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ABSTRACT

ABSTRACT

The development of micro systems with smart sensing capabilities is paving the way to

progresses in the technology for humanoid robotics. The importance of sensory feedback has been

recognized the enabler of a high degree of autonomy for robotic systems. In tactile applications, it

can be exploited not only to avoid objects slipping during their manipulation but also to allow safe

interaction with humans and unknown objects and environments. In order to ensure the minimal

deformation of an object during subtle manipulation tasks, information not only on contact forces

between the object and fingers but also on contact geometry and contact friction characteristics has

to be provided. Touch, unlike other senses, is a critical component that plays a fundamental role in

dexterous manipulation capabilities and in the evaluation of objects properties such as type of

material, shape, texture, stiffness, which is not easily possible by vision alone. Understanding of

unstructured environments is made possible by touch through the determination of stress

distribution in the surrounding area of physical contact. To this aim, tactile sensing and pressure

detection systems should be integrated as an artificial tactile system.

As illustrated in the Chapter I, the role of external stimuli detection in humans is provided

by a great number of sensorial receptors: they are specialized endings whose structure and location

in the skin determine their specific signal transmission characteristics. Especially,

mechanoreceptors are specialized in the conversion of the mechanical deformations caused by

force, vibration or slip on skin into electrical nerve impulses which are processed and encoded by

the central nervous system.

Highly miniaturized systems based on MEMS technology seem to imitate properly the

large number of fast responsive mechanoreceptors present in human skin. Moreover, an artificial

electronic skin should be lightweight, flexible, soft and wearable and it should be fabricated with

compliant materials. In this respect a big challenge of bio-inspired technologies is the efficient

application of flexible active materials to convert the mechanical pressure or stress into a usable

electric signal (voltage or current).

In the emerging field of soft active materials, able of large deformation, piezoelectrics have

been recognized as a really promising and attractive material in both sensing and actuation

applications.  As  outlined  in  Chapter  II,  there  is  a  wide  choice  of  materials  and  material  forms

(ceramics: PZT; polycrystalline films: ZnO, AlN; polymers and copolymers: PVDF, PVDF-TrFe)

which are actively piezoelectric and exhibit features more or less attractive. Among them,

aluminum nitride is a promising piezoelectric material for flexible technology. It has moderate

piezoelectric coefficient, when available in c-axis oriented polycrystalline columnar structure, but,

at same time, it exhibits low dielectric constant, high temperature stability, large band gap, large

electrical resistivity, high breakdown voltage and low dielectric loss which make it suitable for
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transducers and high thermal conductivity which implies low thermal drifts. The high chemical

stability allows AlN to be used in humid environments. Moreover, all the above properties and its

deposition method make AlN compatible with CMOS technology. Exploiting the features of the

AlN, three-dimensional AlN dome-shaped cells, embedded between two metal electrodes, are

proposed in this thesis. They are fabricated on general purpose Kapton™ substrate, exploiting the

flexibility of the polymer and the electrical stability of the semiconductor at the same time. As

matter of fact, the crystalline layers release a compressive stress over the polymer, generating

three-dimensional structures with reduced stiffness, compared to the semiconductor materials.

In Chapter III, a mathematical model to calculate the residual stresses which arise because

of mismatch in coefficient of thermal expansion between layers and because of mismatch in lattice

constants between the substrate and the epitaxially grown lms is adopted. The theoretical equation

is then used to evaluate the dependence of geometrical features of the fabricated three-dimensional

structures on compressive residual stress. Moreover, FEM simulations and theoretical models

analysis are developed in order to qualitative explore the operation principle of curved membranes,

which are labelled dome-shaped diaphragm transducers (DSDT), both as sensors and as piezo-

actuators and for the related design optimization.

For the reliability of the proposed device as a force/pressure sensor and piezo-actuator, an

exhaustive electromechanical characterization of the devices is carried out. A complete description

of the microfabrication processes is also provided. As shown in Chapter IV, standard

microfabrication techniques are employed to fabricate the array of DSDTs. The overall

microfabrication process involves deposition of metal and piezoelectric films, photolithography

and plasma-based dry and wet etching to pattern thin films with the desired features. The DSDT

devices are designed and developed according to FEM and theoretical analysis and following the

typical requirements of force/pressure systems for tactile applications.

Experimental analyses are also accomplished to extract the relationship between the

compressive residual stress due to the aluminum nitride and the geometries of the devices. They

reveal different deformations, proving the dependence of the geometrical features of the three-

dimensional structures on residual stress. Moreover, electrical characterization is performed to

determine capacitance and impedance of the DSDTs and to experimentally calculate the relative

dielectric constant of sputtered AlN piezoelectric film.

In order to investigate the mechanical behaviour of the curved circular transducers, a

characterization of the flexural deflection modes of the DSDT membranes is carried out. The

natural frequency of vibrations and the corresponding displacements are measured by a Laser

Doppler Vibrometer when a suitable oscillating voltage, with known amplitude, is applied to drive

the piezo-DSDTs.

Finally, being developed for tactile sensing purpose, the proposed technology is tested in

order to explore the electromechanical response of the device when impulsive dynamic and/or long
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static forces are applied. The study on the impulsive dynamic and long static stimuli detection is

then performed by using an ad hoc setup measuring both the applied loading forces and the

corresponding generated voltage and capacitance variation. These measurements allow a thorough

test of the sensing abilities of the AlN-based DSDT cells.

Finally, as stated in Chapter V, the proposed technology exhibits an improved

electromechanical coupling with higher mechanical deformation per unit energy compared with the

conventional plate structures, when the devices are used as piezo-actuator. On the other hand, it is

well  suited  to  realize  large  area  tactile  sensors  for  robotics  applications,  opening  up  new

perspectives to the development of latest generation biomimetic sensors and allowing the design

and the fabrication of miniaturized devices.
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Summary

This chapter provides an introduction of the fundamental mechanism for touch sensations in

humans. It explores the motivation for the design and the development of a bio-inspired artificial

tactile system that mimics the abilities of human receptors, to be integrated on artificial fingertips

and to perform advanced in-hand manipulation tasks.

The first two paragraphs provide an introduction of the morphology of the human tactile system as

an active sensory system. A detailed description of the most important properties of human skin

receptors and their principal functions is, here, presented.

Moreover, the last paragraphs are devoted to a brief and general overview of the biologically

inspired artificial mechano-sensors based on microelectro-mechanical systems. Some design

criteria, useful to develop an artificial tactile system are given, showing the corresponding

applications in an artificial system. Finally, a classification of the most commonly used

transduction mechanisms with reference to researches carried out to date is provided.

INTRODUCTION AND BACKGROUND

Nature has always inspired humans, providing an inexhaustible amount of examples as

sources of inspiration, in terms of materials, structures, mechanisms, tools, systems and methods.

The field of nature imitation is known as Biomimetics and offers enormous potential for inspiring

and mimicking new capabilities for the future technologies. One of the most substantial purposes of

biomimetics includes the extraction of nature’s solutions to be implemented in order to increase the
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value and the functionality of man-made mechanical designs and engineering solutions, especially

in robotics and bio-inspired robotics.

The interaction of robots with unstructured and complex environments requires the

acquisition of qualitative and quantitative information. Biomimetics of sensors and sensing systems

are, therefore, essential components because they increase stimulus detection probability,

sensitivity and signal discrimination, as natural sensing systems. Pressure, temperature, optical and

acoustic sensors are some examples and efforts are made to improve their sensing capability and to

reduce their size and power consumption. In such a way, humanoids can apply the right behaviours

and takes proper decisions in response to external stimuli.

1.1. BIOLOGICALLY INSPIRED TECHNOLOGY FOR HUMAN

INNOVATION

In recent years, research activities on autonomous robotic machines have been focused on

the development of so-called “Artificial Intelligence (AI)”. This science is mainly based on the use

of powerful and high-speed computers to model and replicate human behaviour. It covers a broad

range of problems that arise in fields such as robotics, e-commerce, medical diagnostics, gaming,

mathematics. Moreover, AI science focuses on the development of tools and algorithms coming

from computer science allowing artificial machines to learn and perform intelligent tasks with

minimal or without any human intervention.

In the last decade, a new branch of robotic engineering, known as Cognitive Robotics (RC),

has been developed. In opposition to the classical AI, RC science is concerned with giving to

robotic machines intelligent capabilities by providing them with complex architectures and

allowing to process information by the interaction with surrounding world. Robots can learn not

only from human teaching, but even from own experience, developing abilities to effectively deal

with surrounding environment. The primary goal of cognitive robotics is to make robots to act and

react appropriately in real-world situations by providing them with functions including machine

vision, voice recognition, proximity sensing, pressure sensing, texture sensing, programmable and

imitation motion, ability to learn from mistakes and to explore on their own. So, the robotic

intelligence evolves and lies on the availability and processing of information which come from a

complex sensory system and are crucial for providing an intelligent and adaptive behavior.

Recent technological developments of Micro Electro Mechanical System (MEMS), with

low costs and power consumption and reduced size and mass, have allowed engineers to focus to

biomimetic  sensors  designs,  i.e.  to  artificial  sensors  which  are  able  to  reproduce  and  mimic

biological sensors for applications in robotics and biorobotics and, in general, in mechatronic and
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biomechatronic machines. The combination of organic and inorganic materials, hybrid arti cial-

biological micro-structures and “BioMEMS”, shifted the trend in biomimetic sensor technology

from discrete single function sensors to composite structures including integrated sensing, actuation

and signal processing, exploiting high sensitivities and consolidated electronics for readouts [1-3].

Moreover, through miniaturization, high density of elements can be incorporated within a small

area allowing the integration of electronics and sensing elements on same substrate to mimic the

functionality of biological system through a variety of sensing structures. This opens up new

perspectives to the development of latest generation biomimetic sensors, allowing the design and

the fabrication of miniaturized devices which are realized with different materials and with sensing

and processing capabilities difficult to obtain until now.

1.2. FROM HUMAN BIOLOGY TO BIOROBOTICS

Human tactile system has raised a huge attention in biorobotics. Humans use their ve

senses to observe and get information from surrounding environment. In such a case, tactile sensing

plays an essential role in manipulating tools or objects, as well as for feature exploration and

interaction.

Tactile sensing can be de ned as the detection and measurement of contact parameters in a

predetermined contact area and a subsequent pre-processing of signals. Touch provides information

about contact forces, torques and contact distribution and, by means of exploration, the

identification of object properties such as geometry, sti ness and texture. These properties can be

better estimated by touching or mechanically interacting with objects, as humans do. The sense of

touch also provides action related information, such as slip and helps in carrying out actions (for

example, rolling an object between ngers without dropping it) [4, 5].

1.2.1. MORPHOLOGY OF HUMAN TACTILE SYSTEM

The tactile sense of humans is an active sensory organ extremely accurate and sensitive. In

both human hairy and non-hairy skin, the role of external stimuli detection is provided by a great

number of sensorial receptors: they are specialized endings whose structure and location in the skin

determine their specific signal transmission characteristics. In the skin, thermoreceptors are

involved in sensing and transducing temperature stimuli (heat and cold) whereas nocioreceptors

deal with sensing pain and/or damage. Mechanoreceptors are specialized in the conversion of the

mechanical deformations caused by force, vibration or slip of skin into electrical nerve impulses.
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When skin is deformed, the corresponding deformation is transmitted from its surface to the

mechanoreceptor’s plasma membrane, causing ion channels to open and alter the membrane

potential  of  the  cell  to  create  a  graded  potential,  which  in  turn  leads  to  the  release  of

neurotransmitter or the generation of spikes of action potentials. In general, the magnitude of

generated output voltages from tactile receptors is transformed in a train of actions potentials spikes

and it is sent to the central nervous system, which processes and encodes received signals [6, 7]. A

basic schematic of the conversion and perception of a stimulus during the interaction between skin

and contact object is shown in Figure 1.1.

Figure 1.1: Schematic flow of the interaction between skin and object.

Hairless human skin, especially on the fingertips, contains four di erent types of neural

tactile sensors. They can be classified into two main categories: static and dynamic. While static

sensors are sensitive to temporally constant pressure, dynamic sensors react to time-variant stimuli.

The most important tactile receptors reacting to static pressure are Merkel’s discs and Ruffini

endings. Merkel’s discs, as well as Ruffini endings, adapt rather slowly to the stimuli. For this

reason, they are classified also as slow adaptation (SA) mechanoreceptors because they continue to

react in response to steady pressure of the skin. Merkel’s discs provide continuous information

about things touching the skin and are particularly sensitive to edges, comers and points, providing

excellent detection of pressure intensity. Ruffini endings are suitable to provide information about

vibrating stimuli of low frequencies and are also responsible of detecting shear on skin. They

respond more actively to stretch than to indentation and are particularly sensitive to the shape of

large objects.
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Meissner’s corpuscles, found primarily in non-hairy skin, and Pacinian corpuscles are

involved in the reaction to vibrations or changes of indentation speed. They are very sensitive but

adapt rapidly, so they are classified as fast adaptation (FA) mechanoreceptors because they respond

to the motion of skin but not to steady pressure. Meissner’s cells provide information about

changes in things touching the skin, i.e. during the rolling of a small object between fingers (rather

than holding it still) to discern its shape and texture. These receptors detect the initial contact with

objects, slippage and motion of the hand over textured surfaces. For this reason, they are velocity

detectors, since they move with the ridged skin allowing best reception of movement across it.

Finally, Pacinian corpuscles provide detection and information about vibrating stimuli at high

frequencies in tools and objects. Basically, they are acceleration detectors and respond to motion in

nanometer range.

The biology and mechanical properties of human skin dictate how mechanoreceptors

respond to a mechanical stimulus. In general, the receptive field of a mechanoreceptor reflects the

location and its distribution in the skin. Therefore, touch receptors located closer to superficial

layers of skin have smaller receptive field than those in deep layers [8-11]. Figure 1.2 shows a

schematic picture of human skin mechanoreceptors and the corresponding neural spike train as

response to the external stimulus. Even a very small piece of skin contains a variety of sensory cells

that differ in morphology, innervation patterns, location in the skin, receptive field size and

physiological responses to touch, making the skin a multi-modal sensing system. The picture also

Figure 1.2: Schematic representation of human skin receptors. Skin can feel many sensations by the
mechanoreceptors as a multi-modal sensing system (Adapted from Kandel, 2014 [8]).
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shows the nerve fibers, innervating each type of mechanoreceptor, respond differently when

activated.  The spike trains  are  the responses of  each type of  nerve when its  receptor  is  activated.

The RA type fibers that innervate Meissner and Pacinian corpuscles adapt rapidly to constant

stimulation while the SA type nerves that innervate Merkel cells and Ruffini endings adapt slowly

[8]. A summary of the most important characteristics of human skin mechanoreceptors is listed in

Table I.1 [12].

Table I.1

Summary of the tactile units, properties and principal functions

Endings Merkel’s

Disk

Ruffini Corpuscles Meissner’s
Corpuscles

Pacinian
Corpuscles

Category Static Dynamic

Class SA I SA II FA I FA II

Location Shallow Deep Shallow Deep

Number of endings/unit 4 – 7 1 12 – 17 1

Adaptation Slow Slow Fast Fast

Fiber innervation
density (per cm2)

Fingertip 70 49 140 21
Distal phalax 42 28 77 15
Proximal and Middle
phalax 30 14 37 10

Percentage in human
hand 25% 20% 40% 10-15%

Receptive field (mm2) 11 59 13 101

Spatial resolution Good Fair Poor Very Poor

Frequency range of
stimuli (Hz) 0.4-3 100-500+ 3-40 40-500+

Effective stimuli

Spatial
deformation;
Sustained pressure;
Curvature, edges, corners

Sustained
downward
pressure;
Lateral skin stretch;
Skin slip

Temporal
changes
in skin
deformation

Temporal
changes in
skin deformation

Sensory function

Low-frequency vibrations;
Grip control;
Tactile flow perception

Shape detection;
Texture perception;
Tactile flow
detection

Finger position;
Stable grasp;
Tangential force;
Motion direction

High-frequency
vibrations

1.3. BIOLOGICALLY INSPIRED MECHANO-SENSORS

Neuroscience has long demonstrated the importance of tactile feedback in human

manipulation. Furthermore, the development of multi- ngered robotic hands has increased the

interest in tactile sensing for robotic manipulation utilizing tactile sensing for real-time control. A
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great deal of effort has been devoted to developing artificial tactile sensors that can provide

suf cient information for pressure and force measurements in a broad range of applications, as

automated assembling, machining, sorting and stacking production, in minimal invasive medical

surgery for evaluation of tissues stiffness as well as in prosthetic and orthotic devices for restoring

loss of tactile sense.

Especially, humanoid robots need tactile interfaces for a safe interaction with humans in

daily routines activities for assistance and co-existence for support and enhancement of human life.

Equipping robots with speci c sensors and transducers is a way to confer them suf cient autonomy

to perform tasks, especially in unstructured environments (houses, of ces, restaurants and so on).

An arti cial tactile system that emulates abilities of humans and performs advanced in-hand

manipulation tasks should detect dynamic forces, such as normal and tangential contact for

gathering spatial and geometrical information from surfaces exploration, as well as static forces, as

human tactile system does. To this aim, arrays of pressure-sensitive sensors should be integrated on

the robot ngertips as an electronic skin and exibility, conformability and stretchability are

desirable properties to increase the anthropomorphism.

On the basis of human tactile sensing system properties, pressure and force biomimetic

sensors for manipulation applications should meet important design criteria. First of all, a rather

high spatial resolution is required especially in in-hand manipulation of objects. High spatial

resolution results in very small sensing cells. But the higher is the spatial resolution, the longer is

the acquisition and processing time and larger the number of wire connections. Furthermore, as the

sensing cells become smaller and smaller, the sensitivity to external electromagnetic noise and

crosstalk increases. For this reason, the requirements of spatial resolution depend mainly on the

position where the sensors are placed. As an example, fingertips require a resolution of ~1-2 mm,

whereas on less sensitive parts like palm, the spatial resolution decreases up to 5-10 mm.

Sensitivity, defined as the smallest detectable variation in pressure/force, is very important

especially in manipulation tasks. The dynamic range – the range from the minimum to maximum

detectable pressure/force – is closely related to the sensitivity. Desirable values for sensitivity and

dynamic range are 1 mN and 1000:1 (the maximum detectable force/pressure must be 1000 times

greater than the minimum force/pressure), respectively.

Frequency response depends on the application of static rather than dynamic operation.

The detectable vibration frequencies in humans vary from 5 to 400 Hz. Thus the frequency

response should be significant at least up to 400 Hz for a dynamic sensor.

Surface properties, such as mechanical compliance and surface friction coefficient should

fit to the manipulation tasks, i.e. low friction of sensor surface is needed in tactile exploration.

