
POLITECNICO DI TORINO
SCUOLA DI DOTTORATO

Dottorato in Ingegneria Informatica e dei Sistemi – XXVII ciclo

Tesi di Dottorato

User-friendly Formal Methods for
Security-aware Applications and

Protocols

Piergiuseppe Bettassa Copet

Tutore Coordinatore del corso di dottorato
prof. Riccardo Sisto prof. Matteo Sonza Reorda

2016

Abstract
Formal support in the design and implementation of security-aware applications
increases the assurance in the final artifact. Formal methods techniques work by
setting a model that unambiguously defines attacker capabilities, protocol parties
behavior, and expected security properties. Rigorous reasoning can be done on
the model about the interaction of the external attacker with the protocol parties,
assessing whether the security properties hold or not.

Unfortunately, formal verification requires a high level of expertise to be used
properly and, in complex systems, the model analysis requires an amount of resources
(memory and time) that are not available with current technologies.

The aim of this thesis is to propose new interfaces and methodologies that facili-
tate the usage of formal verification techniques applied to security-aware protocols
and distributed applications. In particular, this thesis presents: (i) Spi2JavaGUI, a
framework for the model driven development of security protocols, that combines
(for the first time in literature) an intuitive user interface, automated formal verifi-
cation and code generation; (ii) a new methodology that enables the model driven
development and the automated formal analysis of distributed applications, which
requires less resources and formal verification knowledge to complete the verification
process, when compared to previous approaches; (iii) the formal verification of han-
dover procedures defined by the Long Term Evolution (LTE) standard for mobile
communication networks, including the results and all the translation rules from
specification documents to formal models, that facilitates the application of formal
verification to other parts of the standard in the future.

iii

Summary

Nowadays, distributed network applications are becoming even more pervasive.
However, data security of is at risk if protection mechanism are flawed or obsolete.
In fact, malicious attacker can exploit new technologies to break security mechanism
that were considered adequate years ago.

Throughout the years, formal verification approaches have been developed and
improved to early identify and correct problems in software applications. Formal
verification techniques are based on mathematical models and, through logical
reasoning, it is possible to verify if the models satisfy the desired security properties.
Choosing the most adequate technique, and defining a correct model of the system
under analysis are crucial points of the formal verification process. Many tools
support the logical reasoning process through the proof. They can be either fully
automated, or semi-automated (thus requiring the intervention of the developer).
Another possible characterization of these tools is as follows: those that derive a
formal model from the final implementation, and those that are based on the model
driven design paradigm [1] (in this way, it is possible to automatically generate the
code that implements the behaviour described in the formal model, and guarantee
that the code has the same properties verified in the formal model).

Goal of this thesis is to propose new methodologies that can facilitate the use of
formal verification techniques, especially when applied to distributed applications.
These new approaches lower the adoption barriers for the developers (in particular for
those wo are not formal verification experts) and, in addition, reduce the resources
necessary to complete the verification, if compared to previous solutions. As a
consequence, formal verification can be applied to a wider range of software application
than before.

The first work presented in this thesis is Spi2JavaGUI (part of the text has been
taken from a previous paper [2]): an innovative user-friendly approach to modeling
(using a graphical interface), formal verification and automatic generation of code
that implements cryptographic protocols following the model driven paradigm.

The second work enables the verification of application dependent security prop-
erties, in addition to “classic” security properties (i.e. secrecy and integrity of
data, authentication of parties) during the development of distributed applications.

v

Application-specific properties are closely related to the application under examina-
tion. For example, the value of a variable must always be within a specific range,
during all possible execution paths that can be followed (including different schedul-
ing possibilities) by the application. Moreover, the entire workflow is completely
automated, and is implemented as a major extension of the JavaSPI [3, 4, 5, 6]
framework. This section contains text from a previous paper [5].

The last work described in this thesis regards the formal analysis of handover
procedures defined in the Long Term Evolution (LTE) standard for mobile com-
munication networks. These procedures are activated when the management of a
mobile device connection to the network is handed over from a cell to another cell in
the network. The analysis deals with security aspects of the handover procedures
that have not been considered in previous works available in literature. A detailed
description of the methodology used to translate the specifications of the standards
to formal models is given, along with how the issues have been addressed. Part of
the text was published in a previous paper [7].

vi

Acknowledgements

Firstly, I would like to express my sincere gratitude to my advisor Prof. Riccardo
Sisto for the continuous support of my Ph.D study and related research.

My sincere thanks also goes to Madalina Baltatu, Luciana Costa, Roberta
D’Amico (Telecom Italia) and Guido Marchetto (Politecnico di Torino) for their
support in the “Formal verification of LTE and UMTS handover procedures” project.

Last but not the least, I would like to thank my family for supporting me
spiritually throughout writing this thesis and my my life in general.

vii

Contents

Summary v

1 Introduction 1
1.1 Contribution . 3

I Formal Methods in model-driven development of secure
software 7

2 Background 9
2.1 ProVerif . 9
2.2 Spi2Java . 9
2.3 The JavaSPI framework . 12
2.4 Java Pathfinder . 13

3 Spi2JavaGUI 15
3.1 Introduction . 15
3.2 Spi2JavaGUI . 16

3.2.1 The model . 16
3.2.2 Visual syntax . 19
3.2.3 The RPC example . 22
3.2.4 Model validation . 23
3.2.5 Formal analysis . 24
3.2.6 Code generation . 26

