth
factors, and a quiescent mass (“Q”). The former cell phenotype has reduced
adhesive interactions and an increased migratory ability (in particular, high
chemotactic strength). On the contrary, the latter cell clone has significant
adhesiveness and enhanced proliferation/death cycles, but no migratory abil-
ity. Taking these considerations into account, it is natural to use a pointwise
description for metastatic individuals and a distributed representation for the
rest of the tumor mass (defined by the mass density ρ). In this respect, the
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Fig. 4 Left panel: Sketch of cell body. dr represents the mean cell diameter (dashed line), da
is the maximum distances reached by cell adhesive structures (solid line). Central panel: Cell
interaction neighborhoods. Repulsive interactions occur between cells whose relative distance
is less then dr, i.e., less than a mean cell diameter (dashed circle). Adhesive interactions
instead occur within a cell relative distance da which is possibly the maximum extension of
cell adhesive structures (solid circle). Right panel: Plot of the proposed interaction kernel.

dr, da are the repulsive and attractive radii, respectively, and Fαβ
r , Fαβ

a the strengths of
the corresponding interactions occurring between cell phenotype α and β.

dynamics of the set of activated/localized individuals and the the distributed
part of the aggregate is given by Eq. (13) and (14), with L = M and D = Q.

Entering more in details, in this context, a plausible law for duplica-
tion/apoptosis processes of the quiescent part of the tumor is given by

Γ (t,y) =

[
γ

(
1− ρ(t,y)

ρmax

)
− δ

]
ρ(t,y), (16)

where γ and δ are the proliferation and death rate, respectively, while ρmax =
2wmax = 2maxy{w( · )(y)} = 2 · 10−5 µg/(µm)2 is a maximum admissible
value for the cell mass density. In particular, by assuming logistic growth and
constant death rate for the quiescent mass, we are including in the model both
a contact-inhibited cell proliferation and a natural cell apoptosis.

The directional velocity component is active only for metastatic individuals
(i.e., v̂Q ≡ 0) and implements the chemotactic velocity as follows

v̂M(xj(t)) = min{k0|∇c(t,xj(t))|; vmax}
∇c(t,xj(t))

|∇c(t,xj(t))|
, (17)

where c is the concentration of the molecular chemotactic substance (see
Eq. (19) below), k0 = 4 · 109 µm2/(µMs) is the cell chemical response and
vmax = 0.0025 µm/s is a maximum admissible speed, taken from the biologi-
cal literature [1].

Keeping in mind the assumption that the cell subpopulations forming the
tumor are two clones of the same cell lineage, that have equal physical prop-
erties but different behaviours, we set for both dr = 30 µm and da = 60 µm,
which are coherent with the experimental measurements on tumor (refer to [5]
for gliomas and to [27] for ovarian cancer spheroids). Although there are several
options to specify the form of interactions kernels Kαβ (where α, β,∈ {M, Q}),
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assuming, as already said, repulsive/adhesive metric isotropic interactions (cf.
Eq. (15)), we set

Kαβ(r) =



−2Fαβ
r |r|
dr

if |r| < dr
2
;

2Fαβ
r

(
|r|
dr

− 1

)
if

dr
2

≤ |r| < dr;

− 4Fαβ
a

(da − dr)2
(|r| − dr) (|r| − da) if dr ≤ |r| < da;

0 otherwise,

(18)

see Fig. 4 and refer to [12]. The specific values both of the intercellular ad-
hesive/repulsive strengths and of the quiescent cell proliferation/death rates,
whose units are µm/(µg s) and s−1, respectively, have been empirically esti-
mated, after a number of trial simulations and in accordance with reasonable
biological considerations. In this respect, proper values of homotypic (i.e., be-
tween elements of the same subpopulation) and heterotypic (i.e., between ele-
ments belonging to different subpopulations) repulsion strengths and of homo-
typic adhesive strengths are FMM

r = FQQ
r = 10−4 µm/(µg s), FMQ

r = FQQ
r =

10−5 µm/(µg s), FMM
a = 0 µm/(µg s) and FQQ

a = 2.5 · 10−5 µm/(µg s). The
heterotypic adhesive strengths and the proliferation/death rates of the qui-
escent cell lineage will be instead specified in the following, according to the
selected phenomenology of avascular growth of a solid tumour. For reader
convenience, all the parameter values are listed in Tables 1, 2 and 3.