Robustness is necessary to guarantee highly repetitive usage of the sensors without loss of

performances. Sensors should withstand various external conditions related to temperature,
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humidity, radiation, chemical stresses and especially rather strong mechanical loads. At same time,

they should be flexible enough in order to be attached to any type of surfaces.

Finally, hysteresis and memory effects ideally must be as low as possible in order to

provide a stable, monotonic and repeatable output [12-14]. Kappassov Z. et al [13] have proposed a

classification of pros and cons and possible applications according to the design criteria previously

mentioned, as listed in the Table I.2.

Several technological approaches have been used to realize a low-cost, large-area-

compatible arti cial skin, suitable for object manipulation, with suf cient sensitivity in a wide

pressure range (10–100 kPa) and that can meet the design criteria previously mentioned. One

promising approach for biomimetic tactile sensors is based on silicon-based MEMS detecting

inertial forces by capacitance variation or resistance variation of strain gauges. This kind of sensors

shows high spatial resolution, reliable response and linearity, but they are brittle and not suitable

for large deformations and coverage of three-dimensional curved surfaces. To overcome these

limits, tactile sensors made of flexible materials have been integrated on various polymer-based

materials as exible substrates to make them able to bend, expand and adapt on irregular surfaces.

A first rough classification of pressure/force sensors can be made according to the most

relevant technological approach, allowing to transduce the mechanical stimulus of touch into

signals (mainly electrical).

Table I.2

Design criteria: pros and cons
Criteria Pros Cons Applications
High spatial

resolution

Smaller objects can be

recognized features with higher

precision can be detected

Smaller sensitivity and longer

processing time

Contact pattern

recognition and fine

manipulation

High sensitivity Smaller changes of contact

forces can be detected

Dynamic range of the sensor

narrows and the spatial resolution

decreases

Light detection and

fragile object

manipulation

High frequency

response

Fast response to the changes in

the level of contact forces

Spatial resolution and dynamic

range decrease

Detection of slip and

texture recognition

Low hysteresis High frequency response Decrease of surface friction Detection of slip and

texture recognition

Low number of

wire connections

The workspace does not change Decrease of frequency response in

serial data communication

Dexterous manipulation

High surface

friction

Insuring stable grasp without

application of high forces

Reduction of frequency response

in soft paddings operation

Grasping

(Kappassov Z. et al. [13])
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A tactile sensor can be designed on the basis of various transduction methods and of new

materials. Focusing the attention on transduction methods, a second classification allows sensors to

be classified in terms of coupled and/or non-coupled mechanical and electrical transduction. They

are usually fabricated using standard MEMS technologies such as films deposition, plasma etching

and photolithography.

1.3.1. METHODS FOR TACTILE SENSING: INDIRECT ELECTROMECHANICAL

TRANSDUCTION

The working principles among indirect electromechanical transductions are optical,

ultrasonic and magnetic methods.

Optical sensing [15-17] is based on optical reflection between mediums with different

refractive indices. Optical force sensors usually contain a load transduction medium for applying

the external force, a source of light, generally an array of infrared light-emitting diodes or a laser

and a photo-detector (a photodiode) able to sense ranks of illumination, refractive index or

spectrum of the light source that is proportionally varying with the magnitude of applied pressure

on load medium. Sensors based on optical method have good spatial resolution, sensitivity, high

repeatability and complete immunity from electro-magnetic interference, but they are relatively big

in size and expensive in term of power consumption and computational circuitry.

The touch sensors based on magnetic transduction are usually developed measuring

changes in magnetic ux using the Hall Effect or magnetoresistances, or measuring the changes in

the magnetic coupling or in the inductance of a coil when a pressure is applied. Hall Effect-based

sensors are only sensitive to magnetic elds in one direction while magnetoresistive sensors can be

used to detect magnetic eld having any orientation within a plane normal to the current ow. The

magnetic-coupled or inductance-based sensors have the core generally made of magnetoelastic

materials that deform under pressure and cause magnetic coupling between transformer windings

or a coil’s inductance to change. Tactile sensors based on magnetic principle have a number of

advantages including high sensitivity and wide dynamic range, no mechanical hysteresis, linear

response, and physical robustness. Nevertheless, they cannot be used in a magnetic medium [18-

20].

An interesting example where mechanical transduction is decoupled from electrical

transduction is represented by ultrasonic sensors. A typical ultrasonic sensor consists of a thin

rubber layer that is deformed by the pressure: the amount of the deformation depends upon the

magnitude of applied force and the stiffness of rubber. These sensors are composed of ultrasonic

transmitters and receivers, both of them are covered by the rubber: the transmitters generate a small

ultrasonic pulse that propagates and is re ected from deformed surface of rubber; the echo pulse is
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received by receiver. Therefore, by measuring the change in transmitted and received time of pulse,

it is possible to measure thickness variations of rubber and the applied force, as a consequence.

Contact parameters can be detected also by measuring the change in resonance frequency of sensor,

in accordance with contact object’s acoustic impedance. With this approach, hardness and/or

softness of objects can be easily detected [21-23]. Ultrasonic-based tactile sensors have fast

dynamic response and good force resolution. However, many of such sensors use materials like

lead zirconate titanate (PZT), which are dif cult to process, especially with standard

micromachining technologies and processes.

1.3.2. METHODS FOR TACTILE SENSING: DIRECT ELECTROMECHANICAL

TRANSDUCTION

The most common tactile transducers based on coupled electromechanical method rely on

capacitive, piezoresistive and piezoelectric transduction techniques. These sensing systems are

often referred as transducers of contact information [13, 14, 24, 25].

Piezoresistive transduction methods exploit resistance variations in sensing material to

detect and measure contact forces. Piezoresistive transducers can be grouped in conductor-based

and semiconductor-based strain gauge transducers.

In  piezoresisitive  strain  gauge  sensors,  the  changes  in  resistance  are  typically  due  to  the

deformation of conductor or semiconductor – the material strain – under external mechanical stress.

The working principle of a strain gauge is explained by the Hooke’s low, where the mechanical

stress, generated by force acting on object, is directly proportional to strain, defined as the ratio of

object deformation and its length. Focusing on the voltage/current characteristic, the change in

resistance is observed by a change in current (or voltage, respectively). Typically, the strain gauges

are long winding snake-like structures whose cross-section decreases while the conduction length

increases under external stimulus. The technology of strain gauges sensors is mature, well

established and simple and they have a wide measuring range [26-30]. They have many advantages

and drawbacks. They exhibit good sensitivity, high signal-to-noise ratio and sufficient robustness to

electro-magnetic noises. The detection accuracy is generally on mN level. They are relatively

simple to manufacture and, therefore, they have very low cost. However, they show high

susceptibility to humidity and temperature variations and a Wheatstone bridge configuration is

required to overcome this problem. Due to their mechanical nature, they express high hysteresis

and a non-linear response. Silicon and other semiconductor materials have high piezoresistive

responses but they are brittle and fragile [31, 32]. To achieve mechanical flexibility, resistive

elements have often the form of conductive rubber, elastomer or organic transistors [33-39]. The

sensitivity typically decreases because of tearing off, since the resistance of conductive materials
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depends on deformation as well as on its thickness. Furthermore, variations of temperature and

moistness may affect and change the properties of conductive elastomer and rubber materials.

Finally, piezoresistors suffer from lower repeatability since multiple deformations may prevent the

elastic materials to regain their initial form.

Capacitive sensors consist of two conductive plates, separated by a compressible dielectric

material (typically the air). They are able to measure applied forces by the variation of capacitance

due to the changes in the gap between plates. Besides normal forces, shear forces can be measured

with the use of embedded multiple capacitors. Capacitance-to-frequency converters, switched-

capacitors circuits or capacitive ac-bridges are usually utilized to detect the capacitive output and

convert it in an electrical signal [40-45]. Capacitive technology is very popular among sensing

transducers and capacitive sensors are widely utilized in robotic application, especially. These

sensors generally exhibit good frequency response, high spatial resolution and large dynamic range.

They have low power consumption and are poor sensitive to the changes of environment as

temperature and humidity. They are robust and have drift-free measurement capabilities. However,

capacitive sensors are quite susceptible and sensitive to noise, field interactions and fringing

capacitance and the electronics required to filter out the noise is often relatively complex.

Among these approaches, piezoelectricity has been recognized as a really promising and

attractive technology. Piezoelectric force sensors exploit piezoelectric effect that consists of an

electrical charge generation, and a voltage potential as a consequence, in some crystalline material,

like quartz crystal or ceramics, and polymers due to deformation or strain caused by applied

force/pressure. Generated voltage is directly proportional to the force/pressure/strain [46-48].

Sensors based on piezoelectric effect exhibit high frequency response, that is a fundamental

parameter for measuring vibrations, high bandwidth, high efficiency, excellent resistance,

flexibility, high mechanical strength, good plasticity, high power density, impact resistance and

anti-aging. They are very attractive because of their poor or no power consumption and, in same

case, low thermal budgets for materials deposition, high integration with standard micromachining

techniques, depending on the utilized material and, especially, very low cost. Nevertheless, they are

limited to measure dynamic forces and are unable to measure static forces because the charge

developed decays with a time constant which depends on the internal impedance and the dielectric

constant of piezoelectric film.
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Summary

In this chapter the theoretical and qualitative formulation of the piezoelectricity is discussed. The

high-order flexoelectric effect is then described, providing a qualitative description of the

phenomenon as additional contribution to the well-known piezoelectric effect. A detailed analysis

of piezoelectric pressure/force transducers carried out from the recent state of the art is presented,

discussing also some examples of interaction between piezoelectricity and flexoelectricity.

The device concept of proposed pressure/force sensor based on piezoelectric/flexoelectric

transduction mechanism and the corresponding architecture are finally presented.

ARTIFICIAL TRANSDUCERS DESIGN

In Chapter I, an overview of force/pressure MEMS sensors and corresponding transduction

mechanisms was given shortly. Piezoresistivity, capacitive transduction and piezoelectricity are the

most commonly used technologies in the implementation of such devices. Among them,

piezoelectricity has been recognized as a really promising and attractive technology in both sensing

and actuation applications. The use of active and functional materials for mechatronic systems –

like piezoelectrics – stands out in the field of high potential smart materials for MEMS and

microstructures with new and powerful functionalities.
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This chapter provides a brief overview of piezoelectric working principle, physical

properties and constitutive models. Thereafter, a review of MEMS force/pressure sensors for tactile

sensing application based on piezoelectric transduction mechanism is given.

2.1. TRANSDUCTION PRINCIPLE: PIEZOELECTRICITY

Piezoelectricity refers to a phenomenon of linear electromechanical interaction in particular

class of noncentrosymmetric crystals that demonstrate a coupling between their electrical and

mechanical states generated by applying mechanical stress to dielectric crystals. Piezoelectrics are

dielectric materials which can be polarized, in addition to an electric eld, also by the application

of mechanical stresses. In Figure 2.1, the electromechanical relationships chart of quantities

involved in piezoelectricity is depicted.

Figure 2.1 Chart of electric and elastic phenomena involved in piezoelectricity (adapted from [49]).

Piezoelectric materials can be classified into polar (which possess a net dipole moment)

and nonpolar piezoelectric materials (whose dipolar moments, summed in different directions, give

a null total moment).
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Figure 2.2 Frequency dependence of electronic, ionic and orientation polarization mechanisms (adapted
from [49]).

The response of piezoelectric materials to externally applied electric eld is crucial to

piezoelectricity. When a solid is placed in an externally applied electric eld, the medium adapts to

this perturbation by dynamically changing the positions of the nuclei and electrons. As a result, an

alignment of already existing permanent or induced atomic/molecular dipoles is achieved. This

process is called polarization. There are three main types or sources of polarization: electronic,

ionic, and dipolar or due to orientation. The degree to which each mechanism contributes to the

overall polarization of the material depends on the frequency of applied eld, as shown in Figure

2.2.

When piezoelectric materials are subjected to an external electric field, an asymmetric

displacement of anions and cations causes a significant net deformation of the crystal lattice. The

resulting strain is directly proportional to the applied electric field. The strain can be either

extensive or compressive, depending on the polarity of applied field. This effect is generally called

indirect piezoelectric effect. Vice versa, when piezoelectric materials are subjected to external

strain by applying pressure/stress, the electric dipoles in the crystal get aligned and the crystal

develops positive and negative charges on opposite faces, resulting in an electric field across it.

This effect is called direct piezoelectric effect [50-52].

In order to better explain piezoelectricity phenomenon, the crystal structure of piezoelectric

solids and the symmetry of crystal lattice must be taken into account. Piezoelectricity is determined

by the balance between two contributions: positive and negative ions. The condition for the

occurrence of piezoelectric effect is a lack of symmetry center regarding positive and negative ions

of  crystal  lattice.  That  is  to  say,  the  existence  of  polar  axes  within  the  crystal  structure  and  the

presence of an electrical dipole moment in axis directions caused by the distribution of electrical

charge in the chemical bond are essential. The atoms of crystal lattice share a given electronic

density through the bonds between them. If the electronic density is spatially non-uniform, a
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periodic arrangement of local electric dipoles will be present in the crystal, although the sum of all

the individual dipoles at a given moment should be zero because of their instantaneous random

orientation.

Figure 2.3: Simpli ed structure cell of -quartz: a) arrangement of Si- and O-ions with the main crystal
axes and b) two- and three-fold axes (adapted from [53]).

In Figure 2.3, an example of the classic structure cell of –quartz is considered. The

structure consists of negative charged O-ions and positive charged Si-ions and has three two-fold

polar rotation axes X1, X2 and X3 in the drawing plane and a three-fold rotation axis Z perpendicular

to the drawing plane. In such a way, the crystal is electrically neutral. When a mechanical stress is

applied to the solid, the elastic strain generated in the crystal creates changes in the length and/or

direction of the individual atomic bonds. This leads to changes either in magnitude and/or in the

direction of dipoles present in the crystal and, therefore, a resulting net polarization of the lattice

[53].

The electrical polarization is caused by the displacement of positive and negative ions of

the crystal lattice against each other (as depicted in Fig. 2.4a) resulting in an electrical charge on

the appropriate crystal surfaces perpendicular to the X1-axis and thus in an outside electrical

polarization voltage. This effect is called direct longitudinal piezoelectric effect. An exposure to

compression and tensile stresses acting perpendicularly to the X1-axis results in an additional

electrical polarization with opposite sign in X1-axis direction (see Fig. 2.4b). This behavior is called

direct transversal piezoelectric effect. This leads to the origin of direct piezoelectric effect and its

presence or absence in a given crystal is determined by the symmetry of lattice. So, not all

materials can be piezoelectric. In crystals, symmetry properties are crucial in determining if and

how a material is piezoelectric. For example, a crystal which possesses inversion symmetry

(centrosymmetric) cannot be piezoelectric because in this case its polarization, which must change

sign when the axes are inverted, should be necessarily zero.
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Figure 2.4: a) Direct longitudinal piezoelectric effect and b) direct transversal piezoelectric effect (adapted
from [53]).

The  basic  behavior  of  piezoelectric  materials  is  shown  in  Figure  2.5  which  depicts  the

piezoelectric effect in both direct and indirect configurations, respectively. The poling process sets

the mechanical and electrical axes of operation and induces piezoelectric properties in the

piezoelectric material (Fig. 2.5a). So, when a compressive load is applied to a poled piezoelectric

material in direction parallel to poling (see Fig. 2.5b), a positive voltage is generated across the

faces because of coupling between electrical and mechanical field.

Figure 2.5: a) Polarization process; (b-c) direct and (d-e) indirect effect of piezoelectric material showing
voltage generation when compressed and shape changes when voltage is applied (adapted from
https://www.americanpiezo.com/).

Similarly, when the material is subjected to tensile force, a voltage with reverse polarity is

generated (see Fig. 2.5c). This is the direct piezoelectric effect. On the contrary, when an external

voltage is applied to the material, it gets extended if the polarity of the voltage is the same as that of

the field applied during poling (Fig. 2.5d) and, when the voltage is applied in the reverse direction,

the material gets compressed (Fig. 2.5e), according to the indirect piezoelectric effect.
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2.2. FLEXOELECTRICITY: A SYNERGISTIC HIGHER-ORDER

ELECTROMECHANICAL EFFECT

Some dielectric solids exhibit a linear relationship between the spontaneous electrical

polarization and the gradient of mechanical strain. This phenomenon is known as flexoelectric

effect. The name originates from the Latin word exus that means ‘bend’ and it has been adopted

pointing out the fact that a strain gradient naturally arises in bent structures. Thus, if the

piezoelectric effect is a linear response of the dielectric polarization to a mechanical uniform strain,

the flexoelectric effect can be thought as a high-order electromechanical phenomenon that can

combine with the piezoelectricity in a synergistic way. The different methods of generation of the

two phenomena typically render the exoelectric effect less signi cant compared to piezoelectric

one at macroscopic scale, especially in structures where mechanical limitations reduce the

formation of a large strain gradient.

Figure 2.6: (a) Uniform strain, due to uniaxial compression does not break inversion symmetry and hence
cannot generate polarization in a centrosymmetric material. (b) Non-zero strain gradient generated by
compressive (red arrows) and tensile (blue arrows) strains leads to a exoelectric-induced polarization P. A
non-zero dipole moment results from a misalignment of the centers of gravities of the positive and negative
ions (adapted from [54]).

The existence of the exoelectric effect in solids was predicted in liquid crystals  starting

from the 1960s [55] as a type of piezoelectric effect that differs in the way that it is caused by the

spatial derivative of strain. The coupling between polarization and strain gradient exists also in

hard  materials  and  can  be  found  in  any  crystalline  material  regardless  of  the  atomic  bonding

con guration, emerging even in centrosymmetric lattices. Moreover, an important feature of the

flexoelectricity is that it becomes relatively most significant in materials which possess geometries
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in which large strain gradients are achievable. From a microscopic point of view, exoelectricity is

originated by the non-uniform displacement of ions under a strain gradient, which disrupts the

inversion symmetry, leading to the formation of a net polarization inside the crystal (see Figure

2.6).  When a free-standing slab of  material  is  bent  such that  the upper  and lower part  of  the slab

experiences tensile and compressive strain (Figure 2.6b), respectively, a strain gradient arises in the

material, which in turn induces an electrical polarization P parallel to the gradient direction. As

shown in Figure 2.6b, the non-zero strain gradient in the bent crystal makes the centers of gravity

of the negative ions (in green) and the positive ions (in gray) to be not coincident, which results in a

non-zero net dipole moment in the directions of the gradient-induced polarization.