3.3 Related work . 27
3.3.1 Custom Visual Formalisms . 27
3.3.2 UML-Based Security Modeling 28

4 Automated formal verification of application-specific security prop-
erties 31
4.1 Introduction . 31
4.2 Related work . 33

ix

4.3 The extended JavaSPI . 35
4.3.1 Matching events in the model and methods in the code 35

4.4 Translation rules . 36
4.4.1 Optimization of the generated code 42
4.4.2 Replace the protocol code with the stub code 44

4.5 Proof . 45
4.6 The case study application development 48

4.6.1 The Development Workflow 48
4.6.2 Developing the JavaSPI abstract protocol model 49
4.6.3 Formal Protocol Verification 52
4.6.4 Protocol Code Generation . 52
4.6.5 Application Logic Development 52
4.6.6 Checking the Application Code 52
4.6.7 The spiWrapperJpf library 56

II Mobile protocols security analysis 59

5 Formal verification of LTE and UMTS handover procedures 61
5.1 Introduction . 61
5.2 UMTS and LTE overview . 62

5.2.1 UMTS overview . 63
5.2.2 LTE overview . 64
5.2.3 Key hierarchies in LTE and UMTS 64
5.2.4 Handover procedures . 66

5.3 Security requirements and threats 66
5.4 Modeling handover procedures for security verification 67

5.4.1 Modeling choices . 67
5.4.2 Procedure models . 73
5.4.3 Security properties specification 83

5.5 Verification results . 85
5.5.1 LTE to UMTS . 85
5.5.2 UMTS to LTE . 86
5.5.3 LTE X2 . 87
5.5.4 LTE S1 . 89

5.6 Related work . 91

III Conclusion 93

6 Conclusion 95
6.1 Spi2JavaGUI . 96

x

6.2 Automated formal verification of
application-specific security properties 97

6.3 LTE and UMTS handover procedures 98

xi

Chapter 1

Introduction

In the last years, distributed applications have become more and more important
in communication networks and, in many occasions, the data exchanged must be
strongly protected from external malicious agents, which constantly increase their
powerfulness thanks to the availability of new technologies and hardware resources.

A distributed application consists of two or more software processes that are
executed, at the same time, on separate machines connected by a communication
network (e.g. a local network, Internet). In general, communication networks
are insecure networks, where messages can be intercepted, arbitrarily modified or
deleted by malicious attackers who gain access to the networks, with the aim to
exploit vulnerabilities in one or more processes in order to alter the behaviour of the
application, and obtain or alter private and sensible data.

Therefore, it is necessary to adopt protection and data authenticity verification
systems. The scientific literature describes numerous examples of vulnerabilities
discovered in applications and protocols, even years after they were introduced and
used [8, 9, 10, 11, 12, 13]. Over the years many solutions have been proposed to
identify problems in distributed applications and ensure the absence of errors.

However, designing and implementing a distributed application still requires a
high level of expertise in the various fields involved in the development application
workflow.

Vulnerabilities, in fact, may be introduced in each of the different application
development steps. For example, there may be errors in the initial requirements
definition phase (which may also be very complex), or during their translation in
the code that implements the application. Moreover, vulnerabilities may already be
present in the external libraries that are reused. Finally, the extreme optimization
that are introduced in the code on order to obtain better performance may create
further problems: generally, an optimized implementation is difficult to be analyzed
because it minimizes operations, often following a complex logic.

To identify and correct problems in software applications, over the years, formal
verification techniques have been developed. In general, formal verification can

1

1 – Introduction

be applied in various fields, such as the verification of hardware devices, or mixed
software/hardware systems. Formal verification techniques are based on mathematical
models, and can clearly define, through logical reasoning supported by automated
tools or semi-automatic, if the mathematical model satisfies certain properties that
must be specified to the model. Unfortunately, in almost all the cases, formal
verification cannot be performed directly on the final code that implements the
application, because it would require an amount of resources (memory and time)
that are not available with current technologies. Therefore, it is necessary to define
models of the applications that have to be analyzed. Formal models must be
proper abstractions of the applications, without being too complex (because they
would be unfeasible to analyze) and, at the same time, not too simple (in order to
obtain significant results). Defining a correct model is a key point of the formal
verification process. Several techniques have emerged over the years in the field
of formal verification, each with different characteristics regarding the analysis of
cryptographic functions (e.g. computational or symbolic), and the behaviour of the
malicious agents. The scientific community has proposed different methodologies,
tools and frameworks reduce the complexity of formal verification processes, and
enable inexperienced developers to use it, by automating some phases or all of the
verification process. These tools fall into two main categories: those that are able
to derive a formal model starting from the final implementation, and those that
are based on the model driven design paradigm [1]. The latter are able to generate
the code that implements the specifications of the formal model, and ensure that
the generated code respects the same properties verified in the initial model. Both
techniques are successfully used [14]: the choice of the method to use depends on
various conditions, for example, the model-derivation is used mainly when it is
necessary to analyze an already existing implementation. In this way it is possible to
obtain a formal model considering the entire application. On the contrary, the model
driven development way is is mainly used in when there is no implementation, and it
is convenient to obtain an automatically generated implementation starting from a
formal model, on which all the desired properties have been verified. However, in
most cases, the model driven generation processes is not able to produce a complete
and running implementation in all its aspects, because the initial model, having to
be an abstraction of the final implementation, cannot contain all the details that are
required in the final code. For this reason it is necessary to manually add or edit
the generated implementation. Therefore, the generation process do not generate
a highly optimized code, but the result is a compromise between efficiency and
usability, in order to allow the necessary modifications without altering the validity
of the properties verified in the formal model.

2

1.1 – Contribution

1.1 Contribution

Part I of this thesis presents new methodologies to facilitate the use of formal
verification techniques in the verification of distributed applications, which lower
the adoption barriers for the developers that are not formal verification experts and,
moreover, reduce the resources necessary to complete the verification than previous
existing solutions.