The evolution of the chemical which, as seen, behaves both as an activa-
tor for the quiescent tumor mass and as a chemotactic cue for the already-
metastatic individuals is regulated by the following standard reaction-diffusion
equation 

∂c

∂t
(t,y) = D∆c(t,y)− ϵc(t,y), y ∈ Ω;

c = c0, y ∈ ∂Ω;

(19)

where D = 10 µm2/s is the constant and homogeneous diffusion coefficient,
ϵ = 1.8 · 10−4 s−1 is the decay rate and c0 = 2.17 · 10−4 µM is the amount
of chemical prescribed over the whole edge of the computational domain Ω.
Such a boundary condition implements a constant supply of chemical factors
from the host tissue to the tumor. It is also useful to remark that the kinetics
law (19) will hold for the simulations proposed both in Section 3.1.1 and in
Section 3.1.2. The cell activation threshold is then set equal to cs = 1.0 ·
10−8 µM, i.e., the cell phenotypic transition described in Eq. (8) is actually
stimulated in a point xs ∈ Ω if c(t,xs) > cs. To avoid the formation of quasi
or completely overlapped metastatic cells, we assume that a cell activation in
xs inhibits further cell differentiation over a ball centered in xs with radius
rinh. Comparable regulatory mechanisms of phenotypic transitions are present
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Table 1 Model parameters used for all simulations of tumor growth.

Param. Description Value [Units]

Ω computational domain 800× 800 [µm2]
grid size 4 [µm]
initial amount of quiescent cells within the tumor
spheroid

288

initial radius of the tumor spheroid 134 [µm]
rc mean cell radius 15 [µm]
hc mean cell height 10 [µm]
m mean cell mass 1.8 · 10−3 [µg]
vmax maximum admissible cell speed 0.0025 [µm/s]
k0 chemotactic coefficient 4 · 109 [µm2/(µMs)]
dr intercellular repulsion radius 30 [µm]
da intercellular adhesion radius 60 [µm]
FMM
r homotypic repulsion between metastatic cells 10−4 [µm/(µg s)]

FMQ
r heterotypic intercellular repulsion 10−5 [µm/(µg s)]

FQM
r heterotypic intercellular repulsion 10−5 [µm/(µg s)]

FQQ
r homotypic repulsion between quiescent cells 10−4 [µm/(µg s)]

FMM
a homotypic adhesion between metastatic cells 0 [µm/(µg s)]

FQQ
a homotypic adhesion between quiescent cells 2.5 · 10−5 [µm/(µg s)]

D chemical diffusion coefficient 10 [µm2/s]
ϵ chemical decay rate 1.8 · 10−4 [s−1]
c0 chemical concentration at ∂Ω 2.17 · 10−4 [µM]
cs chemical threshold for cell activation 10−8 [µM]

in a wide range of processes, such as physio-pathological vascular progressions
(it is the so-called Delta-Notch signalling pathway).

Given a domain Ω = [0, 800]× [0, 800] µm2 (compartmentalized for compu-
tational purposes with grid elements of size 4.0 µm), in all realizations, we start
with a completely quiescent tumor spheroid (i.e., X(0) = ∅ and NL(0) = 0),
whose mass density is inhomogeneously distributed over a round compact of
radius 134 µm to have an overall amount of MD(0) = 288m (i.e., the mass of
288 cells). The initial condition of the tumor, as well as the specific estimates
of relevant model parameters, will be specified for each set of simulations.

3.1.1 Tumor finger formation

We first assume that the initial distribution of the malignant mass consists of
a set of 288 overlapping bell functions (i.e., which corresponds to 288 quiescent
cells). They are arranged with same mutual distance as in the case of the set-
ting 2 shown in Fig. 3 (i.e., |xh−xk| = 15 µm = rc, where xh and xk define the
centers of any pair of first-nearest neighbor bell functions). The quiescent cells
proliferation and death rates in Eq. (16) are set equal to γ = 10−4 s−1 and
δ = 10−5 s−1, respectively, while the heterotypic intercellular adhesive strength
are estimated in FMQ

a = 10−4 µm/(µg s) and FQM
a = 10−3 µm/(µg s). In par-

ticular, by setting FMQ
a < FQM

a , we assume that heterotypic adhesions affect
the dynamics of the involved infinitesimal quiescent/distributed mass, rather



