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Abstract 

In the last decades, the rapid upgrading in cell biological knowledge has 

bumped the interest in using cell-based therapeutic approaches as well as 

cell-based model systems for the treatment of diseases. Given the rapid 

translation towards cell-based clinical treatments and the consequent 

increasing demand of cell sources, three-dimensional (3D) suspension 

cultures have demonstrated to be an advantageous alternative to monolayer 

techniques for large scale expansion of cells and for the generation of three-

dimensional model systems in a scale-up perspective.  

In this scenario, a versatile bioreactor platform suitable for 3D dynamic 

suspension cell culture under tuneable shear stress conditions is developed 

and preliminarily tested culturing cancer cell spheroids. By adopting simple 

technological solutions and avoiding rotating components, the bioreactor 

exploits a laminar hydrodynamics, enabling dynamic cell suspension in an 

environment favourable to mass transport. Technically, the bioreactor is 

conceived to produce dynamic suspension cell culture under tuneable shear 

stress conditions without the use of moving components (from ultralow to 
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moderate shear stress). A multiphysics computational modelling strategy is 

applied for the development and optimization of the suspension bioreactor 

platform. The in silico modelling is used to support the design and 

optimization phase of the bioreactor platform, providing a comprehensive 

analysis of its operating principles, also supporting the 

development/optimization of culture protocols directly in silico, and thus 

minimizing preliminary laboratory tests. After the technical assessment of 

the functionality of the device and a massive number of in silico simulations 

for its characterization, the bioreactor platform has been employed for two 

preliminary experimental applications, in order to determine the suitability 

of the device for culturing human cells under dynamic suspension. In detail, 

the bioreactor platform has been used to culture lung cancer cells for 

spheroid formation (Calu-3 cell line) under ultralow shear stress conditions, 

and for human induced pluripotent stem cell (hiPSC) dynamic suspension 

culture.  

The use of the bioreactor platform for the formation of cancer cell 

spheroids under low shear stress conditions confirms the suitability of the 

device for its use as dynamic suspension bioreactor. In fact, compared to 

static cell suspension, after 5 days of dynamic suspension culture the 

bioreactor platform preserves morphological features, promotes intercellular 

connection, increases the number of cycling cells, and reduces double strand 

DNA damage. Calu-3 cells form functional 3D spheroids characterized by 

more functional adherence junctions between cells. Moreover, the 

computational model has been used as a tool for assisting the setup of the 

experimental framework with the extraction of the fluid dynamic features 

establishing inside the bioreactor culture chamber.  
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As second proof of concept application, the bioreactor platform has been 

tested for the dynamic suspension of hiPSCs. Starting from the ‘a priori’ 

knowledge gained by the development of the in silico culture protocol, the 

agglomeration of human induced pluripotent stem cells has been modulated 

by means of the combination of moderate intermittent shear stress and  

free-fall transport within the bioreactor culture chamber. The inoculation of 

single cells suspensions inside the bioreactor chamber promotes cell-cell 

interaction and consequently the formation of human induced pluripotent 

stem cell aggregates. 

In conclusion, the impeller-free functioning principle characterizing the 

proposed bioreactor platform demonstrates to be promising for human cell 

dynamic suspension culture. In the future, this bioreactor platform will be 

further optimized for the realization of impeller-free dynamic suspension 

bioreactors dedicated and optimized to specific applications in stem cell and 

cancer cell culture. 
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Chapter 1 

 Three-Dimensional Dynamic Suspension 

Cell Culture 

 1.1  Motivations 

In the last decades, the rapid improvement in cell biological knowledge 

have bumped the interest in using cell-based approaches for the treatment of 

diseases. Regenerative medicine approaches have grown up as a good deal of 

prior clinical activities, such as surgery, surgical implants, and clinical proce-

dures including bone marrow and organ transplants [1]. Human somatic, 

adult, embryo-derived or induced ‘pluripotent’ stem cells and their possible 

use for clinical treatments are the main focus for the researchers in this field 

[2,3]. 

As a result, regenerative medicine deals with the restoration of physiolog-

ical structure and function of the organ or tissue, in contrast with organ or 

tissue repair, which entails the adaptation of the organ or tissue to non-

physiological damage (e.g. scar tissues) [4]. This aspect widens the scope of 

interest of regenerative medicine not only on regeneration of injured tissues, 
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but also on congenital pathological abnormalities, where normal function has 

never been present (e.g. thalassemia, absence of corneas, etc.). This field is 

extremely interdisciplinary, involving at the same time tissue, genetic and 

molecular engineering. Greenwood et al. [5] considers regenerative medicine 

as ‘an emerging interdisciplinary field of research and clinical applications 

focused on the repair, replacement or regeneration of cells, tissues or organs 

to restore impaired function resulting from any cause, including congenital 

defects, disease, trauma and aging. It uses a combination of several techno-

logical approaches that moves it beyond traditional transplantation and re-

placement therapies. These approaches may include […] stem cell transplan-

tation, tissue engineering and the reprogramming of cell and tissue types.’ 

However, there is still a philosophical difference in the way to apply ad-

vances in cell-biology to translational regenerative medicine. Biomaterials sci-

entists indicate the future medicine strictly connected with nanotechnology 

improvements, conceiving the use of nanodevices for ‘futuristic’ clinical treat-

ments [6]. By contrast, there is a part of the scientific community which is 

interested in emulating natural renewal capabilities employing the minimal 

artificial materials [1]. In this perspective, living cells are a key raw material 

for therapeutic applications, often required in trillions of quantities to reach 

the required curative potential [7].  

Stem cells are the ideal cellular source for cell-based therapies. There are, 

though, controversial observation from animal models which make numerous 

investigators sceptical of their direct use for clinical treatments [8,9]. This 

contrast concerns, firstly, the choice of the most suitable cell type to be used 

for organ regeneration. Secondly, there is still the underlying question of 
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whether regenerate a pathological organ by means of delivering primitive 

undifferentiated stem/progenitor cells (which differentiation will be guided 

by in vivo signals), or transplanting mature, in vitro engineered tissues [7]. 

Indeed, tissue engineered constructs are now considered the modern 

healthcare revolution for their increasing potential to regenerate tissues or 

organs from non-physiological conditions [10].  

Besides the possible clinical applications, the necessity to better under-

stand disease development, as well as the comprehension of the mechanisms 

which regulate stem cell self-renewal potential and cancer development are 

the principal purposes of cell research [11]. Cancers are complex and hetero-

geneous pathological ‘organs’, which have a dynamic interaction with their 

host. Thus, cancer research is oriented to the constitution of validated in 

vitro preclinical models capable of incorporating the main features of patho-

logical cancer tissues, in order to limit the preclinical failure of innovative 

therapeutic molecules and drugs [12]. Since solid tumours grow three-dimen-

sionally, two-dimensional cancer models are not completely capable of cap-

turing the complexity of the in vivo cancer pathology. This requisite brings 

to the necessity to recreate a functional microenvironment resembling consti-

tutive and morphological features of solid tumours [12].  

These aspects imply the massive use of human cells in different fields of 

biology, biotechnology, and medicine: for drug discovery [13], toxicology stud-

ies [14], in vitro personalized disease modelling and cancer cell biology. Due 

to this fact, it is necessary to reach high standard of safety and efficacy in 

living cell biomanufacture. Biomanufactured cells or constructs must be pro-

duced consistently through economically viable processes while adhering to 
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good manufacturing and good tissue practise (GMP/GTP) standards. The 

innovative technologies needed for the scale up in the production of living 

cells are the crucial factor for obtaining successful applications of in vitro 

tissue models, disease modelling, and regenerative medicine [10].  

 1.2  Stem cells for Regenerative Medicine and Tissue 

Engineering 

Stem cells are largely considered the preferred cell source for cell and scaffold 

based regenerative medicine and tissue engineering therapies. Stem cells have 

the potential to develop into many different cell types inside a living organism 

from early life stage, during growth, and while adult life time. Typically they 

are unspecialized cells capable of renewing themselves through cell division, 

sometimes after long periods of senescence [15]. Under specific physicochem-

ical stimuli they are able to become differentiated cells with specialised func-

tions. Inside an adult subject, it is possible to find adult stem cells which 

regularly divide and contribute to repair and regenerate damaged organ re-

gions (e.g. in the gut and bone marrow), as well as stem cells which stay in 

specific cell niches and divide only under specific conditions (e.g. within heart 

and pancreas) [15]. 

Compared to muscle, neuronal, or blood cells, which usually do not repli-

cate themselves, stem cells have shown their capability of long-term self-re-

newal. Indeed, starting from a stem cell population in laboratory, it is possible 

to maintain the population in a proliferative state preserving their unspecial-

ized characteristics [16]. Moreover, single stem cells are able to generate a 

line of genetically identical cells from their division process, allowing to en-

hance their self-renewal and differentiation potential (i.e. clonogenic cells) [7]. 
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The enormous interest in stem cells is related to their possible employment 

for therapeutic applications. In this case, the use of stem cells is a promising 

source of human cell types which are not otherwise available in vitro [7]. 

Stem cells extracted from many organs and tissues in adults (adult stem 

cells, ASCs) can typically differentiate to one or limited cell lines (multipo-

tent stem cells) [15,16]. Adult stem cells are thought to reside in a specific 

area of each tissue (called ‘stem cell niche’). Another source of stem cells is 

the embryo. When stem cells are derived from blastocyst stage embryos (em-

bryonic stem cells, ESCs), their specialization potential can give origin to 

almost every cell line in the body (pluripotent stem cells) [17]. The necessity 

to destroy the early human embryo in order to obtain ESCs to be cultured 

in vitro has led to different limitations and regulations for every different 

country, in the name of distinct moral and ethical positions [18,19]. As a 

consequence, the most of the research in translational medicine has focused 

on ASCs which can be isolated from patient own tissue and subsequently 

transplanted (i.e. autologous cell transplant). Indeed, autologous approaches 

avoid donor cell rejection and the risk of teratoma formation (benign tumours 

containing various differentiated cells, possibly imposed by ESCs) [7]. How-

ever, the heterogeneity of stem cell types and the difficulties to isolate specific 

stem cell-types with supposed therapeutic potential limit the use of well-

defined ‘autologous cell-based cocktails’, causing uncertainty in the expected 

clinical outcomes [8,7,20]. Furthermore, the isolation of adult stem cells with 

sufficient degree of purity and sufficient cell number is still problematic, also 

due to the lack in the definitive identification of type markers for cell-type 

selection amongst an isolated population [21].  
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In 2006, researchers demonstrated that mouse somatic cells (any body cell 

other than gametes) might be genetically reprogrammed to an embryonic 

stem cell–like state. These reprogrammed cells have been called “induced plu-

ripotent stem cells” (iPSCs) [22]. Subsequently, in 2007, direct reprogram-

ming was achieved in human cells. Human iPSCs are ideally equivalent to 

human ESCs in terms of both self-renewal and differentiation capacity, con-

temporarily overcoming obstacles related to immunological rejection after 

transplantation and ethical concerns. As a matter of fact, human iPSCs could 

solve the current lack of primary somatic cells in biomedicine. In fact, human 

iPSCs are normally derived from dermal fibroblasts because of their accessi-

bility and relatively high reprogramming efficiency [23]. Blood cells are con-

sidered another valid source because easily accessible and does not present 

the risk of chromosomal aberration caused by ultraviolet light-exposure [24]. 

For this reason, this cell type is currently largely employed for the develop-

ment of their mass production, in order to reach standardized and reproduc-

ible protocols for cell expansion with therapeutic purposes [25,26,27]. 

Many problems remain before iPSC medical and pharmaceutical applica-

tions can be fully realized. After the initial excitement, several reports re-

vealed serious concerns about genomic integrity of the cells: epigenetic re-

modeling, aberrant expression of reprogramming factors, clonal selection, and 

prolonged in vitro culture are potential pathways of genomic alterations [28].  

Nevertheless, besides the current limitations in the use of human stem 

cells for therapeutic purposes, there is still enormous attraction in stem cell 

culture as a source for basic stem cell research [29], drug screening and dis-
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covery [30], in vitro personalized disease modelling [31], and cell-based per-

sonalized regenerative therapies [32]. In this context, beyond the main clinical 

purpose, there is a crescent interest in stem cells for the development of novel, 

scalable screening in vitro platforms for essays, compound discovery, drug 

toxicity testing [33], study of differentiation/development processes, study of 

malignancy and genetic disorders [7].  

 1.3  3D Dynamic Suspension Culture: Bioreactors for 

Regenerative Medicine, Tissue Engineering and 

Cancer Biology 

In order to accelerate the translation from regenerative medicine/tissue 

engineering to clinical practice, large scale production is a mandatory step: 

scalability and standardization in cellular manufacturing processes are now 

the major challenge especially for applications which require large numbers 

of cells (1010-1012). In a scaling-up perspective and inspired by the manufac-

turing processes of therapeutics in biopharmaceutical industry [34,35], three-

dimensional (3D) suspension culture has demonstrated to be an advantageous 

alternative to monolayer techniques for large-scale expansion of cells [7,36,10]. 

Suspension culture techniques, with or without cell micro-carriers, have 

demonstrated their potential for low cost scalable cell expansion and long-

term cell viability maintenance [37,25,38,27]. They have been largely em-

ployed for multicellular aggregate formation [39,40,41], to guide differentia-

tion of stem cells [42], to prevent the dedifferentiation process that occurs 

under traditional two-dimensional (2D) cell culture conditions [43], for the 

production of native-like three dimensional (3D) engineered tissues [44], and 
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for the generation of 3D cancer models reproducing the solid tumour micro-

environment [45,46]. The provision of a 3D environment, with suspension 

mimicking the microenvironment of the cellular niche, has proven to be ben-

eficial, promoting cell proliferation and retaining cell properties in vitro 

[7,47,48]. 

Typically, suspension culture is obtained by means of bioreactors. A bioreac-

tor can be defined as a system capable to simulate physiological environments 

in order to facilitate physical conditioning of cells, (engineered) tissues and 

organs in vitro. These devices allow to study the effects of biophysical factors 

under closely monitored and controlled culture conditions and to generate 

tissues in vitro, assuring greater reproducibility, traceability, scalability, and 

almost operator-independence [49,50]. In general, bioreactors provide the pos-

sibility to develop platforms for automated, repeatable, and scalable: (1) cell 

expansion, (2) cell seeding in scaffolds, (3) cellular differentiation and tissue 

maturation, (4) drug screening, and (5) in vitro disease model investigation 

[51].  

In the specific field of suspension culture, the use of bioreactors is favourable 

for all biotechnological or clinical applications in which large quantities of 

cells (≥107) are demanded [52]. When suspension is obtained by means of 

dynamic mixing of the culture medium, the formation of pH, dissolved oxy-

gen, and nutrient gradients is prevented, mass transport is increased and 

sedimentation is avoided, overcoming the intrinsic limitations of static cul-

ture systems [7,49,34]. 
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The most commonly-used suspension bioreactors for scalable production 

and differentiation of cells are the stirred flask and rotating wall bioreactors 

[53].  

Stirred flask (also known as spinner flask) bioreactors are typically small 

vessels (in laboratory scale around 120 mL in volume) in which culture me-

dium is agitated by the magnetic stirring of an impeller. The interaction 

between the impeller and the culture medium produces a complex flow field 

inside the vessel volume, resulting in eddies and turbulent instabilities. Tran-

sitional flow and turbulence are conceived to enhance fluid transport through 

the suspended particles and constructs (isotropic turbulence may be consid-

ered) [54], even if agitation rates for stem cell culture are mild compared to 

original biotechnological applications. Indeed, typical agitation rates for la-

boratory scale bioreactors are between 30 to 80 rpm [25,27,55]. Such devices, 

designed to provide a 3D homogeneous culture environment, have been 

demonstrated to lead to more reproducible, robust and cost effective processes 

for stem cell proliferation and differentiation [27,25,26,10]. As a matter of 

fact, these devices are usually equipped with a control and monitor system 

for the most significant culture parameters such as pH, dissolved oxygen, and 

biomass detection [7,25]. Nevertheless, due to the local turbulence and the 

high shear rate generated between the impeller and the vessel walls, stirred 

bioreactors are characterized by non-physiological shear stress and conse-

quent unfavourable conditions, affecting cell growth rate and metabolism, 

interfering with stem cell pluripotency, and limiting efficiency and reproduc-

ibility of the culture process [7,56,57]. 
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Rotating wall vessels (RWV) were designed to minimize shear stress and 

turbulence in suspension culture devices [43,58]. These bioreactors exist in 

two different configurations: high aspect ratio vessel (HARV) and slow turn-

ing lateral vessel (STLV), but they are both characterized by the same oper-

ating principle [36]. The cylindrical culture vessel is continuously rotated, 

about its horizontal axis. The permanent rotation produces specimen suspen-

sion, resulting in circular free-fall paths developing as a function of rotational 

velocity. This circular paths ensure suspended particles to move sufficiently 

inside the culture medium in order to guarantee homogeneous nutrient, oxy-

gen and waste distribution and favouring aggregate formation by cell-to-cell 

contact [59]. This operating basis encourages a uniform growth of the con-

structs, avoiding the possible mechanical damage to suspended cells and tis-

sues caused by mechanical stress, both including shear stress and detrimental 

cell-wall or cell-impeller collisions [50]. RWVs has been successfully employed 

for osteogenic [60,61,62] and cardiomyogenic differentiation [63,64]. Never-

theless, the complexity of the technological solutions adopted for rotation 

makes these devices not easily scalable and unsuitable for continuous medium 

replacement and real-time monitoring [36,43].  

 1.4  Computational Multiphysics Modelling in Tissue 

Engineering  

One of the most striking issues in regenerative medicine and tissue engi-

neering is the lack of quantitative measures and procedures to increase the 

reproducibility of the generated products [65,66]. In general, protocols and 

procedures followed inside the most of the laboratories are still commonly 

established by trial and error approaches. In a perspective of the scaling up 
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of the technologies to an industrial manufacturing level, the lack of intelligent 

process design makes difficult the realization of products that may meet the 

quality standards imposed by the international regulatory bodies (e.g. EMA 

or FDA) [67]. As a consequence, in the last years, it was proposed to include 

commonly used engineering techniques into tissue engineering in order to 

orient the research towards robust, observable, and controllable procedures. 

Typically, the first step of the design phase in industrial manufacturing, from 

chemical to automotive engineering, is to devise in silico models with the aim 

to increase the process quality and optimization. This approach gives the 

possibility to extrapolate the key process-parameter and to predict with a 

certain degree of accuracy the final product behaviour [67].  

1.4.1  Multiphysics Modelling as Bioreactor Design Tool 

As mentioned in the previous paragraphs, bioreactors are characterized 

by a dynamic culture environment capable of increasing transport phenomena 

inside the culture vessel as well as guaranteeing optimal conditions for cul-

tured cells. Besides the two commercial bioreactor designs highlighted in par-

agraph  1.3   (stirred and rotating wall bioreactors), single research groups in 

tissue engineering and regenerative medicine have designed, developed, and 

studied other novel bioreactor architectures. Different bioreactor configura-

tions may result in different fluid dynamics inside the extracellular environ-

ment which may affect cellular activities [57]. As a matter of fact, fluid dy-

namics inside bioreactors must be optimized in order to determine the opti-

mal environment conditions to cells in terms of mass transport and flow-

induced mechanical stimulation. Multiphysics modelling of different culture 

platforms is usually carried out by means of computational fluid dynamics 



Chapter 1- Three-Dimensional Dynamic Suspension Cell Culture 

 
19 

(CFD). The high efficiency achieved in the last years in computational per-

formance enables to generate relevant information on the flow field and 

transport efficiency of soluble factors or nutrients to cells, even in complex 

designs and multiphysics problems. CFD simulations serve as a tool to accel-

erate the transition from the conception of a new idea to the realization of 

the prototype, giving the possibility to identify the most important parame-

ters to be taken into account during the design of a cell culture platform. 

Moreover CFD allows to improve with quantitative measures the bioreactor 

performance obtaining a comprehensive description of its functioning [68,69].   

1.4.2  Multiphysics Modelling for Process Design 

Multiphysics models are largely employed to extract knowledge on the 

process in progress inside the bioreactor platform [70]. Starting from the on-

line monitoring of culture parameters (e.g. pH, dissolved oxygen, metabolite 

concentrations, etc.) it is possible to develop control approaches such as 

model-based predictive controllers. The set-up of a model, that is complex 

enough to capture the process dynamics of interest inside the bioreactor plat-

form, is useful to establish a fully-defined culture method allowing to predict 

with a good degree of accuracy the outcome of the experiment [71]. The im-

portance of adopting multiphysics modelling in tissue engineering/regenera-

tive medicine processes is self-evident when, for the proficient setup of the 

experiment, it is necessary to integrate knowledge about biomass distribution, 

culture medium flow, mass transport, together in the same device [72]. Sev-

eral examples of multiphysics models in process development have been pro-

posed: optimization of the generation of engineered vascular grafts [73], opti-
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mization of encapsulated stem cell suspension in RWV bioreactors [38], opti-

mization of transport phenomena in rotating hollow-fibre bioreactor for arti-

ficial liver [74], development of predictive models for oxygen transport and 

stem cell aggregation within stirred bioreactors [75], scaffold seeding and en-

gineered tissue maturation in perfusion bioreactors [72], and assessment and 

adjustment of flow-induced shear stress levels inside porous scaffolds in per-

fused bioreactors [76]. 

In conclusion, the aim of multiphysics modelling is always trying to un-

derstand the biological process, designing in silico strategies to improve the 

desired in vitro outcome. In this perspective, the experiments should be de-

signed in parallel with the in silico models, in order to realize integration 

between the experiments and the computational modelling. This approach 

allows to obtain quantitative information from the experimental process to 

be applied to the in silico model, and vice versa.  

 1.5  Research Objectives 

From the discussion proposed in the previous paragraphs, it is clear that 

one of the principal focus of regenerative medicine, tissue engineering, and 

cancer cell biology research is to reach a better understanding on disease 

development and on biological mechanisms which regulate cellular fate. This 

improvement requires an enormous quantity of source cells to accelerate the 

translation from laboratory tissue engineering to clinical practise. Thus, there 

are biotechnological process optimizations for the standardized mass produc-

tion of the most promising stem cell sources for autologous implantations. 
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Whether cell therapy or tissue engineering approaches will be successfully 

developed, in both cases it is necessary, in this phase of research, to have a 

large amount of cellular sources available for the realization of scalable in 

vitro platforms. However, scalability and standardization in cellular manu-

facturing processes are still major challenges, in particular, when large num-

bers (1010-1012) of cells are required. The use of conventional bioreactors is 

still not sufficient to guarantee a boost towards repeatable and scalable bio-

technological procedures, given some existing limitations and drawbacks in 

their design. In this context, there is an increasing demand for the design of 

versatile devices optimized to overcome the limitations of conventional bio-

reactors. 

The objectives of this research was the realization of a versatile bioreactor 

platform for reproducible and scalable bioprocesses in tissue engineering and 

regenerative medicine. In detail, this platform was developed by the direct 

integration of in silico multiphysics modelling and the experimental design of 

a dynamic suspension bioreactor platform. Starting from a CFD optimized 

configuration of the bioreactor platform [77], the platform was recursively 

optimized both modifying the bioreactor chamber and implementing new el-

ements such as a monitoring and control system.  

In particular, the in silico multiphysics modelling was used for the devel-

opment and optimization of a versatile suspension bioreactor for 3D cell cul-

ture. This bioreactor was conceived to produce dynamic suspension cell cul-

ture under tuneable shear stress conditions without the use of moving com-

ponents. By means of the implementation of a multiphysics model of the 

bioreactor, taking into account the presence of suspended cells inside the 

culture chamber (multiphase fluid dynamics model), the in silico platform 
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was used to support the design and optimization phase of the device. Such 

model provided a comprehensive analysis of the operating principles of the 

bioreactor, and permitted the development of in silico culture protocols. In-

deed, multiphysics simulations were used to set the proper bioreactor condi-

tions according to the experimental application for in vitro preliminary bio-

logical tests.  

The versatile suspension bioreactor is a part of a platform. Originally, the 

bioreactor chamber is connected to a medium recirculation closed-loop capa-

ble of producing cell suspension, which was successively equipped by a home-

made on-line monitoring system with sensors for metabolic and nutrient con-

centration measurements.  

The integration of the in silico and experimental design facilitated the use 

of the bioreactor for two different preliminary applications: i) dynamic sus-

pension for cancer cell spheroid formation under low shear stress conditions, 

and ii) preliminary feasibility test for free-cell suspension culture of human 

iPSCs. 

 1.6  Thesis Outline 

The first part of this thesis manuscript will present (Chapter 2) all the 

design and optimization phase carried out to develop a valuable and usable 

bioreactor platform. In particular, the integration between computational in 

silico methods with the prototyping of the bioreactor platform is widely de-

scribed.  
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The second part will be dealing with two different biological/biotechno-

logical applications. The first application (Chapter 3) is the use of the biore-

actor platform for dynamic suspension of cancer cell under low shear stress 

conditions. The second application (Chapter 4) is the employment of the 

bioreactor platform in the framework of feasibility study tests for free-cell 

suspension culture of human iPSCs. 

PART I 

Chapter 2  

Versatile Bioreactor for Reproducible and Scalable Dynamic Suspension 

In this chapter, a versatile bioreactor suitable for tuneable (from low to 

moderate) shear dynamic suspension cell culture is presented. The optimiza-

tion phase of this device concerned the implementation of a monitoring sys-

tem to the bioreactor platform, with the implementation of specific sensors, 

providing real-time information about the metabolic behaviour of cultured 

cells. The optimization phase of the device was supported by in silico mul-

tiphysics modelling, which provided a comprehensive analysis of the operat-

ing principles of the bioreactor, and permitted the optimizations of the check 

valve system.  