Chapter 3 describes Spi2JavaGUI, which is a user-friendly approach to modeling,
formal verification and implementation of cryptographic protocols following the
model driven paradigm (part of the text has been taken from a previous paper
[2]). Cryptographic protocols are a class of communication protocols, that use
cryptographic functions to secure messages exchanged among processes that compose
the distributed applications, in order to provide data privacy and/or authentication of
parties (i.e. processes) that are involved in the protocol. In this context, Spi2JavaGUI
is a framework that combines a graphical editor (implemented as a plugin for the
Eclipse platform), formal verification (with symbolic model), and the generation of
Java code that implements the protocol. The code enforces the security properties
verified in the formal model.

Spi2JavaGUI generates a formal model that can be analyzed by ProVerif [15,
16], a tool for the automatic verification of cryptographic protocol models. The
ProVerif models are based on the Dolev-Yao abstraction [17], which uses a symbolic
representation for data and cryptographic operations, and supposes that the malicious
attacker has complete control over public communication channels (i.e. the attacker
can read data in transit, forge and send new messages, drop or alter messages that
are exchanged). More details about ProVerif are given in Section 2.1.

Chapter 4 presents a new methodology for the formal analysis and the model
driven development of distributed applications (part of the text was published in
a previous paper [5]). This procedure exploits JavaSPI [3, 4, 5, 6], a framework
similar to Spi2JavaGUI, but where the graphical interface is replaced with a Java-like
model. Thus, the JavaSPI framework is easy to use for those who already know
the Java language. Moreover, thanks to the libraries included in the framework,
it is possible to simulate (according to the Dolev-Yao abstraction [17]) and debug
the JavaSPI model as a standard Java application, in order to early identify errors
and problems. Similarly to Spi2JavaGUI, Spi2Java can generate a ProVerif model
in order to perform formal verification. JavaSPI was previously developed in the
research group of Prof. Sisto, and further extended in this work.

The methodology proposed here enables the verification of application dependent
security properties, in addition to “classic” security properties (i.e. secrecy and
integrity of data, authentication of parties). An application-specific property depends
heavily on the application under examination. For example, the value of a variable
must always be greater than zero for all possible execution paths that can be

3

1 – Introduction

followed when the different processes (that compose the distributed application) are
running. The new methodology uses a modified version of JavaSPI to define the
communication protocol between the different actors of the application. The JavaSPI
model contains the authentication and secrecy properties that must be verified, using
the automatically generated ProVerif model.

After completing the verification with the ProVerif tool, it is necessary to generate
a set of Java classes that implements the protocol with all the details (e.g. algorithms
used, length of keys). The final distributed application must use only the generated
code for the communications between the various processes that constitutes the
application.

The second phase of the analysis verifies the application specific security properties.
The Java Pathfinder (JPF) [18] tool is used in this stage. JPF is a model-checker
for Java applications, and verifies executable Java bytecode in order to check if
specific properties (defined by listeners) are satisfied. The simplest approach is to
verify the entire Java code of the application (composed of generated protocol code
and the remainder of the application) directly with JPF. However, this approach
is almost unfeasible because of the combinatorial explosion of the number of states
that the analysis must deal with. To limit this problem and enable the verification
of the entire application, JavaSPI generates a set of Java classes, called “stub”, which
implement a “simplified” version of the communication protocol, by omitting details
that are not relevant for the model checking analysis. The stub classes must be used
to replace the protocol code (previously generated with JavaSPI) in the distributed
application, before launching the JPF analysis. The replacement requires changing a
few instructions of the application, that can be made easily. Another modification
required in the application is to convert all the different processes that compose
the application into threads that are created in the same process, because JPF can
analyze concurrent threads, not distinct processes. After completing the changes, the
JPF analysis can be started to verify all the application-specific security properties.
It is worth noting that the complexity of the model checking analysis process (i.e.
the time and memory required) depends on the complexity of the application and
the properties to verify. Moreover, the analysis with a model checker can not deal
with an an infinite number of application sessions (i.e. threads that constitute the
application), however, that in the great majority of cases, a few session are sufficient
to identify violations of security requirements.

Part II of the thesis presents the formal analysis of procedures defined in the
Long Term Evolution (LTE) standard for mobile communication networks. The
procedures that have been analyzed were not analyzed previously, or not analyzed at
all, in literature, with the security requirements that have been considered in this
analysis (part of the text was published in a previous paper [7]). The formal analysis
has been performed with the ProVerif tool. In this work the formal analysis is not
related to implementation of software applications, but the formal model described

4

1.1 – Contribution

here represent abstractions of the entire communication system, which includes both
software and hardware components. The thesis gives a detailed description of the
methodology used to translate the specifications of the standards to ProVerif formal
models, and how the incompleteness issues have been resolved.

Finally, Part III concludes and resumes the results.

5

6

Part I

Formal Methods in model-driven
development of secure software

7

Chapter 2

Background

2.1 ProVerif

ProVerif [15, 16] is a tool for automatic verification of cryptographic protocols, using
theorem-proving techniques, where the protocol actors and the attacker are modeled
according to the symbolic approach defined by Dolev and Yao [17]. In this model,
the attacker has complete control over communications channels and can read, delete,
modify messages in transit or forge new messages. The symbolic representation of
data and cryptography implies that encryption is considered ideal: the attacker can
decipher an encrypted message only when he knows the right key.