16 A. Colombi et al.

Fig. 5 Avascular growth of a tumor spheroid with finger formation. Top panels: As the
chemical diffusive front reaches the spheroid, seven single cells differentiate at the exter-
nal rim of the malignant mass. Differentiated individuals start to invade the host tissue,
followed by finger-like structures emerging from the quiescent malignant mass. Simultane-
ously, the inner part of the spheroid reaches a stable quasi-uniform configuration. Bottom
panels: When the firstly activated cells separate from the original tumor (around 12 hours),
a second differentiation occurs in the gaps between successive fingers-like structures. Het-
erotypic interactions involving the such a newly activated cells help finger elongation, as the
firstly activated individuals are dispersed in the extracellular host.

than the velocity of the interacting matastatic/localized cell. Furthermore, we
assume that chemical-induced phenotypic differentiations possibly occur only
in a 30 µm-wide external rim of the tumor, i.e., from a computational point
of view, if xs falls within this area. Such a spatial restriction is coherent with
experimental observations, which prove that active and highly metabolic indi-
viduals are mainly present in the outer regions of malignant masses, whereas
their interior bands are typically filled by quiescent cells, see [7] and [8] and
references therein.

First, due to inner interactions and proliferation/death processes, the qui-
escent malignant mass slightly adjusts its initial configuration and grows (see
Fig. 5). Then, the chemical diffusive front reaches the spheroid and locally
exceeds the critical threshold of cs. Suddenly, a differentiation (with the cor-
responding switch in the mathematical descriptive instances) occurs on the
external rim of the malignant mass: in particular, seven cells activate, whose
distance satisfies the above-described (i.e., in the paragraph just below Eq.
(19)) mechanism of spatial inhibition of differentiation, with rinh = 100 µm.
As represented in the zoom view of Fig. 5, bulks of higher density cluster
in the proximity of the location of the activated individual (see the dark red
density): this phenomenology is due to the fact that the quiescent mass is at-
tracted within the adhesive neighborhood of each differentiated cell, however
it is repelled as soon as it approaches the repulsive regions: as a consequence,
a circular ring of higher cell quiescent mass stabilized around the activated
elements. As reproduced in Fig. 5 (top panels), the activated malignant in-
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Table 2 Model parameters which characterize for the simulation of tumor finger formation.

Param. Description Value [Units]

FMQ
a heterotypic intercellular adhesion 10−4 [µm/(µg s)]

FQM
a heterotypic intercellular adhesion 10−3 [µm/(µg s)]

γ proliferation rate 10−4 [s−1]
δ death rate 10−5 [s−1]
rinh spatial inhibition radius 100 [µm]

dividuals then chemotactically react to the molecular substance gradients,
thereby starting to crawl in the extracellular host toward the nearest edge of
the domain. Due to the chemotactic motion of localized cells, as well as to the
heterotypic adhesive interactions and the duplication processes of quiescent
cells, small finger structures, formed by inactivated individuals, begin to ex-
tend from the external rim of the tumor mass beside each leader individual. At
the same time, the duplication/apoptosis processes and the homotypic inter-
actions of the quiescent part of the tumor lead the inner core of the spheroid
(i.e., where quiescent cells are not able to differentiate) to reach and maintain
a quasi-uniform distribution. As shown in Fig. 5 (bottom-left panel), once the
leader cells separate enough from the rest of the tumor, a second phase of
differentiation occurs at the border of the tumor: this is due to the fact that
the distance between the firstly activated cells and the edge of the spheroid
is greater than rinh, so that further phenotypic transitions are no longer in-
hibited. Interestingly, as shown in Fig. 5 (bottom panels), the elongation of
the finger-like structures is then no longer guided by the firstly formed leader
cells, which are now dispersed in the extracellular host, but by the secondly
activated individuals. It is useful to notice that fingering dynamics arises only
from specific ranges of model parameters: too low heterotypic adhesiveness (as
well as high enough values of the chemotactic strength) would result in the
immediate dispersion of activated cells without any deformation of the circu-
lar mass (not shown); a too high exogenous adhesiveness (as well as too low
chemotactic response) would instead result in the absorption of the differen-
tiated individuals within the bulk of the tumor (not shown). Further, too low
proliferation/death rates would results in a decrease of the frequency of cell
activation, prevented by a non sufficient amount of mass, with a consequent
reduction of the number and the thickness of formed fingers.