PART II 

Chapter 3  

Application to the Culture of Cancer Cells Spheroids 

In this chapter, the bioreactor platform was used for the dynamic suspen-

sion culture of tumour cells. The experiment design was supported by means 

of the multiphysics model which provided comprehensive information on the 
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operating conditions for preliminary in vitro biological tests on human lung 

carcinoma cell-line.  

Chapter 4  

Application with human induced Pluripotent Stem Cells: Preliminary Study 

In this chapter, the bioreactor platform was tested, in a feasibility study 

framework, for impeller-free hiPSC suspension culture. This preliminary test 

phase investigated the effects of the characteristic low shear stress fluid dy-

namic structures developing inside the bioreactor culture chamber on hiPSC 

suspended aggregates and free-single cell suspension. 

Chapter 5  

Discussion and Conclusion 

In this chapter, discussion and concluding remarks regarding each section 

are summarized. Suggestions for future research based on the obtained results 

and ongoing applications are given.
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Chapter 2 

 Versatile Bioreactor for Reproducible and 

Scalable Dynamic Suspension 

 2.1  Introduction 

As previously debated in Chapter 1, suspension culture has recently been 

employed for the realization of scalable cell expansion and long-term cell vi-

ability performance [1,2,3,4]. Suspension culture can be obtained by means of 

bioreactors. As a matter of fact, bioreactors have been demonstrated to be 

devices capable of providing automated, repeatable, and scalable cell expan-

sion [2,3,5], spheroid aggregation formation [6,7], cellular differentiation and 

tissue maturation [8], and 3D cancer models [9].  

Nevertheless, most of these bioreactors still suffer from critical issues, lim-

iting the upscaling and the standardization of the expansion bioprocesses. 

Concerning stirred bioreactors, their performance can be affected by (1) col-

lisions of the cells with the impeller and (2) the onset of turbulent flow, that 

both can induce non-physiological mechanical and hydrodynamic-shear 

stresses on the cells and lead to cell damage. Moreover, these unfavourable 
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conditions can affect cell growth rate and metabolism, interfere with stem 

cell pluripotency, and limit efficiency and reproducibility of the culture pro-

cess [5,10,11,12,13]. Rotating bioreactors generate a low-shear stress culture 

environment, allowing to partially overcome the limitations of stirred tank 

devices. However, the complexity of the technological solutions adopted for 

rotation make these devices not easily scalable and unsuitable for continuous 

medium replacement and real-time monitoring [10]. 

In this chapter, a versatile bioreactor suitable for tuneable (from low to 

moderate) shear dynamic suspension cell culture is presented. Adopting sim-

ple technological solutions, and avoiding any moving or rotating components, 

the herein proposed bioreactor permits cell suspension by assuring a well-

mixed laminar flow regime, resulting in homogenous oxygen and nutrient 

transport, as well as a wide range of spatially uniform shear stress conditions. 

The peculiar geometric features of the bioreactor chamber were previously 

optimized (patented, [14]) to assure the formation of buoyant vortices within 

the culture environment, by means of the sole culture medium perfusion. In 

order to go beyond the typical experimental trial-and-error approach and to 

reach a deeper understanding of the fluid dynamics developing inside the 

culture environment, the optimization phase of the device was supported by 

in silico multiphysics modelling [15], which provided a comprehensive analysis 

of the operating principles of the bioreactor, and permitted the optimizations 

of the check valve system.  

Moreover, the optimization phase of the original version concerned the 

implementation of a monitoring system: the bioreactor platform was equipped 

with specific sensors, upstream and downstream the bioreactor chamber, in 
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order to provide real-time information about the metabolic behaviour of cul-

tured cells. The measured signals were acquired by means of an in house-

made acquisition and display software. 

 2.2  Bioreactor Platform Description 

2.2.1  Design Requirements 

The bioreactor was designed and developed in order to guarantee suspen-

sion conditions with enhanced mass transfer (see Appendix I – Oxygen 

Transport Computational Model) with tuneable low shear stress. In fact, the 

design of the device was driven by two main requirements: 

- to provide dynamic suspension culture with proper mixing; 

- to guarantee a tuneable ultralow-to-moderate shear stress culture 

environment, adjustable on the basis of culture requirements by 

simply modifying the bioreactor operating conditions. 

The bioreactor was designed to assure full compatibility with good man-

ufacturing practise (GMP) standards, satisfying the following requirements: 

- cytocompatibility and corrosion-resistance of all materials in con-

tact with the culture medium; 

- ease of sterilization and sterility maintenance; 

- ease of use, regarding the ease of assembly under sterile conditions 

for non-trained users; 

- small dimensions, suitable to fit inside standard culture incuba-

tors; 



Chapter 2- Versatile Bioreactor for Reproducible and Scalable Dynamic Suspension 

 
39 

- no medium stagnation. 

2.2.2  Bioreactor Platform Functioning Principle 

The functioning principle of the bioreactor platform is based on the con-

tinuous recirculation of the culture medium inside the culture chamber under 

laminar flow regime, obtained through the modulation of the peristaltic 

pump-imposed flow rate, in order to produce from ultralow to moderate shear 

stress dynamic suspension conditions (flow rate working range from 5 to 120 

mL/min). In detail, the medium flows through the check valve, driven by the 

peristaltic pump, and pervades the culture chamber. Successively, the me-

dium passes through the filter and flows out from the lid, moving back to the 

reservoir in a continuous closed-loop process (Figure 2.1C). The formation of 

buoyant vortices inside the culture chamber allows the dynamic suspension 

of the cultured cells/constructs. 

2.2.3  Original Architectural Design and Constitutive Elements 

As shown in Figure 2.1, the bioreactor combines peculiar geometric fea-

tures with a continuous recirculation of the culture medium, assured by a 

closed-loop perfusion circuit, avoiding the use of impellers and/or rotating 

components. The key constitutive elements of the entire bioreactor platform 

are (Figure 2.1C): 

- a transparent, sealable and sterile culture chamber where cells 

(free or microcarrier-anchored cells) are suspended in the culture 

medium during the experiments; 
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- a closed loop recirculation circuit constituted by a medium reser-

voir, a peristaltic pump, and oxygen permeable tubes (oxygena-

tion module, further described in Appendix I). 

Culture Chamber 

The bioreactor culture chamber (Figure 2.1B, external dimensions of 95 

mm x 70 mm x 70 mm) consists of: an AISI 316L base; a polycarbonate 

culture chamber for housing the cells/constructs (priming volume = 75 mL); 

a polycarbonate lid. The internal wall curvature and shape of the culture 

chamber were designed and optimized for the generation of toroidal buoyant 

vortices (axial-symmetry of the culture chamber) for specimen suspension (as 

detailed in the following). It has been manufactured by material removal by 

a computer numerical controlled (CNC) milling machine starting from a pol-

ycarbonate bar. All the parts of the chamber in contact with the culture 

medium were designed and realized with round edges, avoiding discontinui-

ties, stagnation points, fissures, interstices, and holes, considered principal 

spots of microbial contamination. 

Suspended cells/constructs are confined inside the culture chamber by 

means of the presence of (1) an AISI 316L unidirectional check valve (which 

prevents backflow and guarantees a symmetric flow inlet), and (2) a culture 

medium-permeable filter (Durapore®, MerckMillipore, Germany), which pre-

vents accidental outputs of cells.  
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Figure 2.1: (A) Schematic draw of the bioreactor showing its internal components and 
its axial symmetry (red lines). (B) Picture of the bioreactor. (C) Schematic representation of 

the set-up of the bioreactor connected to the closed loop perfusion circuit. 

Check Valve (original configuration) 

The check valve, in its original configuration (the optimized version will 

be described in detail paragraph 2.3.3  ), was designed to guarantee the uni-
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directionality of the fluid, opening and closing when the pump is activated or 

switched off, respectively. Taking advantage of the technical drawing of the 

check valve system shown in Figure 2.2, all the components of the valvular 

system are made in AISI 316L, excepted the silicone membrane. The culture 

medium flow produces an overpressure in the valve chamber upstream the 

silicone membrane, respect to the downstream chamber. The culture medium 

flows through the check valve only when the trans-valvular pressure drop 

overcomes the cracking pressure of the valve and produces the deformation 

of the silicone membrane. This silicone membrane is provided in different 

thickness (2 or 3 mm) and with a different number of holes (up to six) in 

order to modulate the proper operating trans-valvular pressure necessary to 

open the check valve.  

 

Figure 2.2: Check Valve (original configuration). Technical drawing highlighting its con-
stitutive elements. 

Filter System 

The poly-vinylidene fluoride filter (PVDF - Durapore®, MerckMillipore, 

Germany) was designed with the aim to prevent accidental outputs of cells 

or constructs during the recirculation of the culture medium (80% porosity 

and average pore diameter of 5 μm). To ensure rigidity, correct positioning, 
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and perfect sealing to the filter system, the PVDF membrane is used with 

three silicone washers and an AISI 316L stainless steel grate. Figure 2.3 illus-

trates the constitutive components of the filtration system and the assembling 

procedure to be done under laminar-flow hood.  

 

Figure 2.3: Bioreactor filter setup. a) Filter Components, b) insertion of the first silicone 
washer, c) insertion and positioning of the PVDF filter, d) insertion of the second silicone 
washer, e) insertion of the AISI 316L stainless steel grate, f) insertion of the third silicone 
washer, g) completed filter setup. 

Closed loop Recirculation Circuit  

The bioreactor is part of a closed-loop perfusion circuit for the recircula-

tion of oxygenated culture medium (Figure 2.1C). Such perfusion circuit is 

composed of a medium reservoir, oxygen-permeable tubes (silicone, peroxyde-

cured) with quick-disconnect couplings, and a peristaltic pump (Masterflex 



 2.2   Bioreactor Platform Description 

 44 

L/S©, Cole-Parmer, IL, USA), for a total working volume of approximately 

200 mL.  

In detail, the peristaltic pump was chosen to assure the technical features 

summarized in Table 2.1.  

Table 2.1: Technical features of Masterflex L/S® RX-07551-00 pump. 

Flow Rate Range 0.006 - 3400 mL/min 

VAC 90/260 

rpm 0.1 - 600 

Speed Control Precision digital 

Operating Temperature 0-40°C  

Drive Dimensions 25.4 cm x 21.6 cm x 21.6 cm 

Motor 75 W, 1/10 hp 

The hydraulic couplings (Figure 2.4) are capable of being quickly con-

nected and disconnected, maintaining sealing and sterility  

(Table 2.2).  

 

Figure 2.4: Cole-Parmer quick-disconnect couplings.  
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Table 2.2: Technical features of Cole-Parmer quick-disconnect couplings. 

Body Material acetal 

Seal Material ethylene propylene rubber (EPR) 

Spring and latch Material AISI 316 stainless steel 

Max Vacuum 711 mmHg 

Max Temperature 71°C 

Max pressure at 21 °C 6.8 atm 

To guarantee the adequate supply of oxygen within the culture chamber, 

the perfusion circuit was sized using an analytical oxygen mass balance model 

in accordance with Orr et al. [16] (largely described in Appendix I). The 

permeability properties to CO2, H2, O2, and N2 used for the tubing sizing were 

provided by the supplier and are summarized in Table 2.3. 

Table 2.3: Permeability properties of the platinum-cured silicone pump tubing. 

 Permeability x 1011 [cm2/mmHg·s]  

CO2 0.020 

H2 6.58 

O2 7.96 

N2 2.76 

During the experimental phase, the culture chamber, the fresh medium 

reservoir, and a portion of the oxygen-permeable tubes are positioned within 

the incubator. If the incubator settings are fixed on 95% of humidity, the 

peristaltic pump is positioned outside the incubator to protect the electrical 

circuitry from the high levels of humidity, exposing a short portion of the 

oxygen-permeable tubes to the external environment (Figure 2.5A). If the 

incubator is completely dedicated to the bioreactor platform, it is possible to 

set up the incubator culture environment without humidity and place the 
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entire recirculation circuit, peristaltic pump included, inside the incubator 

(Figure 2.5B). 

 

Figure 2.5: Bioreactor setup within the incubator in two possible configurations. Schematic 
drawings (top) and pictures of the real working system (bottom). The peristaltic pump can be 
put outside the culture incubator in case of high humidity (left panel) or cab be positioned 
inside the incubator in absence of humidity (right panel). 

 2.3  In Silico Multiphysics Model-Based Design 

Optimization 

A computational multiphysics approach supported the design and the op-

timization phases of the device, allowing the identification of (1) the optimal 

geometry of the culture chamber, and (2) the operating conditions for dy-

namic suspension cell culture. A massive number of simulations was per-

formed varying cell/construct dimensions (in terms of their diameter) and 

highly dilute cell inoculation densities, in order to study the sensitivity of the 

fluid flow within the chamber volume to these culture parameters.  
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Technically, three different computational studies were accomplished. 

The first approach was oriented to the identification and definition of the 

typical fluid dynamics structures generated inside the bioreactor culture 

chamber varying flow rate conditions: multiphysics simulations were carried 

out taking into account the concomitant presence and mutual interaction of 

culture medium and suspended cells. The second was directed to the in silico 

study of alternative culture protocols (pulsed protocols) by means of the same 

multiphysics simulation cited above. This multiphysics simulations gave the 

possibility to devise in silico protocols to be used as user’s guidelines for the 

setup of the bioreactor platform. The third computational approach was in-

tended to the improvement of the check valve performance. After having 

conceived and designed an innovative kinematic mechanism for the check 

valve, single phase three-dimensional simulations were carried out to optimize 

its geometry and assess its efficiency at different flow rates.  

2.3.1  Multiphysics Modelling for Fluid Dynamics 

Characterization 

Methods 

Taking advantage of the axial-symmetry of the device (Figure 2.6A), a 

set of axisymmetric time-dependent numerical simulations was carried out 

using a customized finite volume technique-based commercial software (FLU-

ENT, ANSYS Inc., PA, USA). The fluid domain was discretized using ICEM 

CFD software (ANSYS Inc., PA, USA). A mesh cardinality equal to 6.5x103 

quadrilateral cells was considered. As in previous studies [3,17], the concom-

itant presence of culture medium and cells was modelled using the Eulerian–
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Eulerian Multiphase Model, which allows mixtures of multiple separated yet 

interacting phases of a continuum to be described.  

 

Figure 2.6:3D model of the bioreactor chamber with emphasis on its axial-symmetry (A), 
axial-symmetric computational domain with boundary conditions (B).  

In this model, for each phase the governing equations of motion, the Na-

vier–Stokes equations, were solved by the numerical solver. Subscript q refers 

to the q-th phase (i.e. primary phase = culture medium and secondary phase 

= cells/constructs). By neglecting the mass transfer between the two phases, 

Navier-Stokes equations can be written in the form of eq. 1 and  

eq. 2. 
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Continuity equation: 
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Conservation of momentum 
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 eq. 2 

where VFq is the volume fraction, ρq the density, and 
qv  is the velocity of 

the q-th phase. In eq. 2, P is the pressure shared by the two phases,  is 

the stress-strain vector, qF  is an external body force, ,lift qF  is a lift force, 

,vm qF  is the virtual mass force ( ,lift qF  and ,vm qF  were neglected in this 

model). pqR  is the interaction force between phases, i.e. the interaction be-

tween q –th phase and the generic p-th phase. Within the bioreactor culture 

chamber, culture medium (primary phase) exerts a drag force to the sus-

pended cells/constructs (particles, p-th phase). For granular secondary phase 

(such as cellular suspensions), the drag force is expressed as a function of 

relative cell velocity (
pv -

qv ) (eq. 3). 

  pq pq p qR K v v   eq. 3 

where 
pqK  is a function of Stokes number, Reynolds number (Re), and 

phase VF, according to Gidaspow and colleagues model [18].  

p
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Regarding the calculation of flow-induced mechanical stress, shear stress 

magnitude was mathematically computed according to eq. 4 : 

   


  eq. 4 

where  is the shear rate, related to the second invariant of the defor-

mation tensor D  (eq. 5) 
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   eq. 5 

In 3D Cartesian coordinates the shear rate   is defined as eq. 6: 
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 eq. 6 

where u, v, w are the three Cartesian components of the velocity vector 

qv . 

The culture medium, considered as the primary phase, was assumed to 

be Newtonian with physical properties (dynamic viscosity = 1x10-3 Pa·s, den-

sity = 1000 kg/m3) of culture media typically used in cell culture applications 

[3]. Suspended cells, considered as the secondary suspended phase, were mod-

elled as non-deformable spherical beads, with a density equal to 1070 kg/m3 
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[19] and an average diameter ranging from 10 to 100 μm (i.e. the typical 

dimension range going from single cell to more complex cell aggregates). Sim-

ulations were carried out considering always highly dilute suspension cultures 

(Stokes numbers greatly lower than 1, VF lower than 1%). In detail, Stokes 

numbers within the bioreactor culture chamber were calculated for every sim-

ulated cell/construct dimensions (10, 25, 50, 100 μm), considering the lowest 

culture medium velocity inside the chamber when a flow rate of 5 mL/min is 

imposed (the lowest flow rate in the bioreactor platform working range). Ta-

ble 2.4 reports the calculated Stokes numbers, which are always largely lower 

than 1.  

Table 2.4: Stokes numbers calculated for different cell/aggregate diameter values. 

Diameter (μm) Stokes Number (x10-5) 

10 1.4 

25 8.4 

50 33.8 

100 135.2 

With the hypothesis of high dilution, variations in initial VF do not affect 

markedly the primary phase flow. In such condition, with the aim to charac-

terize the flow field inside the chamber for different characteristic suspended 

particle diameter, VF was kept constant varying only cell/construct dimen-

sions. 

The presence of the filter was modelled as a porous medium characterized 

by a value of Darcy hydraulic resistance equal to 96x104 m-2 for the culture 

medium and setting the maximum hydraulic resistance accepted by the solver 

(1x1020 m-2) for the cells, being the filter impermeable to them. Cell/construct 
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inoculation was assumed to be uniform in the lower region of the culture 

chamber. Indeed, the initial VF occupied by the cells was set to be uniform 

in the lower vessel region (10 mL). 

The maximum packing limit was set to 63%, i.e., the packing limit for 

regularly packed non-deformable spherical beads [3]. Simulations were ex-

tended over flow rate values in the range 5 - 120 mL/min, with a simulated 

culture time equal to 60 mins, which was considered sufficient to fully de-

scribe the dynamics of the medium inside the culture chamber. The phase-

coupled SIMPLE scheme was used for the pressure-velocity coupling. The 

Second order upwind and the QUICK formulation were used for the spatial 

discretization of the momentum and the secondary phase transport, respec-

tively. To solve the equation the phase-coupled SIMPLE scheme was used 

for the pressure-velocity coupling. The second order upwind and the QUICK 

formulation were used for the spatial discretization of the momentum and 

the secondary phase transport, respectively. A time step equal to 0.002 s was 

set in order to reach the numerical stability. Absolute convergence criterion 

was applied and convergence was considered achieved for relative residuals 

below 10-6 for Navier-Stokes equations and 10-7 for volume fraction residuals. 

At the inlet the flow rate was imposed by means of a flat velocity profile, and 

at the outlet a null pressure gauge condition (pressure outlet condition) was 

set (Figure 2.6). No-slip condition was applied at the walls. 

Results and Discussion 

The multiphysics simulation setting herein proposed allowed to charac-

terize the flow field inside the culture chamber. Figure 2.7 depicts, in a dia-

grammatic representation, the typical medium flow structures establishing 
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inside the bioreactor culture chamber, as a result of the mutual interaction 

between the medium (primary phase) and the cells/constructs (secondary 

dispersed particulate phase). In detail, the modulation of flow rate in two 

different intervals (from 5 to 20 mL/min and from 20 to 120 mL/min) pro-

duces different characteristic fluid dynamic structures qualitatively repeated 

(varying the flow rate inside each range may result in similar flow structures, 

but with different extent). As shown in Figure 2.7A and 2.7C, in case of flow 

rate values lower than 20 mL/min, the medium streaming inside the bioreac-

tor culture chamber has not sufficient energy to interact markedly with the 

side wall of the culture chamber. The interaction between the culture medium 

stream and the suspended cells/constructs leads to the formation of a dy-

namic big buoyant vortex located far from the wall of the chamber. This 

buoyant vortex is surrounded by smaller vortical structures located closer to 

the wall, which may assure cultured cell/construct suspension and increased 

mixing and transport inside the culture chamber. Shear stress measured in 

such flow rate range are typically lower than 1 mPa, generating an ultralow 

shear stress condition (Figure 2.8A). If the flow rate is increased beyond 20 

mL/min, the culture medium stream entering the bioreactor culture chamber 

is attracted to the nearby wall (Coanda effect [20]) and, taking advantage of 

the peculiar wall curvature, a separation region occurs far from the bottom 

wall of the chamber Figure 2.7B and 2.7D. 
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Figure 2.7: Flow field visualization of the mutual interaction between the medium (pri-
mary phase) and the cells/constructs (dispersed phase) within the culture chamber for ultralow 
(A and C) and moderate (B and D) shear stress conditions. Flow field is depicted using both 
linear integral convolution lines (A and B), and a classical streamline representation (C and 
D). Red arrows point to the smaller vortical structures, while blue arrows indicate the bigger 
buoyant vortices. 
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As a result, a large buoyant vortex of cell/construct suspension is gener-

ated. Near the outer wall, a smaller vortex develops, playing a beneficial role, 

and enhancing mixing and floating construct suspension. Adopting this flow 

rate range, shear stress levels increase, producing a moderate shear stress 

environment. However, Figure 2.8B-2.8E shows shear stress distributions cal-

culated for four different flow rates inside this moderate shear stress range, 

i.e. 30, 50, 70, 120 mL/min. It can be observed that the distributions are all 

markedly skewed right and characterized by mean and mode values consist-

ently low. Indeed, mean shear stress value inside the culture chamber vary 

from approximately 2 to 7 mPa (for 30 and 120 mL/min, respectively), while 

mode values are lower than 1 mPa for each reported flow rate. The tuneable 

shear stress values obtained inside this bioreactor chamber are one order of 

magnitude lower than shear stress values developing within commercial spin-

ner flask bioreactors. In such bioreactors, imposing agitation rates ranging 

from 15 to 50 rpm, the reached mean shear stress values are from 20 to 120 

mPa (with peak values reaching 200 mPa) [21]. Contemporarily, shear stress 

values generated by the herein proposed bioreactor platform are orders of 

magnitude lower than the reference shear stress value (250 mPa) considered 

critical for sensitive cells, such as embryonic stem cells or neonatal rat cardi-

omyocytes [12]. Furthermore, the fluid dynamics described within the biore-

actor culture chamber has a beneficial role on mixing and transport of oxygen 

and nutrients (oxygen transport model in Appendix I). 
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Figure 2.8: PDF of shear stress values inside the bioreactor culture chamber varying the 
imposed flow rate. (A) 5, (B) 30, (C) 50, (D) 70, and (E) 100 mL/min. 
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Summarizing, this multiphysics model results allowed to define two main 

flow conditions in culturing cells/constructs: (1) ultralow shear stress condi-

tion, obtained working with flow rates below 20 mL/min, and (2) moderate 

shear stress condition, established in flow rate range from 30 to 120 mL/min. 

Moreover, modelling allowed to optimize the design of the bioreactor plat-

form, in terms of performance for the establishment of dynamic suspension 

of biological specimens at low shear stress levels.  

Some limitations could weaken the presented multiphysics numerical 

model. A main limitation is that aggregation and disaggregation of the cul-

tured cells/constructs are not considered in the model, since the biological 

sample size was assumed to be always equal to the initial cell dimension. The 

primary interest of this model was to assess the fluid dynamics inside the 

culture chamber at the very early stage of the culture process, in order to 

ascertain cell/constructs suspension. Therefore, since aggregation, disaggre-

gation, and proliferation phenomena have typical characteristic time of days, 

they were neglected in the simulations. Another possible limitation is given 

by the assumption of non-deformable, spheroid suspended cell/constructs. 

Inhomogeneity of particle size and shape could modify the outcome of the 

simulation in terms of cell VF distribution inside the culture chamber. In the 

context of the fluid dynamic characterization proposed, and under high dilu-

tion conditions, the effect of irregularly-shaped cell/constructs on culture me-

dium flow field is negligible. 

Although the possible limitations could undermine the findings of this 

study, the information obtained by means of this computational setup demon-

strates the potential offered by multiphysics simulation as a tool during the 
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design phase of a bioreactor platform. The further insight on the fluid dy-

namics establishing inside the bioreactor culture chamber can be helpful for 

the formulation of experimental frameworks with a more systematic approach 

(Chapter 3 – Application to the culture of Cancer Cell Spheroids).  

2.3.2  Multiphysics Modelling for in silico Protocol Development 

In order to go beyond the experimental trial-and-error approach, the mul-

tiphysics model proposed in the previous paragraph (2.3.1  ) was used to 

study and develop an alternative functioning mode of the bioreactor platform. 

As previously explained in paragraph 2.2.2  , the standard functioning prin-

ciple of the bioreactor platform is the continuous recirculation of the culture 

medium inside the culture chamber. An alternative functioning mode might 

be the imposition of a pulsed flow rate, alternating time intervals during 

which the pump is set to run, with time intervals in which the pump is 

momentarily stopped. The rationale beyond this alternative functioning mode 

is the possibility to develop (in silico) a protocol capable of alternating both 

flow-driven particle suspension and particle free-fall, inside the bioreactor 

culture chamber (specifically oriented to mammalian cell and aggregate sus-

pension culture). Indeed, when a flow rate is imposed by means of the peri-

staltic pump, particles inside the bioreactor chamber are dragged and trans-

ported in the same conditions described in paragraph 2.3.1  . When the pump 

is momentarily stopped, suspended particles will experience a free-fall condi-

tion, undergoing a null acceleration state. Moreover, this pulsation produces 

an intermittent moderate shear stress stimulation which, in free-cell suspen-

sion culture applications, can be useful in the modulation of cell aggregate 

dimension without continuously exposing cells to shear stress. 
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This study was intended to give a tool to estimate the applicability of 

this protocol of use, with the aim to determine the flow rate pulsation shape 

and frequency, providing a set of operational graphs as guidelines for its fu-

ture preliminary experimental applications. 