As the possible behaviors of the attacker are already pre-defined by the Dolev-
Yao approach, when using ProVerif it is enough to model the trusted actors of the
protocol, while the attacker model is already available inside ProVerif. An important
feature of ProVerif is its ability to model and analyze an unlimited number of sessions
of the protocol, even running in parallel, differently from model checkers, which can
only analyze a bounded system.

Because of the inherent undecidability of the formal verification problem, ProVerif
may report false attacks, i.e. attacks which in reality are not possible. As a
consequence, when an attack is reported by ProVerif, in the form of an execution
trace that violates the specified property, it is necessary to carefully analyze it in
order to understand if it is a real attack. However, if a property is reported as
satisfied, then it is guaranteed to be true (ProVerif builds a formal proof for it), and
no attack is feasible in the model.

2.2 Spi2Java

Spi2Java [19, 20] is a model driven development framework for the automatic gen-
eration of code that implements security protocols. Spi2Java uses a spi calculus

9

2 – Background

model [21] to define an abstraction of the protocol, and can automatically generate
a ProVerif model from the spi calculus model.

The formal language underlying the Spi2Java approach is the domain-specific spi
calculus [21] language. A model of a security protocol in spi calculus is composed
of a system of parallel processes. Each protocol principal is modeled by a process,
exchanging messages with other processes via possibly shared (i.e. insecure) com-
munication channels. Typically, a principal is described as a sequential program
that performs a sequence of input/output operations, checks on received data, and
cryptographic operations.

The model is Dolev-Yao [17]: messages are represented symbolically as terms
of an algebra and cryptographic functions are algebraic operators on these terms.
Such operators have the properties that the corresponding functions should ideally
fulfill. For example, since H(x) represents the result of applying a cryptographic
hash function to x, H(a) and H(b) are always different for different a and b, and
there is no operator that takes H(x) and returns x. Conversely, the encryption of
message M with key k, represented by term {M}k, can be decrypted to get M only
if key k is available. The attacker can eavesdrop, alter, drop or forge messages on
public communication channels, based on the messages the attacker knows or learned.
Finally, terms are untyped, in order to be able to reason about possible attacks based
on type confusion.

A spi calculus model is abstract but rigorous. It can be automatically analyzed
in order to formally verify that there are no possible attacks on the protocol logic,
under the Dolev-Yao assumptions. In Spi2Java, the ProVerif tool is leveraged to
perform formal verification. ProVerif is a fully automatic verification engine which
accepts (an extension of) spi calculus as its input modeling language.

Semi-automatic code generation from an abstract model expressed in spi calculus
can be done using the Spi2Java [19, 22] framework in two steps. First i) the abstract
model is refined, by adding low level details (e.g. which cryptographic algorithm
must be used for a hash operation, or how to transform a message into its network
binary representation). These details are written in a separate document, called
the refinement document (in XML format), so as to keep the spi calculus model as
simple (and readable) as possible; then ii) the consistency between the refinement
document and the spi calculus model is checked and the automated code generator
of Spi2Java is invoked to generate the implementation code from the spi calculus
model and the refinement document.

The workflow of the Spi2Java framework is depicted in Figure 2.1. In conclusion,
Spi2Java can generate interoperable implementations of security protocols, in Java,
and that implementations are proven to be without vulnerabilities. A soundness
theorem [23, 20] demonstrates the validity of the soundness between the abstract
model and the generated implementation.

However, the main drawbacks of the procedure implemented by Spi2Java are:

10

2.2 – Spi2Java

Figure 2.1. Spi2Java workflow

• Spi2Java describes the behaviour of the protocol using spi calculus language,
that in some cases is rather complex, especially for large protocols;

• all commands must be called from command-line, and the user is responsible
of following the correct workflow;

• the implementation of a protocol takes place in several stages in which re-
finement actions must be performed on the abstract model (in order to get a
concrete and interoperable Java implementation), this involves some complex
and time consuming operations from the user to trace logically the terms
defined in the model, and that appear in the XML file that contains type
specifications. Here too, the complexity increases with the complexity of the
protocol that is being modeled;

• subsequent changes to the model require the repetition of the generation

11

2 – Background

procedure: this means that the intermediate files are regenerated, and the user
has to apply again his customizations.

The workflow of Spi2Java exposes the user to the need of knowing the abstract
modeling language and to a pair of other relevant problems. The first one is that
the user needs to know how the various tools work and interact with each other.
The second problem is that model and implementation details are stored separately,
with loose cross references. This procedure can be very time-consuming in complex
protocols and can introduce errors. In fact, the matching between the spi calculus
model’s terms and low-level specification document’s term is done with a numerical
index. So, a change (e.g. adding a term) in spi calculus model invalidates all cross
references to low-level specification document, and all previous customizations (i.e.
implementation details) are lost. User must redo all changes, considering that indexes
of terms are changed, and there is no automatized procedure that can efficiently
handle this task. In conclusion, modeling a protocol using spi calculus and Spi2Java
requires a high level of expertise, a specialized knowledge and training to effectively
apply them. Unfortunately, this makes this type of approach less cost-effective than
other methods as security and software engineers cannot easily learn and apply it.

2.3 The JavaSPI framework

JavaSPI [3] is a framework for modeling, formally verifying and implementing crypto-
graphic protocols, according to the paradigm of model-driven development. Initially,
the user defines an abstract formal model of the protocol according to the Dolev-Yao
modeling approach. This model, being abstract, does not include implementation
details such as, for example, hash algorithms and length of cryptographic keys.
This model, after proper translation, can be formally verified by ProVerif in order
to check that it satisfies some security properties. These properties are generally
expressed either as secrecy requirements (the attacker must not be able to know
some data) or as correspondence requirements referred to events specified in the ab-
stract model. The latter requirements can be used to express authentication or data
integrity properties; for example an authentication requirement could be expressed
as terminate(A,B)⇒ start(B,A), which means that each time actor A terminates
a session of the protocol apparently with B (i.e. event terminate(A,B) occurs), B
has previously started a session of the protocol with A (i.e. event start(B,A) has
occurred).