According to the macroscopic theoretical formulation previously mentioned, the strain

gradient (via the exoelectric coupling) plays a key role in the generation of the flexoelectric

phenomenon: it can work as an electric eld, inducing poling, switching, and rotation of

polarization, creating a voltage offset of hysteresis loops and smearing the dielectric anomaly at

ferroelectric phase transitions.

Even in piezoelectric materials, exoelectric effects can be exploited by promoting large

exoelectric contributions in order to enhance the properties of materials or even to enable new

classes of electromechanically coupled materials of non-uniform shapes. They exhibit large strain

gradients such that flexoelectricity can be used to tune electricity generation.

2.3. BIOINSPIRED PIEZOELECTRIC TACTILE SENSORS: STATE OF ART

One of the greatest challenges of bio-inspired technologies in mimicking tactile sensors is

the application of flexible active materials in the transducer devices to convert the mechanical

pressure or stress into a usable electric signal (voltage and/or current). In the emerging field of soft

machines, soft active materials (SAM), able of large deformation, can connect the stimuli to this

functionality.

In the recent past, Tiwana et al have summarized the state of art designs and fabrication

methods of piezoelectric-based sensors, showing evolutions and trends [56]. More recently, P.

Saccomandi et al, Z. Kappassov et al and Y. Wei and Q. Xu have outlined new possible directions

of research in dexterous in-hand manipulation [13, 25, 57]. According to these research works, in

piezoelectric force/pressure sensors the active material is crucial for the transduction efficiency of

the final devices.

Among the available piezoelectric materials, one of the most investigated and widely used

is lead zirconate titanate (PZT), the ferroelectric material with the highest piezoelectric coefficient.

A way to measure the pressure by active piezo-ceramics like PZT is to use resonant sensors. Based
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on the principle of change in piezoelectric resonance frequency with the applied pressure, an

example of resonant sensors have been designed and proposed by G. M. Krishna and K. Rajanna

[58]. Circularly shaped poled 1 mm-thick PZT substrate has been used to realize the tactile sensor

with a resonance frequency of ~1 MHz. An array of electrodes has been deposited on either side of

the PZT material. The common areas of PZT material sandwiched between the intersecting rejoins

of the electrodes form the matrix of independently excitable resonators at the resonance frequency

of the material. Tactile sensors with 3x3, 7x7 and 15x15 array of electrodes have been developed

with different electrode dimensions and separation pitch in between. They have showed improved

spatial resolution and sensitivity to different extents of applied force/pressure as well as a variation

in frequency of 0 – 25kHz from the resonance frequency in a range of applied forces of 5 – 55 N.

D. Belavic et al [59] have developed a resonant pressure sensor based on PZT that consists of 16

thick-film elements with lateral dimensions 4.7 x 4.7 mm2 and a thickness between 50 and 60 µm.

The final sensor exhibits response to mechanical deformation in both static and dynamic pressure

range from 0 to 70 kPa. A shift around resonance frequency (26 kHz) has been measured, with

pressure sensitivity about 2.6 Hz/kPa.

After the discovery of a strong piezoelectricity in polyvinylidene fluoride (PVDF)

polymers and copolymers (like poly[(vinylidenefluoride-co-trifluoroethylene] P(VDF–TrFE)) –

that exhibit a voltage output response 10 times higher than piezo-ceramics for the same input force

and high electromechanical transduction frequency bandwidth (up to 1 kHz) – an increasing

interest in such a crystalline ferroelectric polar polymers has encouraged researchers to study the

capabilities of these materials in sensing application. R. S. Dahiya et al have experimented tactile

sensing chips using CMOS technology [60, 61]. The sensor consists of an active area of 0.9 mm x

0.6 mm, to obtain spatial acuity comparable to that of human ngertips (~1.0 mm). Based on

POSFET working principle, it utilizes the contact induced change in the polarization level of

piezoelectric (PVDF–TrFE) polymer (and hence the changes in induced channel current of MOS)

to detect dynamic contact forces in the range of 0.01 – 3 N. The response of POSFET is linear in

the tested range, with sensitivity of 102.4 mV/N. The drawback is the presence of silicon substrate

that doesn’t make this sensor particularly suitable to adapt to curved surfaces. Still based on PVDF

thin film, M. A. Qasaimeh et al have developed a miniaturized tactile sensor capable of measuring

force and force position for minimally invasive surgery applications [62]. The sensor has been

designed such that it can sense low forces comparable to those produced by pulsating delicate

arteries as well as can withstand high forces comparable to grasping forces. A 25- m-thick double-

sided metalized and pre-poled piezoelectric PVDF film, working in the extensional mode, has been

sandwiched between supports of the silicon plate and plexiglas layer. When, due to a compressive

load, the silicon plate de ects, the glued PVDF is also stretched and a voltage signal is registered.

The PVDF sensing element is sensitive in a range of 0.001 – 6 N, when point loads are applied at

the center of the element.
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A 3D tactile sensing element concept, based on three-dimensional piezoelectric aluminum

nitride (AlN) membranes, has been analyzed by T. Polster and M. Hoffmann, who have provided a

combination of AlN thin films as smart sensing material with 3D membrane elements in order to

realize tactile sensors with sensitivity towards normal to shear forces [63]. Aluminum nitride (AlN)

is suitable for sensor applications, because of its relatively good piezoelectricity, exhibited by its c-

axis oriented polycrystalline columnar structure. Since its oxidation processes occur only from

about 800 °C, it is also suitable for high temperature applications. It does not need to be electrically

poled, differently from ferroelectric materials like PZT. It shows high thermal conductivity (200

W/mK), low dielectric constant (~9), high electrical resistivity and high temperature stability (up to

1500°C).

Previous examples of pressure/force sensors are affected by the rigidity of the sensing

element and substrate, whereas flexibility and stretchability are mandatory to realize an artificial

skin. H.-J. Tseng et al have proposed tactile sensors using sol-gel process to deposit PZT thin-film

(from 250 nm to 1 m thickness) on a flexible stainless steel substrate with high sensitivity about

0.798×10-3 V/mN to measure human pulses [64].

Figure 2.7: B. Choi et al a) fingertip force sensor and b) output voltage diagram when forces of 1 N and 2 N
are applied (adapted from [66]).

B. P. Nabar et al [65] have developed a sensing skin for robots made of large area arrays of

ordered, vertically aligned, crystalline zinc oxide (ZnO) piezoelectric nanorods on flexible

substrates to ensure conformity to non-planar surfaces. Dimensions of a single nanorod array vary

from 500 µm x 500 µm (in a single array) to 30 µm x 30 µm (series connected). The sensors array

is designed to measure tactile normal pressure in 10 kPa – 200 kPa ranges with 1 mm spatial

resolution. A voltage signal in the range of few mV is observed in response to applied pressure.

An anthropomorphic robot hand has been fabricated by B. Choi et al [66]. The hand has a

miniaturized ngertip tactile sensor (Figure 2.7) based on (PVDF) film which makes it physically
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exible enough to be deformed into any three-dimensional geometry. The fingertip tactile sensor

shows a voltage signal in the order of few volts when a force of 1 to 2 N is applied.

Large area flexible and conformable robotic skin, made of arrays of (PVDF) piezoelectric

polymer taxels integrated on flexible PCBs (as displayed in Figure 2.8) has been manufactured by

L. Seminara et al. Preliminary results show the linearity and reproducibility of the system response

to applied mechanical stimuli from few mN up to 3 N [67, 68].

A novel flexible tactile piezoelectric sensor, integrated with piezoresistive transducers, has

been developed by C. H. Chuang et al [69] for detecting incidents of slippage and contact forces,

respectively.  The  sensor  structure  is  composed  of  two  patterned  flexible  printed  circuits  (FPC)

sandwiching a (PVDF) film, a foil strain gauge laminated on the bottom FPC, a bump-like structure

attached  on  the  top  FPC  corresponding  to  the  (PVDF)  area  and  the  PDMS  packaging  material.

According  to  experimental  results,  the  sensor  can  detect  contact  forces  from 0.1  N  to  20  N  with

two-stage linear behavior. The sensitivities of the contact forces are 0.03 mV/N and 0.0057 mV/N

for the force ranges of 0.1 – 4 N and 5 – 20 N, respectively.

An improved sensitivity response of aluminum nitride diaphragms used to measure

pressure, together with high flexibility, has been proved by M. Akiyama et al [46, 70, 71]. The

authors have investigated high sensitive piezoelectric response of c-axis oriented AlN thin lms

prepared on polyethylene terephthalate (PET) and polyimide lms, exploiting the combination of

high and low modulus of these materials, respectively. The sensor consisting of the AlN and

polymer lms is exible like polymer lms and the electrical charge is linearly proportional to the

Figure 2.8: Large area robotic skin by L. Seminara et al. a) from top: section of skin module (on left) and (on
the right) the PCB substrate containing the PVDF sensors (yellow). Hexagonal patch made up of six
triangular PCBs (on bottom); b) charge generated by different PVDF taxels vs applied input force (at a
frequency of 6Hz) (adapted from [68]).
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stress  within a  range from 0 to 8.5 MPa.  The sensor  can respond to frequencies  from 0.3 to over

100 Hz and has been used to measure human pulse wave form.

Figure 2.9: Microphotographs of (a) bump shape with enlarged view of the bump (height = 30 µm)
and  (b)  dome  shape  with  a  SEM  picture  of  the  cross  section  of  the  dome  (thickness  =  30  µm);  c)
measured peak-to-peak voltage versus added loads for the bump shape and d) dome shape sensors
(adapted from [73]).

However, piezoelectric thin- lms based on the (d33) mode tend to have only a limited

region within which they are capable of generating voltage signal. As demonstrated by C. H. Feng

et al [72], current study have addressed attention to development of piezoelectric dome-shaped-

diaphragm transducer (DSDT) as three-dimensional structures whose surface area is larger than

that of planar devices with the same footprint. As a result, for a given vibration energy input,

DSDTs are able of producing greater electrical charge than their planar counterparts. Several

examples of such a three-dimensional DSDT can be found in literature. C. Li et al have developed

an innovative dome and bump shape element as a sensing component for exible tactile sensors.

The sensor (see Figure 2.9) is made of 30 µm-thick (PVDF-TrFE) lm, whereas the dome shape

and the square bump shape microstructures have the diameters and widths of 500 µm, 1 mm, and

1,5 mm, respectively [73]. The tactile sensors, developed using these polymer microstructures, can

measure as small as 40 mN forces for bump shape sensors (with sensitivities of 0.81, 3.23 and 9.1

mV/N for the bump areas of 0.25, 1, and 2.25 mm2, respectively) and a force increment of 25 mN
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for dome shape sensors (the achieved sensitivities is 1.1, 5.07, and 10.6 mV/N for the different

diameters of 500 µm, 1 mm, and 1.5 mm, respectively).

Figure 2.10: a) The process of controlled inflation technique; b) optical photographs of the fabricated dome
shape tactile  sensors; c) detection of contact force with proposed dome shape tactile sensor and flat shape
tactile sensor (Frequency: 5Hz) (adapted from [74]).

Dome-shaped piezoelectric tactile sensors made of 56 µm-thick PVDF and fabricated by

in ation technique (see Figure 2.10) have been proposed by M. S. Kim et al [74, 75]. The proposed

devices are able to measure forces in a range of few mN up to 1 N. In this force range, the achieved

sensitivities are 7.89 mV/mN and 8.83 mV/mN for two dome-shaped sensors (with height h = 0.5

mm and 1.0 mm, respectively).  A comparison of  the sensitivities  of  these two sensors  with a  at

tactile structure (S = 6.02 mV/mN) shows that dome-shaped tactile sensors have higher sensitivity

of about 46.4% than the conventional at tactile sensor.

Table II.2 summarizes the main features of previously mentioned sensors, taking into

account materials properties, pressure/force range and flexibility requirements.



ARTIFICIAL TRANSDUCERS DESIGN

29

Table II.2

Summary of main features of tactile sensors according to materials properties, pressure/force
range and flexibility requirements

Authors Material Method Dimension
[mm2]

Thickness
[µm] Flexibility Operation

range Sensitivity

G. M.
Krishna [58] PZT

Resonant
sensor (1

MHz)
176 1000 5-54N /

D. Belavic
[59] PZT

Resonant
sensor (26

kHz)
22 16 0-70kPa 2.6 Hz/kPa

R. S. Dahiya
[60, 61]

PVDF-
TrFE POSFET 0.54 2,5 0.01-3N 102.4 mV/N

M. A.
Qasaimeh
[62]

PVDF Extensional
mode

4 25 0.001-6N /

H. J. Tseng
[64]

PZT Extensional
mode

36 0.250 – 1 Human
pulse 0.798 mV/mN

B. P. Nabar
[65]

ZnO
nanorods

Extensional
mode

0.25
5 10-20kPa /

0.001

C. H.
Chuang [69]

PVDF/
Piezo-

resistors
Extensional

mode
225 28 0.1-4N 0.03 mV/N

5-20N 0.0057 mV/N

M. Akiyama
[46, 70, 71] AlN Extensional

mode
/ 1 0-8.5MPa 0.9 kPa

C. Li [73] PVDF-
TrFE DSDT

0.19 up to
1.76

30 0-1N

0.81 to 9.1
mV/N

0.25 up to
2.25

1.1 to 10.6
mV/N

M. S. Kim
[74, 75] PVDF DSDT 3.14 56 0-1N /

2.3.1. ADDITIONAL FLEXOELECTRIC CONTRIBUTION

Though the existence of the exoelectric effect in solids has been predicted in the past, this

phenomenon has drawn limited attention up to the end of the century, especially because of the

difficulties in measuring quantitatively its contribution – that, moreover, is expected to be weak.

Furthermore, the available theoretical and experimental results are rather contradictory, attesting to

a limited understanding of this electromechanical effect. Poor examples of force/pressure and

tactile applications exploiting flexoelectric effect can be found in literature so far.
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Figure 2.11: a) Comparison of measured frequency response with the analytical solution; c) sensor charge
output under different frequencies and acceleration ranges (adapted from [76]).

Nevertheless, the exoelectric effect looks promising for practical applications, especially

in electromechanical sensing. Flexoelectricity suggests an alternative approach toward high

performance electromechanical sensors due to the greatly enhanced effective piezoelectricity of

miniaturized exoelectric structures [77]. W. Huang et al [76] have designed a new acceleration

sensor using flexoelectric barium strontium titanate (Ba0.65Sr0.35TiO3 or BST) cantilever for

vibration monitoring. Experimental results reveal the prototyped accelerometer, with thickness of

0.1 mm and length and width in millimeters, have a stable sensitivity of 0.84 pC/g in a low

frequency range (100 Hz – 1.6 kHz). They have also demonstrated the charge output of the sensor

is in the range of 0.5 – 3 pC under different frequencies and acceleration ranges, as shown in Figure

2.11.

A flexoelectric bridge-structured microphone using still bulk BST ceramic has been

investigated in the study of S. R. Kwon et al [78] to detect sound pressure emitted from a loud

speaker. The 1.5 mm×768 m×50 m micro-machined bridge-structured flexoelectric microphone

has been designed to show a sensitivity of 0.92 pC/Pa, while its calculated resonance frequency is

98.67 kHz. The flexoelectric microphone has both high sensitivity and broad bandwidth, indicating

that flexoelectric microphones are potential candidates for applications in acoustic sensor.

One of the most promising application of flexoelectricity concerns the performance

enhancement of some piezoelectric micro- and nano-systems. As reported by S. Petroni et al [79],

the strain gradient and the resulting flexoelectric effect in non-ferroelectric aluminum nitride are

responsible for an additional polarization, leading to an enhancement of the transduction properties

of the used material. Parallel plate capacitors, made of AlN and realized for tactile sensing purpose

with a dome shape, present high elasticity under applied stress and sensitivity in the pressure range

of 10 kPa to 1 MPa. The static contribution due to the flexoelectric polarization has been
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experimentally observed as a capacitance variation C when a load is applied over the dome. The

capacitance variation is measured as a function of the pressure, applying loads from ~0.01 N to 0.2

N, and a shift within ±0.04 pF has been measured.

2.4. CHOICE OF PIEZOELECTRIC MATERIAL FOR TACTILE SENSING

PURPOSES

As reported in previous paragraph, there is a wide choice of materials and material forms

(ceramics: PZT; polycrystalline films: ZnO, AlN; polymers and copolymers: PVDF, PVDF-TrFe)

that are actively piezoelectric. In the early stages of MEMS development, piezoelectric materials

were rarely used and mostly restricted to ZnO, as it was hard to access deposition techniques that

would guarantee repeatable results and fabrication process compatibility. Furthermore, the most

common used piezoelectric material was lead zirconate titanate for long time, especially for

macroscale application. As MEMS systems move to smaller sizes and increased integration density

with increased speed, larger range of motion and more powerful actuating elements, revolutionary

advances in actuators, sensors and transducers are required. These advances are enabled by the

rapidly growing field of thin-film piezoelectric MEMS. Fabrication process compatibility,

complexity and limited availability of repeatable and reliable piezoelectric thin lms have limited

the incorporation of piezoelectric material like ZnO and PZT as thin lms. One of the most

important drawback of ZnO and PZT concerns to IC fabrication facilities because of contamination

risks in complementary metal oxide semiconductor (CMOS) lines.

Typically, the most common used piezoelectric thin films possess a number of key

characteristics that make them very attractive:

excellent temperature and frequency stability (this is achievable by the deposition of

wurtzite-structured lms);

piezoelectric charges develop whenever the device undergoes mechanical excitation.

Thus, piezoelectric sensors do not require power themselves (although any associated

electronics  such as  charge or  voltage ampli ers,  etc.,  will  need to be powered).  As a

result, piezoelectric MEMS are interesting for low power, low noise and broad

dynamic ranges requirement sensors;

piezoelectric actuators have substantially high energy densities. As example for

actuators, the force per unit area increases linearly with the electric eld. Moreover, the

permittivity of piezoelectric thin lms exceeds that of air. As a result, the required

driving voltages to achieve a given displacement in these structures is typically modest;
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piezoelectric thin films show good scaling with size. That is to say, the energy density

available for actuation remains high, even as device sizes drop, so that useful work can

be done even with small volume structures. This decreases the complexity, enables

higher integration density and reduces the voltage load on IC electronics.

A comparison of main properties and features of thin-film piezoelectric materials used in MEMS

technology is listed in Table II.3 below.