Methods 

A massive number of simulations was carried out with the same numerical 

setup proposed in paragraph 2.3.1  . Summarizing, axial-symmetric time-

dependant numerical simulations were carried out using a customized finite 

volume technique-based commercial software (FLUENT, ANSYS Inc., PA, 

USA). The fluid domain was discretized with 6.5x103 quadrilateral cells and 

the Eulerian-Eulerian multiphase model was implemented to simulate the 

concomitant presence of culture medium and suspended particles (general 

way to refer to either cells, or aggregate, or constructs). As in the previous 

setup (paragraph 2.3.1  ), highly dilute suspension cultures (Stokes numbers 

greatly lower than 1, VF lower than 1%) were considered, imposing a VF 

ranging between 5.4x10-3% and 2.5x10-2%. This assumption allows to consider 

cells as non-deformable spheres transported by the culture medium, without 

markedly modifying the flow field. Due to high dilution condition, the free-

fall phase particle motion, occurring when the pump is momentarily stopped, 

can be simplified by the formulation of the force balance acting on a single 

sphere in free-fall. The free-fall terminal velocity ffv can be obtained express-

ing the dynamic balance among Stokes drag force ( dF ), Archimedes buoy-

ancy force ( bF ), and particle weight force (W ) (Figure 2.9).  



 2.3   In Silico Multiphysics Model-Based Design Optimization 

 60 

 

Figure 2.9: Free-body diagram of forces representing the dynamic balance between Stokes 
drag force, weight force, and Archimedes buoyancy force when a spherical particle reaches the 
terminal velocity while being in free-fall.  

Through the explicitation of the force balance, it is possible to obtain the 

expression of the terminal velocity ffv  (eq. 7) as 
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  eq. 7 

where p and med  are particle and medium density, respectively; med  

is the medium dynamic viscosity; and R is the particle diameter. 

In order to characterize the pulsed functioning of the bioreactor platform, 

the multiphysics model was used to define the pulsed flow rate waveform 

duration and its duty-cycle. For a square waveform (Figure 2.10B), it is pos-

sible to obtain different duty-cycles, modifying the ratio between the time 

interval when the pump imposes a non-null flow rate (Ton), and the time in 

which the pump is stopped (Toff). The duration and duty-cycle of the wave-

form depends on Ton. In fact, according to the value of Ton, the flow entering 

the culture chamber lifts suspended particle cloud to a different height respect 

to its initial height (Figure 2.10A). The height attained by the particle cloud 
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was computed by means of the multiphysics model, imposing different dura-

tions of non-null flow rate Ton. For every simulated Ton, considered as an 

independent variable, Toff  was expressed (the dependent variable) in function 

of the terminal velocity vff  (eq. 8) to compute the stop time of the pump 

necessary to bring back the level of the suspended particle cloud to its initial 

level: 

 
fall

off

ff

x
T

v
  eq. 8 

where xfall is the vertical distance to be covered to restore the initial par-

ticle cloud height and vff is the free-fall terminal velocity. 

 

Figure 2.10: Representation of the concept of pulsed functioning mode. (A) The cloud of 
particles, starting from an initial distribution, is redistributed within the culture chamber when 
a non-null flow rate is imposed. Stopping the pump will produce the particle free-fall which 
will bring back the particles to the original distribution (red arrow represents the flow direc-
tion). (B) Flow rate square waveform. 

In this way, the integration of the multiphysics and the analytical ap-

proach led to the definition of the pulsed flow rate square waveforms. As a 

matter of fact. Starting from homogenous initial distributions of the particle 

cloud and varying Ton as simulated time, the correspondent value of Toff  was 
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obtained applying eq. 8. The outcome of the multiphysics simulations was 

used to calculate the transformation of suspended particle cloud overtime, 

when the flow rate is non-null. As a result, it was possible to relate Ton, Toff, 

and the initial suspended particle cloud height in a single graph (operational 

graph), which can be used to determine the couple Ton/Toff imposing the ini-

tial cloud height.  

This was done for a total of 40 combinations (summarized in Figure 2.11), 

modifying flow rate and particle dimensions, and performing a sensitivity test 

on the initial condition of particle cloud volume (indicated as initial volume 

homogenously occupied by the particle cloud with an initial constant VF). In 

order to have a most reliable measure of the particle cloud height, this value 

was transformed as minimum distance from the filter (according to x coordi-

nate origin in Figure 2.11). 

To demonstrate the validity of the integration of numerical and analytical 

approach, three explanatory examples of the application of operational graphs 

will be provided. Multiphysics simulations were carried out to simulate three 

entire pulsed cycles for 10, 25, and 100 μm particles, applying a flow rate of 

50 mL/min. 
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Figure 2.11: Explicative representation of the combination of parameters varied in the 
multiphysics simulations. x coordinate origin is positioned on the filter to calculate the cloud 
distance from the filter. 

Results and Discussion 

In order to unburden the reader and to give a clear and neat description 

of the results, it was chosen not to show all the 40 graphs obtained as outcome 

of the simulations, but only a few explanatory examples. Figure 2.12 shows 

the operational graph as outcome of the multiphysics model. This graph was 

found imposing a flow rate of 30 mL/min and suspended particles with a 

diameter of 10 μm. In Figure 2.12, A, B, and C correspond to the three 

different initial conditions applied for the particle cloud distribution. As ex-

pected, the higher is the initial particle cloud distribution, the quicker it will 

reach the filter, which is located at the maximum reachable height inside the 

bioreactor culture chamber (being a barrier to cells and constructs). The 

graphs herein shown are not significantly sensitive respect to the initial par-

ticle cloud volume, showing not evident differences in their monotonically 

increasing shapes, observing the curves respect to the secondary right axis 
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values. 

 

Figure 2.12: Example of operational graph. This graph was obtained for particle diameter 

equal to 10 μm and flow rate 30 mL/min. (A) Graph for an initial particle cloud volume equal 
to 10 mL, (B) 25 mL, and (C) 40 mL. Blue ticks on the right vertical axis represent the initial 
distance of the particle cloud, which varies according to the initial cloud volume variations. 

The chart allows to determine the couple Ton and Toff  necessary to cycli-

cally maintain the particle cloud at a certain distance from the filter. For this 

particle dimensions (10 μm), there is a huge imbalance between the duration 

of flow-driven transport and the duration of free-fall. Figure 2.13 shows the 

outcome of the multiphysics simulation, depicting the suspended particle 

cloud coloured by VF values, varying the initial condition of particle cloud 

volume (golden arrow in Figure 2.13). For every instant of simulated time, it 

is possible to calculate the distance of the particle cloud from the filter (dash-

point line in Figure 2.13), but also to determine the variations of the particle 

cloud height occurring in a specific interval of simulated time. 
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Figure 2.13: Example of outcome of the multiphysics simulation. The golden arrow repre-
sents the initial height of the particle cloud, for the three different initial conditions A, B, C. 
Fixed the height to be reached (red dash-point line), the pump should run for 72 s (A), 28 s 
(B), and 4s (C). From the operational graph, it is possible to extrapolate the value of Toff 
necessary to bring back the cloud to original level by free-fall motion. Red arrows represent 
the direction of the imposed flow rate. 

For bigger particles, Ton and Toff have the same order of magnitude. Figure 

2.14 shows the operational graphs in form of 3D stem plots for suspended 

particles with diameter equal to 100 μm. In this case, faster terminal velocity 

reached by the free-falling particles entails the comparable magnitude of Ton 

and Toff , which were calculated with flow rate values ranging from 50 to 100 

mL/min. This outcome suggests that, the pulsed functioning mode applied 

to cell aggregates will result in the development of a pulsatile flow with an 

imposed flow rate square waveform with a duty cycle closer to unity.  
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Figure 2.14: Operational graph in form of stem plots for suspended particles of 100 μm, 
varying the flow rate from (A) 50 mL/min, (B) 70 mL/min, and (C) 100 mL/min. 

To verify the validity of the integration of the multiphysics model and 

the analytical calculation of the particle free-fall time, three applications of 

the operational graphs were simulated for the three entire flow rate waveform 

cycles. To enforce the clarity of the dissertation, only the results of one of the 

three applications are herein described. Figure 2.15 shows the application of 

the pulsed bioreactor platform functioning mode imposing a flow rate equal 

to 50 mL/min and inoculating around 4x106 suspended particles with a di-

ameter equal to 10 μm (e.g. single cells). Starting from an initial particle 

cloud distribution volume of 10 mL with homogenous VF equal to 2.5x10-2% 

(Figure 2.11), the minimum cloud distance from the filter was brought, after 

2 seconds of imposed flow rate, to 16 mm, selected as the initial distance 

before the imposition of the pulsed cycles (Figure 2.15A). The pulsation wave-

form was defined by the operational graph, previously obtained and shown 
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in Figure 2.15A, finding the couple Ton and Toff  necessary to periodically keep 

the level of the particle cloud at the initial distance of 16 mm.  

 

Figure 2.15: Example of application of the pulsed protocol by the application of the oper-

ational graphs for suspended particles with diameter of 10 μm and flow rate equal to 50 
mL/min. (A) Chosen the minimum distance from the filter of the particle cloud (16 mm), the 
couple Ton  /Toff is determined (Ton = 4 s Toff, =720 s or 12 mins). (B) VF distribution describ-
ing the particle cloud at the end of every simulated pulsed cycle. 

Figure 2.15B depicts the distribution of the suspended particle cloud in 

terms of VF profile inside the culture chamber at the end of the three cycles. 

The alternation of flow-driven transport and free-fall motion, produces a uni-

formly distributed suspended particle cloud. In detail, it can be observed that 
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the distance from the filter of the suspension cloud is periodically restored 

with essentially homogenous VF distributions. In fact, PDF distributions of 

VF values inside the suspension particle cloud (Figure 2.16A), calculated at 

12, 24, 36 mins, present VF mode values varying from  

1.5x10-2% (at 12 mins) to 1.15x10-2% (at 36 mins), with mean VF values of 

1.71x10-2% (at 12 and 24 mins) and 1.62x10-2% (at 36 mins). 

 
 

Figure 2.16: (A) Probability density functions (PDF) of VF distribution inside the particle 
suspended cloud at each cycle end (12, 24, 36 mins). (B) Percentage of the inoculated cell 

number on the bottom of the bioreactor in of volume equal to 2.6 μL at a VF close to  
3x10-2%. 

Higher VF values around 3.1x10-2% were found on the bottom of the bi-

oreactor culture. The trend of this slightly different VF values was investi-

gated calculating the amount of particles packed at 3.1x10-2% respect to the 

total amount of suspended particle in the cloud. From 0.27 to 0.51% of the 

total 4x106 suspended particles are found in the lower part of the culture 

chamber occupying a volume of 2.6 μL, with a trend which do not increases 

with respect to the cycles (Figure 2.16B). 

The multiphysics model herein presented and its application suggested 

the possibility to investigate the potentiality of the bioreactor platform and 

to assess its feasibility to be used in alternative culture protocols. Although 
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the in silico approach is affected from some limitations, this study gave an 

insight on the initial parameter configuration for future preliminary experi-

mental tests involving expensive small molecules, cells, and culture media. 

Accordingly, it represents a useful tool to reduce the costs during the tech-

nical assessment of the device functioning. The data acquired by the mul-

tiphysics model herein described must be validated and adapted to the ex-

perimental framework, though the model represents a valuable alternative to 

the traditional trial-and-error method. Indeed, there are some assumption 

which can influence the outcome of the model, particularly referring to the 

use of the bioreactor platform for mammalian cell suspension culture. Firstly, 

this study considered spherical non-deformable suspended particles with con-

stant diameter. In the real applications with mammalian cells or aggregates, 

suspended particles are characterized by variable diameters and different, 

sometimes irregular, shapes. In the scope of cell/aggregate transport, with 

particular attention on free-fall cell/aggregate motion, shape irregularities 

will invalidate the applicability of Stokes’ law for the calculation of the par-

ticle terminal velocity. Contemporarily, the inhomogeneity of particle diam-

eters, will determine different timing in the free-fall motion, thus provoking 

a more complex behaviour of the suspended particle cloud during the cycle 

evolution. Moreover, this model is useful to describe the very early stage of 

the culture procedure, giving only indications on the initialization of the ex-

perimental process. In fact, the model does not take into account cell aggre-

gation, aggregate disaggregation, and cell proliferation, which may have an 

impact on the experimental outcome, even if it has typical characteristic time 

of days (simulated time were in the order of magnitude of minutes). 
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Although these limitations could weaken the findings of this study, the 

validity of the proposed process optimization method could be the basis for 

more complex studies which, validated in vitro, can consistently help the 

biotechnological experimental work and confer an in silico-based a priori 

knowledge useful to limit the experimentation costs. 

2.3.3  In silico Supported Check Valve Optimization 

Revised Check Valve System: Concept 

The complex assembly and the huge number of elements constituting the 

original check valve kinematic mechanism entailed some difficulties in the 

bioreactor chamber handling, producing some lacks in the reproducibility of 

the symmetric opening of the check valve orifice. Asymmetries in the valve 

opening were not acceptable given the enormous impact on the cell culture 

environment homogeneity. As a matter of fact, a new valve kinematics was 

conceived, designed, realized, tested, and finally implemented in the bioreac-

tor platform. Compared to the original system, the revised architecture of 

the check valve system does not have any deformable component. As ex-

plained in this chapter in section 2.2.3   (Check Valve (original configuration) 

- page 41) the valve opening was produced through the silicone membrane 

deformation due to the pressure drop generated across it. However, the min-

imal deviations from the axis of the elements constituting the check valve 

system might produce a non-symmetric deformation of the silicone membrane 

and a consequent asymmetric check valve opening.  

As a result, the revision strategy dealt with the necessity to fulfil the 

following requisites: (1) remove any deformable component, increasing the 
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rigidity of the system, (2) facilitate the vertical translation degree of freedom, 

reducing the check valve crack pressure, and (3) guarantee the completely 

controlled valve opening for all the flow rate functioning range of the biore-

actor platform. Figure 2.17 shows a comparison between the original and 

revised architectures of the check valve system.  

 

Figure 2.17: Comparison between the original and revised kinematic mechanism of the 
check valve system visualizing a section of the check valve system both in open position. The 
number of elements composing the assembly of the revised check valve assembly was consist-
ently reduced.  

The kinematic motion of the check valve is governed by the pressure drop 

generated across a rigid perforated disc (Figure 2.18A). The upwards hydro-

dynamics lift can be modulated by means of a number of holes: hole dimen-

sion and number was optimized to produce a correct valve opening applying 

the typical flow rate applied for cell culture (optimization widely described 

in the forthcoming section). The rigid disc can move along a runner, made 

up by the collimator and the inner cylindrical surface of the disc holder, which 

permits the vertical translation, but removes all other translational and ro-

tational degree of freedom. The presence of the fixed collimator forces the 

perfect alignment of the valve to the bioreactor culture chamber axis. To 

maintain the check valve co-axial also in the closed position, the check valve 

cap and the bottom part of the bioreactor culture chamber were sloped of 10 

degrees (Figure 2.18B).  



 2.3   In Silico Multiphysics Model-Based Design Optimization 

 72 

 

Figure 2.18: A) 3D model of the revised check valve complex. Blue arrows represent the 
direction of the culture medium flow. From the base to the collimator, the flow reaches the 
rigid POM disc and the pressure drop across the sliding disc produces a net lift force (red 
arrows represent the upwards net pressure distribution). B) Detail of the features of the new 
check valve system. 1. Check valve cap, 2. Check valve disc, 3. Coupling between the check 
valve cap and check valve disc: thread which allows to adjust the culture chamber inlet gap 
(4). 

The rigid disc and the check valve are coupled to each other by a thread 

(Figure 2.18B). The possibility to screw the check valve at different levels 

allows to adjust closure and opening strength, in order to have a precise 

control of the velocity stream entering the bioreactor chamber (4 in Figure 

2.18B).  

Methods 

In order to obtain the check valve behaviour described above, it was essential 

to delineate an optimization protocol. Firstly, the constitutive materials of 

each element of the revised check valve system were chosen (step 1 - Figure 

2.19). All the elements constituting the revised check valve system were con-

ceived and designed in POM (selected for its density of about 1400 kg/m3). 

Chosen the minimum thickness of the disc and the shafts of the moving com-

ponents (necessary to calculate the weight of the check valve, opposed to the 

hydrodynamics lift force), in silico computational simulations were performed 
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to assess the effect of the holes (diameters and hole number) on the generated 

hydrodynamics force was investigated (step 2 to step 4 Figure 2.19). A num-

ber of simulations investigated the space of combination ranging between 2 

to 8 holes and 1 to 3 mm of hole diameter (always equally distributed along 

a circumference). The process is summarized in the chart illustrated in Figure 

2.19.  

 

Figure 2.19: Flow chart describing the geometry check valve system optimization process. 

Technically, a set of single phase steady-state numerical simulations was de-

veloped using a customized immersed boundary-based commercial software 

(SolidWorks FlowSimulation, Dasault, France). The fluid domain was discre-

tized by means of a hexahedral Cartesian mesh with cardinality equal to 

approximately 61 x 103. Since the interest of this computational study was 

the revised check valve system, the model focused only in the fluid volume 

shown in Figure 2.20B, considering the bioreactor chamber opened without 

filter system, nor lid. The position of the rigid disc of the check valve system 

was kept still and half-open, in order to evaluate the force which is necessary 

to start the first check valve movement (neither inertial forces, nor fluid re-

sistance). Navier-Stokes equations were solved by the numerical solver con-

sidering the culture medium with dynamic viscosity equal to 1 x 10-3 Pa·s and 

density equal to 1000 kg/m3 [3,17]. 
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Figure 2.20: Final implementation of the revised check valve system within the bioreactor 
3D model (A). This implementation was used for the definition of the computational domain 
(B) used for the in silico computational optimization of the design. 

The inlet flow from the base was imposed by means of a flat velocity 

profile corresponding to 10 mL/min. The opening on the top of the bioreactor 

culture chamber was set as reference pressure (null pressure). No-slip condi-

tion was set on all the walls of the fluid domain. 

The value of hydrodynamics force acting over the check valve and the 

rigid disc obtained for the different number and dimension of the holes was 

then used to evaluate the effective lift force, calculated as balance between 

the upwards hydrodynamics force and the downward forces (weight and hy-

drostatic pressure force, neglecting any friction). 

Results 

In silico computational modelling allowed to obtain useful information for 

a preliminary characterization of the revised check valve kinematics. Figure 

2.21 depicts a qualitative representation of the flow structures establishing 

inside the base, across the check valve system, and entering the bioreactor 
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culture chamber when the disc is perforated with two holes with 1 mm diam-

eter. 

 

Figure 2.21: Streamline flow structure visualization for the rigid disc configuration with 
two holes of 1 mm diameter. The medium pervades the base, travels across the check valve 
system, and enters the bioreactor culture chamber. Front view (left panel) and top view (right 
panel). 

The culture medium pervades the base and, due to the not centred posi-

tion of the inlet, produces helical structures ascending towards the bioreactor 

culture chamber (Figure 2.21). Although the presence of the collimator tends 

to disrupt the helical flow and to collimate the flow structures, the flow-

streams reaching the rigid disc of the valve system and passing through the 

holes are still partially asymmetric (Figure 2.21, left panel). The rigid disc 

with its two small holes contribute to the symmetrisation of the flow produc-

ing a full axial-symmetric flow entering the bioreactor culture chamber (Fig-

ure 2.21, right panel).  
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As final outcome of the optimization, this configuration was found to be the 

only one which guarantees the check valve opening at low flow rate (i.e. 10 

mL/min). Table 2.5 reports the results of the computational simulations in 

terms of effective lift force (i.e. the force capable of starting the valve motion).  

Table 2.5: Net lift forces resulting from the computational model outcome. The underlined 
and bold entry represents the chosen configuration. 

Effective Lift Force (mN) 

 Hole Diameter 

No. Holes 3 mm 2 mm 1 mm 

8 -15 -15 -14.9 

4 -15 -14.9 -13.9 

2 -14.8 -13.9 2.1 

This optimization suggested the best configuration which guarantees the 

check valve opening. Since it was obtained imposing a low flow rate, these 

hole dimension and number resulting from this optimization process must be 

considered as a restrictive requirement when all the flow rate functioning 

range of the bioreactor platform is guaranteed. 

 2.4  Bioreactor Platform Optimization 

2.4.1  Continuous Perfusion Feeding Circuit 

Within any batch culture device (such as RWV or stirred bioreactors), 

exhausted culture medium must be periodically replaced to restore the origi-

nal nutrient and small-molecule concentrations (e.g. glucose, glutamine, grow 

factors, etc.) and deplete metabolites content (e.g. lactate, ammonia, indi-

rectly restoring pH) within the culture medium. In general, the medium ex-

change is performed manually by means of batch feeding: the medium is 
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periodically replenished, e.g. every day, or after having ascertained that nu-

trient/metabolite concentrations or pH are out of a certain tolerance range. 

Stirred flask bioreactors are typically suitable for the implementation of a 

perfusion feeding circuit. In detail, perfusion feeding allows to continuously 

perfuse the culture vessel with fresh medium and contemporarily remove ex-

hausted medium to waste, allowing to maintain a quasi-steady culture envi-

ronment [22]. 

In order to avoid manual medium exchange in the herein proposed sus-

pension bioreactor, the original system described in paragraph 2.2.3   was 

modified with the implementation of a secondary perfusion circuit for contin-

uous perfusion feeding to the existing bioreactor platform.  

The continuous medium renewal is achieved preserving the initial total 

quantity of culture medium present in the main closed-loop recirculation cir-

cuit: an amount of medium is extracted from the closed-loop and contempo-

rarily the same amount is injected in the same circuit (Figure 2.22). The 

medium extraction point is located along the return tube of the closed-loop 

recirculation circuit, just before the medium reservoir, while the fresh medium 

injection occurs directly into the reservoir through a specific port created on 

its cap. For the continuous and automatic medium exchange, a multi-channel 

computer controllable peristaltic pump was chosen (Ismatec Reglo Digital). 

Based on previous studies carried out on continuous perfusion feeding for 

stirred bioreactors [22], it was decided to choose a pump with a flow rate 

range of 0.01 – 68 mL/min. 
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Figure 2.22: Schematic illustration of the modified closed-loop recirculation circuit. The 
circuit inside the dashed-line box is the original closed-loop recirculation circuit. The continu-
ous perfusion feeding secondary circuit consists of a new tube for fresh medium injection (blue 
line), a new tube for medium withdraw (red line), a computer-controllable multi-channel per-
istaltic pump, and two bottles for fresh medium and waste.  

The shunt, in correspondence of the extraction point, was made by means 

of a three-way stopcock (Figure 2.23). It pulls out the medium from the main 

circuit to the waste reservoir, furthermore it allows to close the output to-

wards the waste reservoir, maintaining seal during disconnecting of the sec-

ondary perfusion circuit. 
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Figure 2.23: Preliminary setup of the continuous perfusion feeding circuit. Red arrows 
indicate the flow towards the waste bottle. Blue arrows indicate the flow of the fresh medium 
towards the main reservoir. Horizontal black arrows indicate the flow direction in the closed-
loop perfusion loop.  

2.4.2  .Control and Monitoring System 

The implementation of an automated monitoring, together with a control 

system, is essential for controlled and reproducible culture conditions. In par-

ticular, monitoring of pH and dissolved oxygen (DO) inside the culture me-

dium is useful to quantitatively evaluate the metabolic cell behaviour, hence 

giving a more objective support on the control of the developing culture. 

Especially in stem cell culture application, pH level is extremely important, 

given the sensitivity of this cellular source in response to decimal variations 

of pH levels which affect proliferation and differentiation [12].  
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On the basis of these considerations, the original configuration of the bi-

oreactor platform was provided by a control and monitoring system capable 

of continuously monitor pH and DO variations within the culture medium 

over time, giving the possibility to interactively set the pumps to adjust the 

signal in an acceptable range. Figure 2.24 depicts a concept chart of the 

developed control and monitoring system, which was physically embedded in 

a control-box, connected to a dedicated computer and communicating with a 

purpose-built software developed in Labview (Appendix II). In detail, meas-

ured signals are collected by the monitoring unit, which analogically and 

digitally processes pH and DO to be shown on the user interface.  

 

Figure 2.24: Concept chart of the control and monitoring system. Monitoring unit gets 
the signals from the sensors. These signals (after processing) are showed through the user 
interface. The user, through the interface, can directly act on control unit to set the pump 
flow rates in order to adjust pH or DO signals overtime. The dashed arrow represents the 
future aim to perform an automated control based on monitoring feedback signals. 

A developed user-friendly interface allows to control the pumps in order 

to modify the flow rate in response to pH and DO variation overtime. The 

software was designed considering the possibility to implement a control al-

gorithm for the automatic adjustment of pump flow rates and to regulate 

fresh medium automatic replenishment. 

Due to the small dimensions of the bioreactor culture chamber, it was 

impractical to locate the probe points directly inside the culture chamber 
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without affecting the fluid dynamics features of the device. It was decided to 

add two separate sensing points integrated in the closed-loop recirculation 

circuit (Figure 2.25). 

 

Figure 2.25: Schematic illustration of the complete system (left panel). Red boxes repre-
sent the sensing points integrated within the closed-loop recirculation circuit exactly down-
stream and upstream the bioreactor culture chamber. The signals obtained by the sensor are 
processed and displayed in the monitoring system software.  