When the user is satisfied with the model and confident about its logical correct-
ness, the missing implementation details can be specified and a Java implementation
of the protocol can be automatically generated. JavaSPI is very similar to Spi2Java
[19], the main difference being the modeling language: while with Spi2Java a protocol
is modeled directly in the formal specification language spi-calculus, JavaSPI lets the

12

2.4 – Java Pathfinder

user develop the protocol model in the form of a Java application, written with some
restrictions on the Java language and making use of a custom library (JavaSpiSim),
which offers the same expressiveness as the spi calculus language. In fact, a formal
specification of the protocol compatible with ProVerif can be generated automatically
from the Java code. Using Java as the modeling language facilitates users who are
familiar with object oriented programming and Java. Moreover, this approach lets
the user simulate the execution logic of the protocol by means of a normal Java
debugger.

Figure 2.2 shows an excerpt of an abstract model written with JavaSPI. Each
model is composed of a number of processes, each one specified by a Java class
that extends the spiProcess library class. The behavior of a process is specified by
defining the doRun method, which takes as arguments objects belonging to classes of
the JavaSpiSim library. These classes represent the data types admitted in a security
protocol model and include methods for performing common operations, such as
for example encrypting or decrypting data or sending or receiving data on channels.
The occurrence of an event is specified by calling the event method which can have
any number of arguments (e.g. event("start",A,B) generates event start(A,B)).

The implementation details that are necessary for generating the final implemen-
tation code are specified as Java annotations added to the abstract model. JavaSPI
shares with Spi2Java the same code generation mechanism, which has been proved
to preserve a large class of security properties [23]. This means that if a security
property has been proved to hold on the formal model, then that property holds on
the automatically generated Java implementation too.

2.4 Java Pathfinder
Java Pathfinder [18] (JPF) is a software model checking tool for the Java language.
Java Pathfinder can directly analyze the bytecode of Java multithreaded applications,
checking the truth of assertions or LTL formulas. Java Pathfinder consists of a
particular Java Virtual Machine (JVM) which executes the bytecode by exploring all
possible execution paths (when nondeterministic choices are possible in the execution,
each one of them is explored by backtracking execution).

JPF includes several optimizations that automatically reduce the number of
states to be visited (avoiding those whose inspection is redundant) and thus the
complexity of the analysis.

13

2 – Background

public class Cl i en t extends sp iP roc e s s {
. . .
public void doRun(Channel cC l i en tS ta r t , Channel cC l i entServer1 ,

SharedKey sk) throws SpiWrapperSimException{

f ina l Pair<Integer , Integer> pIdVal = cC l i en tS t a r t . r e c e i v e (Pair . class) ;
f ina l I n t eg e r id = pIdVal . g e tLe f t () ;
f ina l I n t eg e r va l = pIdVal . getRight () ;

event (" setupRequest " , va l) ;

f ina l Nonce n = new Nonce () ;
f ina l Pair<Pair<Integer , Integer >,Nonce> pIdValN = new Pair<Pair<

Integer , Integer >,Nonce>(pIdVal , n) ;

f ina l SharedKeyCiphered<Pair<Pair<Integer , Integer >,Nonce>> skc = new
SharedKeyCiphered<Pair<Pair<Integer , Integer >,Nonce>>(pIdValN , sk) ;

cC l i en tSe rve r1 . send (skc) ;

f ina l Hashing h = new Hashing (pIdValN) ;
f ina l Hashing rH = cCl i en tSe rve r1 . r e c e i v e (Hashing . class) ;

i f (rH . equa l s (h)) {
event (" f i n i shReque s t " , va l) ;
. . .

}
. . .

Figure 2.2. Excerpt of a JavaSPI model

14

Chapter 3

Spi2JavaGUI

3.1 Introduction

In Spi2JavaGUI, model driven development is leveraged to hide the complexity
of a full implementation of a security protocol during the design phase, so that
the developer only needs focus on a simplified abstract model. During this phase,
formal verification is used in order to get assurance about logical correctness. In the
implementation derivation phase, automatic generation of substantial parts of the
implementation gives good assurance that the code adheres to the verified model. At
the same time, the automatically generated code can be made immune from some
kinds of low-level programming errors, such as buffer overflows, that could make the
program vulnerable, but that are not represented in abstract models, and thus not
captured by formal verification.

Spi2JavaGUI is implemented as an Eclipse plugin for the visual modeling of
security protocols1. The framework offers an model driven development paradigm
and integrates code generation and formal verification into one consistent and unified
graphical interface. To make the approach affordable for non-experts in security,
automated, non-interactive formal verification and code generation techniques are
exploited.

The visual modeling approach of Spi2JavaGUI is the result of applying data-
driven visualization inspired by well-known and successful modeling frameworks like
Mathworks’ Simulink to the security protocol domain. As a result, the user visually
represents the flow of data between the principals of a protocol in a way similar
to message sequence charts (MSC), which makes protocol modeling intuitive, and
facilitates model understanding.

The proposed approach proved simple, yet expressive enough to model complex,

1Available as an Eclipse update site at http://spi2java.polito.it/gui/updates

15

http://spi2java.polito.it/gui/updates

3 – Spi2JavaGUI

real protocols. For example, a minimal but interoperable SSH implementation (in-
cluded in the Spi2JavaGUI distribution) was developed with Spi2JavaGUI. However,
for brevity, and to keep the exposition focused on the main fundamental aspects,
only a smaller RPC example will be shown.

