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Abstract—Content caching on the edge of 5G networks is
an emerging and critical feature to support the thirst for
content of future connected cars. Yet, the compactization of 5G
cells, the finite edge storage capacity and the need for content
availability while driving motivate the need to develop smart
edge caching strategies adapted to the mobility characteristics
of connected cars. In this paper, we propose a Mobility-Aware
Probabilistic (MAP) scheme, which optimally caches content at
edge nodes where connected vehicles mostly require it. Unlike
blind popularity decisions, the probabilistic caching used by
MAP considers vehicular trajectory predictions as well as content
service time by edge nodes. We evaluate our approach on realistic
mobility datasets and against popularity-based edge approaches.
Our MAP edge caching scheme provides up to 30% enhanced
content availability, 30% increased throughput, and 35% reduced
backhaul overhead compared to popularity-based strategies.

I. INTRODUCTION

Connected cars are considered by drivers as a projection of
their home on the road, and the same connectivity and content
access services are expected. Accordingly, any future large-
scale deployment of connected cars will require a significant
redesign of the architecture of communication networks in
order to support the required connectivity and capacity for
cloud-based content and applications. Content providers are
gradually migrating their content items from the cloud to the
edge of communication networks to bring them as close as
possible to connected cars in order to reduce delay and network
overhead.

A major limitation of this approach is that edge nodes do
not have the same storage flexibility as the cloud, and efficient
strategies have to be developed to store the right content at an
edge node required by the users under its coverage. Moreover,
the thirst for wireless capacity has led to a reduced coverage
size of edge nodes, which requires content to be replicated in
multiple edge nodes to sustain user demands. The design of
caching policies has therefore been widely investigated in the
past [1], [2], [3], [4], [5] since caching is considered one of the
most efficient ways to decrease the access delay to the content
and to decrease the congestion in the network. Indeed, effects
are beneficial both for the users, who have a better quality of
experience, and the network operator, which can better exploit
network resources.

Yet, connected cars add further challenges to edge caching
strategies. They are, after all, highly-mobile vehicles and such
mobility requires storage strategies to be optimized not to the
current content popularity, but, instead, to the expected content
popularity among future users about to enter the coverage
of edge nodes. Furthermore, the dynamics of connected cars
augmented by the limited coverage size of edge nodes require

content to be stored where connected vehicle have a chance
to actually download it, say in slow-motion areas, such as
congested intersections. All these aspects create a challenging
triumvirate for edge caching for connected vehicles: low cov-
erage, low storage capacity and high mobility. Tackling such
a triumvirate requires edge caching strategies to be adapted to
vehicular mobility and connectivity.

In the past, mobility-based caching policies have been
investigated, such as in [6], [7], but they require a full
knowledge of the trajectory of each vehicle. This may be
raise concerns about drivers’ privacy. Also, most of caching
policies (as the ones in [1], [8], [9]) are not tailored to in-
sequence delivery of content, typically required by future on-
board streaming applications. A major design challenge for
caching policies is therefore to rely only on coarse mobility
information (sequences of waypoints, dwell time, etc.), while
supporting in-sequence content delivery.

In this paper, we propose a Mobility-Aware Probabilistic
(MAP) edge caching strategy specifically adapted to highly
dynamic environments with a coarse knowledge of vehicular
trajectories. The peculiarities of the scenario addressed in our
work are two. First, we consider a data streaming application
in which the content is divided into chunks and the download
process is strongly correlated within each EN, since chunks
should be delivered in sequence. Second, mobility introduces
another level of correlation in the request process among dif-
ferent ENs. Indeed, unlike classical works on caching systems
in which the content popularity is stationary over space and
time, here the instantaneous popularity of a chunk in an EN
depends on the actual temporal and spatial trajectory of all the
vehicles interested in the corresponding content.

Our contributions are manyfold: i) we introduce a split con-
tent caching architecture, with an Area Controller (AC) located
in the backhaul and content caches located on edge nodes; ii)
we describe a simple analytical model capable of predicting the
probability for content to be required at specific edge nodes;
iii) we leverage the previous model to develop a mobility-
aware edge caching strategy; iv) we evaluate our solution under
a realistic urban traffic dataset of the city of Bologna. Our
proposed MAP architecture yields a 30% improvement in hit
probability and overall throughput, and reduces the backhaul
traffic by 35%, compared to pure popularity-based caching.