Table II.3

Material properties of common MEMS piezoelectrics.
Parameter PZT ZnO AlN -PVDF

System class
Hexagonal

6mm

Hexagonal

6mm

Hexagonal

6mm

Orthorhombic mm2

Lattice constants [Å]
a = 5.78

c = 7.10

a = 3.28

c = 5.23

a = 3.11

c = 4.98

a = 8.45

b = 4.88

c = 2.55

Density [kg/m3] 7600 5606 3255 1800

Young’s modulus [GPa] 63 - 68 120 – 201 308 – 348 2 – 3

Poisson ratio 0.35 0.33 0.30 0.34

Piezoelectric constant

d31 [pC/N] -40 – -94 -2 – -7.5 -1.9 -18 – -20

d33 [pC/N] 90 – 290 5.5 – 12.4 4.9 15 – 16

g31 [V m/N] -0.0091 -0.045 0.031 0.21

g33 [V m/N] 0.0197 0.0109 0.10 0.33

Band gap [eV] 2.67 3.4 6.2 6

Relative permittivity 650 – 1000 9.9 – 10.8 8.5 – 10.5 12

Resistivity [ cm] > 109 >107 >1014 >1015

Typical deposition

Techniques

Sol-gel process, pulsed

laser deposition,

sputtering

Sputtering Sputtering Drop casting

Ferroelectricity Yes No No Yes

Poling Yes No No Yes

According to previous considerations, the selection of piezoelectric material becomes

crucial in the design of tactile devices. In MEMS technology, most of the piezoelectric thin lms

are polycrystalline materials. Among them, aluminum nitride (with chemical formula AlN) can

match all previously mentioned requirements.
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2.4.1. C-AXIS ORIENTED ALUMINUM NITRIDE

In the last decades, the most studied and used non-ferroelectric piezoelectric thin film has

been aluminum nitride. It has been widely used especially in BAW (Bulk Acoustic Wave) and

SAW (Surface Acoustic Wave) devices. In spite of its piezoelectric properties weaker than

ferroelectrics, it shows high propagation velocity of bulk and surface acoustic waves [80-83]. Many

other MEMS devices have been demonstrated using AlN as pressure sensors [46], resonators [84-

86], lters [87], switches [88, 89], energy harvesters [90, 91], ultrasonic transducers [92, 93],

microphones [94], strain sensors [95] and accelerometers [96].

Figure 2.13: a) Wurtzite crystal structure of AlN showing Al atoms (in gray) and N atoms (in green); b) the
Al-centered tetrahedral are arranged with one neighbor N atom directly above (parallel to the c-axis) and
three neighbors N atoms forming the base of a pyramid.

Aluminum nitride is a class 6mm crystal dielectric that is isotropic in the x-y plane and

anisotropic along the z-axis. It is synthesized and used in wurtzite (w-AlN) structured phase which

shows piezoelectric response along [0001]. All of the atoms are tetrahedrally coordinated and are

arranged in puckered hexagonal rings perpendicular to the crystallographic c-axis, as shown in

Figure 2.13.

In a single crystal, all of the cations polyhedral are arranged in the same orientation. The

relative displacement of center of positive and negative charges within the unit, which is the origin

of the piezoelectric d33 coef cient in AlN is yielded by the deformation of tetrahedral cell primarily

by changing the N–Al–N bond angle, rather than changing the Al–N bond length during the

application of a stress parallel to the c-axis. Since AlN allows the processing as thin lm, it can be

used in composite structures where the total elastic properties are often dominated by the other part

of structure (i.e. cantilevers and/or membranes), especially in such devices that used to be made out

of silicon with enhanced performances.

Poly-crystalline AlN can be obtained by reactive sputter-deposition of pure Aluminum

target in N2 and Ar atmosphere. AlN does not require poling or post-deposition annealing to exhibit
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piezoelectric properties, being not a ferroelectric material. AlN does not exhibit conductivity

problems and good lms can be grown between 100 and 900°C. Moreover, it is a large band gap

(6.28 eV) material with large electrical resistivity (1·1014 cm), high breakdown voltage (11·106

V/cm) and low dielectric loss that makes it suitable for transducers, high thermal conductivity (~

2.85 W/cm·°C) and low thermal expansion coefficients ( AlN = 4.2·10-6 °C-1).

These coefficients imply low thermal drifts for the devices. The high chemical stability

allows AlN to be used in humid environments, which is not possible for piezo-materials like PZT

and ZnO. At the same time, it can be etched under standard conditions to allow the production of

multiple devices. Finally, AlN does not introduce contaminants into the CMOS micro-technology

process that makes it completely compatible with CMOS.

However, the piezoelectric response of AlN polycrystalline thin lms depends on their

crystal properties and the presence of impurities. A c-axis preferred orientation, low oxygen

content (below 1%), type of substrate, crystal morphology (rocking-curve and grain size) and

surface roughness are crucial requirements for achieving good piezoelectric response. Moreover,

the properties of the substrate and its corresponding surface characteristics have a strong impact on

the degree of c-axis orientation and on the polarity of AlN thin lms and final microstructure.

Nevertheless, AlN thin films can be grown with excellent crystallinity on different substrates

including dielectrics, semiconductors and metallic layers as well as on flexible substrates as

polymers and polyimides [97-100]. As a consequence, AlN seems to be the most adequate material

for the applications analyzed here.

2.5. CURVED PIEZOELECTRIC TRANSDUCER WITH SPHERICALLY-

SHAPED DIAPHRAGMS AS TACTILE TECHNOLOGY

The design of proposed technology has been based on the results of functions and

properties of tactile units (as listed in Table I.1) and technological requirements as well as

performances and fabrication techniques of various sensing devices (as listed in Table I.2 and

Table II.2) analyzed in previous sections. Since the overall device is designed to be suf ciently

compact to allow integration into an arti cial nger or into other body parts, the guideline

parameters are to decrease the sizes of individual units and spacing between them to allow high

density of elements per given area and high spatial resolution. Furthermore, crucial is the

achievement of high sensitivity, allowing detection of small uctuations in applied pressures, and

operating pressure range that is within the range of interest for robotics applications.

A piezoelectric circular diaphragm has been used as sensing element for the proposed

force/pressure technology. The most common design concept among the piezoelectric
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force/pressure sensors involves at membranes with patterned electrodes. The sensitivity of the

sensor, thus, is mostly determined by the piezoelectric coef cient of used material. Furthermore, it

is important to consider that discrete sensing elements arranged in a matrix form have the problems

of  crosstalk  and  unstable  response.  As  reported  by  some  recent  works  [72,  74,  75,  79,  101],  by

adopting a dome-shaped diaphragm as sensing structure, the proposed device is designed to exploit

higher sensitivity than a at counterpart and minimizes the crosstalk between sensing cells.

When mechanical stress is applied to piezoelectric membrane, an electric voltage is

generated, exploiting the piezoelectric effect. The generated electrical signal is proportional to the

magnitude of the applied contact force according to the equation 2.10a (assuming the electric

charge density D = 0 at initial equilibrium). Since the piezoelectric voltage constant gip is  the

induced electric field (along direction i) per applied mechanical stress (along direction p), while all

other stresses are zero, the generated electric field can be expressed as:

= (2.1)

where n =  1,  2  or  3  and n is the mechanical stress. Compared with a conventional at tactile

transducer in which the stress is dispersed all over the membrane, the dome-shaped tactile

transducer allows to concentrate the stress in the center of the unit cell, generating a higher voltage

due to the increase cell deformation when a contact force is applied.

With the aforementioned considerations in mind, three-dimensional dome-shaped cells

have been fabricated on 25 m thick (DuPont™) general purpose Kapton™ substrate laminated on

silicon rigid support by 60 m thick silicone adhesive. The rigid silicon substrate is needed during

the microfabrication processes to make the technology compliant with common semiconductors

facilities. The final design consists of aluminum nitride circular domes with different radii,

embedded between two metal electrodes – made of molybdenum. Structuring the layers into

circular shape and rounding stray corners is a way to minimize the cracks propagation, together

with the residual compressive stress, allowing to prevent cracks generation and to release the

crystal strain over the polymer to increase the damping properties. Otherwise, these shapes present

an increased toughness due to residual stresses from differential shrinkage of the materials of each

layer upon process cooling [102]. Moreover, the combination of metals and semiconductors layers

on polymers exploits the flexibility of the polymer and the electrical stability of the semiconductor

at the same time. The use of a soft substrate such as kapton polyimide gives different results from

those obtained by using a usual hard substrate, due to the residual stresses generated by differential

contraction during the post processing cooling down. The crystalline layers release a compressive

stress over the polymer indeed, generating three-dimensional domes with reduced stiffness,

compared to the semiconductor materials. Since both the sensing layers and the substrate, upon

loading, participate to the deformation, the mechanical properties of the spherically shaped
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capacitors take into account both the layered structure and the uplift ring-shaped substrate. Besides,

the presence of polyimide substrate confers to the final device enough flexibility and

conformability to be adapted to curved surfaces.

A thorough discussion on the elastic and electrical properties of the proposed technology

will be argued in the next paragraphs.
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Summary

In this chapter, the design of proposed pressure/force sensor based on dome-shaped piezoelectric

diaphragm transducer is described.

Firstly, a brief introduction of the working principle of the device is given, focusing on the

response of the sensor when an external stimulus is applied.

A theoretical analysis of the elastic deformation of the structure due to the aluminum nitride

residual stress on polyimide substrate is then given and the calculation of the corresponding stress

responsible of the circular diaphragm releasing and generation of dome-shape geometry is

provided.

Moreover, finite element method is used to give a quantitative description of the electromechanical

response of the device under stress and to study the dynamic behaviour and the related operating

resonances both by FEM simulations and by an ad hoc theoretical model, the dome-shaped-

diaphragm transducers (DSDT) working like a piezoelectric actuator for ultrasounds emission.

DOME-SHAPED TRANSDUCERS DESIGN AND MODELING

The proposed technology is based on three-dimensional AlN piezoelectric dome-shaped-

diaphragm transducers (DSDTs). The piezoelectric properties of the aluminum nitride thin film

allow exploiting the duality of the device both as actuator and sensor. As actuator, it finds its major

use in the field of tactile systems based on ultrasonic transducers (some examples are reported in

Chapter I). As sensor it can be used to directly convert force/pressure impulsive dynamic and long

static stimuli in electrical processing signals.
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Moreover, the choice of soft and flexible materials as polymer-based substrate (Kapton™)

and soft piezoelectric thin-film confers to the final device the ability of bending and adapt to curved

surfaces.

3.1. AlN/POLYIMIDE-BASED DSDT TRANSDUCER

In this study, AlN circular tactile transducers, with a thickness of 1 m on a 25 m-thick

Kapton™ and realized by standard micromachining process, are presented. The unit cell consists of

flexible piezoelectric circular plate made of c-axis highly-oriented AlN. The membrane is

embedded between molybdenum metal electrodes in order to collect the charges generated by

direct piezoelectric effect or to provide the electrical field for the generation of a mechanical

displacement by means of reverse piezoelectric effect. The thickness of the electrodes is 150 nm for

the common ground and 300 nm for the top electrode, respectively.

The stress release of the active layers (AlN and, marginally, molybdenum) generates three-

dimensional uplifted circular domes with structural stiffness well below the stiffness of composing

materials. The deposition of AlN crystalline lm on a polymeric substrate, such as polyimide,

manifests a natural organization in dome structure which is lifted up after release from the substrate

surface. This effect is due to the compressive residual stress difference of AlN over the polyimide.

The sensing mechanism of the transducer mainly relies on the dome shape; when a normal

force is applied on the top of the dome, a mechanical stress occurs in the AlN thin layer that

becomes electrically polarized due to both piezoelectric and exoelectric effects (these effects are

debated in details in section A.1 and A.2 of Appendix A). According to the synergistic interaction

of these effects, the total induced electric polarization  is described by the equation:

= + (3.1)

where  is the appropriate piezoelectric stress coef cient along the axis of the applied strain

in the relevant direction speci ed by i and j indexes,  is the exoelectric constant,  is

the strain gradient and  is the position coordinate.

A schematic of the working principle of the transducer as force/pressure sensor for tactile

application is shown in Figure 3.1. When an external stimulus, i.e. a force F,  is  applied  on  the

domes, the bending of the structure is transferred to the aluminum nitride thin film and causes the

generation of positive and negative charges on its opposite faces. The charges are then collected by

the metal electrodes as output voltage signal.
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Figure 3.1: Schematic of the working principle of the proposed technology as force/pressure sensor for
tactile applications.

In this way, the device is able to detect both low and high frequency dynamic impulsive

forces that are applied in a perpendicular direction to the device surface. Moreover, it allows also

the detection of long static perpendicular stimuli as a capacitance variation C at different forces

amplitude, exploiting the dielectric properties of the Mo/AlN/Mo stack on polyimide substrate and

the steady deformation of the convex structure. Furthermore, the detection of shear forces (e.g. due

to the slippage of objects) is also allowed by positioning the dome in a cross-layout design and

collecting the differential output signal – e.g. from a pair of domes. In this way, multi detection of

different stimuli is made possible, mimicking the behaviour of human tactile sensing cell by only

one technology.

An overview of the final device is displayed in Figure 3.2 where the tactile flexible skin is

thought to have quartet of domes placed in a cross-layout configuration array. A polymer-based

cover and pillar are figured in order to apply normal and shear forces/pressures to the quartet

below.

The device can be used also as piezoelectric ultrasonic transducer, whose

electromechanical behaviour can be modelled assuming that the circular elements behave as a

mechanically fully-clamped homogeneous plate resonator.
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Figure 3.2: Schematic of a final tactile skin based on micro-domes transducers.

3.2. MODELLING OF CURVED PIEZOELECTRIC DIAPHRAGMS

In bio-inspired tactile systems, an efficient artificial tactile skin requires flexibility,

stretchability and robust technology as well as it must be able to provide a large amount of

information. Proper analysis, based on FEM simulations and theoretical models, is fundamental for

a complete understanding of the operation principle of curved DSDTs and for the related design

optimization.

3.2.1. MODELING OF ELASTIC DEFORMATION DUE TO RESIDUAL STRESSES

A multi-layered structure is subjected to residual stresses which arise because of mismatch

in coefficient of thermal expansion between layers when the system is cooled down to room

temperature or it is subjected to temperature changes during its application; otherwise it depends on

mismatch of lattice constants between the substrate and the epitaxially grown lms. This last effect

can be modelled as an intrinsic stress that re ects the internal structure of a material during its

deposition. It mainly depends on some parameters as deposition rate and temperature, pressure in

the deposition chamber, incorporation of impurities during the film growth, grain structure,

fabrication process defects, etc. In most cases, intrinsic stress is non-uniform through the depth and

it  is  therefore responsible  of  stress  gradient.  The study of  the stress  due to AlN on the polyimide

substrate and responsible of the three-dimensional dome-shape structure is shown below.

An accurate analysis of residual stresses in multi-layered structures has been performed by

Stoney [103], who has gathered a simple solution to relate the stress in a bilayer film to the radius
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of curvature  of the system. According to this formulation, the residual stress can be calculated

as:

=
6

(3.2)

where E is the Young’s modulus and t states the thickness (the subscripts s and f refer  to  the

substrate and deposited film, respectively). The Stoney’s model assumes the film thickness to be

infinitesimal compared to the substrate thickness. Actually, the accuracy of Stoney’s equation has

been improved by including higher order terms of film thickness [104-107].

Figure 3.3: Schematic of the cross section of a multi-layered structure with n layers deposited on a substrate.

The assumptions of the Stoney’s equations can be adjusted to explain the generation of

residual stress that is responsible of the generation of spherically shaped circular piezoelectric cell,

still made of n layers. In order to analytically model the elastic deformation of the multi-layered

circular shell, it is assumed to behave as a mechanically fully-clamped homogeneous plate. The

cross section of the corresponding multilayer structure is displayed in Figure 3.3.

According to the schematic, n layers of film with individual thickness ti – the i index

ranging from 1 to n – are deposited on the substrate, whose thickness is supposed to be ts. Being the

layer 1 immediately adjacent to the substrate, the height of each layer is related to the thickness by

the following relation

= (i = 1,…., n) (3.3)

The strain distribution along the longitudinal (x and y) direction of the layers in the system can be

decomposed into a uniform and a bending component, as:
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= + z [-ts, hn] (3.4)

where  is the uniform strain component and  defines the location of the bending axis

where the bending strain component is zero (neutral axis).  In  case  of  a  multilayer  obtained  by

deposition and cooling down processes, the normal stresses in the substrate and films can be related

to the strains by the equations:

= ( ) -ts z 0 (3.5a)

= ( ) i = 1,…,n (3.5b)

where  and  are the coefficients of thermal expansion of the substrate and i-th film and T is

the temperature variation.  is the biaxial Young’s modulus of the i-th layer, defined as =

(1 ),  and  being the Young’s modulus and the Poisson’s ratio, respectively.

In order to determine the strain/stress distribution in the multilayer, some boundary

conditions must be taken. It is assumed that the resultant forces due to uniform strain component

and  to  the  bending  strain  component  are  zero.  Due  to  internal  stresses,  mismatch  forces  arise  at

lm/substrate interface. Each set of forces can be replaced by the static equivalent combination of

force and moment, supposing that the bending moment with respect to the neutral axis is in

equilibrium with the applied moment per unit width M. By the previous hypothesis, the terms of

equation 3.4 can be expressed as:

=
( + )

+ (3.6a)

=
+ (2 + )

2 + (3.6b)

1
=

3 (2 + ) + 6
(2 + 3 ) + 6 + 6 + 2 3 (2 + )

(3.6c)

When the thickness ratio between the films and the substrate is smaller than 10%, the

average stress, , through the film thickness defined as

=
1 (3.7)
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is often considered. When the stress distribution along the films cannot be ignored, a first-order

approximation can be derived, such that the stresses on the substrate and the i-th  film  can  be

expressed as:

=
2

3 + 2
2

( ) (3.8a)

= + 4 (3.8b)

which take into account a modification of the stress distribution and the shift of neutral axis as well

as the influence of other films on residual stress of each layer. Thus, the average residual stress in

the i-th film can be calculated by replacing the equation 3.8b in 3.7.

This analytical model can be used to calculate the stress generated by AlN on kapton

polyimide. Since the thickness of the metal electrodes is smaller compared to the thickness of

piezoelectric film and structural substrate, the tetra-layered structure (Mo/AlN/Mo/Kapton) can be

approached to a bilayer system made just of polyimide substrate and aluminum nitride layers (for

convenience of notation, the subscripts kpt and AlN are  used  to  rename  the  substrate  and  the

piezoelectric film, respectively).

When the first-order approximation is taken, the calculation of the residual average stress

of AlN on polyimide can be estimated by the equations 3.7 and 3.8b that become

=
6

1 + (3.9)

without loss of generality, being the ratio  equal  to  3.9%.  This  equation  can  be  used  to

evaluate the dependence of geometrical features of the three-dimensional structures on residual

stress. The study on the effects of the residual stress due to the aluminum nitride deposited on the

polyimide substrate will be expounded in the next section of this dissertation.