The phenomenon of fingering characterizes several types of solid tumors. In
particular, malignant masses with an unstable fingered morphology are more
aggressive and hard to be treated than smoother ones: in fact, even if their
invasive depth is typically limited, they are difficult to be surgically removed.
Such dynamics have been reproduced by several modelling approaches. First,
in [35], a suitable version of the cellular Potts model captures fingering exten-
sion from the edge of a planar tumor mass as a consequence of a balance be-
tween intercellular adhesiveness and cell haptotactic response to non-diffusive
substrate gradients (i.e., resembling different concentration of matrix bound
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Fig. 6 Avascular growth of a tumor spheroid with spreading metastasis. Due to an extra-
cellular chemical stimulus, cell differentiations occur in the external rim of the spheroid,
starting from the densest part of the tumor. Heterotypic interactions then force quiescent
mass in the external part of the tumor to cluster around the nearest activated cell (top
panels). Differentiated cells then start to chemotactically react to the molecular substance
gradient, so that an invading rim of metastatic cells expands in the host followed by qui-
escent clusters. Concomitantly, the bulk of the original spheroid continues to proliferate,
thereby becoming a source for a possible in situ tumor relapse (bottom panels).

proteins such as fibronectin and laminin) without the presence of cell prolif-
eration. Cell duplication, as long as adhesion, autocrine and paracrine growth
stimulation and stromal destruction, is instead critical to have multicellular
tongue formation in a cellular automaton model for tumor growth [32]. In
[38], fingering phenomena are instead captured by a diffusive interface contin-
uum model of multispecies tumor growth. The simulations presented therein
show such a complex structures arise from a diffusional instability, which leads
to the creation of buds elongating into protruding tumor tongues. Finally, in
[2], a hybrid discrete-continuum (HDC) model, in which cells are treated as
discrete stochastic variables and the microenvironmental parameters as deter-
ministic concentrations, analyzes tumor morphology and phenotypic evolution
under different pressure conditions. In particular, invasive masses character-
ized by fingering margins, which are dominated by few clones with aggressive
traits, are observed in harsh conditions of the tumor microenvironment (e.g.,
hypoxia).

3.1.2 Spread of metastasis

We then turn to apply the model to a tumour spheroid characterized by patho-
logical overgrowth (with the consequent disruption of the physiological regu-
latory mechanisms of contact inhibition of growth) and scattering phenotype.
From a modelling point of view this amounts in reducing the area interested by
the above-described spatial inhibition of differentiation (i.e., reducing rinh to
40 µm), in increasing both the proliferation/death rates of the quiescent mass
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(i.e., setting γ = 2·10−4 and δ = 2·10−5,respectively), and finally in modifying
the heterotypic adhesive strengths (i.e., reducing FMQ

a to 10−6 µm/(µg s) and
increasing FQM

a to 5 · 10−3 µm/(µg s)). With respect to the previous case, the
latter assumption means that the quiescent part of the tumour experiences a
stronger adhesion to the localized cells, which are instead characterized by an
increased attitude to move according to their directional velocity. In this case,
we start with a round and completely quiescent spheroid whose mass density
is heterogenous and given by

ρ(0,y) = 0.8 · 10−5 + 0.15 · 10−5
(
cos

( y1
50

)
+ sin

( y2
150

))
(20)

for any y = (y1, y2) within the ball centered in (400 µm, 400 µm) with radius
equal to 134 µm, as reproduced in Fig. 6 (top-left panel). This means that,
roughly speaking, cell density is higher on the left then on the right side of the
spheroid. The overall amount of cellular mass corresponds to 288 individuals.