The position of the two sensing locations derives from the necessity to 

obtain information of the metabolic behaviour of the cells inside the bioreac-

tor culture chamber, applying a differential balance between the two different 

sensing points. To accomplish this objective, two sensing flow chambers were 

added inside the closed-loop recirculation circuit. Each sensing flow chamber 

was equipped with DO and pH probes. The sensors were chosen in order to 

guarantee full compatibility with GMP guidelines and to permit sterilization 
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in autoclave. The detailed description of sensors and the relative signal con-

ditioner developed for signal processing, as well as the sensor calibration pro-

cedure implemented in the control and monitoring software is provided Ap-

pendix II. 

 

Sensing Flow Chamber 

The pH and DO probes were positioned in the sensing points by means 

of purpose-built sensing flow chambers directly connected to the closed-loop 

recirculation circuit of the bioreactor platform (Figure 2.26, Figure 2.27). The 

sensing flow chamber was designed according to the following requirements: 

- Minimum filling volume 

The calculated filling volume of the chamber is equal to about 17 

mL.  

- Autoclavable materials 

Fitting and probe holders were realized in acetal (polyoxymeth-

ylene – POM), while the chamber is in polycarbonate (PC). Seals 

are in ethylene propylene rubber. (EPR) 

- Usability 

Few components easy to assemble. 

- Hydraulic seal 

The seal is guaranteed by the use of o-rings properly chosen. 
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Figure 2.26: Sensing flow chamber 3D model. Left panel, the assembled flow chamber 
including sensors. Right panel, the exploded view with all the components (holders, o-tings, 
fittings, sensors). 

  

Figure 2.27: Sensing flow chamber. A) Main body in transparent polycarbonate, B) final 
configuration with installed fittings, holders and sensors. 

The main body of the sensing flow chamber and the probe holders were 

realized by material removal of raw bars by CNC milling. The choice of 

transparent polycarbonate as main body material was in response of two ad-

ditional requirements: transparency allows to i) evaluate the depth of inser-

tion of the sensors and ii) the possible presence of air bubbles into the channel 
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of the flow chamber. Indeed, in order to provide the most reliable and accu-

rate measurement, it is important to evaluate the position of the most sensi-

tive parts of the sensors, without the presence of air bubbles. 

The performance of the flow chamber was characterized placing the pH 

and DO sensors (described in Appendix II) in the sensing chamber and con-

nected within the complete bioreactor platform (Figure 2.28).  

 

Figure 2.28: Final bioreactor platform configuration. 1, Culture chamber. 2, Downstream 
sensing flow chamber. 3, Upstream sensing flow chamber. 4, pH and DO sensors. 5, Support. 
6, Reservoirs. 7, closed loop recircilation pump. 8, continuous perfusion feeding secondary 
pump. 

The hydraulic circuit was filled with tap water (not to damage the pH 

sensor glass with distilled water). The flow rate was modified from 30 to 100 

mL/min and pH and DO signals were acquired and saved for characteriza-

tion. The pH sensor was characterized by a very steady signal for all applied 
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flow rate, since the presence of flow structures around the probe tip did not 

affect the ionic exchange and consequently the pH signal (Figure 2.29). 

 

Figure 2.29: pH signal over time with an imposed flow rate of 30 mL/min. 

As regards to DO measurement, it was noticed an oscillating behavior of 

the signal with different frequencies varying the imposed flow rate. In order 

to characterize the DO signal, it was decided to perform the measurement at 

different flowrates: 30, 40, 50, 70 and 100 mL/min. All acquired signals were 

filtered using a first-order lowpass digital Butterworth filter with a cutoff 

frequency of 0.0085 Hz and by processing the input samples in both the for-

ward and reverse directions (Figure 2.30).  
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Figure 2.30: DO measurement (red) and filtered signals varying imposed flow rate values. 
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The results of the DO signal acquisitions and post-processing is shown. It 

can be seen that the oscillating trend of the signal disappears increasing the 

flowrate over 30ml/min. In addition, it is evident that the amplitude of the 

measured signals gradually decreases from 30 to 100 mL/min, however the 

value of the filtered signals settles around 21%. 
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Appendix I 

Sizing of the Closed-loop Recirculation Circuit 

The oxygenation of the cultured cells/constructs is one of the critical as-

pects to be taken into account while designing a bioreactor platform. It is 

essential to avoid problems of poor oxygenation, which can cause inhomoge-

neous construct growth or even cell death, with a correct optimization of an 

oxygenator system. 

In the bioreactor platform described in Chapter 2, the oxygenator is an 

oxygen-permeable tubing system which length can be adjusted according to 

the oxygen supply requirements needed during cell culture. This dimensioning 

was done, according to Orr and colleagues [1], simplifying the recirculation 

circuit identifying three separate domains where oxygen exchange occurs 

(Figure AI.1 - compartmental approach). This compartmental approach al-

lowed to consider each domain of the bioreactor platform independently. 

Therefore, the dissolved oxygen partial pressure exiting from the bioreactor 

culture chamber compartment is the inlet condition for the oxygenator, and 

the oxygen partial pressure exiting the oxygenator becomes the inlet condi-

tion for the following compartment.  

As depicted in Figure AI.1, the first domain is the bioreactor culture 

chamber, where the content of oxygen inside the medium is depleted by the 

cellular phase metabolism, with the production of carbon dioxide. The second 

domain is the oxygenator, i.e. oxygen-permeable tubing, where gas exchange 

is optimized between the culture medium flowing inside the tube and the air 

atmosphere of the incubator. The third and last domain is the medium res-
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ervoir, where the culture medium undergoes a medium exchange at the me-

dium free-surface in its air headspace. Since gas exchange through the free-

surface of the reservoir headspace is consistently slower (diffusion limited 

transport) than gas exchange occurring inside the oxygenator (convection-

diffusion transport), only the gas exchange inside the oxygenator compart-

ment was considered. 

The gas content inside the culture medium can be expressed either in 

terms of dissolved oxygen concentration or partial pressure, given the liquid-

gas balance expressed by Henry’s law. The oxygen partial pressure in the 

external atmosphere (incubator) was considered constant (gas phase presents 

a constant oxygen partial pressure equal to 159 mmHg, due to 21% of atmos-

pheric oxygen). Along the oxygenator tube, dissolved oxygen pressure in-

creases over length assuming oxygen mass transfer across the membrane of 

the permeable tube. The bioreactor culture chamber was considered as a 

black-box compartment, where oxygen is volumetrically depleted by the ho-

mogeneously distributed cellular phase which occupies the control volume 

(culture chamber volume). 
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Figure AI.1: Simplified bioreactor platform recirculation circuit. Oxygenation is up-taken 
by cells inside the bioreactor culture chamber and can be replenished inside the oxygenator 
tubing or inside the medium reservoir.  

Regarding the oxygenator compartment, an integral mass balance for the 

oxygen species was written in order to define the oxygen-permeable length 

necessary to restore dissolved oxygen partial pressure to the 98% of saturation 

within the culture medium. Assuming a steady-state situation (accumulation 

equal to zero), the mass balance expressed for oxygen species can be written 

as eq.AI. 1. 

 
2 2( ) ( ) 0avg

Q Q
pO x N pO x x

H H

   
       

   
 eq.AI. 1 

where 2pO  is the oxygen partial pressure of dissolved oxygen within the 

culture medium (according to Henry’s law), Q is the flow rate delivered by 

the pump, and H is oxygen solubility within the culture medium at 37°C. 

Navg is the average oxygen flow through the oxygen-permeable membrane of 

the tube. Laminar flow within the tubes was verified up to a flow rate equal 
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to 400 mL/min (Re=1337), flow rate largely beyond the working flow rate 

range of the bioreactor platform. In laminar flow conditions, the velocity 

profile of the medium inside the tubes can be considered parabolic (fully-

developed profile of Hagen-Poiseuille law). As a consequence, it is possible to 

apply the “theory of the two films” (Figure AI.2).  

 

Figure AI.2: Oxygen transport physical model through the wall of the silicone tube: the 

“theory of two films”. 

The no-slip condition at the wall determines a zone of stagnant fluid near 

the wall at the liquid side of the membrane (i.e. in the inner part of the tube). 

The same condition can be considered at the external side of the tube, the 

incubator side. The “theory of the two films” permits to express the oxygen 

gas-liquid balance across a permeable membrane in terms of average oxygen 

flux as reported in eq.AI. 2 assuming no oxygen gradients at each cross-

section inside the tube: 

  2 2' ( )avg OL tN K W x pO pO x    eq.AI. 2 

where the net oxygen flux is formalized as a function of the oxygen partial 

pressure difference across the membrane  2 2' ( )pO pO x , the gas-exchange 

area of the membrane tW x , and the overall mass transfer coefficient OLK . 

Such coefficient, is a function of the mass transfer coefficient liquid-side, solid 
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side, and of the tube wall permeability. It is usually reported in its inverse 

form, representing the resistance to mass transfer eq.AI. 3: 

 
0

1 m i i

OL i STP m o

t W RTWH

K k P W K W
    eq.AI. 3 

where: 

- Wi, Wo represent the inner and outer tubing circumference, re-

spectively; 

- W is the logarithmic-averaged circumference of the tube; 

- STP  is the gas density at standard pressure conditions (0°C and 

1 atm); 

- R is the gas constant; 

- T is the incubator temperature; 

- Pm is the silicone tube oxygen permeability; 

- tm is the thickness of the tube; 

- ki is the mass transfer coefficient of the inner layer (liquid side); 

- ko is the mass transfer coefficient of the outer layer (gas side). 

The three summations in eq.AI. 3 can be attributed to each layer of the 

“theory of the two films” depicted in Figure AI.2. In fact, this model describes 

the oxygen flux across the permeable membrane as the superimposition of 

three separate ideal mass transport resistances: stagnant gas and liquid film, 

and membrane mass transport resistance. In detail, membrane resistance de-

pends on the permeability Pm of silicone tube membrane, its thickness tm, 

mass properties of oxygen STP , and gas-exchange surface W. 



 

 96 

ki  and ko mass transport coefficients depend on the fluid dynamics at the 

two sides of the membrane. Mass transport coefficients can be expressed as 

function of adimensional Sherwood number (eq.AI. 4), which is as well cor-

related with Reynolds number (eq.AI. 5): 

 i

i

k L
Sh

D
  eq.AI. 4 

 
0.5 0.310.43 0.53ReSh Sc   eq.AI. 5 

 
i

Sc
D




  eq.AI. 6 

where L is the characteristic length, Di is the oxygen diffusivity within 

the gas or the liquid, Sc is the adimensional Schmidt number (eq.AI. 6), and 

the coefficients 0.43 and 0.53 are valid only under fully-developed laminar 

flow regime. In this case study, the gas side can be considered static air. This 

implies that at the gas side, mass transport is driven by natural diffusion, 

and Sherwood number is always equal to 0.43 for every flow rate imposed by 

the pump of the bioreactor platform. For the liquid side (inside the tube), 

Sherwood number depends on Reynolds number and must be re-computed 

for each imposed flow rate.  

Combining eq.AI. 1 and eq.AI. 2, it is possible to reformulate eq.AI. 1 in 

a differential form. (eq.AI. 7): 

 
 2 22

' ( )OLK WH pO pO xdpO

dt Q


  eq.AI. 7 

which integrated allows to explicitate 2( )pO x  (eq.AI. 8): 
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  2 2 2 2( ) ' '
OLK WH

x
Q

opO x pO pO pO e    eq.AI. 8 

where 
2opO  is the value of oxygen partial pressure entering the oxygen-

ator tubing system, and contemporarily exiting from the bioreactor culture 

chamber compartment. Eq.AI. 8 shows that dissolved oxygen partial pressure 

increases exponentially while the tubing length increases.  

Taking advantage on the compartmental approach, the value of 2opO  

can be calculated considering the bioreactor culture chamber domain. Inside 

the culture chamber, the same continuous flow Q which travels within the 

tubing system perfuses the cellular phase, which is constantly supplied by the 

dissolved oxygen within the culture medium. Cellular metabolism produces a 

metabolic oxygen volumetric consumption , which may produce a drop in 

oxygen partial pressure (schematized in Figure AI.3). The volumetric con-

sumption kinetics  can be experimentally determined, hypothesized, or ob-

tained from literature for each specific cell type to be cultured, and depends 

on the inoculated cell density within the bioreactor culture chamber (eq.AI. 

9): 

 cell cell

med

N

V


    eq.AI. 9 

where Ncell is the number of cells inoculated in the bioreactor chamber, 

cell  is the cell type-specific metabolic molar consumption rate. 
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Figure AI.3: Schematic of the bioreactor chamber compartment. The amount of dissolved 

oxygen within the medium is homogenously consumed with a consumption kinetics . 

Accordingly, oxygen partial pressure exiting from the bioreactor culture 

chamber can be expressed as in eq.AI. 10: 

 
2 2 ( ) cell cell

o t

med

N H
pO pO x

V Q


   eq.AI. 10. 

Known the oxygen depletion occurring inside the culture chamber, it is 

possible to combine eq.AI. 8 and eq.AI. 10 in order to explicitate the required 

tubing length (eq.AI. 11) to restore a specific dissolved oxygen partial pres-

sure entering the bioreactor culture chamber 2( )tpO x  (design goal).  

 2 2

2 2

' ( )
ln

'

t
t

OL o

pO pO xQ
x

K WH pO pO


 


 eq.AI. 11 

All the parameters required as input for the model are summarized in 

Table AI. 1 and This model must be applied during the setup procedure of 

an experimental framework, in order to provide good oxygen supply to the 

suspended cells. As a matter of fact, the cell type metabolic features must be 

an a-priori knowledge or must be hypothesized before starting the dynamic 

culture with the bioreactor platform.  
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Table AI.2. 

Table AI. 1: Model parameters. 

Fluid Dynamics Parameters 

H (mmHg/μM) 0.74 

2 'pO (mmHg) 150 

2( )tpO x (mmHg) 147 

tm (cm) 0.159 

Wi(cm) 1.995 

Wo(cm) 2.991 

W(cm) 2.459 

STP (mol/cm3) 4.46 x10-5 

R(mmHg/(mM K)) 6.24 x10-2 

T(K) 310 

Pm(cm2/mmHg s) 7.96 x10-8 

di(cm) 0.635 

do (cm) 0.952 

 ((g/cm3)) 1 

μ(g/cm s) 0.001 

Do2/air(cm2/s) 0.21 

Do2/medium(cm2/s) 2.18 x10-5 

Shair 0.43 

ko(cm/s) 0.094 

This model must be applied during the setup procedure of an experi-

mental framework, in order to provide good oxygen supply to the suspended 

cells. As a matter of fact, the cell type metabolic features must be an a-priori 

knowledge or must be hypothesized before starting the dynamic culture with 

the bioreactor platform.  
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Table AI.2: Overall mass transfer coefficients varying the flow rate. 

Q (mL/min) KOL  x10-6 

(mM cm/mmHg s) 
1/ KOL  x106 

(mmHg s/mM cm) 

   

400 2.38 0.42 

300 2.06 0.48 

200 1.69 0.59 

100 1.20 0.84 

90 1.13 0.88 

80 1.07 0.94 

70 1.00 1.00 

60 0.93 1.08 

50 0.85 1.18 

40 0.76 1.32 

30 0.67 1.52 

1 0.13 7.89 

In the following, as an explanatory example, it is described the approach 

adopted for the tubing sizing made up for the preliminary cell culture exper-

iments with human induced pluripotent stem cells (h-iPSC), which will be 

illustrated in Chapter 4. Table AI.3 lists the characteristic metabolic param-

eters of h-iPSCs. This parameters were extrapolated from previous dynamic 

suspension culture studies carried out with conventional bioreactors [2]. 

Starting from the data included in the work of Olmer and colleagues [2], the 

number of cells considered for the tubing sizing was increased of 10 folds in 

order to contemplate the worst case of oxygen consumption given by high 

proliferation rates. 
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Table AI.3: Metabolic Parameters for h-iPSCs. 

Consumption Model Parameters  

Ncell
1 300 x106 [2] 

cell (mol/cell s) 2.40 x10-17 [2] 

Vmed(cm3) 50 

As a result, considering the metabolic data listed in Table AI.3 it was 

possible to obtain the tubing length necessary to restore the dissolved oxygen 

partial pressure within the culture medium, varying the flow rate from 1 to 

400 mL/min (Table AI.4). 

 Table AI.4: Tube length obtained at different flow rates. 

Q (mL/min) xt
 (cm) 

  

400 8.92 

300 10.29 

200 12.56 

100 17.64 

90 18.56 

80 19.65 

70 20.96 

60 22.57 

50 24.62 

40 27.30 

30 31.27 

1 90.08 

Oxygen Transport Computational Model 

In order to predict the oxygen delivery inside the bioreactor culture chamber, 

the diffusion/convection transport equation for dissolved oxygen within the 

                                        
1 The number of hypothesized inoculated cells was extracted from the work of 

Olmer and colleagues [2] which deals with the expansion of induced pluripotent stem 
cells in dynamic suspension culture, and considering cell number after a 10 fold ex-
pansion.  
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medium flowing inside the culture chamber was solved. This equation was 

written in the form 

 
2 2 2 2

2( ) ( )O O O OY vY D Y
t
  


  


  eq.AI 12 

where YO2 represents the dissolved oxygen mass fraction (i.e. the mass of 

the species per unit of mass of the culture medium in which is dissolved), DO2 

is the oxygen diffusivity within the culture medium (2.55 x10-9 m2/s). The 

diffusion/convection equation for dissolved oxygen is coupled with the Na-

vier-Stokes equations for the culture medium by the presence of v  which is 

the velocity field of the culture medium within the culture chamber (eq. 1 

and eq. 2 - Chapter 2) expressed for the culture medium. It was chosen to 

calculate a mixing condition, imposing a constant inlet of oxygen saturated 

culture medium (pO2 = 159 mmHg) within the initially anoxic culture me-

dium filling the culture chamber (0 mmHg of dissolved oxygen as initial con-

dition within the culture chamber). This configuration allows to calculate the 

so called ‘blend time’, i.e. the time to achieve a predefined level of homoge-

neity of a tracer in a mixing vessel. Simulations were performed with Fluent 

(ANSYS Inc., PA, USA). The simulated time was 840 s (14 mins), time nec-

essary to fill the 90% of the bioreactor culture chamber with 159 mmHg of 

dissolved oxygen. The Second Order Upwind formulation was used to solve 

the momentum and oxygen transport equation. A flow rate equal to 40 

mL/min was imposed by means of a flat velocity profile at the inlet port. 

Figure AI.4 shows the evolution of dissolved oxygen partial pressure dur-

ing the filling phase. It is possible to evaluate that in the extreme situation 

of fully anoxic culture medium inside the culture chamber, after around 14 

mins dissolved oxygen partial pressure is replenished in about the 90% of the 
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culture chamber volume. This type of study is useful to emphasize the capa-

bility of the bioreactor of mixing nutrients and dissolved gasses, in particular 

dissolved oxygen, homogenizing the concentrations within the culture cham-

ber. The same model can be replicated for every dissolved species within the 

culture medium (e.g. nutrients). In fact, since Peclet number (i.e. the ratio 

between convective and diffusive transport) is largely higher then unity (or-

der of magnitude between 102 and 103 for the species diffused within the cul-

ture medium), mass transport is controlled by convection and these outcome 

may be generalized to all the dissolved nutrients inside the medium.  

 

Figure AI.4: Contour plot of the oxygen partial pressure over time. In 800 s the 90 % of 
the culture chamber is completely saturated of oxygen. 
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Appendix II 

Sensors and Conditioning Circuit for Monitoring System 

In this Appendix paragraph, the main components of the devised moni-

toring system are described. In detail, the sensors and their operating princi-

ples are treated, discussing the acquisition circuitry and hardware. 

pH Sensor 

For the purpose of pH measurement, it was opted for glass combined pH 

electrodes (EasyFerm Bio VP 120, Hamilton, Hamilton, Bonaduz, Figure 

AII.1) which are much easier to handle than two separate electrodes and are 

largely used for FDA approved biotechnological applications. In a combina-

tion electrode the measuring electrode is concentrically surrounded by the 

reference electrode (Figure AII.2). 

 

Figure AII.1: EasyFerm Bio VP 120 pH sensor (Hamilton). 

The aim of the measuring electrode is to determine the pH value, i.e. the 

concentration of active hydrogen ions (H+) in the aqueous solution. The pH 

sensitive part of the measuring electrode is its tip, where the glass membrane 

is located. The glass electrode is partly filled with a buffer solution of potas-

sium chloride (KCl), normally having a pH value of 7. A silver wire, coated 
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with silver chloride (Ag/AgCl) is inserted into the glass electrode right down 

into the inner buffer and serves as a conducting electrode. The Ag/AgCl wire 

is connected to one terminal of a pH meter or, as in this case study, to the 

data acquisition system (Figure AII.2). 

 

Figure AII.2: Construction of the combined electrodes. Green parts represent the measur-
ing electrode volume, white, blue, and pink are parts of the reference electrode volume. 

The glass membrane is made of special hydrogen ion sensitive glass and 

is fused to the measuring electrode shaft. When the membrane comes into 

contact with an aqueous solution, it forms a thin gel layer between the glass 

surface and the solution. As the inner side of the glass membrane is in contact 

with the inner buffer, a gel layer is also formed on the inside of the glass 

membrane. A continuous exchange of H+ ions in the gel layers and H+ ions 

of the solutions takes place on both sides of the membrane. This ion exchange 

is controlled by the H+ ion concentration of both solutions. If the hydrogen 

ion concentration of each solution is identical on both sides of the glass mem-

brane, the ion exchange stops after an equilibrium has been reached between 

the H+ ions in the solutions and the H+ ions in the gel layers. Therefore, both 

sides of the membrane glass have the same potential and the potential differ-

ence is 0 mV. To be able to measure the membrane potential, the membrane 

itself has to be conductive. This is achieved by the mobility of the alkaline 

ions in the membrane glass (Li+ ions). Without the gel layer there can be no 

pH measurement. Therefore a measuring electrode needs to be hydrated. The 
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reference electrode provides a well-defined and stable reference potential to 

the potential acquired from the pH electrode. The data acquisition system 

acquires directly the differential potential between the measuring and refer-

ence electrodes as a function of pH value of the culture medium in which the 

probe is immersed, which is high enough to avoid preconditioning and ampli-

fication stages. Theoretically, the voltage changes linearly with a sensitivity 

of 56.16 mV/pH at 20°C. The voltage produced by the measuring chain can 

only be measured by an instrument having such a high internal resistance 

that it does not draw a current from the chain. To perform a correct meas-

urement, the pH transmitter should have an internal resistance of at least 10 

GΩ. The reason of this is the high electrical resistance of the glass electrode 

which is mainly determined by the resistance of the glass membrane (between 

10 MΩ and 1000 MΩ at 25 °C) [1]. In detail, Table AII.1 lists the product 

specifications of the selected pH probe, including geometrical characteristics.  
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Table AII.1: EasyFerm BIO VP 120 pH sensor (Hamilton). Specifications. 

pH Sensor Specifications 

Autoclavable Yes 

Probe Type Combined Electrode 

Measurement Principle pH potential, with reference 

Membrane Shape Cylindrical 

Diaphragms 1 

Diameter 12 mm 

Shaft length 120 mm 

Output Voltage 

Measuring Range 0-12  

Pressure Range 0 – 6 bar 

Sensitivity 57 to 59 mV/pH at 25°C 

Zero Point 0 ± 20 mV 

Dissolved Oxygen (DO) Sensor 

In order to measure the dissolved oxygen partial pressure within the cul-

ture medium, a DO sensor based on the Clark’s principle was implemented 

in bioreactor platform (OxyFerm FDA 120 – Hamilton, Bonaduz). The Clark 

sensor is a polarographic oxygen sensor which consists of two electrodes, a 

silver/ silver-chloride anode and a platinum cathode which are both immersed 

into half-saturated KCl-electrolyte (Figure AII.3). The electrolyte chamber is 

separated from the culture medium by an O2 permeable membrane. Oxygen 

molecules from the sample solution diffuse through the membrane into the 

electrolyte. The platinum cathode is completely insulated by a glass cylinder 

and only the tiny tip is exposed to the electrolyte. The dissolved oxygen is 

reduced at the surface of the cathode, while at the Ag/AgCl anode an oxida-

tion produces 4 electrons which, flowing from the anode to the cathode, rep-

resent the measuring signal proportional to oxygen partial pressure in the 

culture medium.  
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Figure AII.3: Illustration of Clark’s dissolved oxygen sensor. 

To start this reaction, it is necessary to polarize the electrodes with a 

constant polarization voltage. For Pt- Ag/AgCl electrode combination lies 

between -600 and 750 mV. In produces a very low current output signal which 

must be preconditioned and amplified.  

Table AII.2, the main specification of the selected DO sensor are listed. 

This sensor produces a very low current output signal which must be precon-

ditioned and amplified.  
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Table AII.2: OxyFerm FDA 120 DO sensor (Hamilton). Specifications. 

pH Sensor Specifications 

Autoclavable Yes 

Probe Type Clark Electrode 

Stabilizing Time 2h 

Membrane Shape Cylindrical 

Diameter 12 mm 

Shaft length 120 mm 

Output Current 

Measuring Range 10 ppb -40 ppm of DO 

Flow min. 0.03 m/s 

Current Output 40 to 80 nA at 25°C 

Polarization Voltage -670 ± 50 mV 

Amplification and Current/Voltage circuit 

The output signal produced by the dissolved oxygen sensor is a current 

signal with amplitude order of magnitude around nano-ampers. A signal con-

ditioning circuit was designed, in order to amplify and convert the signal from 

current to tension before sending it to the DAQ. Contemporarily, this sensor 

must be polarized to produce a readable and stable signal. According to this 

issues, the same circuit was designed to provide the polarization voltage to 

the probe. The amplification circuit (Figure AII.4) was designed to produce 

a voltage signal ranging from 0 (0 mmHg) to 1.7 V (159 mmHg, 21% oxygen). 

