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Abstract

Improving the Global Navigation Satellite System (GNSS) receiver robustness in a radio interfered environment has been always one of the
main concerns for the GNSS community. Due to the weakness of the signal impinging the GNSS receiver antenna, GNSS receiver performance
can be seriously threatened by the presence of stronger interfering signals. In these scenarios, classical interference countermeasures may fail
due to the fact that interference detection and removal process causes also a non-negligible degradation of the received GNSS signal. This paper
introduces an innovative interference detection and mitigation technique against the well-known jamming threat. This technique is based on the
use of the Karhunen—Logve Transform (KLT) which allows for the representation of the received interfered signals in a transformed domain where
interference components can be better identified, isolated and removed, avoiding significant degradation of the useful GNSS signal.
© 2016 The Korean Institute of Communications Information Sciences. Production and Hosting by Elsevier B.V. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The effect of an interfering signal on the GNSS receiver per-
formance can vary from the increase of the noise on the pseudo-
ranges measurements, leading to large errors in the positioning
domain, up to the complete disruption of the GNSS receiver op-
eration thus causing the complete denial of the positioning ser-
vice. Intentional interference generated by the jammers, known
also as Personal Privacy Devices (PPDs), to the GNSS based
services has become recently the main concern for the GNSS
community. Such jammers can be easily purchased on-line even
for few dollars despite their use being illegal in the United
States and in several European Countries [1]. These devices
are capable of transmitting strong Radio Frequency (RF) power
overlapping a large part of the targeted GNSS frequency band
thus preventing the receivers from operating correctly within
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an area and causing hazardous outages of the GNSS based sys-
tems. Many documented incidents caused by PPDs have al-
ready occurred as for example, the infamous case at Newark
Airport where one of the Local Area Augmentation System
(LAAS) ground facility receiver was occasionally jammed by
a Personal Privacy Device (PPD) installed in a vehicle passing
along a nearby motorway [2].

Very detailed classification of existent civil GNSS jammers
can be found in [3,4] and in [5]. The RF signal transmitted
by most of the available in car jammers are chirp signals
with unidirectional or bidirectional, linear and positive sweep
functions.

Nowadays, professional GNSS receivers are equipped with
interference detection and mitigation algorithms capable of
dealing with a wide range of interfering signals. The adap-
tive notch filtering is the most known jamming mitigation algo-
rithm [6]. This low-complexity technique is based on the use of
a notch filter, characterized by a pass-band frequency response
which rejects a very narrow portion of spectrum in correspon-
dence of the interference frequency components, and an adap-
tive block tracking the instantaneous jamming frequency [7].
However, such a traditional countermeasure performs interfer-
ence detection and excision in the frequency domain only, lead-
ing to a not negligible distortion on the useful received GNSS
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signals. This paper introduces an innovative interference detec-
tion and mitigation algorithm based on the use of an advanced
signal processing technique: the Karhunen-Loeve Transform
(KLT). The KLT makes a projection of the digitized signal on
the eigenfunctions domain where interference components can
be better identified and isolated from the rest of the received
signal.

The paper is organized as follows: after a brief description
of the jamming signal characteristics and its signal model in
Section 2, the KLT based detection and mitigation algorithm
will be addressed in Section 3. A set of experimental test will
be described in Section 4 showing the benefits in improving
GNSS receiver robustness against jamming interference.

2. Jamming in GNSS: signal model

The composite digitized Intermediate Frequency (IF) signal
at the input of the baseband processing block of a GNSS
receiver under jamming interference can be modeled as