The rest of the paper is organized as follows. In Section II,
we describe our scenario and edge caching system. Section III
introduces the proposed MAP edge caching strategy, while
Section IV provides performance evaluations of MAP. We
discuss related work in Section V. Finally, in Section VI we
conclude the paper and shed light on future directions in edge
caching for connected cars.
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Fig. 1: Caching scheme for a car traversing 3 edge nodes.

II. SYSTEM SCENARIO

We consider an urban environment where cars can connect
to Edge Nodes (ENs) (e.g., cellular base stations, APs, roadside
units) in order to download data content. ENs are equipped
with caches where content can be stored so as to ensure a
swift service to passing-by vehicular users. In particular, in
this work we focus on streaming traffic for which in-order
packet delivery should be ensured. We therefore consider that
each content item is composed of K chunks, which, for the
sake of simplicity, we assume to be of equal size. We also
assume each chunk to be identified by a sequence number, k,
with 1 ≤ k ≤ K.

As shown in Fig. 1, a group of nearby ENs are controlled
by an Area Controller (AC), which resides in the network
backhaul. We assume that the AC knows or can predict the ENs
that a car will traverse in the next few minutes, and knows the
distribution of the dwell time under each of them (e.g., based
on past measurements). The AC is also aware of the available
room in the caches of ENs and of content requests made by
the passing-by users. Based on such information, the AC can
define which chunks of which content each EN should cache
and instruct ENs accordingly.

Upon entering the coverage area of an EN, the streaming
application of a vehicular user requests a new batch of chunks,
indicating the content item it is receiving and the chunk
number s from which it expects the streaming to resume. The
EN checks whether it caches chunk number s or it needs
to download it from the backhaul, an operation which is
obviously costly in terms of bandwidth and latency. When the
chunk is delivered, the EN proceeds to send the next chunk,
resorting once more to the backhaul if its own cache does not
store it.

We are interested in establishing an efficient strategy to
store content chunks at ENs so as to ensure that vehicular
users receive prompt, high-throughput content transfers and
that the requested data is fetched directly from ENs with high
probability, rather than from the backhaul.

III. MOBILITY-AWARE PROBABILISTIC (MAP) CACHING

As a first step, we theoretically evaluate the probability that
a specific chunk is downloaded from an EN by a tagged car.
We then leverage this probability to define our caching scheme.
Indeed, our approach consists in letting each EN store those
chunks whose probability to be downloaded by a car is above
a given threshold.

A. Chunk download probability

Let us focus on one car and one specific piece of content
that the vehicular user wishes to download from the ENs it
will pass by. We define E as the set of ENs that should serve
vehicular user and |E| its cardinality. We also consider that E
is ordered according to which EN will be visited first by the
tagged car.

We start by defining the chunk delivery process under
the idealistic assumption that all ENs can cache the whole
content, i.e., any chunk can be available at any EN ∈ E .
This assumption of unlimited cache size is aimed at devising
a simple model that will be tailored to finite cache sizes in
Section III-C.

Let Yi be the random variable representing the last chunk
received from EN i ≥ 1, and let Y0 = 0 by definition. Then
the set of chunks downloaded from EN i is given by: {k|k ∈
(Yi−1, Yi]}. Thus the probability that chunk k is downloaded
from EN i ≥ 1 is, for any k ∈ {1, . . . ,K},

φi(k)=P (k ∈ (Yi−1, Yi]) =P (Yi ≥ k ∧ Yi−1 < k) (1)

Let Xi be the random variable representing the total
number of chunks downloaded from EN i by the tagged car.
The probability density function (pdf) of Xi depends mainly on
two factors: (1) the mobility of the car, since, e.g., longer dwell
times under the EN coverage typically imply larger amounts
of download data, and (2) the actual throughput obtained by
the vehicular user when connected to the EN, which in its turn
depends on the wireless data rate and on channel contention.
In Section IV-A, we will describe how to compute the pdf of
Xi in the reference scenario under study.

Based on our definitions, it is easy to see that for i ≥ 1,

Yi = Yi−1 +Xi =

i∑
j=1

Xj . (2)

The following theorem relates the download probability φi(k)
to Xi.