As in the previous case, homotypic interactions and proliferation/death
processes of the quiescent part of the tumor lead to slight adjustments of the
initial configuration. As before, once the chemical reaches the malignant mass
and locally exceeds the critical threshold of cs, a differentiation occurs on the
external rim of the spheroid. However, this time, due to the heterogeneous
distribution of the mass of the aggregate, cell phenotypic differentiation starts
from the densest part of the tumor edge. In fact, only in such a region of the
colony there is initially an amount of cell mass sufficient to have phenotypic
transitions. As reported in Fig. 6 (top panels), the inclusion both of high prolif-
eration/death rates and of the relaxation in the spatial inhibitory mechanism
of cell differentiation results in a significant growth of the tumor mass, and in
the consequent dramatic activation of a high number of aggressive cells, also
in the other parts of the spheroid edge. Due to the increased FQM

a , inacti-
vated individuals in the external rim of the spheroid suddenly detach from the
rest of the malignant mass and cluster, at a distance equal to dr, around the
activated cells. Concomitantly, differentiated individuals, being characterized
by reduced adhesive interactions FMQ

a , spread away followed by the clustered
quiescent mass (see Fig. 6 (bottom-left panels)). As a results, we observe an
invading rim of tumor that expands in the host, while the remaining quiescent
malignant core goes on proliferating and possibly differentiating, thereby con-
stituting a source for a further in situ tumor relapse (see Fig. 6 (bottom-right
panels)).

Regarding the second phenotype of the tumor growth reproduced by our
model, it is useful to notice that the dispersion of a number of shed acti-
vated cells or of small clusters of quiescent cells following activated individuals
strongly increase the aggressiveness of the disease. Single high motile malig-
nant cells are in fact difficult to be clinically detected and have the greatest
potential to invade the host and further metastasize, as they are able to evade
destruction by the immune system and to subsequently enter the host blood-
stream or lymphatics, extravasate at a distant site, and establish secondary
colonies with devastating consequences for the wellbeing of the patient, as the
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Table 3 Model parameters which characterize for the simulation of spreading metastasis.

Param. Description Value [Units]

FMQ
a heterotypic intercellular adhesion 10−6 [µm/(µg s)]

FQM
a heterotypic intercellular adhesion 5 · 10−3 [µm/(µg s)]

γ proliferation rate 2 · 10−4 [s−1]
δ death rate 2 · 10−5 [s−1]
rinh spatial inhibition radius 40 [µm]

likelihood of success of therapeutic interventions strongly decreases. In this
respect, as a further support of our considerations, a wide range of experimen-
tal studies have recently demonstrated that the down-regulation of cadherin
molecules (at the basis of the scattering of the activated cells) is implicated in
a variety of metastatic cancers [10], [11], [34]. In particular, glioma cell lines
with low N-cadherin expressions (leading to low adhesivity) have been ob-
served to aggressively invade matrix gels, whereas the same populations with
a high N-cadherin activity have been instead shown to grow slower and to ex-
pand less significantly in the host tissues [19]. Finally, cell differentiation and
subsequent dissociation can be triggered in neoplastic cells of epithelial origin
by several growth factor, for example the hepatocyte growth factors [14], [36].
It is finally useful to remark that the evolution of the malignant mass captured
in our simulations reproduces only the avascular stage of tumor growth (i.e.,
before the angiogenic transition necessary for the disease to go on survive):
our results are however consistent with experimental outcomes, i.e., in case
of spheroids of ovarian [8], [31] or breast [17] carcinomas plated in spinner
cultures, and of gliomas, both embedded in vitro in collagenous gels [22], [33]
and implanted in vivo in mice [9].

3.2 First stage of zebrafish posterior lateral line formation

We finally employ our modelling framework to describe selected features of the
initial formation of the zebrafish posterior lateral line (pLL), which constitutes
an interesting system widely used to study cell differentiation and collective
migration (see also [15] and references therein). Moreover, from a modelling
point of view, this is an interesting application of the proposed approach,
as it requires the extension of the modelling framework to the case of three
different clones of the same cell lineage. Furthermore, in this context, the cell
phenotypic transitions imply the use of the representation switch defined in
Eq. (6), i.e., from a localized/pointwise to a distributed cell description, whose
underlying mechanisms have been previously shown in the test simulation of
Section 2.