M—1
slnl= )" ym [T +i[nT] + nnTi] )

m=0

where y,, [nT;] identify the useful GNSS signal coming from
the mth Line-of-Sight (LoS) satellite, i [n7;] is the digitized
jamming signal component and 1 [1n7Ts] is the Additive White
Gaussian Noise (AWGN) term. Neglecting the satellite index
subscript for sake of simplicity of the notation, each useful
digital GNSS signal at IF can be expressed as

y[n] = v2C -d [nTy — nol - ¢ [nTy — no]
- cos 2m (fr1 + fa)nTs + 6p) )

where C is the power at the antenna port, d [nTs] is the
navigation data component, c[nT;] is the pseudo random
sequence for spreading the signal spectrum, while ng, f; and
0o are the received code delay, the Doppler frequency and the
phase introduced by the channel respectively. As mentioned in
the Introduction, the RF signal generated by the majority of the
available in-car PPDs is a chirp signal, which can be expressed,
according to the model in [4], as

i(t):a-sin[2n<f0+§t>t:| Vt:0<t<Ts 3)

where fj is the starting frequency, k is the sweeping frequency
rate, Ty, is the sweeping frequency period and a is the constant
chirp signal amplitude. Fig. | shows the spectrogram of a chirp
signal typically transmitted by an in-car jammer, characterized
by a linear frequency sweep of 14 MHz and by a sweep period
of 9 us.

3. Advanced signal processing algorithms: the transformed
domain techniques

The KLT based mitigation algorithm belongs to the family
of the transformed domain techniques, which are based on
the use of advanced signal processing techniques on the
digitized GNSS signal. Such techniques offer the possibility to
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Fig. 1. Spectrogram of the RF jamming signal transmitted by a typical in-car
cigarette lighter powered jammer.

perform interference detection and excision in a domain where
interference components can be better identified and removed
without causing large distortion of the received useful GNSS
signal.

Several examples of transformed domain techniques for
interference detection and mitigation can be found in literature,
such as those based on the use of the Short Time Fourier
Transform (STFT) [8], or those exploiting the properties of the
Wavelet Packet Decomposition (WPD) as in [9] and [10].

3.1. The Karhunen—Loéve transform

The KLT provides a decomposition of the digitized signal in
a vectorial space using orthonormal functions which can have
in principle any shape. The KLT decomposition of a general
time dependent function is given by

x() =Y Z;®; () )

j=1

where Z; are scalar random variables that are statistically
independent and &; (tr) are the basis functions, derived
from the covariance matrix of a digitized version of the
stochastic process x(¢). The KLT offers the better separation
between the deterministic components within the received
signal and the stochastic ones. The random variables Z; are
obtained projecting the given stochastic process x(¢) over the
corresponding eigenvector P; (1), as

+00
Z; = / x () ; (t)dt. @)

In [11] it s stated that the KLT is the only possible statistical
expansion in which all the expansion terms are uncorrelated
from each other.

3.2. KLT for interference detection and mitigation

First use of KLT for Continuous Wave Interference (CWI)
detection is described in [12], while application of the KLT
decomposition against pulsed interference has been proposed
first in [13]. The KLT decomposition has been implemented
according to the following steps:
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Fig. 2. Karhunen-Loeve decomposition of the GNSS received signal in
absence and in presence of narrow-band interference.

e computation of the Toeplitz matrix from N samples of the
autocorrelation Rgg[n] of the received signal s[r] in (1);

Res(0)  Rys(1) Rys(N)
Res(1)  Rys(0) Res(N — 1)

Rioe = Rss(2)  Rss(1) Rss(N —2) (6)
Rys(N) R(1)  Ry(0)

e determination of the eigenvalues A; of the Toeplitz matrix
Ryoe and of the related eigenfunctions @ ;[n] satisfying

Rioe @j[n] = A $j[n] @)
o determination of the Z; coefficients according to (5).

Fig. 2 shows the capability of the KLT in separating
the deterministic and stochastic components within the
decomposed signal.

In this case, the KLT decomposition is achieved by solving
the eigenvalues problem of the covariance matrix obtained from
100 ps of simulated Global Positioning System (GPS) C/A code
signal in two cases:

e interference-free environment;

e interfered with a Narrow-band Interference (NBI) signal
(10 kHz) centered on the intermediate frequency with a
power equal to —120 dBW;

Fig. 2 reports the trend of the normalized eigenvalues and
the coefficients Z; obtained from the KLT decomposition. It
is possible to notice that, the distribution of the eigenvalues
suggests a method for detecting interference. In fact, when the
interference is present there is a small number of eigenvalues
which have a great magnitude with respect to the others
(bottom plot), differently from the case of interference-
free environment (top plot). A detection method based on
the eigenvalues magnitude observation is proposed in [14].
Basically, the highest magnitude eigenvalues, which represent
the interference components, are detected and an inverse KLT
is applied considering only the eigenfunctions representative of
the noise in which the GNSS component is embedded.
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Fig. 3. KLT decomposition of the jammed interfered data in the GPS
L1/Galileo E1 frequency band.