The polarization voltage was obtained by means of a simple voltage divider 

to drop the supply voltage to -670 mV, as required. This voltage is connected 

to the sensor cathode through a buffer amplifier, implemented to stabilize the 

voltage signal. The sensor anode is contemporarily connected to the negative 

input of an operational amplifier (op amp) to be amplified and converted to 

a voltage signal. The op amp output is finally sent to the DAQ.  
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Figure AII.4: Main functional diagram of the amplification/polarization circuit. 

To realize this circuit, high precision op amps were needed, because of 

their very low bias current. The selected op amp (LT1058, Linear Technolo-

gies, Milpitas, USA) had a maximum bias current of 50 pA, and it was im-

plemented in an integrated circuit containing four op amps used for all the 

stages schematized in Figure AII.4.  

The final circuit was in-house realized on a printed circuit board. Taking 

advantage of the numbering in Figure AII.5 the printed circuit was consti-

tuted of an integrated circuit LT1058 with four op amps (1), a positive volt-

age regulator with fixed output voltage of 5V (2), trimmers (3), capacitors 

(4), 10 MΩ resistors (5), negative voltage regulator with fixed output voltage 

of -5V(6), supply voltage of 12V (7), sensor connection (8), and output ADC 

(9). 
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Figure AII.5: realized amplification/polarization circuit. 

Monitoring System Characterization  

To ensure the proper functioning of the monitoring system, the realized 

system was previously characterized. In detail, it was verified the stability 

and robustness of the measurements done with the pH and DO sensors veri-

fying the repeatability of the signals obtained with measurement buffers. To 

accomplish this goal, a characterization procedure was designed, and the 

schematic is shown in Figure AII.6. 
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Figure AII.6: Schematic of the characterization procedure for the pH and DO sensors. 

pH sensor Characterization 

During the characterization procedure, when stable values of the acquired 

voltage signal were reached, 10 consecutive measurements were stored. Then, 

the software automatically calculated the average and the standard deviation 

of the 10 measured values. Repeating this for each pH buffer solution (for pH 

4, 7, and 9), at the end of the characterization process, three voltage values 

were obtained. The procedure was repeated 4 times and the result of this 

characterization are listed in Table AII.3 and shown in Figure AII.7.  
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Table AII.3: Mean values and standard deviations of the output voltages from 4 tests 

 Voltage Values (mV) 

pH buffer #1 #2 #3 #4 mean st.dev. 

4 173.39 178.8 174.04 164.49 172.70 5.99 

7 -2.23 -1.04 -0.09 -8.69 -3.01 3.88 

9 -111.51 -106.74 -100.36 -104.96 -105.90 4.61 

 

 

Figure AII.7: Calibration curve obtained after the characterization process. 

It must be specified that, since the pH measurement is temperature de-

pendent, the temperature influence was taken into consideration. In particu-

lar, the slope increases with the rise in temperature of the measured solution. 

If the calibration temperature and working temperature (37 °C) are different, 

then a temperature compensation is necessary. This temperature compensa-

tion is automatically performed by setting in the software the temperature 

solution during calibration. 
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DO sensor Characterization 

The first characterization of the DO measurement was done using a two-

point calibration. The characterization could be performed both in air and 

liquid (e.g. water, culture medium, etc.). The maximum oxygen mass per-

centage dissolvable in the culture medium is given by the environmental ox-

ygen percentage (21%). Therefore, it was defined to consider 21% as maxi-

mum DO percentage. To expose the probe tip to 0% DO, a on purpose pre-

pared 2% w/w bisulphite solution was used. To have a measure of the 21% 

DO, the sample solution was constantly aerated by environmental air to be 

saturated. 

Since the zero current of this sensor is negligibly small, the characteriza-

tion was carried out with only one point (21%), simulating the calibration 

phase in the bioreactor platform when, for cytotoxicity reasons, the bisulphite 

solution cannot be use during cell culture procedures. The results of this 

characterization are presented in Table AII.4 and depicted in . 

Table AII.4: Mean values and standard deviations of the output voltages from 4 tests. 

 Voltage Values (V) 

DO 
buffer 

#1 #2 #3 #4 mean st.dev. 

21% 1.72 1.76 1.76 1.83 1.77 0.045 
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Figure AII.8: Calibration curve obtained after the DO sensor characterization. 

Monitoring and Control System: Control Unit  

Recalling Figure 24 of chapter 2, the monitoring and control system inte-

grates the possibility to continuously acquire the signals from the sensors and 

interactively control the pump actions through a control software. This sys-

tem is embedded in the control unit shown in Figure AII.9. 
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Figure AII.9: Control Unit: (A) Front and (B) rear panels. Black arrows point the con-
nections for the monitoring system, while the red arrows indicate the connections to the 
pumps. Control unit connected to the dedicated PC for the control of the continuous perfusion 
feeding circuit (C), and entire control system connected to the pumps (D).  

The control unit is connected to a dedicated PC and communicates 

through an in-house designed monitor and control software. In the current 

version of the software it is possible to interactively control the pumps for 

the main recirculation and the continuous perfusion feeding circuits of the 

bioreactor platform. The software was realized in order to allow the possibil-

ity to implement automatic algorithms for the control of the continuous per-

fusion feeding in response to unwanted variations of pH or DO signals.  
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Figure AII.10: Screenshot of the realized control unit software. (top) View of the moni-
toring system window, and (bottom) the control system window with its dialog blocks. 

Since this feature is totally cell culture-dependent, in the scope of the 

preliminary experiments presented in this thesis it was decided to consider 
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this feature without implementing any algorithm. Figure AII.10 shows a 

screenshot of the realized control unit software. 

 

References 

1 HAMILTON. pH Measurement Guide. 

 

 

  



 

 120 

  



 

 
121 

 
 



PART II 
 
  



 

 
123 

 



Chapter 3 

 Application to the Culture of Cancer Cell 

Spheroids 

This chapter is the transcription of the paper “A versatile bioreactor for 

Dynamic Suspension Cell Culture. Application to the Culture of Cancer Cell 

Spheroids” submitted to PlosONE, and already accepted under major review. 

This paper descripted the bioreactor platform and its application to cancer 

cell spheroid culture. For this reason, a few parts of this chapter may repeat 

some general concepts about the bioreactor platform which were already re-

ported in Chapter 2. 

 3.1  Introduction 

The large scale production of cells is a mandatory step to set up econom-

ically viable in vitro experimental models for basic research, disease modelling 

and drug testing, and to definitely translate tissue engineering and regenera-

tive medicine strategies to the clinical practice, for therapeutic applications. 

However, scalability and standardization in cellular manufacturing processes 

are still major challenges. In particular, when large numbers (1010-1012) of 
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cells are required, conventional two-dimensional (2D) culture strategies, 

mainly based on manual, extremely space- and labour-intensive interventions, 

are practically and financially unsustainable [1-5].  

In a scaling-up perspective and inspired by the manufacturing processes 

of therapeutics in biopharmaceutical industry [6,7], three-dimensional (3D) 

suspension culture has demonstrated to be an advantageous alternative to 

monolayer techniques for large-scale expansion of cells [4,5,8,9]. In detail, 

suspension methods have been widely adopted: (1) for scalable and controlled 

expansion of stem cells [10-14] and cancer cells [15-17]; (2) for guiding stem 

cell differentiation [13,18-21]; (3) for the production of cellular spheroids and 

tissue-like constructs [22-24]. The provision of a 3D suspension culture envi-

ronment, mimicking the microenvironment of the cellular niche, has proven 

to be beneficial, promoting cell survival and retaining cell functional proper-

ties in vitro [9,25,26]. Moreover, when suspension is obtained by dynamic 

mixing of the culture medium, (1) the formation of gradients in, e.g., tem-

perature, pH, dissolved oxygen, nutrients/metabolites is prevented, (2) the 

transport of oxygen and nutrients is increased, and (3) the sedimentation of 

cultured cells/constructs is avoided, thus going beyond the intrinsic limita-

tions of static culture systems [4,7,9,28]. 

Nowadays, dynamic suspension culture for scalable production and differ-

entiation of cells is mostly performed by stirred tank and rotating bioreactors 

[2,4]. Such devices are designed for providing a 3D homogenous culture envi-

ronment and for enabling monitoring and control of culture parameters, lead-

ing to more reproducible, robust and cost-effective processes [5,28,29,30]. 

However, most of these bioreactors still suffer from critical issues, limiting 
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the upscaling and the standardization of the expansion bioprocesses. Con-

cerning stirred tank bioreactors, their performance can be affected by (1) 

collisions of the cells with the impeller and (2) the onset of turbulent flow, 

that both can induce non-physiological mechanical and hydrodynamic-shear 

stresses on the cells and lead to cell damage. Moreover, these unfavourable 

conditions can affect cell growth rate and metabolism, interfere with stem 

cell pluripotency, and limit efficiency and reproducibility of the culture pro-

cess [4,9,27,29,31,32]. Rotating bioreactors generate a low-shear stress culture 

environment, allowing to partially overcome the limitations of stirred tank 

devices. However, the complexity of the technological solutions adopted for 

rotation make these devices not easily scalable and unsuitable for continuous 

medium replacement and real-time monitoring [4].  

We present here a versatile bioreactor suitable for tuneable shear dynamic 

suspension cell culture. In detail, by adopting simple technological solutions 

and avoiding rotating components, the proposed bioreactor enables cell sus-

pension by assuring a laminar mixing flow regime, thus guaranteeing oxygen 

and nutrient transport and ultimately homogeneous culture environment un-

der a wide range of shear stress conditions.  

In order to go beyond the experimental trial-and-error approach and to 

reach a deeper understanding of the fluid dynamics developing inside the 

culture environment [33,34], the design phase of the device was supported by 

in silico multiphysics modelling, providing a comprehensive analysis of the 

operating principles of the bioreactor. Moreover, findings from the multiphys-

ics simulations served as criteria to set the proper bioreactor operating con-

ditions for preliminary in vitro tests. In particular, this first study was focused 
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on assessing the suitability of the bioreactor as ultralow shear dynamic sus-

pension device for cancer cell spheroid culture. To this purpose, the Calu-3 

human lung carcinoma cell line was subjected to ultralow shear dynamic sus-

pension provided by the device. Our results indicate that this approach pre-

serves cancer cell growth in vitro, including spheroid formation, and suggest 

the suitability of the proposed bioreactor for investigation on functional prop-

erties and for expansion of different cell types. 

 3.2  Materials and Methods 

3.2.1  Dynamic Suspension Bioreactor 

The design of the device (Figure 3.1A) was driven by two main require-

ments: (1) to provide dynamic suspension culture with proper mixing; (2) to 

guarantee a tuneable ultralow-to-moderate shear stress culture environment, 

adjustable on the basis of culture requirements by simply modifying operating 

conditions. These objectives were achieved combining the peculiar geometric 

features of the bioreactor culture chamber with the continuous recirculation 

of the culture medium, assured by a closed-loop perfusion circuit, avoiding 

the use of impellers and/or rotational components. This combination pro-

motes the establishment of buoyant vortices within the culture chamber, that 

maintain cells/constructs in dynamic suspension, minimizing their sedimen-

tation. 

The bioreactor (Figure 3.1B, external dimensions of 95 mm x 70 mm x 70 

mm) consists of: an AISI 316L base; a polycarbonate culture chamber for 

housing the cells/constructs (chamber volume = 75 mL); a polycarbonate lid. 

The internal wall curvature and shape of the culture chamber were designed 
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and optimized for the generation of buoyant vortices for specimen suspension 

(as detailed in the following). Suspended cells/constructs are confined inside 

the culture chamber by means of the presence of (1) an AISI 316L unidirec-

tional check valve (which prevents backflow and guarantees a symmetric flow 

inlet), and (2) a culture medium-permeable filter (Durapore®, MerckMilli-

pore, Germany), which prevents accidental outputs of cells. The bioreactor 

is part of a closed loop perfusion circuit for the recirculation of oxygenated 

culture medium (Figure 3.1C). Such perfusion circuit is composed of a me-

dium reservoir, oxygen-permeable tubes with quick-disconnect couplings, and 

a peristaltic pump (Masterflex L/S®, Cole-Parmer, IL, USA), for a total 

working volume of approximately 200 mL. To guarantee the adequate supply 

of oxygen within the culture chamber, the perfusion circuit was sized using 

an analytical oxygen mass balance model in accordance with Orr et al. [35].  

The functioning principle of the bioreactor is based on the continuous 

recirculation of the culture medium inside the culture chamber under laminar 

flow regime, obtained through the modulation of the perfusion circuit flow 

rate, in order to produce from ultralow to moderate shear stress dynamic 

suspension conditions. In detail, the medium flows through the check valve, 

driven by the peristaltic pump against the static pressure gradient, and per-

vades the culture chamber. Successively, the medium passes through the filter 

and flows out from the lid, moving back to the reservoir in a continuous 

closed-loop process. The formation of buoyant vortices inside the culture 

chamber allows the dynamic suspension of the cultured cells/constructs. 
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Figure 3.1: Dynamic suspension bioreactor. (A) Schematic draw of the bioreactor showing 
its internal components and its axial symmetry (red lines). (B) Picture of the bioreactor. (C) 
Schematic representation of the set-up of the bioreactor connected to the closed loop perfusion 
circuit. 

3.2.2  Computational model 

A computational multiphysics approach supported the design and the op-

timization phases of the device, allowing the identification of (1) the optimal 
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geometry of the culture chamber, and (2) the operating conditions for dy-

namic suspension cell culture. A massive number of simulations was per-

formed varying cell/construct dimensions (in terms of their diameter) and 

highly dilute cell inoculation densities, in order to study the sensitivity of the 

fluid flow within the chamber volume to these culture parameters.  

Technically, taking advantage of the axial-symmetry of the device (Figure 

3.1A), a set of axisymmetric time-dependent numerical simulations was car-

ried out using a customized finite volume technique-based commercial soft-

ware (FLUENT, ANSYS Inc., PA, USA). The fluid domain was discretized 

using ICEM CFD software (ANSYS Inc., PA, USA). A mesh cardinality 

equal to 6.5x103 quadrilateral cells was considered. As in previous studies 

[20,36], the concomitant presence of culture medium and cells was modelled 

using the  

Eulerian–Eulerian Multiphase Model, which allows mixtures of multiple 

separated yet interacting phases of a continuum to be described. For each 

phase the governing equations of motion, the Navier–Stokes equations, were 

solved by the numerical solver. The culture medium, considered as the pri-

mary phase, was assumed to be Newtonian with physical properties (dynamic 

viscosity = 1x10-3 Pa·s, density = 1000 kg/m3) of culture media typically 

used in cell culture applications [20]. Suspended cells, considered as the sec-

ondary immersed phase, were modelled as non-deformable spherical beads. In 

the explanatory example reported in this work, a density equal to 1070 kg/m3 

[37] and an average diameter equal to 20 μm (i.e. the measured diameter of 

Calu-3 cancer cells) were considered. The presence of the filter was modelled 

as a porous medium characterized by a value of Darcy hydraulic resistance 
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equal to 96x104 m-2 for the culture medium and setting the maximum hy-

draulic resistance accepted by the solver (1x1020 m-2) for the cells, having the 

filter an average pore size of 5µm, thus being impermeable to them. Cell 

inoculation was assumed to be uniform in the lower region of the culture 

chamber. This assumption was translated into the computational framework 

prescribing, as initial condition, a uniform volume fraction (VF) occupied by 

the cells (the secondary phase) in the lower vessel region (10 mL, in the 

explanatory example using Calu-3 cell line). Simulations were carried out 

considering always highly dilute suspension cultures (Stokes numbers greatly 

lower than 1, VF lower than 1%), for which variations in initial VF do not 

affect markedly the primary phase flow field. As an indicative limit value for 

sedimentation, a value of VF higher than 20% was considered, corresponding 

to approximately one third of the maximum packing limit of 63%, i.e., the 

packing limit for non-deformable spherical beads regularly packed [20]. Sim-

ulations were extended over flow rate values in the range 5 - 120 mL/min, 

with a simulated culture time equal to 60 min, which was considered sufficient 

to fully describe the dynamics of the medium inside the culture chamber. The 

phase-coupled SIMPLE scheme was used for the pressure-velocity coupling. 

The Second order upwind and the QUICK formulation were used for the 

spatial discretization of the momentum and the secondary phase transport, 

respectively.  

3.2.3  In vitro cell culture 

The performance of the bioreactor was explanatory tested in the ultralow 

shear stress dynamic culture frame (imposing a flow rate of 5 mL/min), as 

identified from the in silico analogue of the in vitro experiment (see Results). 

The Non Small Cell Lung Cancer (NSCLC) cell line Calu-3 (American Type 
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Culture Collection, ATCC, VA, USA) was selected and the results of the 

dynamic culture were compared to a static suspension culture control. More 

in detail, cells were grown in complete medium Dulbecco’s Modified Eagle 

Medium (DMEM, Sigma Aldrich, MO, USA) added with 10% Fetal Bovine 

Serum (FBS), 1% Penicillin/Streptomycin (P/S) and 1% Non-Essential 

Amino Acids (NEAA, Sigma Aldrich, MO, USA), and maintained under 

standard cell culture conditions at 37°C in a water-saturated atmosphere of 

5% CO2 in air. Following expansion in cell culture flasks, 9x106 Calu-3 cells 

(1.92 x 105cell/mL) were inoculated within the culture chamber and cultured 

for 5 days in dynamic suspension with complete growth medium. The biore-

actor was operated at a flow rate of 5 mL/min. In parallel, Calu-3 cells were 

seeded at the same density on low attachment culture flasks (Corning Inc., 

NY, USA) and used as control, representing a model of static suspension 

culture. After 5 days, dynamic and static suspended cultured cells were res-

cued from the bioreactor and from the low attachment culture flask, respec-

tively, re-suspended in fresh growth medium and analyzed by inverted mi-

croscope (Olympus CK40, Japan). Three independent static and dynamic 

suspension cultures were carried out. 

3.2.4  Assessment of In vitro cell culture 

Calu-3 cells were collected and processed for Transmission Electron Mi-

croscopy (TEM) analysis and for immunocytochemistry. For TEM analysis, 

Calu-3 cells rescued from the bioreactor and from the low attachment culture 

flask were fixed in Karnovsky solution (4% formaldehyde, 5% glutaralde-

hyde). Samples were postfixed in 1% osmium tetroxide and dehydrated by 
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increasing concentration of alcohol. Then, samples were washed with propyl-

ene oxide and embedded in epoxy resin. Sections of 0.5 μm thickness were 

stained with methylene blue and safranin to morphologically select the field 

of interest. Subsequently, ultrathin sections were collected on a 300-mesh 

copper grid and, after staining with uranyl acetate and lead citrate, were 

qualitatively examined under TEM (Philips EM 208S, The Netherlands). To 

evaluate the fraction of cells in active cell cycle and the presence of reversible 

DNA double strand breaks, cells were fixed with 4% paraformaldehyde and 

cytocentrifuged on a glass slide to obtain a density of 105 cells per spot. Cell 

spots were stained by anti-Ki67 (Ki67, mouse monoclonal, DAKO, Italy) and 

anti-gamma histone H2AX (γH2AX, rabbit polyclonal, Bethyl Laboratories, 

TX, USA) antibodies and revealed by DAB (3,3’-diaminobenzidine) Peroxi-

dase (HRP) Substrate Kit reaction (DAKO, Italy). The quantitative assess-

ment of the fraction of Ki67 and γH2AX positive cells was carried out by 

computing the number of positive nuclei over a total of 900-2000 nuclei 

counted on each analyzed sample. Data were analyzed using the one-way 

ANOVA test. Results were considered statistically significant when p<0.05. 

 3.3  Results 

3.3.1  Flow dynamics within the bioreactor culture chamber 

Multiphysics numerical simulations allowed to characterize the flow field 

inside the culture chamber. Figure 3.2 depicts diagrammatic representations 

of the typical medium flow structures establishing inside the culture chamber, 

resulting from the mutual interaction between the medium (primary phase) 

and the cells/constructs (dispersed phase), depending on the imposed flow 
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rate. In detail, in case of flow rate values lower than 20 mL/min (Figure 3.2A 

and 3.2C), the medium streaming into the culture chamber through the valve 

has not sufficient energy to interact markedly with the side wall of the culture 

chamber. The balance between hydrodynamic and gravitational forces leads 

to the formation of a dynamic big buoyant vortex located far from the wall 

of the chamber. This buoyant vortex is surrounded by smaller vortical struc-

tures located closer to the wall, which assure the suspension of the cultured 

cells and increase mixing and transport. 

As an example, Figure 3.3 shows the time evolution of the VF occupied 

by suspended cells inside the culture chamber, obtained simulating the pres-

ence of 9 x 106 inoculated cells (initial VF = 0.48%) and imposing a flow rate 

value of 5 mL/min (ultralow shear stress condition, similarly to the experi-

mental in vitro test). It can be observed that cultured cells are maintained 

mostly uniformly distributed in the bottom part of the culture chamber. In 

detail, after a transient of about 5 min, the 95.3% of the inoculated cells are 

suspended at an average VF value of approximately 0.33%, which is close to 

the initial VF value (0.48%), with the peak of probability density function 

(PDF) value equal to 2.5, corresponding to VF values between 0 and 0.5% 

(Figure 3.4A). At the bottom of the culture chamber, a small volume of about 

194 μL is characterized by a VF value around 6%, which dynamically involves 

only the 2% of the inoculated cells. This packing value is more than three 

times lower than the threshold value of sedimentation we set (20%) and about 

ten times lower than the maximum packing limit of 63%. Notably, when a 

flow rate lower than 20 mL/min is adopted, the distribution of shear stress 

values experienced by the cells within the culture chamber reveals that the 

highest shear stress levels are lower than 1 mPa (Figure 3.4B), with mean 
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and median values close to 1 x 10-2 mPa (the so called ultralow shear stress 

condition). 

 

Figure 3.2: Flow field within the bioreactor. Flow field visualization of the mutual inter-
action between the medium (primary phase) and the cells/constructs (dispersed phase) within 
the culture chamber for ultralow (A and C) and moderate (B and D) shear stress conditions. 
Flow field is depicted using both linear integral convolution lines (A and B), and a classical 
streamline representation (C and D). 
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Increasing the flow rate beyond 20 mL/min promotes the occurrence of 

Coanda effect [38] within the culture chamber: the jet entering the culture 

chamber is attracted to the nearby wall and, due to the peculiar wall curva-

ture, a separation region occurs far from the bottom wall of the chamber. As 

a result, a large clockwise buoyant vortex (Figure 3.2B and 3.2D), which 

counterbalances the gravitational force and thus maintains cells/constructs 

in suspension, is generated. Near the outer wall, a further smaller vortex 

develops, which can play the beneficial role of enhancing the mixing and the 

suspension of floating constructs (Figure 3.2D). Adopting such a flow rate 

range (30-120 mL/min), skewed right shear stress distributions were ob-

tained, with mean values ranging from 2 to around 7 mPa, with peak shear 

stress values within the culture chamber lower than 50 mPa. 
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Figure 3.3: Temporal evolution of the volume fraction. Temporal evolution of the VF 
distribution inside the culture chamber during 60 min of simulated time, with imposed 5 
mL/min and 9 x 106 inoculated cells. 

 

Figure 3.4: Probability density functions of volume fraction and shear stresses. Probability 
density function (PDF) of cell VF (A), and of shear stresses values (B) experienced by the 
cellular phase within the culture chamber after 60 min, with imposed 5 mL/min and 9 x 106 
inoculated cells. 
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3.3.2  In vitro culture outcome 

After 5 days of suspension culture, cells were rescued from the low at-

tachment culture flask (static suspension) and from the bioreactor culture 

chamber (dynamic suspension). Firstly, they were morphologically analyzed: 

observed by phase contrast microscopy, Calu-3 cultured under static suspen-

sion show individual cells or very small clusters (Figure 3.5A), while cells 

cultured within the bioreactor under dynamic suspension clearly show the 

formation of spheroids (Figure 3.5B).  

Moreover, ultrastructural analysis by TEM allows to observe that Calu-

3 from static suspension are partially connected by weak and tiny adherence 

junctions (Figure 3.7A and 3.7B), with morphological alterations (Figure 

3.6). Conversely, the clusters harvested from the bioreactor culture chamber 

are composed by several cells and are characterized by the typical morpho-

logical features of Calu-3, such as prominent nucleoli and membranes micro-

villi (Figure 3.7C), with well-developed adherence junctions (Figure 3.7D).  

 

Figure 3.5: Morphological comparison by phase contrast microscopy. After 5 days of sus-
pension culture, (A) Calu-3 cells cultured in static suspension show individual cells or very 
small clusters, (B) Calu-3 cells cultured under dynamic suspension show the formation of 
spheroids. Scale bars 200 µm. 
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Figure 3.6: Morphological alterations of Calu-3 cells cultured under static suspension. The 
TEM images of Calu-3 cells cultured under static suspension conditions show A) the presence 
of both several autophagosomes (white arrowheads) in a cell with preserved ultrastructure and 
severe depletion of cytoplasmic and nuclear (N) structures in a nearby cell; B) the partial loss 
of cytoplasmic organelles (*) together with the formation of large vacuoles (#). Scale bars 5 

μm. 