Theorem 1: Given a car traversing a sequence of ENs, E ,
the probability to download a specific chunk k from EN i,
with 1 ≤ i ≤ |E|, can be expressed as

φi(k) =

k−1∑
n=1

P (Xi ≥ k − n)P (Yi−1 = n) . (3)

Proof: Given (2), we can write (1), for any i ≥ 1, as:

φi(k) = P (Yi−1 +Xi ≥ k ∧ Yi−1 < k)

=

k−1∑
n=1

P (Xi ≥ k − Yi−1|Yi−1 = n)P (Yi−1 = n)

=

k−1∑
n=1

P (Xi ≥ k − n)P (Yi−1 = n) .

Note that, as expected, for i = 1 the expression in (3)
becomes φ1(k) = P(X1 ≥ k) since the tagged car will
download chunk k from the first EN only if the total amount



of downloaded chunks from EN 1 is greater than k. Also, we
remark that φi(k) is not a discrete probability density function.
Indeed, thanks to the well-known property of the expectation
of non-negative integer random variables, we have:

Property 1:
∑K

k=1 φi(k) = E[Xi] .

The following corollary holds when the car dwell times
under the ENs are i.i.d. random variables. We remark that this
case is practically relevant as it reflects situations in which the
ENs cover areas with similar characteristics (i.e., propagation
conditions, presence/absence of traffic lights and road signs,
same number of lanes, etc.).

Corollary 1: Let the random variables Xi’s be i.i.d. and
defined on a positive support. Let fX(k) be their discrete pdf.
Then, for any i ≥ 1, we have:

φi(k) = (fX ∗ φi−1) (k) (4)

where ∗ is the convolution operator.

Proof: When Xi’s are i.i.d., φi(k) =∑k−1
n=1 P (X ≥ k − n)P (Yi−1 = n). Thus, (3) can be

rewritten as:

φi(k)=

k−1∑
n=1

P (X ≥ k − n)
n∑

t=1

P (X = t|Yi−2 = n− t) ·

P (Yi−2 = n− t))

z=n−t
=

k−1∑
z=1

P (X ≥ (k − t)− z) ·

k−1∑
t=1

P (X = t|Yi−2 = z)P (Yi−2 = z)

=

k−1∑
t=1

P (X = t) ·

k−1∑
z=1

P (X ≥ (k − t)− z)P (Yi−2 = z)

= (fX ∗ φi−1)(k) . (5)

B. Download probability in a toy scenario

To better clarify the behavior of the download probability
at each EN, consider a toy scenario in which a car traverses
four ENs. We assume i.i.d. Xi’s with a symmetric triangular
distribution and mean value equal to 10 chunks, i.e., the
average number of chunks downloaded at each EN is 10.
Fig. 2 shows the download probabilities φi(k) at each EN
for each chunk k. From Fig. 2 we can observe that, at the first
EN, φ1(k) decreases as k increases since the randomness in
the mobility reduces the probability of downloading farther
chunks. Due to the limited support of the distribution of
X1, φ1(k) becomes zero for k ≥ 20 chunks. At the second
EN, φ2(k) is now bell-shaped, since values of k close to
zero correspond to the case in which X1 takes very small
values (which is unlikely), i.e., the car speed is very high
under the coverage of the first EN, hence the car does not
have enough time to download any chunk. The maximum is
obtained around 15, which is reasonable since in the case of
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Fig. 2: Download probability for each EN and overall down-
load probability, pk, for the MAP caching policy, given τ = 0.8
and E[Xi] = 10 chunks.

deterministic mobility with Xi = 10 chunks for any i, the
chunks to be downloaded would be exactly in the interval
[10, 20], which is symmetric around 15. The chunk download
probability from the following ENs (i > 2) still exhibits a
bell-shaped behavior, but with an expanded support. This is
due to the larger uncertainty on downloading a tagged chunk
from a given EN, which, in its turn, is due to the increased
randomness in the number of previously delivered chunks.