3.2.2. FEM QUALITATIVE ANALYSIS OF DSDT AS SENSOR

Finite element method (FEM) simulations have been implemented in order to understand

the electromechanical behaviour of the DSDTs. The general-purpose software platform COMSOL

Multiphysics® (Comsol Inc., Burlington, MA) has been used to create the geometry and to perform
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the simulations in the stationary and frequency domains, such that both the responses of the device

as piezoelectric actuator and sensor have been investigated.

Figure 3.4: Cross section of the axisymmetric curved DSDT with clamped boundary conditions. w( ) and u
are the radial and tangential displacements of a point with angular position , respectively.

To properly build the geometry, some assumptions have been taken, as schematized in

Figure 3.4. The curved DSDT is composed of an AlN smaller shell whose thickness is ,

nominal radius  and azimuthal angle sin ( ).  The  shell  has  been  built  on  a  larger

curved structural membrane – made of kapton and adhesive glue bilayer substrate – in order to

artificially model the pre-stressed structure without adding intrinsic stresses. The outer radius of the

structural membrane is  and the corresponding radius of curvature is ( ). The

azimuthal angle of larger diaphragm is sin .  This  angle  is  used  to  impose  the

mechanical clamps on outer borders and to fully fix it (as shown in Figures 3.4 and Figure 3.5).

The exploited physics for FEM simulations have been the structural solid mechanics and

the electrostatics to simulate the piezoelectric effect. The flexoelectric effect has been taken into

account and has been added to the piezoelectric multi-physics as a measured offset.
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Figure 3.5: a) COMSOL model of curved DSDT with clamped and symmetry boundary conditions. The
DSDT is composed of the outer large membrane made of structural kapton and silicon adhesive layers with
nominal radius and an inner active aluminum nitride membrane with nominal radius . The radius of
curvature of the total shell is ; b) and c) boundary conditions including fixed constraints and symmetry
edges.

The geometry has been built by a 2D axial symmetry space dimension – exploiting the

symmetry of a circular diaphragm – in which the central axis (the z-axis as shown in Figure 3.5)

corresponds to the centre of dome-shaped transducer. A standard free triangular mesh has been set

up as nite element geometry discretization (see Figure 3.5a).

Symmetry conditions  have been also imposed (see Figure 3.5c); they allow simulating just

a quarter of the total circular diaphragm, decreasing the complexity of the model and speeding up

the mathematical solution.

The FEM simulation has been performed applying a uniform impulsive load. Silicon

substrate has been included in the structure as rigid fixed support. Since vacuum is supposed to be

between the silicon support and the adjacent adhesive layer, contact pairs at the interface have been

set (see Figure 3.6a).

These contact pairs define boundaries where the parts can come into contact but cannot

penetrate each other under deformation. The uniform force has been finally applied just on the

piezoelectric portion of the total shell through the boundary surface load. Fixed constraints have

been also defined to fasten the fixed sides of the silicon support. On the contrary, since the

thickness of the metal electrodes and their contribution to the vibration as a consequence, is

negligible compared to the thickness of the structural substrates and the piezoelectric thin film, they

haven’t been taken into account in the final geometry. From the solving point of view, this
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simplification allows to considerably reduce the calculation complexity and the number of elements

and nodes after meshing.

Figure 3.6: a) and b) COMSOL model of curved DSDT with boundary conditions, including the silicon rigid
support and c) comparison of the voltage output from the simulated representative Dome-A and Dome-B
diaphragms.

A stationary study has been performed to solve the electromechanical analysis when the

impulsive load is applied. Two exemplary models of DSDT, hereafter labelled Dome-A and Dome-

B, have been simulated. The Dome-A has an uplifted radius = 1530 m and the corresponding

radius of curvature  = 27.2 mm, being the maximum height of dome  = 43 m (this last

value coming from experimental measurements). On the other hand, the uplifted radius of Dome-B

is  = 1210 m and the corresponding radius of curvature and maximum height are  = 22.2

mm and  =  33  m,  respectively.  In  both  the  cases,  the  piezoelectric  membrane  has  a

thickness of 1 m and a nominal radius = 350 m, respectively. Isotropic properties have been

used for the structural materials (silicon support, rubber adhesive and polyimide substrate), whereas

anisotropic properties have been set for the piezoelectric thin film. A detailed list of the material

properties used in FEM simulations is reported in Table III.2 – the elastic and the piezoelectric

coupling matrices of the aluminum nitride are reported, instead, in Table A.2 of Appendix A.
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Table III.2

Material properties of structural kapton and silicon adhesive and piezoelectric AlN used in
analysis and simulations.
Parameter Description Rubber adhesive Kapton HN AlN Unit

Density 1100 1420 3300 kg/m3

E Young’s modulus 0.73 2.5 348 GPa

Poisson’s ratio 0.47 0.34 0.3 /

Dielectric constant 2.9 3.4 9 /

Piezoelectric charge constant / / 2.20 pm/V

The normalized output voltage at the peak versus the applied impulsive force provides a

qualitative understanding of the device voltage response (see Figure 3.6c). The simulations results

show the domes are firstly pushed downwards, with slight compression in polyimide substrate tape,

until the released structure is flattened on the silicon substrate. In this region, the stress is

transferred to the piezoelectric film, generating the voltage signal according to the voltage/stress

relation (see equation 2.1 in section 2.5 of Chapter II). For increasing forces, the constant flattening

causes the signal saturation. This evaluation suggests the uplifted area is determinant for the

dynamic range of the transducer that easily deforms under impulsive loading.

3.2.3. FEM ANALYSIS OF DYNAMIC RESPONSE OF DSDT AS ACTUATOR

FEM study has been also performed to simulate the frequency response of the curved shell,

exploring the indirect piezoelectric effect. In these simulations, the silicon substrate has been

neglected. This assumption is allowed assuming the kapton/AlN uplifted shell as an ideally fully-

clamped diaphragm, fixed on the outer edges.

In addition, a zero uniform normal pressure p has been initially supposed (both in receive

and transmission), such that no boundary load conditions have been applied.

The dynamic response and the radial displacement amplitude of the curved shell have been

calculated around resonance frequency of the first vibrational mode.
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Figure 3.7: Comparison of the centre displacement of Dome-A and Dome-B per unit input voltage versus the
frequency coming from COMSOL simulation. A shape-mode representation of the investigated (0,1) mode of
resonance is depicted.

To do that, the membranes have been driven by applying a test AC voltage signal of 3 volts

amplitude. In the plot of Figure 3.7, the comparison of the centre displacement of the curved

DSDTs per unit input voltage versus the excitation frequency, for the DOME-A and DOME-B

diaphragms is shown. Since the voltage driven piezoelectric region of the shell has the same radius

in both the DOME-A and DOME-B, the results  suggest  the resonance frequency is  around 408.6

kHz and it doesn’t depend on the maximum height and radius of curvature. However, a slight

variation of the centre displacement per unit input voltage has been achieved, the Dome-A having

an increase of displacement about 24.4% compared to Dome-B. The variation of the centre

displacement and the maximum height has been investigated as a function of the radius of

curvature and the corresponding relationships are reported in Figure 3.8a. Finally, the effects of the

shell curvature on the displacement have been studied with respect to maximum height, keeping all

the other geometrical parameters still unchanged (see Figure 3.8b).
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Figure 3.8: a) variation of the centre displacement per unit voltage and height of the dome as a function of
the radius of curvature; b) effect of the shell curvature on the displacement when the height of the dome is
kept still constant.

This last study show the centre displacement gradually decreases as the curvature becomes

large and it gets closer to a common value when both the domes approach a planar circular plate

(corresponding to a large radius of curvature). This result suggests that curved diaphragms have an

improved electromechanical coupling with higher mechanical deformation per unit energy

compared with the conventional unimorph plate structures [108, 109]. The improvement of

electromechanical coupling is mainly due to the fact that dome-shaped transducers exploit in-plane

piezoelectric strain, which leads to large out-of-plane deflection because of their spherical

curvature and fully-clamped or ideally fully-clamped periphery.
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3.2.4. ANALYTICAL MODEL OF DYNAMIC RESPONSE OF DSDT AS ACTUATOR

An additional theoretical model of the DSDTs, together with FEM analysis, can be used to

predict the dynamic response of the device due to the strain mismatch between the layers resulting

from the voltage-induced piezoelectric stress. The Love’s first approximation theory is appropriate

to geometrical and dynamical characterize the elastokinetic deformation of thin spherical shells

[110, 111]. Since the transverse normal at curved diaphragm remains still normal to the deformed

middle surface, the transverse shear strains can be approached to zero and all nonlinear terms can

be neglected. The transverse normal strain can be supposed even negligible. If (r, , )  are  the

spherical coordinate system defined by the transformation = ( + ) sin cos , =

( + ) sin sin  and = ( + ) cos  (Rc being the radius of curvature) thus 0,

0 and 0. The total strain of spherical shell  in the i- and j-directions is the sum of

membrane and flexural strains  and , respectively:

= +      where i, j  { , }  (3.10)

where  is the radial position measured from the centre of the diaphragm [112, 113]. The strains

relations come from the theory of Love’s first approximation [114]. The transverse shear stresses

 and  are still negligible as well as the transverse normal stress is small compared with the

other normal stresses ( 0). If an external electric field  is applied along the polarization

direction, the transverse piezoelectric charge constants  and can be assumed to be equal and

with a magnitude of .

For a multi-layered structure made of polymer substrate and aluminum nitride with

electrodes – as in the proposed technology – di erent densities, Young’s moduli and Poisson’s

ratio must be taken into account. Moreover, the piezoelectric coefficient  is zero in non-

piezoelectric films. However, displacements are identical for all of the layers because of the thin

layer condition. Let the piezoelectric medium be also modelled as an isotropic material, whose

mechanical properties are described by the Young’s modulus  and the Poisson’s ratio .

In order to include the vibrational contribution of each layers in the multi-layered structure,

the average density , Young’s modulus , Poisson’s ratio , total thickness =  and

thickness of each layer ti are used:

=  (3.11a)
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=
(3.11b)

=
(3.11c)

The motion of the DSDT in both transmit and receive modes is rotationally symmetric

around the z-axis, such that axisymmetric conditions can be employed ( = 0).  From  the

Love’s approximation, the dynamic stress equations become:

sin
+ cos + sin = sin (3.12a)

( )
+

sin
+ cos + sin = sin (3.12b)

sin
+

( )
cos +

= sin sin
2

1
sin

(3.12c)

sin
+ cos sin = 0 (3.12d)

sin
+

( )
+ cos sin = 0 (3.12e)

where ,  and  are the stress resultants, ,  and  are the stress couples, p is

the received/transmitted pressure perpendicular to the curvature of shell, V is the applied voltage

signal,  and are the transverse shear stress resultants and  and are modified stress

resultant [110, 111] (see Figure 3.9).
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Figure 3.9: Curved DSDT with radius and radius of curvature  in spherical coordinate. The stress
couples and the stress resultants are also displayed.

Finally, ,  and w are the displacement vector components in -, - and r-directions,

respectively.

As proposed by [110] and [111], two differential equations in F( , t) and radial

displacement w can be defined, where F is a specific stress function such that:

+ (1 )
(1 )

+ (1 ) +
2

= 0
(3.13a)

+
2

+
(1 + )

12
2

+ +
2

+
2

+ = +
1

(3.13b)

In previous equation, D is the flexural rigidity of the multi-layered shell, expressed as =

( ) [12( )]. The harmonic solutions of the previous differential equations in F and w

are in the form:

=  (3.14)
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where  is the operation frequency, whereas and  are the magnitude of the radial

displacement and stress function. By substituting F in previous equations 3.13, the equation of

vibrational motion of the curved shell in the most general form is:

+ + + =
2

1
 (3.15)

where

=
1

{4 + (1 ) } (3.16a)

=
12(1 )

(1 ) (3.16b)

=
12(1 )

{2 + (1 + 3 ) (1 ) } (3.16c)

=
1

{(1 ) + (1 ) } (3.16d)

The term 2 depends on the operating frequency and materials properties, as follows:

=  (3.17)

where  is a corrective parameter that takes into account the presence of multi-layers.

The general solution of equation 3.15 can be found by using the Legendre functions of

degree , with  = 1, 2 and 3, such that

= (cos ) + (cos )  (3.18)

where  and  denote the Legendre functions of first and second kind, respectively. The

degrees of Legendre functions are calculated as reported in [110]. The functions  has a singular

character when the angular position from the shell axis  reaches the apex point  = 0. In order to

keep the regularity of the equation 3.18, the coefficients  must be set equal to zero.

The specific solution of equation 3.15 depends on both the radial load and the applied

voltage, according to the following expression:
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=

1 1 + 1

(2 + (1 + 3 ) + ( 1) )

2
1

(3.19)

where = 12 . The final solution is the superposition of equations 3.18 and

3.19.

The coefficients  can be calculated imposing the boundary conditions, as shown in the

cross section of Figure 3.9. The curved shell is supposed to be ideally clamped on its edges, such

that it cannot translate in the r- and - directions or rotate around the -axis. In other words,

| = 0 (3.20a)

= 0 (3.20b)

= 0
(3.20c)

where = sin  is the azimuthal angle at the edge of the spherical shell with radius

. According to the previous boundary conditions and the magnitude of specific solution , the

coefficients ,  = 1,2,3, are as follow:

=
1

( + ) (3.21a)

= (3.21b)

=
+ +

(3.21c)

where, for i = 1,2,3,

= (cos ) (3.22a)

= ( + 1) csc (cos ) cot (cos ) (3.22b)

=

2
12(1 ) + 1

[ + (1 ) + (1 ) ]
(3.22c)
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The model, coded in MATLAB, has been used to analyse the clamped curved Dome-A

DSDT. As shown in Figure 3.10, the theoretically calculated resonant frequency is 384.9 kHz

whereas the FEM predicted resonant frequency is 408.6 kHz (see section 3.2.3). These frequency

values match quite well, being the difference equal to 6.1%. This small percentage difference is

probably due to the fact that AlN has been modelled as an isotropic material in the theoretical

model (as explained even in [111]). Figure 3.10 shows also the trend of the centre displacement per

unit input voltage of the shells as a function of the radius of curvature. Since the different approach

to analytically model the system, the predicted displacement differs from the FEM analysis (blue

curve in the graph), but the trend is kept still unchanged.

Figure 3.10: a) Comparison of the radial displacement per unit input voltage of the DOME-A with nominal
radius = 350 m, maximum height  = 43 m and radius of curvature = 27.2 mm as a function of the
frequency, from theoretical and FEM calculation; b) the centre displacement per unit input voltage is
compared as a function of the radius of curvature for a representative dome with 43 m  of maximum height.

.

Even from the theoretical analysis, the resonance of the diaphragms doesn’t depend on the

maximum height and radius of curvature but it depends rather on the voltage driven AlN

piezoelectric region, whose radius is equal to , as already proved by FEM analysis.
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Summary

In this chapter the fabrication of piezoelectric DSDTs, based on highly oriented c-axis aluminum

nitride, is described. After a brief introduction on the design features, a comprehensive description

of the fabrication protocol is given. The microfabrication steps and the lithographic masks are

described in details, underlying the simplicity of the fabrication protocol.

An exhaustive electromechanical characterization of the device is then carried out, showing the

device allows an enhanced transduction response, as actuator as well as force sensor, when the

piezoelectric cells are patterned in circular dome-shaped geometries.

The capabilities of the devices as actuator are then depicted and the results of experimental

measurements and results on resonance frequencies and out-of-plain displacements, when low

voltage is used to drive the cells, are described.

The detection of dynamic and static load is finally illustrated, in order to test the device as

force/pressure loads sensor, exploiting both piezoelectric and flexoelectric capabilities of the

aluminum nitride material.
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DSDT MICROFABRICATION AND EXPERIMENTAL

CHARACTERIZATION

4.1. MICRO-FABRICATION OF DSDT PROTOTYPES

Standard microfabrication techniques have been employed to fabricate the array of DSDTs.

The overall microfabrication process involves deposition of metal and piezoelectric films,

photolithography and plasma-based dry etching to pattern thin films with the desired features.

The DSDT devices have been designed and developed according to FEM and theoretical

analysis, previously described in Chapter III and following the typical requirements of

force/pressure systems for tactile applications. Therefore, based on a suitable fabrication protocol,

the photolithographic masks have been properly drawn. The protocol has been thought and created

to have the minimum number of steps, reducing, in this way, the complexity of the

microfabrication process as a whole. Figure 4.1 shows the complete design of three

photolithographic masks that have been used to fabricate a 2x2 array of DSDTs. Starting from the

as grown material as in Figure 4.1a, a Mo/AlN/Mo three-layer stack directly deposited on

polyimide substrate by all in one process, the following steps are included in the photolithographic

mask: 1) the definition of the AlN circular membranes by an etching of the aluminum nitride,

together with top metallization used also as hard masking, until the lower metal layer is reached

(Figure 4.1b); 2) the patterning of bottom metal common electrode (Figure 4.1c); 3) the realization

of top electrodes by additional metal deposition and lift-off (Figure 4.1d).

The bottom electrode has been patterned as circular common ground with a radius of 1 mm

in order to incorporate the most part of the quartet of domes, placing the external edge of each

circular membrane close to the ground border, allowing a top electrode fabrication without short

circuit with the ground electrode. Four pads with square shape and a surface of 1 mm2, 90° out-of-

phase placed, have been included to easily connect to bottom electrode with external connections

and  wires  (reducing  the  complexity  of  the  wiring  itself).  Metal  stripes  with  length  2.4  mm  and

width 500 m, respectively, connect the square pads to the common circular ground.
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Figure 4.1: Photolithographic masks needed to realize the array of DSDTs and fundamental process steps of
the developed microfabrication protocol.

Top electrodes have been designed with a circular region whose radius is equal to the AlN

membrane. This portion of the top electrodes is needed to embed the AlN cell. Pads and connection

metal stripes, still 90° out-of-phase placed, have been included, the length and the width being still

2.4 mm and 500 m, respectively. Moreover, their position has been designed in order to avoid

overlapping with bottom metallization, exploiting the direction defined by the membrane edges

close to the ground border – top and bottom electrodes have been 45° out-of-phase placed. The

final device consists of four DSDTs with a nominal radius of  = 350 m placed in cross-layout

configuration (hereafter labelled DOME–A, –B, –C and –D) such that it acquires a star shape that

makes the overall quartet to be conformable to curved surfaces, leaving the active region well

connected anyway. A detailed description of the microfabrication protocol will be given in the next

paragraph.
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4.1.1. MATERIALS PROPERTIES

4.1.1.1. Aluminum Nitride Texture

A fundamental step of the microfabrication protocol is the deposition of the aluminum

nitride thin film. The stacked structure Mo/AlN grown on polyimide kapton has been deposited by

sputtering in highly-oriented texture (as reported in previous works [79, 100, 115-118], the

sputtering deposition recipe has been conveniently optimized) perpendicular to the substrate

regardless of the underlying amorphous state.