Spi2JavaGUI contributes on advancing the state of the art on visual modeling of
security protocols, since none of the existing approaches integrates intuitive visual
modeling with formal analysis and sound generation of interoperable code for the
whole class of security protocols.

3.2 Spi2JavaGUI

The Spi2JavaGUI approach is an enhancement of the Spi2Java (see Section 2.2
approach that reuses the core of Spi2Java. As shown in Figure 3.1, both the
spi calculus model and the refinement document are edited jointly in visual form,
which represents one of the contributions of this work. Code generation, instead, is
accomplished by re-using parts of the Spi2Java framework, which offers a sound code
generation technique.

One of the main fundamental drawbacks of Spi2Java, which is solved in the
work being presented here thanks to visual modeling, is that using Spi2Java requires
excessive expertise because the user has to write models directly in the domain-specific
spi calculus.

Furthermore, in Spi2Java the user is responsible for correctly following the implied
workflow, which may lead to errors. For example, forgetting to run formal verification
before code generation can lead to insecure code, while giving a false sense of security
due to automatic code generation having taken place. This problem is solved in
Spi2JavaGUI by having an integrated development environment (IDE) guiding the
user through the different steps of model verification, refinement and implementation
generation.

Finally, having separate documents for model and refinement information leads
to model maintenance problems in Spi2Java, because even small changes in the spi
calculus model may require the user to redo the full refinement step from scratch,
due to the loose coupling between a model and its associated refinement document.
This problem is solved as well in the proposed approach, because abstract protocol
description and refinement information are strongly coupled in the visual model,
without compromising its readability.

3.2.1 The model

A Spi2JavaGUI protocol model has the same structure and semantics as its corre-
sponding spi calculus model, albeit with a different syntax and with some extensions.

16

3.2 – Spi2JavaGUI

Spi2Java frameworkSpi2JavaGUI framework

Graphical

modeling with

Spi2JavaGUI

Validation and

graphical

parsing

Spi calculus

formal model

Spi calculus

parsing

Symbol

table(s)

Spi2Java

refinement

Spi2Java code

generator

Protocol Java

code

generates generates

Refinement

document

generates

generates

Updates graphical model

if refiner performs changes

Spi2Proverif

translation

Run analysis and

report results

ProVerif script

editor

ProVerif

script

Figure 3.1. Workflow of Spi2JavaGUI and Spi2Java.

Some of the extensions provide the refinement information necessary for code genera-
tion, while other extensions provide visual information, necessary to visualize model
elements. There is also the constraint that each process in the Spi2JavaGUI model
must have a sequential behavior. This is not very restrictive because each process
represents the behavior of one protocol role in a single protocol session, which is
normally sequential.

Figure 3.2 shows a partial (and simplified) metamodel of Spi2JavaGUI. The
classes named Process, Term and Operation (and all its specializations) are the same
entities as found in spi calculus, while a Diagram represents a whole spi calculus

17

3 – Spi2JavaGUI

specification.

Diagram

Process

FreeSec FreshSec BhSec

Free Term Fresh Term

OperationTerm

HashingMatch

BhTerm

* *uses

*

produces

1

* * *

*

*

1
111

111

111

1

...

Figure 3.2. Simplified metamodel of Spi2JavaGUI.

Terms are divided into three classes, according to a classification that can be
found in spi calculus as well. A Free Term is either a constant or a parameter used by
the process, while a Fresh Term is a term that is created fresh during each execution
of the protocol. A Bh Term is any other term that is produced as a result of an
operation (e.g. the result H(x) of hashing term x). Operations are ordered, according
to their execution order in the sequential process they belong to. In order to keep
the metamodel as simple as possible, and to reduce the efforts during the translation
to spi calculus syntax, three sections (Figure 3.2 FreeSec, FreshSec and BhSec) have
been introduced to separate different classes of terms and operations inside a process.

18

3.2 – Spi2JavaGUI

Some operations introduce choices, which leads to multiple possible execution
flows. For example, a pair splitting operation is successful when the input term it
uses is actually a pair, or fails when its input is not a pair, thus defining two possible
execution flows. The behavior for each branch is specified inside two different scopes
(not shown in the metamodel of Figure 3.2) that are associated with the operation.

Graphic and refinement information is coupled strongly with model elements
(term, operation, etc.), by incorporating it inside each model element.

A Spi2JavaGUI model is scalable, because hierarchical models can be defined.
This is achieved by introducing a special container operation, which has a custom
number of inputs and outputs, and can implement arbitrarily complex behaviors,
possibly using other nested container operations. In this way, the complexity of the
internal behavior is hidden in a single operation block when observing the model
at high abstraction levels, and users can design the model by first defining sorts of
function interfaces and then writing their bodies later.

A number of consistency rules are defined on the model. For example, a process
performing an input operation that uses a term, with no other process performing a
corresponding output operation that produces the same term is considered a modeling
error, which can be detected by a model validation procedure.

Given the strict correspondence between the Spi2JavaGUI metamodel and the spi
calculus language, the formal specification in spi calculus deriving from the syntax
translation of a Spi2JavaGUI model actually provides the formal semantics of the
model.

3.2.2 Visual syntax

As observed by Selic [1], in order to best exploit the advantages of MDD, models
should have some key features, among which abstraction (hiding detail for a given
viewpoint, which lets one understand the essence easily), and understandability (using
a notation that directly appeals to user intuition), In order to achieve abstraction,
but at the same time understandability, the visual notation proposed here follows
the approach of representing the different aspects of a security protocol in a single
diagram.