C. Finite cache size

The above model can be refined to consider the actual room
that will be available in the cache for the data that an EN
should store. Let Mi be the maximum amount of data that
can be stored in the cache of EN i for the considered content.
Then we can introduce a discrete random variable, X̂i, which
represents the total number of cached chunks downloaded from
EN i by the tagged car, given the available room in the cache
of EN i. The pdf of X̂i is given by:

P
(
X̂i = x

)
=

{ P(Xi = x) ∀ 0 ≤ x < Mi

P(Xi ≥ x) x =Mi

0 ∀x > Mi .

Indeed, it is not possible to download more than Mi cached
chunks, and the events corresponding to a number of down-
loaded chunks larger than Mi in the original model with
unlimited cache size, now correspond to downloading all the
Mi available chunks. The tagged car can of course download
more than Mi chunks from EN i, provided that the chunks in
excess are actually fetched by EN i from the backhaul (i.e.,
they were not available in the cache).

Given the above distribution, the probabilities φi(k) can be
computed as in (3), or as in (5) when X̂i’s are i.i.d.

D. Caching scheme

We now define our caching scheme, i.e., for each chunk we
determine which ENs should store it. The goal of our scheme
is to ensure that the probability with which a tagged car can



download a chunk from one of the EN caches is greater than
a given threshold τ , so as to reduce the need to fetch chunks
from the backhaul. For each chunk, our scheme thus identifies
the minimum set of ENs that should cache it so that such
probability exceeds threshold τ .

To this end, for each chunk k we first order the probabilities
φi(k) in decreasing order. Then, chunk k should be stored
at the EN i corresponding to the highest φi(k) value. If this
value is already greater than τ , no other EN should cache k.
Otherwise, the EN corresponding to the second top value of
φi(k) should store the chunk too. Eventually, chunk k will be
cached at as many ENs, associated to the top φi(k) values,
as necessary so that the sum of their φi(k) exceeds τ . The
scheme is reported in Algorithm 1, which, for each chunk k,
returns the set of ENs, S(k), that should store k.

Algorithm 1 MAP caching algorithm

Require: τ , {φi(k)}i,k
1: for k = 1, . . . ,K do
2: S(k) = ∅, pk = 0
3: F(k)← {φi(k)}i
4: while F(k) 6= ∅ and pk < τ do
5: ptop ← remove the highest value from F(k)
6: itop ← EN index corresponding to ptop probability
7: pk = pk + ptop
8: S(k) = S(k) ∪ {itop}
9: end while

10: end for
11: return {S(k)}k

At the end of procedure, pk represents the estimated
download probability based on the actual number of copies
for chunk k; by construction, we have pk ≥ τ . In the example
of Fig. 2, we show the pk obtained in our toy scenario and
assuming a simple triangular distribution for Xi. Note that
the non-monotonic behavior is due to the different number of
copies that are stored at the ENs for different chunks. Intu-
itively, as k increases, the uncertainty about the possibility to
download chunk k increases, thus the MAP caching algorithm
compensates by creating a higher number of copies. Any time
the number of copies increases, we observe an upward spike
in pk.

Whenever a car enters the coverage area of an EN request-
ing a new content item, the EN contacts the AC. Based on the
predicted car mobility, the controller determines the set E and
then, using the above MAP algorithm, computes the set S(k)
for each chunk of the requested content. It thus instructs the
ENs in E accordingly, about which chunks they should store
for the new user. As the car proceeds along its route, the AC
predicts the new sets of ENs that will be traversed by the car
and notifies them about the corresponding new S(k) (i.e., the
chunks to store), until the content downloading is completed.

Next, consider the more general scenario where an EN
should serve multiple cars. Since ENs have finite cache sizes,
a caching policy is needed to determine which chunks should
be evicted in the case where the cache is full and new chunks
should be inserted. To this end, we propose a Least Frequently
Used (LFU) policy, where the “use” of a chunk refers to it
being sent to a vehicle under coverage of the EN. In particular,

Fig. 3: Reference scenario: road topology in the city of
Bologna. Circles represent RSU locations. Distances are ex-
pressed in meters.

in order to cope with a time-varying demand, we let an
EN always insert any new chunk(s) in the cache as per AC
instructions. If the cache is full, the EN makes room in the
cache by evicting the chunks that have been requested, and
actually transmitted by the EN toward passing-by cars, the
least number of times.