SEM inspection of the sputtered layers, as displayed in Figure 4.2a, have revealed the

perpendicular orientation of AlN texture and a suggestive continuity through the single nanograin.

X-ray diffraction spectrum have shown peaks at about 36° due to the reflections (0002) of

the aluminum nitride and at about 41° due to the reflections (110) of the molybdenum, as reported

in the graph of Figure 4.2b. The full width at half maximum (FWHM) of the rocking curves, that is

0.52° and 0.54° for the molybdenum and the aluminum nitride, respectively, are also reported (in

the inset). From the last, it is possible to infer that AlN thin film has been grown highly-oriented in

wurtzite phase, allowing the piezoelectricity of the material. Moreover, a very good adhesion of the

polycrystalline structure to the polymer substrate has been achieved.
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Figure 4.2: a) SEM image of bottom Mo and AlN films deposited on kapton substrate showing the typical
columnar structure; b) X-Ray diffraction spectra  –2  with  5°  <  > 120° for the structure Mo(120
nm)/AlN(700 nm); in the inset the rocking curve of the AlN (0002) peak has a full width at half maximum
(FWHM) of 0.55 (adapted from [79]).

4.1.1.2. Electrodes

In previous paragraphs, the relevance to obtain high piezoelectric coefficient of aluminum

nitride material by the synthesis of c-axis oriented thin film has been highlighted. Such orientation

is advantageous – especially when the piezoelectric thin film is sandwiched between two metal

electrodes – as long as the substrate does not impose any other atom arrangement for lowering the

interface energy of the nuclei. One of the common used deposition methods of AlN is the reactive

sputtering from an aluminum target in nitrogen-containing plasma, sustained either by radio

frequency (RF) power or by direct current (dc) power. These methods can produce polycrystalline

AlN thin lms on many different substrates and at a moderate temperature. The deposited lms

may exhibit a perfect c-axis orientation and piezoelectric activity. Despite the in uence of

sputtering conditions have a strong impact on the microstructure of AlN thin lms and on the

degree of c-axis orientation and polarity, the condition of the substrate surfaces is another factor of

utmost and not secondary importance. Recent investigations have been conducted to observe the

effects of thin lms made of textured platinum, titanium, aluminum and copper even on dielectric

layers, such as silicon dioxide (SiO2), on crystal orientation and residual stress in polycrystalline

AlN [98, 119, 120]. These works have indicated that both the substrate and the sputtering process

conditions signi cantly in uence the growth and the properties of piezoelectric thin lms. The

quality of the electrodes surface is especially responsible for the nucleation of the hexagonal

structure of AlN and thus for the subsequent textured growth along the (0002) direction. Such that,
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a stable nucleation surface with a hexagonal symmetry may promote the growth of very high

quality aluminum nitride thin lms, despite a large lattice mismatch.

In some applications, additional features such as low resistivity, small density and high

conductivity are required. As material with relatively small density and high conductivity, while

high acoustic impedance is still held, molybdenum (Mo) is considered as the optimal compromise.

Molybdenum is a body cubic centred (bcc) refractory metal and it naturally grows with (110)

texture. The problem as AlN substrate is that the hexagonal symmetry is lost. However, an optimal

fabrication of Mo electrodes for the deposition of highly c-axis oriented AlN thin films is possible

[115, 121, 122]. Since the residual stress in AlN thin films depends on the ion bombardment,

optimal Mo substrates allow properly calibrating the substrate bias in order to tune film structural

and functional properties.

Thanks to the previous mentioned properties, molybdenum has been selected as really

promising material for the technology that has been analysed in this dissertation.

4.1.1.3. Flexible Substrate

MEMS tactile transducers are usually based on inorganic materials such as metals or

semiconductor, like silicon. The most relevant drawback of Si-based devices for tactile application

is  that  they are typically rigid and brittle  and not  suitable  for  large deformations and coverage of

curved three-dimensional surfaces. In order to overcome the current limits of silicon-based MEMS

devices and enable components such as piezoelectric transducers to address the requirements of

flexible  electronic  devices  –  ability  to  bend,  expand  as  well  as  adapt  on  irregular  surfaces  –  a

proper selection of the substrate is then compulsory. The use of soft piezoelectrics such as

aluminum nitride has opened up new perspective in the integration of such piezoelectric materials

on soft and flexible substrates. One of the most appropriate polymer substrate is Kapton™ which

exhibits high mechanical and chemical resistance and wide operating temperature range ( 269 °C

to +400 °C), allowing it to be processed with the standard CMOS technology. Thanks to the

mechanical properties and dimensional stability, substrates made of kapton films minimize the

stress at the interface during high temperature thin film deposition and processing. Furthermore,

kapton films offer some additional and desirable characteristics, such as high electrical insulating

properties and toughness and mechanical resistance. The last make the final device robust enough

to sustain large cyclic deformations without damages.
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4.1.2. MICRO-FABRICATION PROTOCOL

In Table IV.1, the main steps of typical micro-fabrication protocol of DSDT membranes

are illustrated. Piezoelectric DSDTs, consisting of exible piezoelectric AlN membranes,

embedded between molybdenum electrodes, have been fabricated by standard micromachining

techniques on 25 m thick general purpose Kapton HN™ (DuPont™) exible substrate. The

kapton substrate with silicone based adhesive has been laminated on n-type <100> silicon wafer

support (with thickness of 545 m) by ~60 m thick rubber adhesive (see step n° 1 of Table IV.1)

while heated on hotplate at 50 °C. Before gluing the polyimide substrate, the silicon wafer has been

rinsed by submersing it in consecutive baths of acetone, isopropyl alcohol (IPA) and deionized (DI)

water.

Moreover, to ensure the removal of dust particles and excess moistures, the wafer has been

dried by constant nitrogen flow for some seconds. After an accurate cleaning of the laminated

substrate  exploiting  the  same  baths  of  acetone,  IPA  and  DI  water,  the  stack  structure  has  been

sputtered in DC mode sputtering tool for large area samples (LLSEVO-Oerlikon) in a single run to

minimize  as  much  as  possible  contaminations  (step  n°  2  of  Table  IV.1).  Molybdenum  bottom

electrode, with a thickness of 120 - 150 nm, has been deposited from high-purity Mo target (whose

purity is 99.999%) at room temperature in a pure argon atmosphere with Ar ow of 16 sccm and dc

power of 0.5 kW; the grow rate of the deposition has been 0.8 nm/s (the process time has been

~190’’ to reach the thickness of 150 nm) when the working pressure has been set to 1.2 10

mbar, while the residual pressure of the chamber before starting the etching process has been kept

to 3.7 10  mbar. The Mo target has been pre-sputtered in pure Ar atmosphere for 10 min under

the same pressure and power conditions to have stable plasma during the actual sputtering. The

aluminum nitride piezoelectric film of ~1 m-thick has been deposited through reactive sputtering

from Al target (purity 99.999%) with a ratio Ar/N2 of 0.75 (12 sccm of Ar and 15.9 sccm of N2)

and power of 2.25 kW, at a grow rate of 0.72 nm/s (the process time has taken 1380’’). The

working pressure has been stabilized at 1.3 10  mbar,  whereas  the  residual  pressure  has  been

equal to 2.5 10 mbar.
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Table IV.1

Fabrication protocol of the DSDT prototypes.

1. Kapton tape lamination on silicon wafer at 50°C
and wet/dry cleaning.

2. Deposition via sputtering of the stack Mo/AlN/Mo
on kapton in single run.

3. Photolithography of the positive mask and resist
development.

4. SiCl4 dry  etching  of  the  top  Mo  and  AlN  and
patterning of circular shapes.

5. Photolithography of the second positive mask
and resist development.

6. H2O2 wet etching of the bottom Mo and patterning
of the common ground.

7. Photolithography of the third negative mask
with resist tone inversion and  development.

8. Deposition via sputtering of the top Mo.

9. Removal via lift-off of resist and patterning of
top electrodes. Wiring and parylene C coating for
isolation.

(Mastronardi V. et al. [123, 124])

Finally, the top Mo thin metallization, with a thickness of 300 nm, has been deposited at

room temperature via DC sputtering, after cooling down the deposition chamber (whose
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temperature has increased during previous AlN deposition till 250-300 °C) using the same

deposition conditions of bottom electrode.

Figure 4.3: a) Karl Suss mask aligner used during photolithography; b) ICP tool for the inductively coupled
plasma etching of the metal and piezoelectric thin films.

After rinsing the sample, AZ5214E image reversal resist for high resolution has been used

as soft positive tone mask during etching process (step n° 3).  The positive resist has been

deposited by spin coating, keeping the substrate in rotation for 40” at 2000 rpm in order to

uniformly spread it on the wafer surface; double drop deposition and double spinning have ensured

the proper thickness of the photoresist (about 2.3 – 2.5 m) in order to withstand the etching

process. The resist has been cured on hotplate by soft bake at 90 °C for 120’’ and it has been

exposed for 55’’ with UV light source – the wavelength of the UV light being 365 nm – using a

Karl Suss mask aligner (MA6, SUSS MicroTec AG). In this way, the total provided dose has been

660 mJ/cm2, being the exposure intensity of the UV lamp equal to 12 mW/cm2. The

photolithographic process has been delivered by keeping the photolithographic mask in soft contact

with the surface of the sample (with a separation gap of 250 m for the alignment). The equipment

used for the photolithography is displayed in Figure 4.3a. Finally, a bath in AZ726 MIF developer

for 50’’ at room temperature has allowed developing the photoresist.

Afterwards Mo and AlN layers have been etched in circular shape by inductively coupled

plasma process (STS ICP, SPTS Technologies, Orbotech company), having the chlorine-based gas

mixture the following parameters: SiCl4 20  sccm/N2 25  sccm/Ar  7  sccm.  The  platen  power  has

been  45  W  (to  promote  the  anisotropy  of  the  etching),  with  a  temperature  of  10°C  that  has

guaranteed the appropriate verticality of the etching, whereas the coil power has been 100 W (step

n° 4). A pressure of 13.3 10  mbar has been used. Typical etching time, required to complete the

removal  of  the first  two layers  of  Mo and AlN, has been about  180 – 200 seconds (this  time has

been optimized in order to avoid the removal of the bottom metallization). A conditioning of
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etching chamber with the same chlorine-based gas mixture for 300’’ has been carried out to

contribute to a chemically stable etch environment and make etch conditions as reproducible as

possible.

Figure 4.4: a) Optical image  of  the  circular  domes  after  dry  etching  of  top  Mo  and  AlN  layers  and  wet
etching of common ground; b) magnification of dome section in which the under etching of the metallization
is distinctly visible (the resist has not been still removed).

The equipment used for etching processes is displayed in Figure 4.3b. The chlorine based

etching is not selective with regard to the photoresist, such that to avoid etching the AlN layer, top

molybdenum has been used as hard masking, although a small portion of top molybdenum is

removed (as already shown in Figure 4.1, steps 2 and 3), reducing its final thickness. A subsequent

deposition of the top metallization is then needed to achieve the required thickness for the final top

electrode.

The Mo bottom common electrode has been patterned, after second masking

photolithography (steps n° 5 and 6 of Table IV.1) exploiting the same AZ resist, through a wet

etching with hydrogen peroxide solution (H2O2 – 30%) for longer time than required to deliberately

over etch the metal lm under the AlN circular region and to prevent short-circuiting between

bottom and top metallization. An optical image of domes in representative sample, after patterning

of circular geometries and bottom metallization as common ground electrode, is depicted in Figure

4.4.

The releasing of the total compressive residual stress of AlN (and, partially, Mo) on kapton

generates a visible dome-shape structures (Figure 4.4a). Moreover, from this picture, it is clearly

visible the under etching of the bottom metal electrode (see Figure 4.4b). Afterwards, the sample

have been rinsed again and dried with nitrogen flow. Then, in order to define the top electrodes,

lift-off metallization patterning has followed.
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Figure 4.5: a) Assembling and bonding of the prototype on a perforated board b) Final prototype containing
the quartet of dome; c) single DSDT cell with metal connections.

The already described AZ negative tone resist [123, 124] (steps n° 7 and 8 of Table IV.1)

deposition and patterning has been repeated. In order to invert the tone of the photoresist, a post

bake at 100 °C for 120’’ has been carried out, followed by a final exposure without masking for

150’’. The total provided dose has been then 1800 mJ/cm2. The process, just mentioned, is

extremely simple and, especially, compatible with the common microfabrication tools used in

semiconductors foundries [79, 100]. Then, a 250 – 300 nm-thick molybdenum top metallization has

been deposited by sputtering (from high-purity Mo target) at room temperature and the lift-off in

acetone bath successfully followed.

Finally, the sample containing four elementary piezoelectric curved diaphragms of radius

equal to 350 m has been bonded to a testing platform with plated holes where connectors have

been soldered for the electrical characterizations. Wire bonder (TPT Wire Bonder GmbH & Co.

KG)  and  conductive  silver  paste  have  been  used  to  connect  the  electrical  pads  to  the  perforated

circuit board. The representative final prototype, after the assembly on the perforated circuit board

and containing an array of 2x2 domes (placed at centre of the sample), is displayed in Figure 4.5.

The magnification (Figure 4.5c) shows the single DSDT cell with top and bottom metal

connections. In order to prevent external mechanical damages and to electrically isolate the

piezoelectric transducers, a final parylene C coating of 1 m has been deposited via Room-

Temperature CVD deposition. The conformal nature of the parylene C coating, deposited by CVD,
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allows enhancing the electrical and mechanical isolation of the device. Moreover, connection vias

have been opened in the parylene C coating, in order to guarantee electrical connections to the

perforated circuit board.

Figure 4.6: Scanning electron microscopy (SEM) image of (a) Mo/AlN/Mo stacked layers deposited on
kapton substrate; (b) front view and (c) cross-section of the undercut of molybdenum common ground.

Displacement versus applied voltage response, achieved by piezoresponse force

microscopy, has shown an averaged effective piezoelectric strain coefficient  of 4.7±0.1 pm/V,

whereas the piezoelectric strain coefficient  has been assumed to be 2.35 pm/V [122].

Additional SEM images of the layers deposited on kapton, showing the undercut of the

molybdenum metallization performed by H2O2 wet etching are displayed in Figure 4.6. The

undercut has been estimated about 110 nm.

Finally, profile inspection has been performed to know the maximum height of the dome

after the natural stress relaxation. 2D and 3D pro le scanning has been performed by Dektak XT™

stylus profiler (Bruker corp.). The profilometry shows that the compressive stress is released in

curved domes and an up-lifted annular region around, as shown in Figure 4.7. These measurements

suggest a different detachment of the dome from the silicon substrate. As a consequence, different

empty space has been supposed to be between polyimide and silicon substrate, with a larger

annular region for the higher domes and a smaller annular region for the lower domes.
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Figure 4.7: 3D profile mapping of the 2x2 array of domes and b) 2D profile of the single DSDT.

4.2. EFFECTS OF AlN RESIDUAL STRESS

The modelling of the elastic deformation generated by the residual stress of the AlN on the

substrate below has been used to study and evaluate the dependence of geometrical features of the

three-dimensional DSDT on residual stress. For this purpose, representative domes which

differentiate  in  terms  of  nominal  radius  and  extension  of  the  uplifted  region  as  well  as  radius  of

curvature have been analysed. Domes obtained from dissimilar microfabrication processes (even if

the conditions of films growths have been kept unchanged) and with nominal radius  = 250, 275,

300 and 350 m have been investigated (for the purpose of this study, the domes are called with the

label DOME followed by the value of the nominal radius). The radius of curvature of these domes

has been estimated by experimentally measuring the maximum height . The corresponding

geometrical  parameters  of  all  the  representative  domes  of  both  the  processes  are  reported  in  the

Table IV.2 as well as the results of the calculation.
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Figure 4.8: The geometrical ratio  and the radius of curvature are studied with respect to the residual
stress for curved membranes with nominal radius a) 250, 275, 300 m and b) 350 m, respectively.

These results are also displayed in the graphs of Figure 4.8a and b, where the geometrical

ratio  and  the  radius  of  curvature  are  plotted  as  a  function  of  the  average  residual  stress  –

according to the classical convention, the minus sign of  points out a compressive stress.

An average residual stress of the AlN has been estimated, when the first-order

approximation is taken [124], and it amounts to -46.3 ± 0.66 MPa for the sample whose process

conditions have produced smaller domes and -20.5 ± 2.6 MPa for the sample whose process

conditions have produced larger domes. Since the release of domes is not totally controlled during

the microfabrication processes, the samples have shown, as in the Figure 4.8, different

deformations, underlying a dependence of the geometrical features of the three-dimensional

structures on residual stress.
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Table IV.2

Geometrical parameters of the domes after the partial release and corresponding residual
average stresses

Sample

label

Nominal radius
 [ m]

Uplifted radius
 [ m]

Maximum height
 [ m]

Radius of
curvature  [mm]

Residual stress
 [MPa]

DOME250 250 382 6.9 10.5 -45.5

DOME275 275 404 8.0 10.2 -46.7

DOME300 300 450 9.9 10.3 -46.6

1530 43 27.2 -17.6

DOME350 350 1300 40 21.1 -22.6

1210 33 22.2 -21.5

4.3. DSDTs ELECTRICAL CHARACTERIZATION

Electrical characterization has been performed to determine capacitance, impedance of the

DSDTs and the relative dielectric constant of sputtered AlN piezoelectric film.

Figure 4.9: a) The DUT has been placed on a probe station and b) a proper connection has been achieved by
using high resolution micro-manipulated tips.

Embedded between metal electrodes, the three-layered stack can be assumed to be a metal-

insulator-metal (MIM) structure. For this reason, capacitance measurements have been performed

by precision LCR meter E4980A (Agilent Technologies) at a testing frequency of 1kHz and by

applying a source AC voltage with 3 volts of amplitude, the DSDT working like a parallel plate
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capacitor. The measurement tool has been set in parallel circuit mode, which is the mostly used

configuration when a measurement of small capacitance values is required.