The diagram is based on a block-oriented and data-flow-oriented view of the
protocol, where principals and message flows are represented according to the common
protocol intuition of message sequence charts. Blocks are used to represent operations,
and the flow of message creation, transmission, and processing that takes place in
each single protocol session is visualized as a chain of connected blocks, where each
connection corresponds to a term (see Figure 3.4).

Moreover, to make this diagram immediate to read and easy to understand even
with complex models, abstraction is used to hide non-relevant aspects, when one is
focusing on a specific aspect of the protocol.

19

3 – Spi2JavaGUI

Specific aspects are identified and abstraction techniques developed, exploiting
the specific security protocols domain. For instance, the message exchange scenario
can be viewed, while hiding internal details of each principal. Conversely, drilling
down on the same model, one can focus on the cryptographic algorithm to be used
for a specific encryption operation in a principal, while hiding all other principals
from the view.

The visual modeling and abstraction techniques are implemented in a prototype
editor, which is part of the Spi2JavaGUI framework. As this editor is a prototype
proof of concept, some aesthetic aspects have not been refined; nevertheless the
editor is functional and implements all the abstraction techniques.

The attributes of a block can be set in a property sheet. Many of them are
related to refinement information, only used at later stages, to obtain the final
implementation. All attributes have default values, which lets the user simply neglect
attributes that are only useful in later stages.

Free section

Fresh
section

Type

Name C

True

False

(a) (b) (d)

(e)

Hashing

M C

ShK Enc

Name
Name

(c)

Processing I/O

Behaviour
section

Figure 3.3. Some elements of the Spi2JavaGUI syntax: (a) process; (b) free term;
(c) I/O block; (d) scopes; (e) computation blocks.

A process is visualized as a rounded corner box divided into sections (Fig-
ure 3.3(a)), according to the metamodel. The name of the process is on top of the
box. Terms appearing in the free terms section are represented as in Figure 3.3(b)
(where the red “C” indicates this is a constant term).

The behavior section is used to model the operations that follow one another
in the process, and is itself divided into two subareas, not visibly marked but
recognized as distinct for block placement. The main subarea contains all the blocks
representing processing operations while the other subarea, which occupies the margin
side non-adjacent to the fresh section, is named channel section and contains blocks
representing input and output operations on channels.

The type of each block is represented by symbols and labels inside the block box
(Figure 3.3(e) shows a hashing and a shared-key encryption). Each block has input
and/or output ports. Input ports are positioned on the upper side while output
ports are positioned on the lower side, with the exception of input/output blocks,
which have ports on their left and right sides (Figure 3.3(c)).

20

3.2 – Spi2JavaGUI

When an operation block has two or more input ports that are not interchangeable
(e.g. in encryption blocks, where plain text and key must be connected to the right
ports), numbers or letters are placed near each port to identify the meaning of each
of them. The same is done for output ports.

Some operation blocks have a variable number of input and/or output ports,
selectable by the user according to necessity (e.g. pair composition and container
blocks).

When a new input/output block is added, the user has to set the type (input or
output) and the term that represents the channel. The direction of communication
is represented by the arrow just below the channel name, which points outwards for
output and inwards for input.

Scopes are represented as shown in Figure 3.3(d). They are created automatically
just below each operation block that implies a choice. Any scope can be collapsed
or expanded according to the details the user is interested in. For example, error
handling in a protocol can be easily abstracted by collapsing else branches of failed
matches. When a scope does not contain any operation, this simply means that
the execution of the process stops in that case (in the generated Java program, an
exception will be thrown).

In order to correctly map the diagram onto the model, some rules are necessary.
For example, connections can be placed only from an output port to an input port.
An output port can be the “source” of many connections, but an input port can
accept only a single connection. The only blocks that can accept or originate a
connection from/to outside the process are the input/output blocks.

On each connection a label shows textually the symbolic value of the term that
is conveyed by the connection.

Connections establish dependency relations between blocks of the model: the
output value(s) of an operation depend on the block(s) that are connected to its
input port(s). These relations imply ordering constraints for operations: if operation
A produces a term used by operation B, then the execution of A must precede the
execution of B. Then, for processing operations, ordering is determined following
connections backwards, while the position of blocks is irrelevant. This design decision
allows the user to freely organize operation blocks to make the diagram readable,
while their ordering will be automatically computed.

In contrast, time flows from top to bottom in the area that contains the in-
put/output blocks, so that the position of each input/output block determines the
order of message exchanges. In this way the user gets a linear representation of the
protocol message exchange, much like in widely used message sequence charts.

An algorithm is run to automatically compute the order of operations implied by
these rules whenever some change occurs. This amounts to convert the data-flow
representation that is displayed, into the control-flow one of the underlying model.
If more than one ordering of operations is compatible with the constraints deriving

21

3 – Spi2JavaGUI

from dependencies and positioning, the final ordering is determined deterministically
by applying default ordering choices. In this way, the model always includes, for
each process, a fully ordered set of operations, which can be directly translated into
spi calculus syntax.

3.2.3 The RPC example

A simple authenticated Remote Procedure Call (RPC) protocol will be used as a
running example to show different features of the Spi2JavaGUI framework. The
essence of this protocol will be first introduced informally, by using a simple notation
that is usually adopted in the security protocol community to represent the main
sequence of message exchanges. Then, it will be shown how the full protocol can be
formally modeled and verified in the Spi2JavaGUI visual framework, and how an
implementation can be derived.