IV. PERFORMANCE EVALUATION

We now introduce the scenario and real-world vehicular
traces that we have used to assess the performance of our solu-
tion. Then we compare the MAP scheme against a popularity-
based solution in terms of some relevant performance metrics.

A. Reference scenario

We consider an urban environment where Internet connec-
tivity to cars is provided by WAVE roadside units (RSUs).
Each RSU is equipped with a cache and acts as an EN. In
order to represent real-world conditions, we take as reference
scenario a 2 km × 2 km urban section of the Italian city of
Bologna, illustrated in Fig. 3. The vehicular mobility traces
correspond to a dataset adjusted to real traffic by Bieker et
al. [10], using real Origin-Destination matrices and traffic
detectors at intersections. The total trace duration is 78.6
minutes comprising 11,079 vehicles (approximately, 950 are
simultaneously on the map) and representing 120 minutes of
the morning rush hours.

In this scenario, we select the east-north corridor, corre-
sponding to a major traffic artery of this section of Bologna,
and place five RSUs along it (represented as circles in Fig. 3).
All RSUs are placed in correspondence of intersections reg-
ulated by a traffic light, have the same cache size and radio
range equal to 100 m. The overall number of cars that were
observed to enter the coverage of at least two RSUs were 2,199
and our investigation focuses on such subset of cars.

Given the vehicular traces, for each RSU we derived the
pdfs of car dwell times, conditioned to the car stopping on
red light and to the car going through green light. We then
used such pdfs to obtain the predicted dwell time at the AC,
for a car under a given RSU. Table I reports the number of



TABLE I: Number of vehicles stopping on red light and going
through green light at each RSU

RSU1 RSU2 RSU3 RSU4 RSU5
Green Red Green Red Green Red Green Red Green Red
423 1036 1084 704 281 323 137 274 18 118

TABLE II: Average number of users under each RSU

RSU1 RSU2 RSU3 RSU4 RSU5
23.75 15.26 7.28 6.94 3.18

vehicles that, according to our mobility traces, stop on red light
and go through green light at the intersections covered by the
deployed RSUs. The average number of vehicles under each
RSU is presented in Table II.

Furthermore, we consider that RSUs serve the vehicular
users under coverage by devoting the same amount of time
to each of them. Indeed, according to the WAVE standard,
RSUs adopt the IEEE 802.11p MAC protocol, which provides
temporal fairness to traffic flows belonging to the same access
category. Thus, in order to determine Xi for each connected
car, we scale the car dwell time distribution dividing it by the
average number of cars served by RSU i and multiplying it
by the average data rate that a car experiences while being
under coverage of RSU i. Finally, we evaluate X̂i to take into
account the finite cache, according to the formula discussed in
Section III-C.

Figs. 4 and 5 depict the distribution corresponding to X̂1

and X̂3 in the considered traces, when the cache size is set
equal to 600 chunks. For the first RSU, Fig. 4 shows that “red
cars” (i.e., vehicles stopping on red light) and “green cars”
(i.e., vehicles going through green light) can download, on
average, around 200 chunks and 80 chunks, respectively. The
difference between these values is clearly due to the different
average speed of the cars when under coverage. Observing the
average number of vehicles in Table II, RSU 1 is expected to
be located at a very congested intersection. Indeed, only very
few red cars experience a large enough dwell time and a small
channel contention that would allow them to download all the
600 chunks stored in the cache. RSU 3, instead, appears to
be located at a much less congested intersection, according to
Table II. This implies a lower channel contention, hence, a
higher download capability, as shown in Fig. 5. Indeed, under
RSU 3, green cars are able to download at least 140 chunks,
with an average around 200, whereas most of the red cars
download around 600 chunks, i.e., the maximum number of
chunks available in the cache. For the sake of brevity, we omit
the distribution of the number of chunks downloaded from the
other RSUs, but we mention that X̂2 behaves very similarly to
X̂1, while X̂4 and X̂5 are very similar to X̂3. This is due to
their similar levels of congestion, coherently with the values
reported in Table II.

B. Methodology

We have investigated the performance of our MAP caching
scheme by simulating the vehicular traffic according to the
mobility trace of Bologna. In our discrete-event simulator,
developed using OMNeT++ [11] libraries, we have modeled
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Fig. 5: Cumulative density function of the number of down-
loaded chunks X̂3 measured in the trace, based on the
red/green classification at RSU 3.

the backhaul network with fixed propagation delays to access
the content server, whereas the wireless access network has
been modeled in terms of communication data rates and
channel contention. RSUs use IEEE 802.11p at the MAC
and physical layer, and operate on a 10 MHz-wide frequency
channel.