These observations are supported by the assessment of Ki67 im-

munostaining, which indicates that the fraction of cycling Calu-3 cells is sig-

nificantly higher (1.58-fold increase) when cultured in dynamic rather than 

in static suspension conditions (Figure 3.8A). Furthermore, from the quanti-

fication of the DNA double strand breaks, it is possible to note a downward 

trend (1.5-fold reduction, even if not statistically significant) in the fraction 

of γH2AXpos for Calu-3 cells cultured within the bioreactor compared to the 

cells cultured under static suspension (Figure 3.8B). 
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Figure 3.7: Ultrastructural comparison by TEM. The TEM images show (A) a small clus-
ter (3 cells) of Calu-3 cells grown in static suspension and (C) a larger spheroid (9 cells) of 
Calu-3 cells cultured within the bioreactor, harvested both after 5 days of suspension culture. 
Prominent nucleoli (N: nuclei), cytoplasmic structures and longitudinally and transversally 
oriented microvilli are characteristic features of NSCLC cell line Calu-3. High magnification 
views of areas included in black rectangles in panels A and C shown, respectively, (B) a single 
tiny adherence junction (arrowhead) among cells cultured under static suspension, and (D) 
several well-developed adherence junctions (arrowheads) developed by Calu-3 cultured within 

the bioreactor. Scale bars: A and C = 5 µm; B and D = 1 µm.  
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Figure 3.8: Quantitative comparison of cycling cells and double DNA strand breaks. (A) 
Bar graph of the measurement of Ki67 positive cells, showing the fraction of cycling Calu-3 

cells after static and dynamic suspension culture (*: p<0.05 vs static suspension). (B) Bar 

graph of the measurement of H2AX positive cells, quantifying the double DNA strand breaks 
in Calu-3 cells harvested from static and dynamic suspension culture. 

 3.4  Discussion and Conclusion 

In this study, a versatile bioreactor for culturing cells in dynamic suspen-

sion is presented. Due to the combination of the peculiar shape of the culture 

vessel with the continuous recirculation of the culture medium within a 

closed-loop perfusion circuit, this bioreactor enables laminar dynamic suspen-

sion culture at tuneable ultralow-to-moderate shear stress values. Avoiding 

the use of impellers and/or rotational components, the presented device over-

comes some major limitations of the current dynamic suspension methods. In 

fact, it is well established that within the stirred systems (e.g., spinner flasks, 

stirred tank bioreactors) (1) the interaction of cells with the moving compo-

nents, and (2) the complex fluid dynamics, characterized by turbulence 

and/or detrimental shear stresses, could lead to cell damage and consequent 

low expansion efficiency and limited bioprocess reproducibility 

[4,9,27,29,31,32]. Differently, rotating bioreactors provide laminar, low-shear 

stress culture environments, but the complex technological solutions needed 

to impart rotation make them not easily scalable and unsuitable for contin-

uous medium replacement and real-time monitoring [4]. In this context, an 
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impeller-free dynamic suspension bioreactor, characterized by laminar, ul-

tralow-to-moderate shear flow within the culture vessel and based on simple 

technological solutions, has been (1) designed, (2) characterized and opti-

mized by means of computational multiphysics, (3) prototyped, and (4) ex-

perimentally tested for dynamic suspension cell culture.  

More in detail, multiphysics modelling allowed to optimize the design of 

the device in terms of its performance in establishing dynamic suspension of 

biological specimens at low shear stress levels. By selecting the operating flow 

rate and exploiting the geometric features of the culture chamber, the device 

enables to provide dynamic cell suspension conditions at different shear stress 

levels, from ultralow (less than 1 mPa) to moderate (less than 50 mPa) val-

ues. The computational modelling allowed to define two main flow conditions 

for culturing cells: (1) the ultralow shear stress condition, obtained working 

with flow rates in a range up to 20 mL/min (Figure 3.2A); and (2) the low-

to-moderate shear stress condition, which can be established working with 

flow rates in the range 20 - 120 mL/min, characterized by the formation of 

larger suspension buoyant vortices (Figure 3.2C). Adopting flow rates under 

20 mL/min, shear stress values lower than 1 mPa develop within the culture 

chamber (ultralow shear stress condition, Figure 3.4B), while increasing the 

flow rates up to 120 mL/min, skewed right shear stress distributions are ob-

tained, with mean values ranging from 2 to around 7 mPa (low-to-moderate 

shear stress condition). The (tuneable) shear stress values produced by this 

dynamic suspension bioreactor are (1) one order of magnitude lower than the 

shear stress values normally developing within a commercial spinner flask 

where, imposing agitation rates ranging from 15 to 50 rpm, mean shear stress 

values ranging from 20 to around 120 mPa are reached (with peak values 



Chapter 3 - Application to the Culture of Cancer Cell Spheroids 

 
143 

reaching 200 mPa) [39], and (2) some orders of magnitude lower than the 

reference shear stress value considered critical (250 mPa) for sensitive cells 

like human embryonic stem cells or neonatal rat cardiomyocytes [32].  

Furthermore, the presence of laminar, dynamic vortex structures within 

the culture chamber promotes nutrient mixing and transport, as well as cell 

transport during dynamic suspension.  

Lung tumour-derived epithelial cell line (Calu-3) was selected for the pre-

liminary test under ultralow shear stress conditions because of the property 

to form multicellular spheroids, typically used for investigation of lung cancer 

biology and ontogeny of epithelial tissues in vivo [40]. The biological findings 

coming from the culture of Calu-3 cancer cells in ultralow shear stress dy-

namic suspension confirm that with the use of the presented device (1) sus-

pension is ensured (no sedimentation was observed), (2) the formation of 

functional 3D cell aggregates with active intercellular connection is promoted 

(Figure 3.5 and 3.7), and (3) a culture environment is established that, in 

comparison to the static suspension control, increases the cycling cell number 

and reduces the double strand DNA damage (Figure 3.8).  

Some limitations could weaken the potential of the presented bioreactor 

in 3D culturing cells in suspension. As the bioreactor is at a prototypal stage, 

the operating flow rates are currently manually set through the peristaltic 

pump of the perfusion circuit. However, a control system for process automa-

tion can be easily integrated in the loop. Moreover, direct sampling and/or 

monitoring are currently not feasible during bioreactor functioning. In the 

future, the perfusion circuit will be equipped with specific sensors, upstream 
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and downstream the bioreactor chamber, in order to provide real-time infor-

mation about the metabolic behaviour of cultured cells. Concerning the com-

putational multiphysics approach, a main limitation is that the aggregation 

and disaggregation of the cultured cells/constructs are not considered in the 

model, since the biological sample size was assumed to be always equal to the 

initial cell dimension (20 μm). This choice was dictated by a primary interest 

in assessing the fluid dynamics inside the culture chamber at the very early 

stage of the culture process, when it is fundamental to ascertain the suspen-

sion/sedimentation of the cells, and giving indications on the initialization of 

the experimental procedure. Therefore, since aggregation and disaggregation 

phenomena have typical characteristic time of days, they were neglected in 

the simulation provided in this paper. Moreover, cell growth has not been 

included in the numerical model since it was assumed that for the time in-

terval considered for the simulation, the cell growth could be neglected.  

Although these limitations could weaken the findings of this study, the 

herein presented combination of outputs of the in vitro experiment and the 

corresponding in silico simulation has demonstrated the potential of the de-

vice in culturing cells in 3D dynamic suspension at low shear stresses. In 

particular, the a priori knowledge (from simulations) on the flow environment 

inside the bioreactor culture chamber employed for culturing Calu-3 cells in 

dynamic suspension allowed to obtain a more favourable condition to cancer 

cells aggregation than the static suspension control. 

In conclusion, here we proposed a suspension bioreactor design, conceived 

to create a unique fluid dynamic environment inside the culture chamber 

avoiding any moving component. By adopting simple technological solutions, 
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the presented versatile bioreactor allows to culture specimens of different di-

mensions in laminar, dynamic suspension over a range of shear stress condi-

tions, finally allowing to overcome major limitations of the current dynamic 

suspension devices [4,9,27,29,31,32].  

In the future, such a device could be considered to be used: (1) as model 

system, for investigating the influence of dynamic suspension conditions on 

different types of cells/constructs; (2) as aggregation system, for culturing 

and investigating cell clusters; (3) as expansion and differentiation system,  

e.g., for expansion and differentiation of stem cells, for which non-physiolog-

ical shear stress values can affect maintenance of pluripotency and interfere 

with lineage-specific differentiation, thus providing a low-shear culture con-

dition that could significantly increase the bioprocess efficiency and repro-

ducibility. 
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Chapter 4 

 Application with human induced Pluripo-

tent Stem Cells: Preliminary Study 

 4.1  Introduction 

Human induced pluripotent stem cells (hiPSCs) have the potential to 

revolutionize biomedical sciences. The development of the induced pluripo-

tent stem cell (hiPSC) technology by somatic cell reprogramming [1] can 

facilitate the development of personalized regenerative therapies [2,3], and 

personalized disease modelling [4], constituting as well a superior renewable 

cell source for basic stem cell research [5]. Indeed, the use of hiPSCs over-

comes the obstacles related to ethical or moral concerns about the use of 

human embryonic stem cells (hESCs) and, being the basis of autologous and 

syngeneic cell therapies, might solve the problem of immunological rejection 

after transplantation [6].  

Although many problems still remain before iPSC medical and pharmaceuti-

cal applications can be fully realized [7], their possible widespread usability 

for clinical and industrial applications is one of the most trending topics in 
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stem cell research [4]. In this scenario, the high number of required cells de-

mands the development of hiPSC (and their progenies) mass production by 

means of Good Laboratory/Manufactory Practices (GLP/GMP). Moreover, 

each technical solution for mass production must be integrated within a ro-

bust, cell-specific, safe and cost-effective cell culture process, which will ac-

celerate the translation from laboratory to industrial/clinical scale [8]. 

As an example, to replace the loss of contractile cells in diseased post-

infarction hearts, ~1-10 billions of hiPSC-derived cardiomyocytes per patient 

are estimated to be necessary. The same estimation, based on clinical data, 

have been calculated for the treatment of diabetes mellitus with hiPSC-de-

rived ß-like cells [8,9]. The routine production of such cell numbers by con-

ventional two-dimensional (2D) hiPSC culture is extremely space- and la-

bour-intensive, and the lack of culture monitoring technologies makes this 

approach not economically viable. Moreover, 2D hiPSC cultures do not allow 

either the scale-up or the scale out without the employment of complex au-

tomation systems [10].  

Three-dimensional (3D) suspension cultures have been proposed to over-

come the characteristic limitations of the 2D culture methods [11,12,13]. The 

most promising technique is the matrix-free expansion, exploited starting 

from hiPSC single-cell suspensions to the generation of cell-only-aggregates. 

This method do not make use of feeder cells and microcarriers (or other ma-

trices) which might lead to regulatory problems in the scope of clinical appli-

cations [14], but requires the generation of suspension cultures, avoiding sed-

imentation. Taking inspiration from the biopharmaceutical industry pro-

cesses, dynamic suspension cultures for pluripotent stem cells has been real-

ized proposing the use of stirred tank bioreactors [12,15,16,17,18]. Dynamic 
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suspension allows to promote i) homogenous distribution of culture compo-

nents, ii) mass transfer of gases and nutrients into cell aggregates, iii) cell 

aggregation, and iv) easier monitoring and control of process parameters. As 

a matter of fact, this devices are more compatible with the final process up-

scale. 

However, conventional stirred tank bioreactors suffer from some limita-

tions. In particular, the interaction between cells/aggregates with the moving 

impeller and the onset of turbulent flow regions can induce detrimental stress 

on cells, reduce cell viability and interfere with cell pluripotency state with 

possible undesired differentiation and consequent culture inhomogeneity 

[2,15,19,20,21].  

Given the limitations related to the moving impeller inside the stirred 

tank bioreactors, the bioreactor platform presented in this thesis was tested 

for hiPSC culture in order to investigate, in a feasibility study framework, 

the effects of impeller-free dynamic suspension culture on hiPSCs. In detail, 

this preliminary test phase investigated the effects of the characteristic low 

shear stress fluid dynamic structures developing inside the bioreactor culture 

chamber (described in Chapter 2) on hiPSC suspended aggregates, by evalu-

ating the preservation of the morphological features of hiPSC aggregates (e.g. 

maintenance of spheroid shape avoiding spheroid fusion). Consecutively, the 

capability of cell aggregation of the bioreactor platform was preliminary 

tested inoculating hiPSCs as single-cell suspension to have a measure of im-

peller-free suspension on cell aggregation.  

The obtained results indicated that the bioreactor platform produces a 

favourable environment to hiPSC cultures, giving good bases for the possible 
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further optimization of the bioreactor platform, with the aim to provide a 

device, based on the same impeller-free suspension functioning, specifically-

improved to this type of cultures. 

4.1. Materials and Methods 

4.1.1. Bioreactor Platform 

For this study the bioreactor platform presented in Chapter 2 was em-

ployed. The platform was equipped with a pH and a dissolved oxygen (DO) 

sensor which were positioned immediately downstream the bioreactor culture 

chamber with the aim to have a readout of oxygen consumption inside the 

bioreactor culture chamber. The tubing length for the oxygenator module 

was adjusted according to the tubing sizing method and computation pre-

sented in Chapter 2 - Appendix I, and resulted in a minimum total culture 

medium volume of approximately 250 mL. The bioreactor platform configu-

ration used in this application is shown in Figure 4.1. 
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Figure 4.1: Schematics of the bioreactor platform configuration used for the preliminary 
tests with hiPSCs. 

4.1.2. Qualitative Suspension Analysis 

Preliminary performance tests were conducted to investigate the suitabil-

ity and performance of the bioreactor platform. Cytodex 1 microcarriers with 

an average particle size of 190 μm and a density equal to 1030 kg/m3 (GE-

Healthcare) were prepared and stained with Coomassie blue (in order to be 

more visible). This microcarriers were chosen to simulate the suspension of 

hiPSC spheroid aggregates, which typically have similar values of density and 

diameter. Approximately 1:100 dilution of stained microspheres were inocu-

lated into the bioreactor culture chamber to verify the symmetry and the 

homogeneity of the applied suspension. To allow the visualization of the inlet 

symmetry, the bioreactor culture chamber was kept open without lid, impos-

ing an inlet flow rate from 20 to 50 mL/min. 
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4.1.3. Monolayer Culture Passaging of hiPSCs 

Experiments were performed using hiPSCs generated from hematopoietic 

stem cells, in particular the hHSC1285iPS2 cell line. This cell line was main-

tained at standard conditions on mouse embryonic fibroblast (MEF) feeder-

culture and then pre-cultured in monolayer for a maximum of 11-12 split 

passages with Essential (E8) culture medium, before being used for suspen-

sion culture. The E8 medium is a fully-defined albumin-free culture medium 

which was firstly proposed by James Thomson and colleagues [22] in 2011. 

This medium was prepared starting from DMEM/F12 basal medium and 

supplementing 7 more essential medium components: 

- L-ascorbic acid (Vitamin C) to promote cell proliferation; 

- Selenium for sustained cell expansion; 

- FGF2 for maintaining pluripotency, cell survival and proliferation; 

- insulin to maintain cell survival and proliferation; 

- Transferrin to support high cloning efficiency; 

- TGFß to increase pluripotency expression marker such as 

NANOG; 

- NaHCO3 for pH adjustment at 7.4 (together with the further ad-

dition of 5 M NaOH) and improving buffering capability at 5% 

CO2. 

Monolayer culture was done seeding 4 x104 cell/cm2 in Geltrex-coated T25 

or T75 flasks, culturing each passage for 3-4 days. Each passage was per-

formed washing the flask with PBS without Ca2+/Mg2+, followed by accutase 

treatment (5 min at 37 °C) in order to obtain a single cell suspension, and 
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seeding the cells into new flasks. Thereby culture medium for seeding was 

supplemented with ROCK inhibitor Y27632 to permit cell survival after the 

dissociation into single cells [23]. At each passage, before the re-seeding, vital 

cell count was performed by trypan blue staining enabling seeding at defined 

cell densities (4 x104 cell/cm2 as outlined above). 

4.1.4. Orbital-Shaker Spheroid Aggregate Formation of hiPSCs 

Small-scale low-density suspension culture was performed using Cellstar 

6-well suspension culture plates (Greiner bio-one), positioned on an orbital 

shaker moving at 70 rpm. To initialize suspension culture, hiPSC monolayer 

were enzymatically treated with accutase (PAA laboratories) for 5 mins at 

37 °C, to obtain a single cell suspension. In each well, 3.4 x105 cell/mL were 

inoculated into 3 mL of pre-warmed E8 medium with supplementation of 10 

μM ROCK inhibitor Y27632 and maintained under constant shaking.  

4.1.5. hiPSCs Dynamic Suspension Culture with the Bioreactor 

Platform 

The bioreactor platform components were sterilized and assembled under 

laminar flow hood. pH probe (EasyFerm, Hamilton) was calibrated with a 

three-point calibration procedure integrated inside the monitoring and con-

trol software described in Chapter 2 - Appendix II. Since the DO probe (Ox-

yFerm, Hamilton) needs approximately 10 hrs of polarization time, the probe 

was inserted in the recirculation closed-loop bypassing the bioreactor culture 

chamber after sterilization. Consequently, the culture medium was aerated 

(21% O2, 5% CO2 at 37 °C), and finally calibrated with the in-house made 

software when stable values of DO were reached.  
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The first experimental phase consisted in the inoculation of 24 hrs-old 

spheroid aggregates, previously obtained by means of orbital shaker small-

scale hiPSC suspension (see 4.2.4). One of the most important requisites for 

hiPSC cultures is the capability of the culture device to preserve the spherical 

dimension of the aggregates and to limit and modulate spheroid diameters, 

with the aim to maintain hiPSC pluripotency properties, as well as to im-

prove nutrient transport inside the aggregate [13]. To investigate the capa-

bility of the herein proposed bioreactor in modulating aggregate dimensions, 

three different experiments were performed modifying flow rate, bioreactor 

platform functioning mode, and inoculated cell number (summarized in Table 

4.1 and schematized in Figure 4.3). Consecutively, evaluating the platform’ s 

capability of preserving typical hiPSC aggregate spherical morphology, a sin-

gle bioreactor run was performed inoculating a single cell suspension with a 

cell density of 6x105 cell/mL for 24 hrs imposing a continuous flow rate equal 

to 30 mL/min. In order to obtain preliminary indications on cell aggregation 

potential of the bioreactor platform starting from a free single-cell suspension 

(generated from monolayer culture), hiPSC aggregates generated by means 

of dynamic suspension culture within the bioreactor were compared with the 

aggregate generated with the same cell source by means of small-scale sus-

pension culture on orbital shaker. Since hiPSCs have not high survival rates 

when suspended as single-cells, the capability of generating hiPSC aggregates 

is crucial to determine the suitability of the device to be employed for plu-

ripotent stem cell culture applications, starting from single cell suspensions. 
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Table 4.1: Prospect of dynamic suspension culture of hiPSCs within the bioreactor platform 
inoculated as spheroid aggregates. 

Experiment 
Flow rate 
(mL/min) 

Medium Cell Density  
(x106 cell/mL) 

1 50-70-100 E8+penicillin/streptomycin 2.6 

2 100 E8+penicillin/streptomycin 2.6 

3 
100 (pulsed 

15/45s - 
on/off) 

E8+penicillin/streptomycin 0.8 

4.1.6. Flow Cytometry 

Single cell suspensions were prepared and aliquots were incubated for 15 

mins at 4 °C within 96 v-bottom plates with primary antibodies and corre-

sponding isotype controls against OCT4 and NANOG. In detail, primary 

antibody against OCT4 and its isotype (mIgG2b) were incubated at 1:40 and 

1:20 dilution, respectively; while primary antibody against NANOG and its 

isotype (rIgG) were incubated at 1:100 and 1:10000 dilution, respectively. 

After washing, cells were incubated with the corresponding secondary anti-

bodies: donkey Cy5 anti-mouse IgG (1:300) for OCT4 and its isotype, donkey 

Cy3 anti-rabbit IgG (1:300) for NANOG and its isotype, for 30 mins at 4 °C 

in the dark. The cells were analysed by using fluorescence-activated cell sort-

ing (FACS). In detail, FACS is a specialized type of flow cytometry which 

provides a method to sort heterogeneous populations of cells. It permits to 

recognise different cell populations by fast recording fluorescent signals from 

individual cells, according to fluorescent markers attached to primary anti-

bodies.  



Chapter 4 - Application with human induced Pluripotent Stem Cells: Preliminary Study 

 
161 

4.2. Results 

4.2.1. Qualitative Suspension Analysis 

The suitability of the device in generating buoyant vortices and the es-

tablishment of suspension condition was confirmed by the suspension analysis 

performed with Cytodex 1 microcarriers. As previously described as result of 

multiphysics simulations (Chapter 2 - 2.3.1 Multiphysics Modelling for Fluid 

Dynamics Characterization), Figure 4.2 illustrates the development of vorti-

cal fluid structures in the bottom of the culture chamber (top view of the 

culture chamber without lid). This structures generate a flow mixing in lam-

inar flow regime which homogenously transports suspended particles through-

out the culture chamber (i.e. blue-stained Cytodex 1), counterbalancing their 

weight. Modulating the flow rate from 10 to 50 mL/min, it was possible to 

evaluate that for particles with properties similar to hiPSC aggregates (di-

ameter equal to 190 μm, and density equal to 1030 kg/m3), flow structure 

generated imposing flow rates lower than 50 mL/min did not have enough 

energy to produce good mixing and suspension. The distribution of Cytodex 

1 microcarriers in Figure 4.2A shows highly packed particles on the bottom 

of the culture chamber indicating the absence of transport and mixing, with 

a very clear tendency towards sedimentation. Increasing the flow rate (Figure 

4.2B-C), particles were homogenously suspended within the culture chamber, 

reaching a good mixing with a flow rate equal to 50 mL/min (Figure 4.2C). 

According to these results, the flow rate of 50 mL/min was identified as the 

minimum flow rate required to produce hiPSC aggregate suspension within 

the bioreactor culture chamber. This value was used as initial flow rate value 
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to be imposed for the first hiPSC dynamic suspension culture experiment 

(first row in Table 4.1). 

 

Figure 4.2: Representation of the Cytodex 1 microcarriers: low flow rate are not capable 
of generating particle suspension (A, 20 mL/min). With increasing the imposed flow rate 
particles are suspended and homogeneously distributed within the culture chamber (B, 30 
mL/min; C, 50 mL/min). 

4.2.2. hiPSCs Dynamic Suspension Culture within the Bioreactor 

Platform 

Cells were cultured in monolayer before being inoculated into the 6-well 

plate small-scale low-density suspension culture on orbital shaker. The mon-

olayer condition of the cultured cells is shown in Figure 4.3: after three cul-

ture days the flask reached confluency and cells were detached and cultured 

in small scale suspension culture forming spheroid hiPSC aggregates. 
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Figure 4.3: Schematics showing the experiment design: from monolayer pre-expansion to 
small-scale suspension culture in orbital shaker, prior the inoculation inside the bioreactor 
culture chamber.  

The first experiment (Table 4.1, first row) was performed starting from 

imposing a flow rate equal to 50 mL/min (i.e. the flow rate which was de-

tected as the minimum flow rate capable of producing the suspension of the 

Cytodex 1 microcarriers). After a few hours the cell aggregates started fusing 

and, becoming bigger (Figure 4.4), the flow rate was iteratively increased up 

to 100 mL/min. 
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Figure 4.4: Observation of suspended hiPSC aggregates during the culture through the 
translucent polycarbonate wall of the bioreactor culture chamber. At 50 mL/min black arrows 
indicate the fusion of several aggregates with the formation of clumps. Increased the flow rate 
up to 100 mL/min, aggregate suspension was improved and the dimensions of clumps was 
reduced (white arrow). 

After 24 hrs of dynamic suspension within the bioreactor, aggregates were 

harvested for qualitative evaluation of their morphology. The typical spheri-

cal shape of hiPSC aggregates was lost, and most of the aggregates tended to 

fuse to each other forming amorphous bodies, large in dimensions with shorter 

axis longer than 500 μm (Figure 4.5). Despite the large dimension of these 

bodies, the live/dead staining (ThermoFisher Scientific) microscopy visuali-

zation revealed a low rate of mortality (green-calcein for alive, red- ethidium 

homodimer for dead cells). 
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Figure 4.5: Experiment 1. Qualitative comparison between the hiPSC before inoculation 
and after 24 hrs dynamic suspension within the bioreactor (Experiment 1). The harvested 

aggregates were live/dead stained (green =live, red = dead). Scale bar 200 μm. 

This result suggested that the dynamic suspension produced a favourable 

environment for massive undesired aggregation and fusion of the cultured 

hiPSC spheroids already in the first 24 hrs. Within this configuration aggre-

gate dimension and shape was not preserved, probably due to the inappro-

priate imposed flow rate in the first hours of culture when the aggregates 

started clumping. As a result the second experiment (second row, Table 4.1, 

Figure 4.6) was performed culturing hiPSCs imposing a flow rate equal to 

100 mL/min. After 24 hrs of dynamic suspension inside the bioreactor, ag-

gregate tended to grow in dimension. The dynamic suspension promoted the 

enlargement of the hiPSC spheroids (mean diameter 140 μm, before inocula-

tion in bioreactor, 196 μm after 24 hrs in dynamic suspension, respectively, 

around 90 measured diameters), but contemporarily increased the heteroge-

neity of the diameter values (standard deviation of 18 μm Vs. 68 μm, respec-

tively). The wider estimated diameter distribution (i.e. estimated probability 

density function of diameter distribution) for the dynamic cultured cells in 

bioreactor is a result of the fusion of a great number of hiPSC spheroids, 
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which produces aggregates with diameter values larger than 200 μm. From 

the comparison of aggregate morphology before and after dynamic culture 

within the bioreactor, it is possible to note the smoother edges of the spheroid 

before being subjected to dynamic suspension. The 24 hrs of dynamic suspen-

sion inside the bioreactor produced rougher edges which are usually associ-

ated to not completely healthy hiPSC aggregates, and can increase the po-

tential interaction and fusion of the spheroids to each other. 