4. Experimental results

In this section, a set of experimental results compares the
benefits of the KLT based mitigation algorithm with respect
to the traditional adaptive notch filter. Several data collection
of GNSS signals combined with realistic jamming signal at
RF have been fed to the software implemented mitigation
blocks in order to perform the desired signal conditioning.
A fully software GNSS receiver is adopted in order to
statistically assess the acquisition performance by means of
the Complementary Cumulative Distribution Function (CCDF),
computed with respect to the number of acquired Pseudo
Random Noises (PRNs). For this purpose, a large number of
signal acquisition tests have been performed on different and
uncorrelated portions of the signal at the output of the software
implemented KLT based block.

4.1. Jamming interference

Realistic GNSS data in the GPS L1/Galileo E1 frequency
bands interfered with the typical in-car jamming signal reported
in Fig. 1 have been considered. This dataset has been down-
converted to an IF of 28.42 MHz and collected at a rate of
112 MHz exploiting a discrete component front-end with 30
MHz IF filter bandwidth. Jamming power is set constant thus
simulating a GNSS receiver within the PPD effective range
defined in [10]. The KLT decomposition of such interfered
dataset is reported in Fig. 3 where the Z; coefficients, the
cumulative energy function and the nominal energy threshold
are reported.

The cumulative energy function is the energy of the
reconstructed signal excluding the first L highest magnitude Z
coefficients. From the distribution of the Z; coefficients (green
dashed line) it is possible to observe that the strong jamming
signal is spread over several eigenfunctions, and according
to the energy based criterion, attenuation of the jamming
interference can be achieved discarding the first 470 highest
magnitude Z; over 1000 computed coefficients. According to
this choice, the energy of the reconstructed signals equates the
nominal energy threshold (intersection point shown in Fig. 3).
A comparison between the Power Spectral Density (PSD) of
the received signal before (blue curve) and after (red curve) the
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Fig. 4. PSD comparison between the jammed dataset before and after the KLT
based mitigation algorithm.
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Fig. 5. Complementary Cumulative Distribution function of the number of
acquired PRNs in the GPS L1 frequency band: Adaptive notch filtering vs KLT
based method.

jamming removal by means of the KLT is reported in Fig. 4,
while the achieved CCDF is reported in Fig. 5.

The use of the KLT improves considerably the acquisition
performance, as demonstrated by the CCDF over the number
of acquired PRN. In fact, acquisition of more than 4 PRNs
happens with 100% probability (blue bar chart) in case
jamming mitigation is performed by means of the KLT based
algorithm, while when adaptive notch filtering is employed,
more than 4 PRNs are detected with 82% of probability.

5. Conclusions

This paper demonstrated the capability of the use of a
transformed domain technique based on the use of the KLT.
By means of the KLT the signal is projected on the subspace
spanned by the eigenfunction where interference components
can be better identified and extracted from the received signal,
avoiding a large degradation on the useful GNSS signal.
Although the KLT-based method offers good performance in
mitigating the interference, the computational burden of its
implementation is quite heavy especially with respect to the

traditional interference countermeasures. The complexity of the
KLT is mainly caused by the eigenvalues problem that has to
be solved. As mentioned in [11], if N is the length of the
autocorrelation, N2 is the number of calculation requested to
find the KLT. Although the use of the KLT is unsuitable for
real-time processing, it can be considered a powerful tool for
post processing operation for those applications where careful
analysis of the interference environment on jamming critical
area is required; in fact, according to the energy criterion
for the eigenvalues—eigenfunctions selection, it is possible to
reconstruct a synthetic version of the interfering signal from an
inverse KLT starting from the eigenfunctions which contain the
jamming information only.
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