Regarding the content request process, each time a new car
enters the coverage of an RSU for the first time, it generates a
request for a content item. We assume that such item is chosen
at random according to a Zipf’s distribution with exponent
α = 0.5. The size of content item is 600 chunks, with each
chunk being 10 kbytes large.

In our simulations, we compare the performance of the
MAP caching scheme to that of the classical policy (denoted
by POP in the following). According to POP, the cache stores
the most popular content items. In our streaming scenario,
where content items are divided into chunks, we assume that
the POP policy stores the chunks of the most popular item in
sequence; thus, if no room is available for the whole item, only
the first chunks of it are stored until the cache is full. We have
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considered the POP policy since, under a stationary content
request process feeding a single cache, it is well known to be
the optimal in terms of hit probability.

The performance metrics we consider are as follows:

• cache throughput: amount of data received by the car
and directly downloaded from the cache, i.e., in the
event of a cache hit;

• cache hit probability: fraction of chunk requests that
are satisfied by directly downloading the chunk from
the cache;

• backhaul bandwidth: amount of data downloaded from
the server in the backhaul per time unit, i.e., in the
event of a cache miss;

• total throughput: total amount of data received by cars
per time unit, obtained as the sum of cache throughput
and backhaul bandwidth.

C. Simulation results

As a preliminary step, we have investigated the effect of
the threshold τ adopted in the definition of our MAP policy.
Fig. 6 shows the average cache throughput for different values
of τ given a cache size equal to 1800 chunks. Intuitively, one
would expect that, in a cache system with infinite cache size,
large values of τ should imply that every chunk is stored
across all caches. However, the finite size of caches limits
the effectiveness of this approach (almost oblivious of car
mobility). Thus, when τ is close to one, MAP, which is very
sensitive of the mobility, instructs the RSUs to store just few
copies for the first chunks (for which the effect of mobility
can be estimated with higher confidence), and an increasing
number of copies for the remaining chunks, so as to satisfy the
minimum download probability τ . From Fig. 6, it can be seen
that in our scenario the best value of τ is equal to 0.9; this
value appears to be optimal also for all the other cache sizes
we considered in our simulations. Thus, we use this value in
all of the following results.

Fig. 7 depicts the cache throughput as a function of the
cache size, for the POP and the MAP caching schemes. As
expected, larger cache sizes improve the performance of both

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 1000  1500  2000  2500  3000  3500  4000

C
ac

h
e 

th
ro

u
g
h
p
u
t 

[M
b
p
s]

Cache size [# chunks]

MAP
POP

Fig. 7: Cache throughput.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1000  1500  2000  2500  3000  3500  4000

C
ac

h
e 

d
o
w

n
lo

ad
 p

ro
b
ab

il
it

y

Cache size [# chunks]

MAP
POP

Fig. 8: Cache hit probability.

caching schemes. However, MAP outperforms POP by 30%-
40%, regardless of the cache size. This is due to the higher
effectiveness of the MAP policy, which tends to store chunks
only in those RSUs from where they can be downloaded with
high probability, taking into account the channel contention
and the dwell time statistics. Indeed, Fig. 8 shows that the
cache hit probability on the cache for MAP is 30% higher
than POP, which is oblivious of mobility.

The performance gain provided by MAP over POP can be
observed also in terms of backhaul bandwidth, since the higher
hit probability of MAP implies a lower probability to access
the server and retrieve the content from there. Fig. 9 shows
that the reduction of the used backhaul bandwidth obtained
when MAP is applied is around 35%. Clearly, such reduction
leads to a lower backhaul congestion. Finally, Fig. 10 presents
the overall system throughput, accounting for both the chunks
downloaded from a cache and from the backhaul. This value
must be compared with the maximum throughput achievable in
the overall network, which is equal to 28.7 Mbit/s (i.e., around
5.7 Mbit/s, which is the average data rate we observed at the
application layer, times 5 RSUs). This value would be achieved
for infinite cache sizes, independently of content popularity or
car mobility.