 

Figure 4.6: Experiment 2.Qualitative comparison between the hiPSC before inoculation 
and after 24 hrs dynamic suspension within the bioreactor (Experiment 2).The aggregates 
after 24 hrs within the bioreactor present rough edges, usually associated to not-completely 

healthy hiPSC aggregates. Scale bar 200 μm. Diameter distribution graph (bottom) for hiPSC 
aggregates before and after 24 hrs culture inside the bioreactor with mean and standard devi-
ation values of each distribution. 
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Moreover, the visual inspection of the PDMS filter after the harvest high-

lighted that cells/aggregates reaching the filter can adhere on it, causing a 

moderate cell loss (cells adhering on the filter cannot be recovered, Figure 

4.7), which may limit the efficiency of the culture procedure.  

 

Figure 4.7: Experiment 2. Detail of the PDMS filter recovered after the cell harvest. Black 
arrows indicate aggregates and cells which adhered on the filter surface.  

In order to reduce the heterogeneity of diameter distribution and to limit 

the number of cells adhering on the PDMS filter surface, the third experiment 

(third row, Table 4.1) was carried out taking advantage of the pulsed protocol 

developed by means of the multiphysics simulations and widely presented in 

Chapter 2. The rationale under this choice was to impose a cyclic moderate 

shear stress stimulation on hiPSC aggregates, in order to modulate the ten-

dency of the aggregate to fuse, and contemporarily using the free-fall phase 

for a more efficient hiPSC spheroid suspension, thus reducing the number of 

cells and aggregate adhering on the PDMS filter surface. Starting from the 

indications obtained from the two previous experiments carried out with the 

continuous recirculation loop, the flow rate imposed by the pump was set to 

100 mL/min (Figure 4.8). The operational graphs mentioned in Chapter 2 
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allowed to set the recirculation phase and the pump stop phase to 15 s and 

45 s, respectively, obtaining a pulsation period of 1 min.  

 

Figure 4.8: Experiment 3. Qualitative comparison between the hiPSC before inoculation 

(A) and after 24 hrs dynamic suspension within the bioreactor (B). Scale bar 200 μm. Diameter 
distribution graph (bottom) for hiPSC aggregates before and after 24 hrs culture inside the 
bioreactor with mean and standard deviation values of each distribution (C). Inoculated Vs. 
harvested cell density (D).  

The pulsed functioning mode of the bioreactor platform allowed to im-

prove the homogeneity of the hiPSC spheroid diameters. From the visual 

inspection of Figure 4.8, it is possible to evaluate the presence of some fused 

aggregate after 24 hrs of dynamic suspension inside the bioreactor. Neverthe-

less, the probability density function of diameter distribution depicts a re-

duction of the average aggregate dimension (mean value 170 μm  for dynamic 
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suspension inside the bioreactor and 200 μm for inoculated aggregate, around 

80 measured values), with comparable values of standard deviation before 

and after the bioreactor inoculation (29 μm Vs 28 μm, respectively). The cell 

density of cultured cells increased in 24 hrs from approximately 0.8 x105 to 1 

x105 cell/mL.  

As final experiment, the capability of the bioreactor of producing hiPSC 

spheroid aggregate was investigated. Monolayer culture of undifferentiated 

hiPSC were detached and inoculated as single cell suspension (6 x105 cell/mL) 

within the bioreactor culture chamber imposing a suspension flow rate equal 

to 30 mL/min. The choice of the flow rate for the 24 hrs dynamic suspension 

culture took advantage of the preliminary multiphysics simulations used to 

characterize the flow structures inside the bioreactor culture chamber (pre-

sented in Chapter 2). In fact, according to the in silico results, it was selected 

as the minimum flow rate necessary to guarantee moderate shear stress levels 

with larger suspension vortices. Figure 4.9 presents a comparison between the 

result of 24 hrs dynamic suspension inside the bioreactor and, as a control, 

the result of 24 hrs of small-scale low density suspension culture on orbital 

shaker. The bioreactor was capable of producing small hiPSC aggregates 

among some bigger aggregates (with diameter up to 300 μm) and some 

clumps. In general very small spheroids were produced (mean diameter equal 

to 87 μm) compared to the spheroids produced by the small-scale suspension 

on orbital shaker (mean diameter equal to 157 μm). The standard deviation 

values reported in Figure 4.9 do not take into account the non-spherical ag-

gregates formed during dynamic suspension within the bioreactor. 
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Figure 4.9: Experiment 4, single cell suspension. Qualitative comparison between the 
hiPSC aggregates after 24 hrs in small-scale suspension culture (A) and after 24 hrs in dynamic 

suspension within the bioreactor (B)(Experiment 4). Scale bar 200 μm. Diameter distribution 
graph (C) for hiPSC aggregates after 24 hrs of small-scale suspension culture and after 24 hrs 
suspension culture inside the bioreactor with mean and standard deviation values of each 
distribution. FACS analysis results on pluripotency marker expression (D). 

The dynamic suspension within the bioreactor produced a heterogeneous 

hiPSC aggregate population compared to the homogeneity obtainable by 

means of the small-scale suspension, clearly observable in microscopy image 

in Figure 4.9A and 4.9B. Flow cytometry intracellular marker quantification 

confirmed that most of the cells maintained their state of pluripotency after 

24 hrs of dynamic suspension within the bioreactor with 96% of OCT4 and 

63% of NANOG expression (Figure 4.9D). 
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4.3. Discussion and Conclusion 

In this chapter, a feasibility study on hiPSC culture performed using the 

dynamic suspension bioreactor platform proposed in this thesis work was pre-

sented and described. As presented in the previous chapters, the combination 

of peculiar geometric features of the bioreactor culture chamber with the 

closed-loop medium recirculation circuit enables the formation of laminar dy-

namic suspension culture in a tuneable range of shear stress values. This 

functioning principle avoids the use of impellers or rotational components for 

the generation of flow structures capable of suspending cells, aggregates, or 

microcarriers within the bioreactor chamber. According to this characteris-

tics, this bioreactor platform was proposed for its possible usage in the field 

of hiPSC dynamic suspension cultures, as an alternative device to conven-

tional stirred flask systems. In fact, it was established that within stirred 

bioreactors (e.g. stirred flask, stirred tanks) the interaction of cells with the 

moving blades of the impeller and the onset of non-homogeneous turbulent 

structures and high shear stresses could lead to cell damage limiting cell ex-

pansion efficiency and reproducibility [2,15,19,20,21]. As a matter of fact, the 

suspension bioreactor proposed in this thesis work (and widely described in 

Chapter 2 and Appendices) was employed for hiPSC dynamic suspension cell 

culture preliminary applications, in the scope of a feasibility study carried 

out in collaboration with Hannover Medical School (MHH). The effects of 

low shear stress impeller-free dynamic suspension on hiPSC spheroid aggre-

gates was investigated inoculating aggregates previously generated by means 

of small-scale low-density suspension cultures (6-well plates on orbital 

shaker). As a requisite to maintain the pluripotency properties of hiPSC cell 

aggregates, the capability of the bioreactor chamber to preserve the spherical 
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shape of the suspended aggregates was studied carrying out three independ-

ent preliminary experiments imposing three different setups. The imposition 

of a continuous medium recirculation flow rate, after 24 hrs, enhanced the 

generation of massive agglomeration, which produced macroscopic and amor-

phous aggregates. This result suggests that the continuous low shear stress 

imposed by the peculiar fluid dynamics developing within the culture cham-

ber are not able to counterbalance hiPSC agglomeration kinetics. A modula-

tion effect on agglomeration kinetics was achieved by the combination of 

moderate intermittent shear stress and free-fall transport applied by the 

pulsed protocol. The cyclic succession of free-fall transport moments and 

moderate shear flow-driven transport increased the homogeneity of the sus-

pended hiPSC aggregates (thinner diameter statistical distribution), interfer-

ing with aggregate fusion and keeping the original hiPSC morphology. The 

inoculation of single cell suspension allowed to elucidate that impeller-free 

flow dynamics established inside the bioreactor culture chamber is able, even 

weakly, to promote cell-cell interaction and consequently the formation of 

hiPSC aggregates. The harvest after 24 hrs of small spherical aggregates 

amongst bigger and amorphous aggregates indicated that the low shear stress 

environment stimulated cell aggregation.  

Nevertheless, some limitations can weaken this feasibility study. In this 

bioreactor platform prototypal stage, the possibility to sample hiPSC aggre-

gates directly during the culture was not feasible. For this reason, short 24 

hrs bioreactor runs were performed with the aim to have an immediate idea 

of the impact of impeller-free fluid dynamics on hiPSCs. Longer culture peri-

ods may require the possibility to sample aggregates directly from the culture 
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chamber in order to monitor the aggregate evolution over time without stop-

ping the suspension. Moreover, although the bioreactor culture chamber was 

conceived to be translucent, the visibility during the culture was not optimal 

and this limited the controllability of the process.  

These outcomes, even though preliminary and not repeated, provide good 

indications for the possible usage of the presented bioreactor platform for 

hiPSC dynamic suspension culture. In detail, to perform more systematic and 

longer (more than 24 hrs long) statistically relevant studies, the bioreactor 

platform can be properly optimized for this specific biotechnological applica-

tion on the basis of the results herein presented. In the future, the same 

functioning principle can be implemented in a different prototype design 

which may allow to parallelize the experiments accelerating the time neces-

sary to obtain statistically significant results (more bioreactor culture cham-

bers for more repetitions). The same culture chambers may be conceived to 

allow direct sampling and inoculation in order to prolong the culture periods 

while maintaining a full control of hiPSC aggregate evolution. All this opti-

mization procedure will be carried out integrating computational multiphys-

ics simulations in the design phase as presented in the previous chapters, 

shortening the pathway to the final device avoiding trial-and-error ap-

proaches.  
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Chapter 5 

 Discussion and Conclusion 

In this thesis, a versatile bioreactor platform for culturing cells in dynamic 

suspension was presented. Thanks to the peculiar shape of the culture cham-

ber, combined with the recirculation circuit closed-loop, this bioreactor is able 

to produce a laminar dynamic suspension culture at tuneable low shear stress 

values. The presented device is proposed as an alternative to commercial 

dynamic suspension devices, in order to overcome some of the limitations of 

the most commonly-used suspension bioreactors for scalable production and 

differentiation of cells (stirred flask and rotating wall bioreactors). In partic-

ular, within stirred flask bioreactors, the interaction among cells and impeller 

blades can lead to detrimental stress on cells, reducing cell viability and in-

terfering with cell pluripotency (in stem cell expansion applications) 

[1,2,3,4,5]. Rotating wall bioreactors can overcome this limitation but the 

complexity of technological solutions adopted for rotation makes these de-

vices not easily scalable [3,6].  

This thesis demonstrates that, starting from the current state-of-the-art 

knowledge in dynamic cell culture with commercial bioreactors, it is possible 
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to integrate a comprehensive modelling approach within the bioreactor me-

chanical design phase, in order to support the development of innovative and 

versatile devices to be used in the field of tissue engineering and regenerative 

medicine.  

In this frameworks, the different aspects of the methods applied for the 

bioreactor platform optimization and development are discussed in the fol-

lowing. 

Multiphysics Model 

Computational fluid dynamics and multiphysics modelling are key tools 

(1) for the design and optimization of bioreactors, and (2) for the acquisition 

of a comprehensive description of their functioning [7,8]. For these reasons, 

multiphysics models have been made and adopted in the recent years to ex-

tract knowledge on biological processes inside the bioreactor culture chambers 

[9,10,11]. 

Here, the direct integration of in silico multiphysics modelling and exper-

imental mechanical design was implemented to devise, produce, characterize, 

and use a dynamic suspension bioreactor platform. In fact, multiphysics sim-

ulations were useful to optimize the bioreactor platform design, obtaining a 

full characterization of the conditions developing inside the bioreactor culture 

chamber. This multiphysics model allowed to define two main flow conditions 

in culturing cells/constructs: (1) ultralow shear stress condition, obtained 

working with flow rates below 20 mL/min, and (2) moderate shear stress 

condition, established in flow rate range from 30 to 120 mL/min. The (tune-

able) shear stress values produced in this dynamic suspension bioreactor are: 
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(1) one order of magnitude lower than the shear stress values normally de-

veloping within a commercial spinner flask where, imposing agitation rates 

ranging from 15 to 50 rpm, mean shear stress values ranging from 20 to 

around 120 mPa are reached (with peak values reaching 200 mPa) [12]; (2) 

several orders of magnitude lower than the reference shear stress value con-

sidered critical (250 mPa) for sensitive cells like human embryonic stem cells 

or neonatal rat cardiomyocytes [1]. 

The same multiphysics modelling approach was adopted to identify, in 

silico, appropriate culture protocol. This allowed the identification of proper 

initial for experimental tests involving expensive small molecules, cells, and 

culture media. Accordingly, this in silico protocol determination strategy rep-

resents a useful tool to reduce the costs during the technical assessment of 

the device functioning.  

In fact, the in silico strategy represents a valuable alternative to the tra-

ditional trial-and-error method within the range of approximations of the 

assumptions made at the basis of the modelling approach. Indeed, there are 

some assumption which can influence the outcome of the model, particularly 

referring to the use of the bioreactor platform for mammalian cell suspension 

culture. Firstly, this study considered spherical non-deformable suspended 

particles with constant diameter. In the real applications with mammalian 

cells or aggregates, suspended particles are characterized by variable diame-

ters and different, sometimes irregular, shapes. Concerning the pulsatile-flow 

working condition, cells/aggregates are cyclically transported by flow-driven 

transport and by free-fall motion. The predicted cell/aggregate transport 

(with particular attention on free-fall cell/aggregate motion) does not account 

for the realistic geometric shape irregularities, which could in principle affect 
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the applicability of Stokes’ law for the calculation of the particle terminal 

velocity. Contemporarily, the inhomogeneity of particle diameters, will deter-

mine different timing in the free-fall motion, thus provoking a more complex 

behaviour of the suspended particle cloud during the cycle evolution. Moreo-

ver, this model is useful to describe the early stage of the culture procedure, 

giving only indications on the initialization of the experimental process. In 

fact, the model does not take into account cell aggregation/disaggregation 

biomechanics, and cell proliferation, which may have an impact on the ex-

perimental outcome even if it has typical characteristic time of days (simu-

lated time were in the order of magnitude of minutes). 

Although these limitations could weaken the findings of this study, the 

validity of the proposed process optimization method could be the basis for 

more complex studies which, validated in vitro, can consistently help the 

biotechnological experimental work and confer an in silico-based a priori 

knowledge useful to limit the experimentation costs. The use of this compu-

tational method supports the design and optimization procedure, limiting the 

trial-and-error approach and costs related to the technical assessment of the 

device functioning. The information obtained by means of the computational 

setup demonstrates the potential offered by the multiphysics model when 

used as a tool for the design phase of a bioreactor platform, giving further 

insights on the fluid dynamics established inside the culture chamber and 

consequently allowing the formulation of a more reliable and systematic ex-

perimental procedure.  



 

 182 

Bioreactor Platform 

The bioreactor platform was optimized to allow the real-time monitoring 

and control of culture parameters, such as pH and DO partial pressure. A 

properly designed and realized control unit integrates the possibility to con-

tinuously acquire the signals from the sensors and interactively control the 

pump action. The possibility of real-time monitoring and control of the cell 

culture is a highly required feature for scalable and repeatable cell culture 

systems [2,13]. In fact, oxygen tension inside the culture environment is par-

ticularly important for stem cell culture, since DO partial pressure has been 

shown to have an impact on stem cell differentiation into specific lineages [2].  

The online measurement of physicochemical parameters, implemented in 

the bioreactor platform and presented in this thesis, gives the possibility to 

integrate a secondary continuous feeding circuit to replenish the exhausted 

medium with fresh medium. This feature, usually implemented in commercial 

stirred flask bioreactors to overcome the limitations of batch culture [94], in 

the bioreactor platform herein proposed allows the automatization of the cul-

ture medium replenishment in response to pH and DO variations during the 

cell culture. As a matter of fact, the control software architecture is conceived 

for the future implementation of an automatic routine for the activation of 

the secondary continuous feeding pump in response to the acquired pH and 

DO signals.  

The monitoring and control system, as well as the secondary continuous 

feeding circuit, were implemented in the bioreactor platform configuration, 

which is in its still prototypal stage.  
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The bioreactor platform was employed for two preliminary applications, 

with lung-tumour-derived epithelial cell line (Calu-3) and human induced 

pluripotent stem cell (hiPSC) culture under low shear stress conditions.  

Calu-3 cell line was selected for the primary test under ultralow shear 

stress conditions because of their property to form multicellular spheroids, 

typically used for investigation of lung cancer biology and ontogeny of epi-

thelial cells in vivo [15]. Calu-3 dynamic suspension culture by means of the 

bioreactor proposed in this thesis promoted the production of functional 3D 

cell aggregates with active intercellular connections. Compared to the static 

control, Calu-3 cells cultured in dynamics suspension condition showed an 

increase in cycling cell number, together with a reduction of double strand 

DNA damage. These data was not supported with quantitative measures of 

3D cell aggregate diameter, which could have provided a quantitative differ-

ence between static and dynamic suspension culture.  

As second validation biotechnological application of the herein proposed 

bioreactor platform, the effect of low shear stress impeller-free dynamic sus-

pension culture on human induced pluripotent stem cells (hiPSCs) was in-

vestigated. Under continuous low shear stress conditions, pre-formed inocu-

lated hiPSC aggregates tended to aggregate forming massive agglomerates, 

suggesting that low shear stress levels were not able to modulate hiPSC ag-

gregation kinetics. The pulsed-flow rate recirculation loop devised by means 

of a multiphysiscs modelling approach (Chapter 2) allows the modulation of 

3D hiPSC aggregate growth in diameter. Starting from the ‘a priori’ 

knowledge gained by the development of the in silico pulsed protocol, the 

modulation effect on agglomeration kinetics was achieved by the combination 

of moderate intermittent shear stress and free-fall transport applied by the 
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pulsed protocol. The cyclic succession of free-fall transport moments and 

moderate shear flow-driven transport increased the homogeneity of the sus-

pended hiPSC aggregates (thinner diameter statistical distribution), interfer-

ing with aggregate fusion and keeping the original hiPSC morphology. The 

inoculation of single-cell suspension allowed to elucidate that the impeller-

free fluid dynamics establishing inside the bioreactor culture chamber is ca-

pable, even if weakly, to promote cell-cell interaction and consequently the 

formation of hiPSC aggregates.  

Some limitations can waken this two preliminary experimental feasibility 

studies. In this bioreactor platform prototypal stage, the possibility to sample 

cell aggregates directly during the culture was not feasible. For this reason, 

short bioreactor runs were performed with the aim to have an immediate idea 

of the impact of impeller-free fluid dynamics on hiPSCs. Longer culture peri-

ods may require the possibility to sample aggregates directly from the culture 

chamber in order to follow the aggregate evolution over time without stop-

ping the suspension. Moreover, although the bioreactor culture chamber was 

conceived to be translucent, the visibility during the culture was not optimal 

(high deformation of the visualized objects) and this limited the controllabil-

ity of the process.  

Nevertheless, these outcomes provide good indications for the possible 

usage of the presented bioreactor platform for human cell cultures. The com-

bination of in vitro experiments and numerical simulations has demonstrated 

the potential of the device in culturing cells under low shear stress conditions. 

Importantly, the results herein presented as obtained by the use of the bio-

reactor platform in its prototypal stage suggest that the impeller-free func-
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tioning principle, for producing dynamic suspension of human cells, is prom-

ising and it could be extended to dedicated cell culture applications in stem 

cell research and cancer biology.  

In the future, this bioreactor platform will be considered as a starting 

point for the realization of dedicated impeller-free dynamic suspension biore-

actors. In detail, the same impeller-free functioning principle currently imple-

mented within the bioreactor culture chamber will be transferred to a mod-

ular platform in order to parallelize independent cultures. The bioreactor 

chambers will be modified to overcome the limitations arisen during the pre-

liminary tests herein presented. The most important features to be guaran-

teed will be the direct sampling of culture specimens (cell/cell aggregates), 

an injection port, and direct pH and DO probing ports. This requirement will 

allow to speed up to the obtainment of a dynamic suspension impeller-free 

bioreactor for culturing stem and cancer cells under low shear stress condi-

tions, which use would be adjusted starting from the multiphysics model re-

sults.
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Industrial Bioengineering Group Activity 

In this section a contribution to Industrial Bioengineering Group activity 

carried out during the first year of PhD is reported. The work herein pre-

sented was published in Journal of Vascular Interventional Radiology. Tim-

othy Clark, the first author, proposed the study and wrote most of the paper, 

while the study presented was entirely done at Politecnico di Torino. 

Abstract: Comparison of Symmetrical Haemodialysis 

Catheters using Computational Fluid Dynamics 

Purpose:  

Symmetrical tip dialysis catheters have become alternatives to split tip 

and step tip designs owing to low access recirculation and ease of tip posi-

tioning. Flow characteristics of three symmetrical tip dialysis catheters using 

computational fluid dynamics (CFD) as they relate to catheter function were 

compared. 

Methods:    

Palindrome, GlidePath and VectorFlow catheters were compared. A 

CFD-based approach was used to assess a) regions of flow separation, which 

are prone to thrombus development), b) shear-induced platelet activation 

potency, c) recirculation, and d) venous outflow deflection. A steady-state, 

laminar flow CFD model was used to simulate catheters tip position within 

the superior vena cava (SVC). Catheters performance was investigated at 

high hemodialysis flow (400 mL/min). Blood was assumed as a Newtonian 

fluid. 
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 Results:   

Wide regions of flow separation downstream of the Palindrome side slot 

and close to the distal tip were observed both in forward and reversed line 

configurations. Geometric asymmetry of the distal guidewire aperture of the 

GlidePath produced highest observed levels of inverted velocity flow when 

run in reversed configuration. The lowest shear-induced platelet activation 

average values were exhibited by GlidePath and VectorFlow catheters, 

whereas the Palindrome exhibited 152% higher overall platelet activation po-

tency. All catheters were associated with a recirculation close to zero; the 

helically contoured lumens of the VectorFlow produced the greatest amount 

of deflection of venous flow away from the arterial lumen.  

Conclusion:  

The VectorFlow catheter was associated with less shear-induced platelet 

activation than the Palindrome and less flow separation than the Palindrome 

and GlidePath catheters irrespective of line configuration. These findings 

have potential implications for differences in thrombogenic risk during clinical 

performance of these catheters. 
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Introduction 

Over 400,000 Americans receive renal replacement therapy through he-

modialysis.  Despite native fistula placement is the preferred form of perma-

nent access, catheters remain the initial access for the majority of patients  

and they serve as a bridge to new access creation in patients with failed 

arteriovenous access (1).   

Catheter thrombosis and infection remain causes of vascular access-re-

lated morbidity (2). Catheter performance during dialysis is also a challenge, 

since catheters with higher recirculation and/or reduced clearance will result 

in inadequate dialysis sessions (3). Inadequate dialysis has been shown to be 

an independent predictor of increased hospitalizations, hospital days, and 

Medicare inpatient expenditures among hemodialysis patients (4). 

Differences in catheter tip design can produce significant differences in 

flow characteristics during the high-flow conditions required during dialysis, 

and in turn can have important implications for catheter thrombogenicity, 

recirculation and other critical parameters of catheter performance (5).  Sym-

metrical tip catheters have become alternatives to conventional step-tip and 

split-tip catheters, owing in part to the ability to reverse lines during dialysis 

without an increase in recirculation (6). These differences were assessed be-

tween three commercially available symmetrical tip catheters using compu-

tational fluid dynamics, widely applied to study the hemodynamic perfor-

mance of catheters (8-9).  
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Materials and Methods 

Computational Fluid Dynamics 

CFD simulations were designed to investigate and compare local hemo-

dynamics in three commercially available symmetrical tip dialysis catheters: 

Palindrome (Covidien, Dublin, Ireland), GlidePath (Bard Access Systems, 

Salt Lake City, UT) and VectorFlow (Teleflex, Wayne, PA). High resolution 

CAD models of each catheter (Figure 1) were created as follows: the Palin-

drome catheter was measured with a touch probe coordinate machine and 

the resultant measurements were used to generate a high resolution 3D model 

in SolidWorks (Dassault Systems Inc., France). For the GlidePath, catheter 

internal and external surfaces were scanned within a high-resolution indus-

trial computed tomography system (GKS Services Corp., USA) and the re-

sultant 3D dataset was then rendered into SolidWorks. Both techniques en-

sured high accuracy in the reconstruction of every geometrical characteristic 

of the catheter models. The VectorFlow catheter was rendered using design 

control SolidWorks files. The 3D models were coaxially placed inside a cylin-

drical conduit (see details in the forthcoming) ideally resembling the SVC 

and processed to build discrete grids (where the governing equations of fluid 

motion have to be numerically solved) using the general purpose solid mod-

eler ICEM (ANSYS Inc., USA). The computational grid consisted of over 8 

million discrete tetrahedral/hexahedral cells (0.2 mm average edge size).  

Model Assumptions 

A previously validated CFD model (9) was used to simulate catheter tip 

position within the SVC, since it is currently not feasible to simulate hemo-

dialysis catheters within a robust right atrial model, owing to complexity of 

assumptions regarding atrial anatomy, proportion of flow from the IVC, and 
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tricuspid valvular function.  The SVC flow conditions were realistically as-

sumed to be of 3 L/min within an 18 mm diameter, 480 mm long conduit 

with standard assumptions of adult human blood (uncompressible Newtonian 

fluid model (10) with viscosity  = 3.5 mPa s and density  = 1060 kg/m3). 