Entering in more details, the zebrafish has a set of mechanosensory hair
cell organs, the neuromasts, which are distributed in a stereotyped pattern
over the body surface, the tail, and the caudal fin (see Fig. 1 in [18]). The pLL
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is a part of such a sensory network, i.e., the lateral line, which has the function
to detect water displacements and vibrations, thereby allowing the animal to
perform several fundamental activities, such as prey detection, predator avoid-
ance, and sexual courtship. During development, the zebrafish pLL consists of
a primordium, a proto-organ formed by a group of epithelial cells with mes-
enchymal determinants, such as loss of apicobasal polarity, reduced expres-
sion of epithelial markers and of tight junction (i.e., adhesive) proteins and
increased number of dynamic filopodia. These pseudo-mesenchymal (pM) in-
dividuals, hereafter labeled by “M”, are situated behind the ear and are able to
organize into polarized rosettes, each corresponding to a hair cell organ pro-
genitors, termed proneuromast. In particular, a single anteriorly positioned
rosette first forms; then, over the next few hours, additional rosettes are se-
quentially added to the posterior. Once three or four rosettes have formed,
the overall primordium begins to migrate toward the tail. During this motion,
proneuromasts are deposited along the body of the animal, according to the
stereotyped pattern that will characterize the mature pLL of the zebrafish.
Over the course of migration, the onset of a neuromast deposition at the an-
terior edge correlates with the generation of a new rosette near the posterior
zone, leading to cyclical dynamics.

Following the biological observations presented in [25], the formation of
each rosette can be schematized as follows: specific sdf-1 genetic and biochem-
ical pathways (triggered by overexpression of fgf receptors) select a few of the
pM cells forming the primordium, which are sufficiently far one to each other.
Such differentiated individuals (hereafter identified by “M+”) then induce the
surrounding cells (hereafter labeled by type “E”) to acquire a fully epithe-
lial fate, i.e., increment in adhesiveness and inhibition of motility structures.
This change in cell state has been termed pseudo (or inverse) epithelial-to-
mesenchymal transition (P-EMT or I-EMT).
We here aim to reproduce the main steps of the formation of the first three
rosettes within the primordium body: in this respect, our model includes the
mechanisms of cell differentiation, phenotypic transition, intercellular adhe-
sive/repulsive dynamics, but not productive directional migration (which, as
seen, characterizes a second phase of the pLL development) and cell prolifer-
ation/death mechanisms. Within our modelling environment, we opt to use a
pointwise representation for both clones of pseudo-mesenchymal cells (M and
M+) and a distributed description for the mass of fully epithelial individuals
(E). This is in accordance with the previous sections, where a localized math-
ematical descriptive instance has been consistently proposed for activated less
adhering cells, i.e., characterized by a mesenchymal/metastatic phenotype. At
any given time t, the hybrid representation of the primordium is therefore
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Table 4 Model parameters used for the simulation of zebrafish pLL formation.

Param. Description Value [Units]

Ω computational domain 200× 50 [µm2]
grid size 1 [µm]

rc mean cell radius 5 [µm]
hc mean cell height 10 [µm]
m mean cell mass 0.2 · 10−3 [µg]
dr intercellular repulsion radius 10 [µm]
da intercellular adhesion radius 15 [µm]
FMM
r homotypic repulsion between pseudo-mesenchymal

non-activated cells
10−4 [µm/µg s]

FMM
a homotypic adhesion between pseudo-mesenchymal

non-activated cells
10−5 [µm/µg s]

FMM+

r heterotypic intercellular repulsion 10−4 [µm/µg s]

FMM+

a heterotypic intercellular adhesion 10−5 [µm/µg s]
FME
r heterotypic intercellular repulsion 10−3 [µm/µg s]

FME
a heterotypic intercellular adhesion 10−4 [µm/µg s]

FM+E
r heterotypic intercellular repulsion 10−3 [µm/µg s]

FM+E
a heterotypic intercellular adhesion 10−4 [µm/µg s]

FM+M+

r homotypic repulsion between pseudo-mesenchymal
activated cells

10−4 [µm/µg s]

FM+M+

a homotypic adhesion between pseudo-mesenchymal
activated cells

10−5 [µm/µg s]

FM+M
r heterotypic intercellular repulsion 10−4 [µm/µg s]

FM+M
a heterotypic intercellular adhesion 10−5 [µm/µg s]

FEM
r heterotypic intercellular repulsion 10−3 [µm/µg s]