The capacitance has been measured for each individual DSDT, having the aluminum

nitride cells a nominal radius of 350 m. To this aim, micro-tips have been used to electrically

connect the prototype to the measurement tool. An accurate control of micro-tips position has been

achieved by using high resolution micro-manipulators, whereas the prototype has been placed on a

probe station (PM5, Karl Suss), as displayed in Figure 4.9. The measured average capacitance of

parallel plate capacitors based on AlN piezoelectric film is 38.9 ± 1.0 pF, from which the dielectric

constant has been calculated. Considering that the measured thickness of the micromachined

membranes is equal to ~1 m and the circular surface area, = , is equal to 0.384 mm2, the

corresponding measured dielectric constant of the aluminum nitride has been estimated about

= 10.2 ± 0.34 at 1 kHz and applying 3 volts as supply voltage, which is consistent with typical

values reported in the literature [125-127].

The dielectric constant is an important parameter for the characterization of the

piezoelectric thin film. Indeed, the output voltage generation of the device as a sensor is inversely

proportional to the open circuit capacitance  as well as the capability to translate an electrical

input signal in mechanical displacement as an actuator (electrically charged) relies on the amount

of energy stored in the piezo actuator that is directly proportional to  [128].

Electrical impedance and resistance of the DSDTs have been also measured exploiting the

same AC voltage signal with 3 volts amplitude and frequency of 1 kHz. Table IV.3 summarizes the

electrical characterization of the representative prototype (in the table the domes are labelled

DOME-A, B, C and D).

Table IV.3

Measured electrical properties of the domes with 350 m of nominal radius at 1 kHz and
applying an AC voltage signal with 3 volts of amplitude

DSDT label Capacitance [pF] Impedance I [M ] Phase  [°] Re(I) [k ] Im(I) [M ]

DOME-A 38.35 4.15 -89.21 57.3 -4.15

DOME-B 38.31 4.15 -89.51 35.4 -4.15

DOME-C 37.93 4.19 -89.45 39.9 -4.19

DOME-D 37.89 4.20 -89.45 39.7 -4.20
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4.4. DSDT-LIKE AS ACTUATOR: RESONANCE FREQUENCY AND

DISPLACEMENT MEASUREMENTS

In order to investigate the mechanical behaviour of the curved circular transducers, a

characterization of the flexural deflection modes of the membranes has been performed. To this

aim, the natural frequency of vibrations and the corresponding displacements have been measured

by a Laser Doppler Vibrometer (LVD Polytec MSA-500 Micro System Analyser) applying a

suitable oscillating voltage.

Figure 4.10 a) Laser Doppler Vibrometer (MSA-500 Micro System Analyser) equipment used to monitor the
out-of-plane displacement of the DSDTs; b) typical measurement set-up.

The  LDV  analyser  uses  a  Helium  Neon  (HeNe)  laser  source  at  633  nm,  with  a  micron-

sized laser spot. It is mainly used to measure, through non-contact method, three-dimensional

shapes and motions of microstructures, in static and dynamic configurations. The laser beam is

focused on the surface to be investigated and Doppler Effect is exploited to calculate the velocity of

the vibrations by detecting the frequency shift of back scattered light from the moving surfaces.

Knowing the wavelength of the beam, the vibrometer is able to determine, by measuring the
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Doppler frequency shift, the component of the velocity (or the acceleration) which lies along the

axis of the laser beam generated by hit object. An appropriate interpolation technique allows the

vibrometer to calculate the displacement with a resolution in the order of picometers. Therefore,

LDV is suitable for the purpose of electromechanical characterization of piezoelectric transducers.

The DSDT membranes have been fixed on an anti-vibration platform and an x/y stage in

order to move the prototype in plane directions. The sensor head with optimized microscope optics

and a suitable magnifying lens has been used to drive the focused laser and to hit the DSDT target.

Figure 4.10 shows the prototype, fixed on the stage mover, and the LDV MSA-500 tool used for

the experimental evaluation of the dynamic response.

Figure 4.11: Frequency spectrum of driven DOME-A when a periodic chirp signal of 3Vpp amplitude is
applied. The first three mode-shape functions are displayed at frequencies a) , = 390.6 kHz, b) , = 760.9
kHz and c) , = 1.767 MHz.

The DSDTs have been periodically driven with a sine signal exploiting the reverse

piezoelectric effect by applying an external electrical excitation with voltage amplitude of 3Vpp,

while the corresponding out-of-plane displacement of the circular active region has been measured

in air. The differential fibre optic interferometer (Polytec OFV-552) has been used to focus on the

device two different laser beams: the measuring and the reference laser. The reference laser beam

has been directed on a part of the chip surface that is supposed to be unable to move and far enough

from the actuated piezoelectric DSDT. The measuring laser beam, instead, has been directed on the

piezoelectric driven dome. The corresponding differential signal, obtained as subtraction of the

measured and the reference back scattered laser, allows removing potential spurious displacement

due to ground noises. A circular grid, made of proper spaced points, has been used to scan the
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surface of the piezoelectric domes. The analog input voltage signal has been provided by an

integrated signal generator, remotely controlled by the MSA-E-500 junction box.

The resonance frequency of the transducer has been studied by monitoring the out-of-plane

displacement profile amplitude in a frequency range from few Hz up to 7 MHz. The resonances of

DSDTs with nominal radius  = 350 µm have been identified and the corresponding operational

deflection shapes have been reconstructed. The LDV measurement results, illustrated in Figure

4.11, show that the fundamental (0, 1) mode (still analysed in Chapter III by FEM simulations and

theoretical model) has a most intense peak at resonance frequency of about 390 kHz – DOME-A

and DOME-B have been used as reference for the experimental evaluation. For the DOME-B the

peak of resonance is about 420 kHz. Moreover, the capability of the LDV to detect very small

vibrations has allowed measuring the displacement at higher order resonance frequencies, such that

the mode-shape functions (0, 2) and (0, 3) have been also detected (as in Figure 4.11b and c) and

the corresponding three-dimensional shape has been recreated.

Furthermore, the three-dimensional recreation of the out-of-plane deflections shows that

the operational deflection shape corresponding to the first mode of resonance has a Gaussian-like

shape where the maximum displacement is achieved at membrane centre. The significant amplitude

of displacement at mechanical resonance frequency is an effect of the piezoelectric film

characteristics. When an alternating electric field is applied along the axis of the piezoelectric

crystal, it expands and contracts (along this axis). If the frequency of the applied electric field

approaches the natural frequency of the longitudinal vibrational mode of the crystal and matches

with it, the amplitude of the mechanical vibration of the membrane become more significant. In

Table IV.4 FEM, theoretical and experimental values of resonance frequency are resumed and

compared, focusing on the fundamental resonant mode (0, 1).

We also explored the effects of driving the resonant membranes with a voltage that

increase from 1 Vpp to 10 Vpp with 1 Vpp increment.

Table IV.4

Comparison of the FEM, thepretical and measured resonance frequencies of the (0, 1) mode

DSDT
label

FEM
calculation

[kHz]

Theoretical
calculation

[kHz]

Exp.
measurements

[kHz]

Exp./FEM
differential error

[%]

Exp./Theoretical
differential error

[%]

DOME-A 408.6 384.9 390.6 4.6 1.5

DOME-B 408.6 384.9 420.0 2.8 8.3

The displacement has been measured by performing a single scan point, with the laser

beam focused on the centre of the DSDT membrane and by applying a sinusoidal voltage (still
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generated by the LDV junction box (MSA-E-500-M4)) at the measured resonance frequency of the

rst vibrational mode (0,1). The measured displacement for the DOME-A and DOME-B is shown

in Figure 4.12. The maximum displacement achieved by the membrane is reported and it amounts

to 2.00 nm for the DOME-A and 1.5 nm for the DOME-B, when the drive voltage is 10 Vpp.

Despite  the  DSDT  micromembranes  are  not  free  standing  and  are  still  attached  on  the  silicon

support – the membrane has been assumed to behave as a fully-clamped diaphragm – the actuation

is quite efficient. Moreover, measurements show that the amplitude of the displacement increases

linearly with the actuation voltage; up to 10 Vpp, no deviation from linearity is observed.

Figure 4.12: Centre displacement peak amplitude at resonance frequency ,  for the DOME-A and DOME-
B, measured as a function of the drive voltage amplitude.

4.5. DSDT-LIKE AS SENSOR: STATIC AND DYNAMIC IMPULSIVE

FORCES MEASUREMENTS

Being developed for tactile sensing purpose, the proposed technology has been tested in

order to explore the electromechanical response of the device when impulsive dynamic and/or long

static forces are applied. The study on the impulsive dynamic and long static stimuli detection has

been performed by using the XYZTEC Condor EZ push and pull system (XYZTEC, Netherlands)

and connecting the transducer electrical terminals to the Tektronix MDO4000 oscilloscope

(Tektronix Inc.).

The condor system consists of an x/y stage basis and a moving (upward and downward) z

stage. A revolving measuring unit (RMU) is mounted on the z stage and an object work-holder is

mounted on the x/y stage to firmly fix the device under test. Load has been applied with a stainless
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steel cylindrical straight rod, whose diameter is 1 mm. The rod has been mounted on the RMU

which has been moved downward, with well-known approach velocity, up to push on the single

DSDT. The steel pushing probe is directly connected to a force gauge to simultaneously measure

the applied impulsive force (expressed in kgf). The force gauge is able to detect reaction forces

from 0.49 mN to 490 mN. Figure 4.13 shows the apparatus to apply the load and to evaluate the

output voltage response of the DSDT transducers. The picture also includes the measurement

equipment (the oscilloscope for the voltage response measurement will be replaced with the LCR

meter for capacitance measurement, as illustrated in this section).

Figure 4.13: The apparatus to evaluate the output response of the transducers. The peak voltage is measured
with the oscilloscope, whereas the capacitance variation is measured with a precision LCR-meter (not in
picture).

Before starting the load test, the frame stiffness has been measured. As the experimental

measuring setup is not infinitely stiff, some of the displacement that occurs during the tests can be

due to the deformation of  the tool.  The measurement  of  the frame stiffness  has been than carried

out using a highly thick steel plate that has compliance several orders of magnitude higher than the

tool. The steel rectangular plate has the following size: l = 10 cm, w = 5 cm and t = 5 mm, where l,

w and t are  the  length,  the  width  and  the  thickness  of  the  plate,  respectively.  This  plate  being

extremely stiff,  it  has  been supposed that  the forced deformation occurs  in  the frame system and

not in the plate, allowing determining the compliance of the test setup. The RMU has been moved

with an approach velocity of 80 m/sec, whereas it has been held on the plate for 1 sec (the

resolution of the RMU motion has been set as 1 m). The initial non-linearity, which typically

arises  from the slack in the system, has been removed approximating the linear  part  of  the frame

calibration curve by a linear regression. The x-intercept value of the corresponding linear fit has

been extracted and it has been subtracted to the measurement curve. From this initial frame
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calibration, a stiffness value of 55.6 N/mm has been measured. Being this value supposed to be

much higher than the device’s stiffness, it can be assumed that the reported deformation occurs in

the dome-shaped structures and not in the measurement set-up. Once the compliance of the frame

has been known, the measurements have been corrected taking into account the deformation

occurring inside the tool during the load test. For this purpose, the compliance of the tool has been

subtracted from the measured deformation of the domes, considering that the tool deformation is

equal to the applied load multiplied by the compliance of the system. The actual deformation of the

DUT becomes

= (4.1)

where  is the deformation of the DSDT,  is the measured deformation and  is the

deformation of the frame, being  the applied load and  the compliance of the frame,

respectively.

Two representative dome-shaped devices, DOME-A and DOME-B, distinguished from

different releasing height, have been electrically characterized. The relationship between the

electromechanical response and the individual stiffness of each dome due to the different shape has

been than investigated. Load has been applied by the same setup used for the calibration of the

frame system. In Figure 4.14, the electrical characterization results are plotted; the output voltage at

the peak is reported as a function of the applied forces, both for Dome-A and Dome-B transducers.

Each data  point  is  the average of  three measurements  with the same force and penetration depth,

collected at a frequency of 0.3 Hz – with approach velocity of the pushing probe of 600 m/s and

hold time of 200 msec. The electromechanical behaviour of both the domes is similar and it is due

to the combination of piezoelectric and exoelectric effects. For Dome-A, an offset of 18 mV in the

measured voltage has been observed. The Dome-A shows an increase of generated voltage in a

dynamic range of [0–60 mN], while Dome-B dynamic range is characterized by a linear increase

up to 40 mN, starting from the minimum detected force of 20 mN; a lower offset has been

observed. For higher applied forces, both devices start to saturate when the force reaches the

threshold value of ~60 mN for Dome-A and ~40 mN for Dome-B, respectively. The voltage range

generated from Dome-A shows a maximum value of ~50 mV and from Dome-B ~25 mV; a

sensitivity of approximately 480 mV/N and 445 mV/N in the linear dynamic range before

saturation is observed, respectively.
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Figure 4.14: (a) 2D pro le of Dome-A and Dome-B; , , and maximum height  are listed in Table
IV.4. (b) Measured voltage output for Dome-A and Dome-B. Data points refer to measured values and dot
lines are the FEM simulation results.

The minimum force detected is ~1.2 mN. In Figure 4.14b, the measured output voltage is

compared with the FEM results superimposing the normalized calculated voltage to the measured

signal. From a qualitative point of view, the measured results match well with the FEM simulations

(see section 3.2.2 of Chapter III).

The detection of long static stimuli has been experimentally observed as capacitance

decrease C at increasing forces (the setup has been kept unchanged). The capacitance variation

C has been collected by the precision LCR-meter (Agilent E4980A). The results are reported in

Figure 4.15 as the modulus of C, with an initial measured capacitance of 43.9 pF for Dome-A and

41.6 pF for Dome-B, when no load is applied (a slight increase of about 5,5 – 3.3 pF from the

initial capacitance has been detected after first load testing cycle, see section 4.3). For each point,

the displacement of the z-axis stage has been slowly increased with a step resolution of 1 m up to

a total depth of 25 m. Each data point is the average of three measurements with the same force
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and penetration depth. The approach velocity of the probe, held on the sensing element for 1 sec, is

10 m/s.

Figure 4.15: Relationship between applied force and capacitance decrease C for the long static stimuli
detection.

The capacitance variation has been observed for the whole interval of application of the

stress and it does not decay with time; therefore, static forces detection is possible in the same

system, making the AlN thin lm in dome structure a multifunctional material. The DSDTs have

shown a  signi cant  response  to  long  static  stimuli  in  the  force  range  up  to  80  mN,  in  which  the

achieved sensitivity in static sensing mode has been evaluated as 950 fF/N for Dome-A and 620

fF/N for Dome-B.

The shape and the mechanical stiffness of the structure are the reference parameters useful

for explaining the electromechanical response of the transducers. The dome structural stiffness,

considered as resistance to bending of the tetra-layered domes, has been measured through the

XYZTEC push tester. In this test, the z-axis stage has been moved down with a velocity of 10

m/s. Stiffness as  a  structure  property  has  been,  therefore,  assessed  as  the  slope  of  the  load-

deformation curve and it has been extracted as the slope of the linearly tted load-depth curve of

loading, up to 80 mN. In this deformation region, results show a stiffness of 3.5 N/mm for

Domes–A and  9.7 N/mm for Dome–B. Despite extreme exibility, the Mo/AlN/Mo multi-

layered structure results to be robust even after several cycles of bending by virtue of peculiar

mechanical properties derived from the combination of materials with different elasticity. Table

IV.4 summarizes the geometrical parameters, the measured stiffness and the normal stress

sensitivity. The low value of ,  compared  to  the  stiffness  of  bulk  materials  included  in  the

structure, is not only due to the fabricated tetra-layered structure but also due to the part of the

surrounding polymer that is uplifted by the differential shrinkage. Therefore, the structure
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compliance  can  be  split  in  the  sum  of  two  contributions  with  the  central  area  treated  as  a  xed

membrane and the outer area as an annular membrane, xed in the outer edge and guided in the

inner edge. The overall displacement can be expressed considering the compliance as the series of

both contributions [129]

=
16

+
(4.2)

where k is the bending stiffness, according to the simple membrane model

=
12(1 )

(4.3)

with the subscripts i for the inner part and up for the uplifted region; F is the applied load, c is a

correction parameter adjusted to the ratio . Despite the simplicity of the model, the values of

modelled stiffness, namely, _  = 3.1 N/mm and _  = 8.2 N/mm, are in  reasonable

agreement with the measurements of both A and B systems (  13% and  18%), as still

summarized in Table IV.5.

Table IV.5

Measured geometrical parameters ,  and , measured stiffness  and dynamic
( ) and static ( ) normal stress sensitivity.

DSDT Radius
 [ m]

Uplifted
radius

[mm]

Maximum
height

m]

Stiffness
 [N/mm]

Dynamic stress
sensitivity

[mV/N]

Static stress
sensitivity

[fF/N]

DOME–A 350 1.53 43 3.50 480 950

DOME–B 350 1.21 33 9.70 445 620

The effect of the uplifted area size is clear from equation (4.2): the larger the radius of the

outer area, the lower the stiffness of the dome as a whole allowing an electromechanical response

of the piezo-cells Dome–A at low forces (6–20mN), as shown in Figure 4.14b. In the same range,

due to the higher stiffness of Dome–B, no electromechanical response (both piezo- and exo-

polarization) is measured while load is applied. Analogously, the stiffer Dome–B shows a lower

capacitance variation with respect to Dome–A (Figure 4.15).

According to the previous results, it can be asserted that the fabricated DSDT cells exhibit

enhanced transduction response within a full scale range of 80 mN (~200 kPa) both for dynamic
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and static load. No additional power supply is required to provide the electrical readout signals in

dynamic sensing mode whereas low DC voltage source (3 V) is sufficient as supply for reading a

significant capacitance variation. These properties make the proposed technology suitable

candidate when low power consumption is demanding.



CHAPTER V

CHAPTERV
CONCLUSIONS AND OUTLOOKS

Arti cial tactile systems for pressure and force measurements are important in many

applications as automated assembling, minimal invasive medical procedures (MIS) for the

evaluation of tissues stiffness and damages, prosthetic and orthotic devices where arti cial skin

restores the loss of tactile sensations. Similarly, humanoid robots need tactile interface for a safe

interaction with humans in assisting activities. Equipping robots with speci c sensors and

transducers is a way to confer them suf cient autonomy to perform advanced tasks in unstructured

environments.

In this thesis, exible piezoelectric MEMS transducers based on aluminum nitride

piezoelectric thin lm grown on polyimide soft substrate by standard micromachining process and

developed for tactile sensing purposes have been proposed. The devices are based on

Mo/AlN/Mo/kapton tetra-layered structures, where AlN is the active piezoelectric material. The

transducers are designed with bio-inspired approach to mimic the ability of human

mechanoreceptors and to be sensitive to periodic impulsive mechanical stimuli, with suf cient

sensitivity in a wide pressure range, up to 200 kPa, suitable for object manipulation. Moreover, the

dielectric properties of the Mo/AlN/Mo stack, which behaves as a capacitor, allows to measure

long static mechanical stimuli by a steady deformation of the convex structure. With together an

appropriate arrangement of the single DSDT in 2x2 array configuration, the final device may be

tailored for the replication of the ability of tactile mechanoreceptors in a multi-detection system by

exploiting the same technology.