Catheters performance was evaluated at 400 mL/min flow rate, in accordance 

with optimal clinical practice, with the catheters run in forward and reversed 

line configurations.  

A detailed description of the methodology applied to prescribe the condi-

tions at boundaries is available in the Appendix. 

CFD Simulations and Post Processing 

For all models, flow fields were computed by solving the 3D, steady-state 

(assumption based on the low pulsatility characterizing venous flow) govern-

ing equations of fluid motion in discrete form using a finite volume-based 

commercial code (Fluent, ANSYS Inc, USA). Each catheter was initially 

studied using classical fluid-dynamic theoretical analysis which verified the 

soundness of the assumption of flow laminarity. Sensitivity analysis was car-

ried out to assure grid independence of the solution. Each catheter was run 

in forward and reversed directions to simulate clinical practice. A detailed 

description of the computational settings is provided in the Appendix. 

Analysis of Thrombogenic Flow Patterns inside Catheters 

The thrombogenic potency of the geometric features of the catheters was 

evaluated in terms of position and dimension of the flow separation regions 

(i.e., the boundary layers of flow that separate from the wall of the catheter 

to form a recirculation vortex behind the separation point, where shear stress 

vanish to become zero) generated within the lumens of the catheters as a 
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result of shape, size, number and position of both distal tip and sideholes. 

From a hemodynamics standpoint, flow separation occurs in regions of dis-

turbed flow, where it can promote thrombus formation and development. 

Flow separation regions of each catheter were visually rendered by color-

encoding the three-dimensional isosurfaces of blood velocity components with 

flow in the direction opposite to the main direction of the flow.  

To further characterize the thrombogenic potency of flow patterns, the 

percentage volume of blood within each catheter model experiencing flow 

inversion (flow in the opposite direction to the main direction of flow) was 

also calculated. To do this, the arterial blood lumen inside a catheter segment 

of length extending from the tip to a 5.0 cm distance from the more distal 

side hole was considered. 

Analysis of Shear-Induced Platelet Activation 

As in previous studies on blood recirculating devices (11), to gain better 

understanding of the mechanisms that lead to flow-induced thrombogenic 

complications, the relationship between catheter-induced hemodynamics and 

platelet activation was quantified. A previously validated Lagrangian-based 

mathematical model was used (12), accounting for cumulative dynamic shear 

conditions experienced by platelets and is expressed as the Platelet Activa-

tion State (PAS) (13). PAS quantifies the more global thrombogenic aspect 

of platelet prothrombinase activity, i.e., its contribution to thrombin genera-

tion; PAS values are expressed as a fraction maximal prothombinase activity. 

Further details about this methodology are provided in the Appendix. For 

the computational protocol of tracking the platelet-like particles, a cluster of 

approximately 1600 identical platelet-like particles were seeded, uniformly 

spaced, at cross sections of both venous and arterial lumens at the same 

distance from the tip of each modeled catheter. Each individual particle was 
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then tracked both backwards and forward in its motion within the fluid do-

main, thus recomposing the backward and forward segments in one trajec-

tory. As a result, shear-induced activation state is captured for all platelets 

entering or moving out from the distal tip and side holes. The evolution of 

the system was followed for a simulated time sufficient for all platelet-like 

particles to leave the fluid domain.  

Analysis of Recirculation 

Recirculation of dialyzed blood was evaluated by computationally label-

ling blood in the venous lumen of each catheter and solving a convection-

diffusion equation to quantify the percentage of labeled blood recirculating 

inside the arterial lumen. This allows to consider the transport of a well-

defined concentration of dialyzed blood as a problem of transport of a scalar; 

recirculation of dialyzed blood was then evaluated in terms of the quantity 

of scalar movement from the venous lumen of the catheter to the arterial 

lumen. 

Deflection of Dialyzed Blood away from the Venous Lumen 

 The average deflection angle for fluid pathlines exiting from the ve-

nous tip of each catheter was also calculated. This angle is defined as the 

angle that the local tangent at each pathline forms with respect to the long 

axis of the SVC model. 

Results  

Impact of Tip Design on Overall Catheter Hemodynamics  

Table 1 summarizes the local Reynolds numbers (Re) and proportions of 

flow within the distal lumens and side holes of all the catheter models. At 
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distal catheter tips local Re ranged from 104 - 515 in the arterial lumen and 

17 - 909 in the venous lumen; within side holes, the highest Re (515) was 

seen in the Palindrome catheter in the arterial configuration. Results sum-

marized in Table 1 demonstrate that the flow inside the catheter models at 

locations where intricate hemodynamics occur is laminar and that the as-

sumption of laminar flow for the present study is valid. Considering flow 

repartition among distal lumens and side holes, it can be observed in Table 

1 that both the number and size of side holes play a major role in the with-

draw phase, with the VectorFlow characterized by the lowest percentage of 

flow rate through side holes (44%), and the highest percentages for GlidePath 

(76%) and Palindrome (86%). As expected, blood moves out of the catheters 

predominately from the distal lumen (84% for VectorFlow, 78% for GlidePath 

and 74% for Palindrome). 

Analysis of Thrombogenic Flow Patterns  

A comprehensive visualization of the flow features characterizing the 

streaming of blood inside the catheters is presented in the supplementary 

material (please refer to animation movies available in the additional material 

describing fluid streamlines inside the arterial and venous lumen of Palin-

drome, GlidePath and VectorFlow catheters). Small reattachment/separa-

tion regions were observed downstream of the side holes. These regions were 

common to all catheters and were characterized by three-dimensional fluid 

structures differing in terms of extension and location, as determined by the 

different geometric characteristics. 

Flow separation regions were observed within the arterial lumen of all 

three catheter models, owing to the perturbation of flow from the distal tip 

and side holes. Figure 2 depicts the extent of flow separation regions along 

the arterial lumen catheter tip of Palindrome, GlidePath and VectorFlow, by 
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color-encoding the isosurfaces of blood velocity components with flow in the 

direction opposite to the main direction of the flow. Wide regions of flow 

separation downstream of the Palindrome side slot and close to the distal tip 

were observed both in forward and reversed line configurations. The 

GlidePath was characterized by small flow separation regions located down-

stream of the side holes and the distal tip in forward direction of flow, but 

when run in the reversed configuration a wide flow separation region was seen 

at the distal tip due to the geometric asymmetry from its distal guidewire 

aperture. The VectorFlow showed small regions of flow separation similar to 

the GlidePath when the catheter was run in the forward configuration; line 

reversal of the VectorFlow did not produce a discernable increase in flow 

separation (Figure 2). 

The GlidePath showed the highest percentage of inverted velocity within 

the arterial lumen (6.7% of blood volume in forward direction, 6.8% of blood 

volume in reversed direction) followed by Palindrome (5.6% forward, 5.6% 

reversed) and VectorFlow (3.3% forward, 3.7% reversed). Blood pathline 

analysis showed that the inverted velocity blood flow in the GlidePath derives 

also from geometric asymmetry of the distal guidewire aperture producing 

flow perturbation when run in reversed configuration. 

Analysis of Shear-Induced Platelet Activation 

To compare the shear-induced platelet activation potential of the cathe-

ters, the final PAS was calculated as the mean value of all the activation 

levels sustained by all platelet-like trajectories moving within the catheter 

lumens. Figure 3 shows mean PAS values in the arterial and venous lumen 

for each catheter model.  Platelets leaving the venous lumen experienced 

higher levels of activation than the arterial lumen. This feature is common 

to all the catheter models and it can be ascribed mainly to the high velocity 
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jet-like structures characterizing the outflow of the catheter ports. Marked 

differences in the mean PAS of the venous lumens were observed, with the 

Palindrome exhibiting venous lumen mean PAS levels (1.23 x 10-5) that were 

345% and 255% higher than the VectorFlow catheter (2.77 x 10-6) and the 

GlidePath (3.46 x 10-6) catheter, respectively. 

Within the arterial lumen, smaller differences between Palindrome, 

GlidePath and VectorFlow were observed (i.e., 1.32 x 10-6 for Palindrome, 

1.69 x 10-6 for GlidePath and 2.49 x 10-6 for VectorFlow). The highest differ-

ence was observed between mean arterial lumen PAS values of the Palin-

drome and VectorFlow (47%). Arterial and venous PAS values were averaged 

in order to assess the overall platelet activation potency of each catheter 

(dashed lines in Figure 3). As a result, the lowest overall PAS values were 

exhibited by GlidePath (2.63 x 10-6) and VectorFlow catheters (2.63 x 10-6) 

whereas the Palindrome exhibited an overall platelet activation potency (6.81 

x 10-6), 159% higher compared to the other catheter models. 

Analysis of Recirculation 

A negligible (less than 0.5%) level of recirculation was found to affect all 

the catheter models, independent of their design features. Relative to the 

other catheter designs, the VectorFlow recirculation potential was found to 

be the highest, even if well below the clinically relevant values. Similar values 

of recirculation were found in all three catheter models when run in reversed 

configuration (Figure 4).  

To further characterize the phenomenon of recirculation of dialyzed blood 

related to the design features of the devices, the mean deflection angle of 

pathlines moving out from the venous lumen was calculated at a distance 

from 1 to 5 SVC diameters from the catheter tip. The results are depicted in 
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Figure 5. By comparing deflection angles of pathlines in the different models, 

it is seen that the Palindrome model produces an approximately straight jet-

like structure moving out of the venous lumen (negative mean angle deflec-

tion between -0.2 and -0.94 degrees), while GlidePath design features deflect 

the streaming blood with larger angles (up to -9 degrees). The blood stream-

ing out of the VectorFlow is characterized by the presence of a markedly 

helical flow structure (Figure 5) with a maximal deflection angle of -14 de-

grees. This feature of the flow field is also confirmed by the switch from 

negative to positive deflection angles when venous outflow reaches two diam-

eters of distance from the catheter tip. 

From these findings, the low recirculation in the VectorFlow catheter can 

be attributed to a balancing effect of flow deflection from the design of its 

distal tip and the increased recirculation generated as a consequence of size, 

position and dimension of VectorFlow side holes. 

Discussion  

Chronic dialysis catheters remain widely utilized as a bridge for patients 

awaiting permanent access placement or maturation, and when remaining 

options for permanent access have been depleted.  In 2011 over 27% of prev-

alent dialysis patients in the United States had catheters, and approximately 

80% of patients initiating hemodialysis in the U.S. did so through a catheter 

(1). Despite widespread utilization, catheters are the least desirable form of 

access owing to higher rates of infection and dysfunction compared to grafts 

and fistulae (2).  

Until viable alternatives to catheters can be found, catheter performance 

needs to improve and catheter-related morbidity decrease. Various strategies 
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have been used including antithrombotic (14) and/or antimicrobial (15) sur-

face coatings, antimicrobial lock solutions (16) and catheter tip modifications 

intended to improve flow characteristics and decrease recirculation (17).  

Early hemodialysis catheter tip designs from the 1980s were step-tip con-

figurations, as typified by the Quinton-Mahurkar catheter. These catheters 

functioned well in the short term but required precise tip positioning to ena-

ble adequate flow (18).  Reversing line configurations in step-tip catheter 

designs produced recirculation levels exceeding 25%, attributed to the close 

proximity of the arterial and venous lumens, and vein wall apposition to the 

arterial lumen (19). A strategy of spatially separating venous and arterial 

lumens was employed by the Tesio catheter introduced in 1994, whereby the 

arterial and venous lumens were free-floating and completely independent of 

each other. In 1996, the Ash split catheter was developed, whereby the arte-

rial and venous lumens remained separate for a substantial portion of their 

tips but within a single device. The Tesio and Ash designs were less suscep-

tible to positioning problems, and recirculation was reduced given the physi-

cal separation between the arterial and venous lumens (5,20,21).  In 2005, 

the Palindrome symmetrical tip catheter was introduced, which enabled as-

piration and return of dialyzed blood through lumens that terminated at the 

same position within the device.  By offsetting the lumens 180 degrees and 

separating them through a septum with angled cross-cuts, the Palindrome 

catheter produced minimal admixture of arterial and venous blood, with low 

recirculation even when arterial and venous lines were reversed (22).  A recent 

randomized trial comparing the Palindrome catheter to a step-tip design 

found a significantly higher dysfunction-free catheter patency at 60 days fa-

voring the Palindrome (78.9% vs. 54.4%) (23).  
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Two additional symmetrical tip catheters have recently been introduced 

in the United States – the GlidePath in 2013 and the VectorFlow in 2014.  

The GlidePath has curved distal apertures on opposing sides of the catheter 

which are angled to minimize admixture of blood.  The VectorFlow has hel-

ically contoured arterial and venous apertures to produce a spiral, three-di-

mensional transition of blood entering and leaving the catheter; these vectors 

are opposed to minimize admixture of dialyzed and nondialyzed blood.  

No clinical trials have yet been performed to compare the performance of 

these three symmetrical tip catheters, therefore a comparison of these devices 

using computational fluid dynamics was sought to evaluate whether differ-

ences exist which could have clinical implications for the performance of these 

devices. Computational modeling is increasingly utilized in the development 

and assessment of medical devices, being able to simulate many complex 

physiologic conditions to generate data of medical device performance which 

would otherwise take months or years using bench and pre-clinical in vivo 

models.   

Flow within the shaft of a dual-lumen dialysis catheter is laminar, not-

withstanding complex flow structures may occur near the distal tip or side-

holes of a catheter. An important phenomenon in these devices is that of flow 

separation, whereby coherent patterns of laminar flow become disrupted by 

blood flowing in a direction opposite to the main direction of flow, forming a 

low velocity recirculation eddy. The resultant slowing and stagnation of the 

blood stream can promote thrombus formation and development (24).  The 

Palindrome catheter was found to have the largest regions of flow separation 

with these regions most prominent around the distal tip and the side-slots of 

the catheter.  The GlidePath and VectorFlow catheters had areas of flow 

separation which were similar to each other, although greater in number for 



 

 
203 

the GlidePath owing to its two additional sideholes (which are flow separa-

tion generators).  As seen in Figure 2, flow stagnation regions were found 

most prominently around catheter sideholes and terminal apertures where 

laminar flow entering from the catheter tip becomes interrupted by sidehole 

inflow with resultant areas of flow reversal (competitive flows).  The hole at 

the venous lumen tip of the GlidePath (used for guidewire insertion of the 

device) was also a prominent source of flow separation, in that line reversal 

of this device produced a marked increase in flow separation when this lumen 

was reversed in the arterial direction. 

The tendency of each device to cause shear-induced platelet activation 

and aggregation during typical flow conditions of dialysis was also compared, 

using a previously validated computational model (8,9). Historically, the de-

velopment of blood recirculating devices has focused on hemolysis as an indi-

cator of flow-induced blood trauma (25). More recent work has shown that 

device thrombogenicity is largely driven by platelet activation (26). Red 

blood cells are relatively resistant to mechanical effects of shear forces com-

pared to platelets; platelets are more rigid and experience shear-induced ac-

tivation at an order of magnitude less than what is required for hemolysis of 

red blood cells (26). We observed the highest potential for shear-induced 

platelet activation within the Palindrome catheter, with similarly lower levels 

within the GlidePath and VectorFlow catheters. 

Catheter recirculation decreases the efficiency of solute clearance, and can 

result in the need for longer dialysis.  Recirculation was very low with each 

studied catheter, with levels less than 1/20th of the K/DOQI threshold of 10% 

of clinically significant recirculation (27), and concordant with what has been 

reported with symmetrical tip catheters in animal and clinical studies (6, 23). 
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A previously studied design of the VectorFlow catheter without sideholes 

found the catheter had no detectable recirculation in CFD, bench and animal 

models of hemodialysis (9).  The lack of recirculation was attributed to the 

flow deflection that occurs from the helical transition zone at the distal tip 

of the device, whereby dialyzed blood is deflected away from the catheter in 

a vector 180-degrees away from blood entering the catheter. However, that 

design of the VectorFlow did not include side holes.   

In the current study, the flow deflection properties of each catheter were 

compared.  VectorFlow catheter (with sideholes) continues to produce a de-

flection of blood away from the catheter.  This phenomenon is not seen with 

the Palindrome catheter, as it does not have a flow-deflecting interface at the 

tip of the catheter to alter the vector of dialyzed blood leaving the catheter.  

The GlidePath catheter did produce a component of flow deflection at its tip, 

owing to the curvature of the distal lumens which change the direction of 

blood exiting the distal tip of the catheter (Figure 5). 

Our study has several limitations.  Catheters were compared at a single 

flow rate value (400 mL/minute) and may have observed differing perfor-

mance at varying flow rates. Current clinical practice is to place the tip of 

chronic dialysis catheters within the right atrium, whereas an SVC model 

was used to provide uniform conditions for catheter assessment and perfor-

mance comparison.  There is as yet no robust CFD model of the right atrium 

owing to wide variation in patient anatomy, the effects of inflow from the 

inferior vena cava, and the variation in blood flow and direction from the 

tricuspid valve. Notwithstanding the robustness of CFD modeling, clinical 

performance of these vascular devices can only be definitively compared only 

through well-designed, randomized prospective trials. Other possible limita-

tions could arise from assuming blood as a Newtonian fluid, while it is well 
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known that blood is a non-Newtonian fluid with a shear thinning behavior. 

However, previous findings (10) observed that shear rate values throughout 

the regions of interest inside hemodialysis catheters are high enough to ne-

glect the non-Newtonian blood behavior (8). Moreover, the Newtonian fluid 

hypothesis does not compromise the generality of the conclusions.   

In conclusion, substantial differences catheters performance were observed 

using CFD. The Palindrome catheter exhibited larger areas of flow stagnation 

owing to flow separation/reattachment from the combined effects of its distal 

tip and larger side-slots. It also showed the highest mean level of shear-in-

duced platelet activation potency.  Both attributes are considered risk factors 

for catheter thrombosis in clinical utilization.  All three catheters exhibited 

minimal recirculation; low recirculation seen with Palindrome and GlidePath 

is mostly attributable to the presence of a wide septum dividing arterial and 

venous lumens. Conversely, low recirculation seen with the VectorFlow was 

attributable to flow deflection from the design of its distal tip (even in the 

presence of a smaller interposed septum between lumens): this feature par-

tially cancels out the increased recirculation generated as a consequence of 

size, position and dimension of VectorFlow side holes).  These findings sug-

gest that catheter tip design remains an important functional attribute of 

symmetrical chronic dialysis catheters, and warrants further investigation in 

randomized clinical trials. 
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Figures 

 

Figure 1 

Three dimensional CAD models of the Palindrome, GlidePath and Vector-

Flow catheters prior to tetrahedral/hexahedral meshing for analysis using 

computational fluid dynamics.  The Palindrome catheter is completely sym-

metrical.  The GlidePath catheter is not perfectly symmetrical due to a guide-

wire aperture at the distal tip as part of the venous lumen, as well as offset 

sideholes.  The VectorFlow catheter has complete symmetry of its distal tip 

but offsetting of its sideholes. 
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Figure 2  
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Flow separation regions for Palindrome (1), GlidePath (2) and Vector-

Flow (3) in forward and reversed directions within the arterial lumen. The 

scale at the bottom of the image allows for quantitative analysis of the spa-

tial extension of regions of disturbed flow inside the lumen; areas of flow 

separation appear in green. Red arrows indicate the main direction of flow. 
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Figure 3  

Mean Platelet Activation State (PAS) values for venous (black) and arte-

rial (grey) lumens. Dashed line represents the average between arterial and 

venous PAS values. 
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Figure 4   Recirculation of the Palindrome, GlidePath and VectorFlow 

catheters in reversed and forward direction, as a percentage of access recir-

culation.  The dashed line denotes clinically significant recirculation as de-

fined by K/DOQI (2). 
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Figure 5: A.  Mean angle deflection of flow pathlines at a distance (d) of 

1 to 5 SVC diameters (D) downstream of the distal tip of the catheter in for-

ward configuration. 
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Figure 5:   

B) Representation of blood streamlines exiting venous lumen in Palindrome (top left), GlidePath 

(top right) and VectorFlow (bottom) colored by velocity magnitude (in m/s).  
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Tables 

Table1: Flow split and Reynolds number through distal tip and side holes.  

 

Arterial lu-
men 

 Reynolds Num-
ber 

Split Ra-
tio 

VectorFlow Distal Tip 496 53% 

 Side Holes 412 47% 

GlidePath Distal Tip 224 24% 

 Proximal Side 
Holes 

214 26% 

 
Distal Side 
Holes 401 49% 

Palindrome 
Distal Tip 

104 14% 

 Side Holes 515 86% 

Venous lu-
men 

 Reynolds Num-
ber 

Split Ra-
tio 

VectorFlow Distal Tip 909 84% 

 Side Holes 35 16% 

GlidePath Distal Tip 720 78% 

 Proximal Side 
Holes 

17 2% 

 Distal Side 
Holes 

48 20% 

Palindrome Distal Tip 547 73% 

 Side Holes 249 27% 
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Movies 

Movie 1: Evolving streamlines in the Palindrome arterial lumen, color coded 
with respect to Velocity Magnitude (m/s). 

Movie2: Evolving streamlines in the GlidePath arterial lumen color coded 
with respect to Velocity Magnitude (m/s). 

Movie 3: Evolving streamlines in the VectorFlow arterial lumen color coded 
with respect to Velocity Magnitude (m/s). 

Movie 4: Evolving streamlines in the Palindrome venous lumen, color coded 
with respect to Velocity Magnitude (m/s). 

Movie 5: Evolving streamlines in the GlidePath venous lumen, color coded 
with respect to Velocity Magnitude (m/s). 

Movie 6: Evolving streamlines in the VectorFlow venous lumen, color coded 
with respect to Velocity Magnitude (m/s). 
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Appendix 

Computational settings applied for catheters flow dynamics simulations 

The set of conditions applied at boundaries, taking device Palindrome as an ex-

ample, is schematized in Fig. E1. Each catheter model was coaxially placed inside a 

cylindrical conduit (18 mm in diameter) which representing the superior vena cava. 

To ensure fully developed velocity profiles at the inlet and to minimize the influence 

of outlet BCs, straight flow extensions were added both to the inlet and outlet faces 

of the model. Technically, 200 mm long inlet and 100 mm long outlet flow exten-

sions were added reaching a total axial extent of the computational domain of 480 

mm. More in detail, steady-state flow simulations were carried out imposing the fol-

lowing boundary conditions: (1) a constant 3 L/min flow rate was prescribed at the 

SVC inlet section (T1, Fig. E1) in terms of flat velocity profile; (2) reference pressure 

was set at the outlet section of the SVC (T2); (3) a constant flow rate of 400 mL/min 

was prescribed at the venous inlet section of the catheter (V1) in terms of flat velocity 

profile; (4) a flow rate value equal to 400 mL/min was prescribed as outflow bound-

ary condition at the arterial lumen of the catheter (A2) in terms of constant mass 

flow. All walls were assumed as rigid; the no-slip condition was applied. 
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Figure E1: Conditions applied at the permeable boundaries. Schematics of the 

virtual bench test setup for Palindrome model (representation is not in scale). T1 and 

T2 are tube inlet and tube outlet, V1 and V2 are the venous inlet and outlet, A2 and 

A1 are arterial inlet and outlet, respectively. Vs and As represent the venous and 

arterial side holes. 

 

For the finite volume method-based discrete solution of the governing 

equation of motion over the numerical grid, the segregated solver with SIM-

PLE scheme was used. Second Order accuracy was used for pressure and 

second order upwind for momentum. As for the quantification of access re-

circulation percentage, QUICK discretization scheme was applied for the con-

vection-diffusion scalar transport equation solved for the dialyzed labeled 

blood, guaranteeing optimal accuracy to the numerical problem solution. 

Convergence was accepted when the residuals of continuity and velocity, fell 

below 10– 6. Simulations have been run in 8-CPU workstation parallel-archi-

tecture (Linux environment with a SUN cluster SunFire X4450). 

Analysis of shear-induced platelet activation 

We utilized a method which performs a comprehensive analysis of plate-

let-like trajectories and their shear histories during flow through dual lumen 

catheter models. The analysis uses information extracted from numerical sim-

ulations to resolve the flow field through the models of dual lumen catheters. 

The extent to which these devices to mechanically induce activation/damage 

of platelets was evaluated using the Lagrangian-based blood damage cumu-

lative model proposed by Grigioni et al. (12).  The Lagrangian-based mathe-
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matical model is based on cellular damage theory, and accounts for the cu-

mulative load history sustained by formed elements exposed to time-depend-

ent stress levels. Originally developed for the evaluation of red blood cell 

mechanical damage (11) this model has since been adapted for the assessment 

of platelet activation state (PAS) under dynamic loading conditions (13). 

PAS quantifies the more global thrombogenic aspect of platelet prothrom-

binase activity, i.e., its contribution to thrombin generation.  Developed 

within a hemodynamic shearing system to produce shear stress damage to 

human platelets, PAS values are expressed as a fraction maximal prothom-

binase activity.  A mathematical model has since been validated with the 

human platelet assay to calculate PAS values.  Specifically, the activation 

state of the k-th platelet can be expressed as the integral sum of infinitesimal 

contributions:        
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where PASk (t0) is the value of activation of the k-th platelet at the start-

ing time of observation t0 (i.e., senescence, or previous damage history during 

previous passages through a vascular access device), τ  = τ (t) is the shear 

stress and a = 1.3198, b = 0.6256, C = 10-5 are the parameters of the model 

(14).  Using this formulation the shear history experienced by blood cells is 

resolved: the effects of the shear stresses previously sustained on the subse-

quent activation/damage (senescence) is captured by Eq. (1), and the integral 

sum inside the square brackets represents the mechanical load sustained by 

the k-th platelet moving along a specific trajectory from the initial instance.  

Over the whole dataset, we also calculated the mean PAS value for each 

time instant from the time of injection: 
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where Np is the number of platelets moving in the fluid domain.  
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