FEM
a heterotypic intercellular adhesion 10−4 [µm/µg s]

FEM+

r heterotypic intercellular repulsion 0.1 [µm/µg s]

FEM+

a heterotypic intercellular adhesion 1 [µm/µg s]
FEE
r homotypic repulsion between fully epithelial cells 0.01 [µm/µg s]

FEE
a homotypic adhesion between fully epithelial cells 0.01 [µm/µg s]

given by 

XM(t) = {xM
1 (t), xM

2 (t), . . . , xM
NM(t)},

XM+

(t) = {xM+

1 (t), xM+

2 (t), . . . , xM+

NM+ (t)},

ρE(t, y) :
∫
Ω
ρE(t, y)dy = ME(t) = mNE(t) ∀ y ∈ Ω.

(21)

It is useful to notice that, while the number of cells belonging to each clone
can vary due to possible differentiation, the total number of cells forming the
primordium does not change (i.e., NM(t)+NM+(t)+NE(t) = N). As it is out of
the scope of this article, we do not describe the molecular fgf-induced cascades
leading to the transition M → M+. In this respect, the location of such cell
differentiations is established a priori (however accounting for proper spatial
determinants). We further assume that, as soon as a pseudo-mesenchymal cell
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passes to the activated clone, the surrounding individuals react acquiring the
fully epithelial fate (i.e., M → E). In particular, such a phenotypic transition
involves only the cells located at a distance from the activated mesenchymal
individual lower than 2 rc (where rc has been introduced in Eq. (5), but in
this context it results equal to 5 µm, with the consequent reduction of the
cell mass m to 0.2 · 10−3 µg). This models the fact that the epithelializa-
tion is induced by the M+-type cells via contact signaling occurring through
transmembrane proteins. In mathematical terms, assuming the activation of
a pseudo-mesenchymal cell xM

k , the processes leading to the formation of a
single rosette can be described as:



NM(t+) = NM(t)− (1 + P (t));

NM+

(t+) = NM+

(t) + 1;

ME(t+) = ME(t) +mP (t);

XM(t+) = XM(t) \ {xM
k (t),pM

1 (t), . . . ,pM
P (t)(t)} = {xM

i (t)}N
M(t+)

i=1 ;

XM+

(t+) = XM+

(t) ∪ {xM
k (t)} = {xM+

j (t)}N
M+

(t+)
j=1 ;

ρE(t+,y) = ρE(t,y) +
∑P (t)

h=1 wpM
h
(y) ∀ y ∈ Ω;

(22)

where pM
1 , . . . ,pM

P ∈ B2rc(x
M
k (t)) are the positions of P (t) mesenchymal cells

that pass to the epithelial clone at a given time t.

As already described, in the first stage of development, the primordium
has not a directional migration. Indeed, its component cells (regardless of
their phenotype) are only subjected to homotypic and heterotypic adhesive
interactions, that suffice to maintain the cohesion of the proto-organ while
preserving single cell dimensions. In this respect, cell dynamics are regulated
by the following hybrid PDE/ODE system:



dxM
i (t)

dt
= vM(xM

i (t)), i = 1, . . . ,NM(t);

dxM+

j (t)

dt
= vM+(xM+

j (t)), j = 1, . . . ,NM+

(t);

∂ρE(t,y)

∂t
+∇ · (ρE(t,y) vE(t,y)) = 0 ∀ y ∈ Ω,
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where the relative velocities read as



vM(xM
i (t)) = m

[NM(t)∑
k=1

KMM(xM
k (t)− xM

i (t))+

+

NM+
(t)∑

h=1

KMM+

(xM+

h (t)− xM
i (t))

]
+

∫
Ω

KME(ξ − xM
i (t))ρE(t, ξ) dξ;

vM+(xM+

j (t)) = m
[NM(t)∑

k=1

KM+ M(xM
k (t)− xM+

j (t))+

+

NM+
(t)∑

h=1

KM+ M+

(xM+

h (t)− xM+

j (t))
]
+

∫
Ω

KM+ E(ξ − xM+

j (t))ρE(t, ξ) dξ;

vE(y) = m
[NM(t)∑

k=1

KEM(xM
k (t)− y) +

NM+
(t)∑

h=1

KEM+

(xM+

h (t)− y)
]
+

+

∫
Ω

KEE(ξ − y)ρE(t, ξ) dξ;