The individual transducer consists of circular micro-cells, namely dome-shaped diaphragm

transducer or quite simply DSDT, with a nominal radius of 350 m and made of polycrystalline

highly c-axis textured aluminum nitride. The release of compressive stress by crystalline layers and

active materials over polymer substrate generates uplifted domes with a natural three-dimensional

bowed structure whose structural stiffness is well below the stiffness of composing materials,

allowing an enhanced transduction response.

The design, the fabrication and the characterization of the innovative force/pressure

delivery and sensing DSDT is described in this dissertation. On the basis of thorough Finite

Element Method (FEM) study, the fabrication process is developed and measurements are also

achieved for characterization purposes. Exploiting the dual capability of the piezoelectric

aluminum nitride material, the curved membranes extend the range of applications from
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force/pressure tactile sensing applications to piezoelectric micro-actuators. For these reasons, a

characterization of the device both as sensor and actuator is performed.

An analytical model of the elastic deformation of the DSDTs has been used to study and

evaluate the dependence of geometrical features of the three-dimensional bowed structure on

aluminum nitride residual stress  on the substrate. Representative domes exhibit different

bowed structures such that higher value of  of about -46.3 ± 0.66 MPa produces smaller domes

and lower value of  of about -20.5 ± 2.6 MPa produces larger domes.

As con rmed by FEM simulations, the uplifted area is determinant for low stiffness, for the

dynamic range of the transducer that easily deforms under loading and for an enhancement of the

actuation. The resonances of the individual curved diaphragms have been analysed and a

qualitative study of the displacement, induced by the applied electric field, is carried out. This last

analysis revels the voltage driven curved diaphragms have an improved electromechanical coupling

with higher mechanical deformation per unit energy compared with the conventional plate

structures. The improvement of electromechanical coupling is mainly due to the fact that dome-

shaped transducers exploit in-plane piezoelectric strain, which leads to large out-of-plane deflection

because of their spherical curvature and fully-clamped or ideally fully-clamped peripheries.

Standard micromachining techniques are used to fabricate the prototype, namely optical

photolithography and dry and wet etching processes. A SiCl4–based plasma is used during the

etching process to pattern and shape the thin films with the desired geometries. A conformal layer

of Parylene C is deposited as insulation covering film to reduce mechanical damages and to

electrically isolate the device under test.

SEM and optical inspections on the morphological and structural properties of the

piezoelectric thin film are performed, proving its crystalline structure and the quality of the

adhesion on polymeric substrates.

Electrical characterization has been performed to determine capacitance and impedance of

the metal-insulator-metal DSDT structures and the relative dielectric constant of sputtered AlN.

From experimental measurements the dielectric constant  = 10.2 ± 0.34 at 1 kHz is determined.

This measure is consistent with typical values reported in literature.

As actuator, the transducers are characterized by investigating the flexural deflection

modes and by monitoring the out-of-plane displacement profile amplitude of voltage driven

membranes  in  a  frequency  range  from  few  Hz  up  to  7  MHz.  The  resonances  of  DSDTs  with

nominal radius  = 350 µm are identified and the corresponding operational deflection shapes are

reconstructed. The LDV measurement results show that the fundamental (0, 1) mode has a most

intense peak at resonance frequency of about 390 kHz - 420 kHz. The effects of driving the

resonant curved membranes with a voltage that increase from 1 Vpp to 10 Vpp with 1 Vpp increment

are investigated. The maximum displacement ranges from 1.5 nm up to 2.0 nm for the larger dome,

when the drive voltage is 10 Vpp. Despite the DSDT micromembranes are not free standing and are
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still attached on the silicon support the actuation is quite efficient. Moreover, measurements show

that the amplitude of the displacement increases linearly with the actuation voltage; up to 10 Vpp,

no deviation from linearity is observed.

As force sensor, the transducers are used to detect dynamic contact forces, by exploiting

the combination of both piezoelectric and exoelectric effect in the range up to 60 mN before

saturation  as  well  as  static  contact  forces  (up  to  1  s  of  applied  mechanical  load)  by  capacitance

decrease in a range up to 80 mN. Furthermore, the estimated sensitivity to normal stress in dynamic

sensing mode is up to 480 mV/N and in static sensing mode is up to 950 fF/N. The minimum force

detected is ~1.2 mN.

Finally, the dome structural stiffness, considered as resistance to bending of the tetra-

layered domes, is measured in a deformation loading range up to 80 mN. Low stiffness of ~3.5

N/mm for larger dome and ~9.7 N/mm for smaller dome are not only due to the fabricated tetra-

layered structure but also to the part of the surrounding polymer that is uplifted by the differential

shrinkage. This values are in reasonable agreement with the modelled stiffness, with a differential

error of 13% and 18%, respectively.

According  to  the  previous  results,  it  can  be  assert  that  the  fabricated  DSDT cells  exhibit

good transduction response within a full scale range of 80 mN (~200 kPa) both for dynamic and

static load. These results are encouraging and the technology is well suited to realize large area

tactile sensors for robotics applications.
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A.1 PIEZOELECTRIC EFFECT: MATHEMATICAL FORMULATION

Some basic mathematical formulation can describe the electromechanical properties of

piezoelectric materials. Under ideal case, piezoelectric materials have a linear pro le at low electric

elds and at low mechanical stress levels [130]. According to the linear theory of piezoelectricity,

the density of generated xed charge in a piezoelectric material is proportional to the external

stress. Owing to the anisotropic nature of piezoelectric materials, it is defined as the magnitude of

the piezoelectric polarization vector  [in C/m2 units], which is equal to the xed charge density

produced after stress application as a result of piezoelectric effect:  is proportional to the stress T

[in N/m2 units] to which piezoelectric material is subjected by the piezoelectric strain tensor [d] [in

C/N units] or, alternatively, it is proportional to applied strain S [dimensionless] by the

piezoelectric stress tensor [e] [in C/m2 units]. If the indices i, j, k and l represent the three-

dimensional Cartesian coordinates system of x, y and z, these relationships can be summarized as

in the following equations (expressed in Stress-Charge and Strain-Charge forms and where the

Einstein summation convention is valid):

= [ ]{ } , = (Stress-Charge form)                            (A.1a)

= [ ]{ } , = (Strain-Charge form)                            (A.1b)

(the ‘pe’ subscript specifies the quantities generated by piezoelectric effect). In a similar manner,

the reverse piezoelectric effect can be formulated by the following relationships (in both Stress-

Electric field and Strain-Electric field forms and where the Einstein summation convention is

valid):

= [ ] { } , = (Stress–Electric field form)                   (A.2a)

= [ ] { } , = (Strain–Electric field form)                  (A.2b)

where  is the mechanical strain produced by the applied electric eld E [in V/m units] according

to reverse piezoelectric effect.
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A.1.1 ELASTIC CONTRIBUTION

The piezoelectric phenomenon causes an increase of the material’s stiffness. When the

piezoelectric material is subjected to a strain S, two effects can arise: the strain will generate an

elastic stress  that is proportional to S by  the  elastic  constant  tensor  [c] and a piezoelectric

polarization , according to the equation (A.1b). As a consequence, an electric field, internal to

the material, will be generated by the polarization. This electric field  is given by:

= [ ] =
[ ]{ }

[ ] , = , = (A.3)

where [ ] is the dielectric constant matrix of the material. The stress  produced by the electric

eld  and by the elastic origin is against the material’s deformation. Consequently, according to

the elasticity theory expressed by the generalized Hooke’s Law, the stress generated by the strain S

is:

{ } = [ ]{ } = (A.4a)

or inversely

{ } = [ ]{ } = (A.4b)

where [c] [in N/m2 units] is the piezoelectrically stiffened constant matrix and [s] [in m2/N units] is

its reverse matrix, that is the compliance coefficients matrix.

A.1.2. DIELECTRIC CONTRIBUTION

Since piezoelectric materials are dielectrics, when an external electric eld E is applied

between the electrodes, an electric displacement is created toward them, generating an increase of

surface charge density. The magnitude of this electric displacement is D =  [ ]E. Moreover, the

material is also piezoelectric; the electric eld will produce a positive or negative strain (as in

A.2b) – depending on the direction of the external electric eld with respect to the poling eld –

and the material will undergo expansion or compression. The expansion or compression of material

generates a voltage having opposite polarity to the external applied eld. Consequently, the surface

charge density increases if the direction of applied external eld is opposite to that of the poling
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eld.  The  strain,  due  to  the  reverse  piezoelectric  origin,  results  in  polarization  and  the  surface

charge density increases. Furthermore, if the electric eld is kept constant, the additional

polarization, due to piezoelectric effect, increases the electric displacement of free charges toward

the electrodes. Therefore, the resulting electrical displacement is

{ } = ( + ){ } + = [ ]{ } , = ( + ) + , (A.5)

where  is the vacuum dielectric permittivity ( = 8.85×1012 F/m),  is the dielectric

susceptibility of the material and [ ] [ in F/m units] is the effective dielectric constant matrix.

A.1.3. PIEZOELECTRIC LINEAR CONSTITUTIVE EQUATIONS

Although in practice piezoelectric materials exhibit nonlinear characteristics such as

hysteresis, creep and other nonlinearities, piezoelectric constitutive equations can be found by

assuming linear elasticity (stress-strain) and permittivity (dielectric displacement-electric field)

relationships. By a cross-coupling between the elastic variables – stress T and strain S –  and the

dielectric variables – electric charge density D and electric eld E – defined by the equations A.1 –

A.5, the describing electromechanical equations for a linear piezoelectric material can be written as

{ } = { } + = [ ]{ } + [ ] { }
{ } = + { } = [ ]{ } + [ ]{ }

(Stress–Charge form)         (A.6a)

{ } = { } + = [ ]{ } + [ ] { }
{ } = + { } = [ ]{ } + [ ]{ }

(Strain–Charge form)        (A.6b)

A.1.4. MATRIX COMPRESSED NOTATION OF CONSTITUTIVE EQUATIONS

In order to determine the solution of piezoelectric (or elastic) problems, the arrays of

material coefficients for particular symmetry of the material have to be known. So, for the sake of

symmetry of strain and stress tensors, the compressed matrix notation turns out to be more useful

than the consistent tensor notation.
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Table A.1

Correlation between matrix indices and tensor double indices in abbreviated notation of
subscripts

xx yy zz yz or zy zx or xz xy or yx

ij or kl 11 22 33 23 or 32 31 or 13 12 or 21

p or q 1 2 3 4 5 6

Thus, the tensor double indices (ij) and (kl) can be replaced by the matrix indices p and q,

as specified in Table A.1 [53]. By virtue of the matrix indices, the linear constitutive equations can

be expressed in compressed notation as:

= +
= +

(Stress–Charge form)                            (A.7a)

=
= +

(Strain–Charge form)                            (A.7b)

In the last equations, the superscripts state that those quantities are measured at constant

stress (T = 0), constant strain (S = 0) and constant electric filed (E = 0). The above equations can be

re-written in a form which is often used for applications that involve sensing, by considering the

matrices of coupling coefficients [g]  and  [q] for stress-voltage and strain-voltage forms,

respectively:

[ ] = [ ][ ]        (A.8a)

[ ] = [ ][ ]        (A.8b)

Considering previous equation (A.8) and (A.9), the linear constitutive equations become as follow:

(Stress–Voltage form)

{ } = [ ]{ } + [ ] { }
{ } = [ ]{ } + [ ]{ }

= +
= +

 (A.9a)

(Strain–Voltage form)

{ } = [ ]{ } + [ ] { }
{ } = [ ]{ } + [ ]{ }

=
= +

(A.9b)
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Since they are described by two indices, the matrices of individual elastic, piezoelectric

and dielectric constants for any anisotropic material without symmetry center can be now written as

following:

Elastic compliance matrix

= (A.10)

Elastic stiffness matrix

= (A.11)

Piezoelectric strain coefficient matrix

= (A.12)

Piezoelectric stress constant matrix

= (A.13)

Permittivity matrix

= (A.14)

The matrix general forms A.10 – A.14 turn out to be very useful since they allow the

simplification of more complex constitutive equations. To be more precise, processing conditions

and particular crystal symmetry of piezoelectric material determine which components of dielectric
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constant and piezoelectric and elastic compliance tensors are non-zero and unique. For instance, in

the case of transversely isotropic materials, the material’s elastic properties are invariant with

respect to rotation of any angle about a given axis and the total number of compliance coefficients

reduces to 5.

A.2 FLEXOELECTRIC EFFECT: MATHEMATICAL FORMULATION

The exoelectric effect can be mathematically introduced via the constitutive equation for

the electric polarization P [77, 131, 132]. Let’s consider a continuum framework of crystalline

dielectric material. The linear polarization response P to a strain eld S is typically expressed as in

A.1b , = . In crystalline centrosymmetric dielectrics, where piezoelectricity is absent

and = 0,  a  non-uniform  strain  can  locally  break  the  inversion  symmetry  of  the  unit  cell,

resulting in an induced dipole moment. In such a case, the bulk contribution to the polarization as a

response to an applied macroscopic strain gradient is as following:

= [ ]{ } , = (A.15)

where  is  the  flexoelectric  polarization  induced  by  the  strain  gradient,  [ ] is the flexoelectric

tensor  matrix  (  is the flexoelectric constant), S is  the  strain,  is the spatial strain

gradient and xj is the position coordinate, respectively.

The phenomenological fourth-order tensor [ ] introduced in A.15 is known as the

exoelectric tensor and the associated phenomenon wherein a macroscopic strain gradient induces

a linear polarization response in a dielectric is termed exoelectricity. The flexoelectric tensor [ ],

being a tensor of even order, is nonzero for crystals of any symmetry (including those amorphous),

in contrast to the piezoelectric tensor, , which is a third rank tensor and allowed only in non-

centrosymmetric media. Since in most general case, a polarization can result from both

exoelectric and piezoelectric effects,  the polarization response to an applied deformation in a

dielectric may be rewritten as (hereafter the Einstein summation convention is adopted):

= + (A.16)

According to the previous equation, the piezoelectric effect associates the mechanical stress with

the polarization, while the exoelectric effect relates the strain gradient to the polarization.
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Analogous to the piezoelectric effect, an equivalent converse exoelectric effect can be

observed. The converse effect describes the linear coupling between the induced elastic stress and

the applied electric eld gradient and is typically expressed in the following form:

= [ ]{ } , = (A.17)

Here, Tij and  are the induced elastic stress and electric eld gradient,  respectively.

The exoelectric constants  were  estimated  by  Sh.  M.  Kogan  [55]  and  A.  K.

Tagantsev [133], who predicted this coef cients scale with the dielectric susceptibility of the

material and they are in the order of  where e is the electronic charge and a the lattice

parameter, according to the equation

= (A.18)

where  is the susceptibility of the dielectric and is a constant material parameter tensor.

 The magnitude of the exoelectric effect in a material is assessed by the exoelectric

coef cients. Especially from cantilevered beam based bending experiments for different

ferroelectrics, flexoelectric constants – transverse and longitudinal – have been first investigated by

Cross [134-136]. For ordinary dielectric materials, the electromechanical coupling associated to the

exoelectric effect has a magnitude of about 102 pC/m, while high-performance piezoelectric

crystals possess piezoelectric coef cients on the order of 102 pC/N. From a qualitative point of

view,  these  coupling  coef cients  are  of  the  same  magnitude,  but  they   differ  in  units.  That  is,

without introducing permanent plastic deformation to a material, large strain gradients cannot be

imparted in the macroscopic materials. By contrast, it is comparatively less dif cult to apply

reasonable amounts of homogenous stress to the  materials. Therefore, the observation of the

flexoelectric contribution becomes more difficult than the piezoelectric response. No shear

exoelectric coef cients have been measured directly so far.

The proper notation of the exoelectric coef cient in matrix form is typically found

considering that exoelectric coef cient is an asymmetrical tensor, due to the gradient term of its

de nition. Compared with the electrostrictive constant and the elastic constant, it has more non-

zero independent components. Exploiting the compressed matrix notation as reported in Table A.1,

the most general form of the flexoelectric tensor 6x6 matrix can be written as:
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= (A.19)

As in the case of piezoelectric constitutive tensor matrices, the total number of flexoelectric

coefficients can be decreased by exploiting the symmetry of the material.

A.3 FUNDAMENTAL MATRICES OF ALUMINUM NITRIDE

Exploiting the symmetry of wurtzite-type-structure the anisotropic properties of AlN in

matrix annotation can be expressed as summarized in Table A.2 and Table A.3.

Table A.2

Anisotropic material properties of Aluminum Nitride (at 300 K)
Parameter Description Value Unit

Elastic
stiffness
matrix

0 0 0
0 0 0
0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 2( )

=

2.85 10-3  -8.99 10-4 -3.82 10-4 0 0 0
-8.99 10-4 3.11 10-3 -9.64 10-4 0 0 0
-3.82 10-4 -9.64 10-4 3.03 10-3 0 0 0

0 0 0 10-3 0 0
0 0 0 0 10-3 0
0 0 0 0 0 7.5 10-3

1/GPa
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Elastic
stiffness
matrix

0 0 0
0 0 0
0 0 0

0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
1
2

( )

=

410 149 99 0 0 0
149 410 149 0 0 0
99 149 389 0 0 0
0 0 0 125 0 0
0 0 0 0 125 0
0 0 0 0 0 130.5

GPa

Piezoelectric
strain

coefficient
matrix

0 0 0
0 0 0

0 0
0 0

0 0 0

=
0 0 0 0 -3.84 0
0 0 0 -3.84 0 0

-1.73 -2.78 5.49 0 0 0

pC/N

Piezoelectric
stress

constant
matrix

0 0 0 0 0
0 0 0 0 0

0 0 0

=
0 0 0 0 -0.48 0
0 0 0 -0.48 0 0

-0.58 -0.58 1.55 0 0 0

C/m2

Permittivity
matrix

0 0
0 0
0 0

=
8 0 0
0 8 0
0 0 9.5

The flexoelectric phenomenon is still under study. No numerical value, from theory or

experimental measurements, is available for aluminum nitride. In the table below, the main

flexoelectric tensors are reported, exploiting the symmetry of the AlN wurtzite-type-structure.
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Table A.3

Flexoelectric tensor matrix of Aluminum Nitride (hexagonal 6mm system class)
Parameter Description Value Unit

Flexoelectric
coefficients

matrix

0 0 0
0 0 0
0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

C/m
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