We remark that, while deriving our results, we considered
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Fig. 9: Backhaul bandwidth.
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Fig. 10: Total throughput.

that the AC has just a rough estimate of vehicle mobility, since
it predicts only whether a car will stop on red or will go
through green light, and then leverages the pdf of the dwell
time under each RSU conditioned to the status of the traffic
light. Still, MAP significantly outperforms the popularity-
based solution. We expect that greater improvements can be
obtained if a more accurate mobility prediction is available at
the AC.

V. RELATED WORK

In the context of cellular networks, [8] devises an optimal
geographic caching assuming that a user is covered by multiple
base stations; this case is different from our work, since
we do not consider overlapping coverage areas among ENs.
Furthermore, [8] proposes an optimal probabilistic content
placement policy that maximizes the total hit probability for
random network topologies, based on content popularity. Thus,
the policy there is oblivious of the actual mobility pattern of
users, differently from our MAP policy. In a hybrid scenario
comprising MANET and cellular networks, [9] proposes an
optimal caching and routing policies. Each node estimates
locally the content popularity and stores the content in the
cache based on its popularity. This scheme can be considered
as a distributed implementation of the POP policy that we use
for comparison in our work.

For the specific case of cellular backhaul networks, [12]
investigates the effect of different criteria to identify the web
content adopted when accessing the caching system. The main
idea is to avoid duplicated content items in the caches, since
those same items could appear with different identifiers at
application level. In our scenario, instead, we specifically con-
sider the streaming of content through a chunk-based approach,
for which we assume that each chunk and each content item
are univocally identified.

We remark that all the above cited caching schemes are
oblivious of user mobility. Instead, in our work we assume
that cars trajectories are known in a rough way, through the
sequence of ENs traversed by cars. This information can
be deduced from car navigation systems or it can be easily
predicted. For example, studies such as [13] and [14] suggest
that people usually drive on familiar routes (drive to work,
school, etc.) and this can be exploited to develop quite accurate
prediction models. On this regard, [15] proposes a mobility
prediction scheme, based on the previous history of users,
which improves content distribution in vehicular networks
through simpler handover procedures.

Few works have investigated caching schemes specifically
taking into account user mobility. The authors in [6] consider a
scenario very similar to ours, based on an architecture denoted
as “MobilityFirst”, introduced in [16], which ensures seamless
mobile content delivery when users move across the network.
Thanks to a global identifier associated to each user, the user
mobility is recorded at each node. In terms of caching, each
node is equipped with two distinct buffers. The first one caches
the most popular content items, exactly as the POP policy
considered in our work. The second buffer is instead devoted
to store the content based on a prefetching policy leveraging
the predicted sequence of nodes traversed by each particular
user. A similar prefetching policy is proposed by [7] in a
cellular network scenario. Similarly to our work, the content
is delivered to users by base stations using a chunk-based
approach. The specific mobility of each user is considered in
order to identify the chunks to prefetch in the caches along the
user path. Unlike our work, however, both [6] and [7] assume
that the caching policy knows or predicts the spatial and
temporal trajectory of each user, in order to estimate the time
intervals in which the user will be covered by each base station.
Our approach instead requires to know just the distribution of
the dwell times under each edge node at aggregate level. This
distribution can be estimated locally by each EN and does not
require at all the precise knowledge of the car trajectory: only
the sequence of ENs is needed. This simplifies the prediction
process and goes a long way toward preserving the privacy of
users.

VI. CONCLUSIONS

In this paper we have studied the problem of efficiently
providing connected cars with streaming data as they drive
along a road covered by wireless edge nodes. Using a Mobility-
Aware Probabilistic (MAP) edge caching strategy, we let a
central controller determine the content of edge node caches
by predicting the probability for content to be required at
each edge node. The controller can base such prediction upon
the achievable data rates and the distribution of dwell times
of vehicles under the coverage of edge nodes. Our scheme



was designed to allow an operator to select a minimum set
of edge nodes that should cache the content achieving a
desired delivery probability without having to fetch it from the
backhaul. We have tested the MAP strategy with real traces
from the city of Bologna dataset and registered significant
improvements in content availability, throughput and backhaul
overhead with respect to popularity-based strategies.
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