(23)
where the interaction kernels are defined as in Eq. (18), thereby reproducing
isotropic adhesive/repulsive intercellular interactions. In particular, given dr =
10 µm and da = 15 µm, the interaction between mesenchymal cells should be
in a sort of equilibrium to preserve their initial positions. On the other hand,
the interactions involving the epithelial mass density should be able to drive
rosette formation and maintenance. The specific parameter values are listed
in Table 4.
As reproduced in Fig. 7, we start the resulting simulation with a primordium
composed of 100 inactivated pseudo-mesenchymal cells (i..e, of type “M”),
placed in a domain Ω of size 200 µm× 50 µm (with mesh grid size = 1 µ m).
The specific cell pattern has been derived by a proper experimental image, the
top-left panel of the figure. At t1 = 19 h, a pseudo-mesenchymal cell located
in (60 µm, 26 µm) is set to activate, triggering the formation of first anteriorly
positioned rosette, which involve a phenotypic transition of 7-8 surrounding
individuals. Over the next few hours, other two additional rosettes forms to the
posterior, as the result of successive mesenchymal cell activations occurring in
(110 µm, 25 µm) at t2 = 23 h and in (141 µm, 29 µm) at t3 = 24 h. It is finally
worth noting that the model parameter setting allows to avoid nonphysical
evolutions of the system, such as cell overlapping, dramatic compression of
the epithelial mass density, or, conversely, disaggregation of the primordium.
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Fig. 7 First stage of the formation of the zebrafish posterior lateral line primordium. Top-
left panel: Biological image of pLL primordium. Top-right panel: Sketch of the sequence of
cell phenotypic transitions that lead to the formation of a rosette. Central-left panel: Initial
condition of our numerical simulation. Central-right panel: First rosette forms in the pLL
anterior. Bottom panels: Other two rosettes add at the posterior of the proto-organ. The
black arrows indicate the pseudo-mesenchymal cells undergoing transition to the activated
phenotype. For the readers’ convenience, such differentiated individuals are represented by
bigger dark dots.

4 Conclusions

A wide range of relevant biological systems is characterised by the coexistence
of distinct clones of the same cell lineage, which have specific functions and
migratory determinants. Furthermore, in such systems, cells are able to change
their phenotype. For instance, in vasculogenesis, tumour growth and invasion,
as well as in organogenesis and morphogenesis, relevant component processes
result in fact from the specialization of few cells, that are able to activate and
behave as a pattern guidance for the remaining part of the system. In this re-
spect, we here propose a modelling framework where cells within an aggregate
can be described either as a set of localized particles or as distributed masses,
according to their biological behavior. Moreover, the modeling framework is
enriched by a coherent procedure to reproduce cell phenotypic differentiation,
i.e., to switch between the two mathematical representations via the use of a
proper bubble function. A further feature of the proposed theoretical model is
that it can include cell migratory dynamics and interactions, as well as growth
mechanisms. The evolution of molecular substances, which possibly influence
both cell motility and phenotypic differentiation, are taken also in account.

The proposed modeling approach is then here applied to selected biolog-
ical problems, i.e., the avascular growth and invasion of a tumor mass and
the first stages of pLL development. In the first case, a malignant spheroid is
assumed to be composed of two cell phenotypes: a set of aggressive activated
cells (represented by a pointwise mathematical description) and a quiescent
mass (represented by a distributed density). In this respect, by changing the
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values of relevant parameters, we can reproduce either the extension of tu-
mor tongues or the spreading of metastasis. The description of the first stage
of the pLL development requires instead the extension of the model to the
case of three coexisting clones of the same cell lineage. Interestingly, the for-
mation of rosettes can be represented by reproducing an inverse phenotypic
differentiation, i.e., by employing a localized-to-distributed transition.

Future work developments will involve an in-depth analysis of the model
stability with respect both to the parameter settings and to the specific choice
of the form of the bubble function. Finally, in order to further assess the
advantages of the proposed modelling framework, it will be interesting to apply
the model to other biological problems whose evolution is characterized by cell
phenotypic differentiations that preserve cell biophysical properties but lead
to different behaviors.
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