Note that the informal description that will be given shortly to introduce the
protocol does not describe several aspects of the protocol. For example, the handling
of error situations (e.g. when a message of the wrong type is received) and the
operations performed on received messages are not represented.

The protocol involves two principals, named Alice and Bob (A and B in the
abbreviated notation). The security goals of the authenticated version of the RPC
protocol are that whenever a principal B accepts a request message from A, principal
A has really sent the message to B and, conversely, whenever A receives a response
message from B, principal B has really sent the message in response to the matching
request from A.

The protocol is request-response with the two main messages described in the
abbreviated notation as follows.

1. A→ B : S,Na,H(KAB, REQ,Na, S)

2. B → A : f(S), H(KAB, RES,Na, S, f(S))

The request message goes from Alice to Bob and contains a string S, which
identifies the remote procedure to call and its parameters, a cryptographic nonce
(i.e. a fresh random number) Na, and a keyed hash (or HMAC), calculated as the
cryptographic hash of the concatenation of a shared key KAB, a tag (constant string)
REQ, the nonce Na and the string S.

The response message, which flows from Bob to Alice, is composed of f(S), which
represents the output of the remote procedure call, and an HMAC calculated with
the shared key KAB, the RES tag, the nonce Na, and the request and response
strings. For simplicity, in this example f(S) will be defined as the cryptographic
hash of S, but in general this can be an arbitrary function.

Please note that this protocol enjoys only some of the desired security properties,
which will be discussed later on, in the part about formal analysis (see Section 3.2.5).

22

3.2 – Spi2JavaGUI

Figure 3.4 shows the complete visual model of both principals in full detail,
including handling of error conditions.

Figure 3.4. Complete model of the RPC protocol.

3.2.4 Model validation

In addition to making modeling simple and intuitive, the visual interface also enforces
the internal consistency of the model during its development. Some possible mistakes
are directly avoided during editing, because the editor does not allow inserting invalid
objects, values or connections (e.g. it is not possible to create loops of connections,
or to place an operation block inside the sections reserved to terms).

Validation of the modeled protocol is automatically performed each time the user
saves a model, and before running ProVerif analysis or code generation.

The validation process is based on OCL-like rules and looks for all those problems
that cannot be avoided with the in-editing checks. There are two types of such
problems that are reported: warnings (denoted by yellow triangles with exclamation
marks) and errors (denoted by red circles with white cross), as depicted in Figure 3.5.
A warning indicates a problem that does not prevent formal analysis or code genera-
tion, for example an unused output of a block. An error indicates a problem that
must be resolved before starting formal analysis or code generation (e.g. a missing
input connection in a port of an object). Warnings and errors are also logged in the
Eclipse logger, and each of them contains a message with details about the problem.

23

3 – Spi2JavaGUI

Figure 3.5. Spi2JavaGUI: example of error and warning

3.2.5 Formal analysis

Once the protocol is modeled, and the validation phase passed, the user can run
the ProVerif (see Section 2.1) verifier to perform formal analysis. Indeed, formal
verification requires that the security properties of the protocol are formally specified.
This specification step can be integrated in the protocol modeling visual interface.
For example, secrecy of a free term can simply be an attribute of the term block,
while authentication properties, that are commonly expressed as agreement or corre-
spondence relationships, can be represented by special blocks connecting the terms
upon which agreement is required and the operations upon which correspondence is
required2.

Figure 3.6. Spi2JavaGUI: property sheet

Note that formal verification does not require that implementation details have
been specified with their final values, because formal verification just uses the abstract
model and disregards implementation details. Therefore, abstractly specifying and
formally verifying a protocol model is as simple as placing and connecting blocks

2In the current implementation of the prototype tool, this part has not yet been implemented,
so that properties have to be written in ProVerif syntax.

24

3.2 – Spi2JavaGUI

Figure 3.7. Spi2JavaGUI: toolbar and menu

in the editor, saving the model and running the formal verification tool. Property
sheets (Figure 3.6) can be neglected in this phase, which confirms the ability of
Spi2JavaGUI to work at different abstraction levels.

The formal analysis process, which can be started simply by a button click,
(Figure 3.7), automatically translates the model into a formal specification, expressed
in spi calculus using the syntax accepted by the ProVerif verification tool, and runs
the tool, after having included the specification of the properties to be verified (which
at present is user-provided in text form).

Moreover, in order to analyze the behavior of the protocol with any number of
concurrent sessions, an additional process that instantiates a possibly unbounded
number of concurrent copies of the various protocol processes is also generated.

In the RPC example the security properties that will be (tentatively) verified are
the secrecy of terms S and Kab (meaning that a Dolev-Yao attacker is unable to
know their values), and the agreement [24] upon the request message (the meaning
of agreement is explained below in the results). Figure 3.8 shows the result of the
ProVerif analysis in textual form (as shown in the current prototype).

Figure 3.8. Result of ProVerif analysis performed on the example protocol.

From the results given by ProVerif it is possible to claim that:

• term S can be known by an attacker;

• term Kab remains secret;

• the protocol does not fulfill the injective agreement property upon the request

25

3 – Spi2JavaGUI

message (this is because an attacker can replay the request message to process
pB, which accepts the message as if it had been truly sent by pA);

• the protocol fulfills the non-injective agreement (weaker than injective agree-
ment) property upon the request message (this means that if pB believes it has
received a request message from pA once or more, then pA previously really
sent that message at least once). In other words, an attacker cannot forge new
request messages from scratch and get them accepted as authentic.

Beware that this is only a simple formal analysis presented as an example. In real
scenarios more queries and events may have to be defined to verify all the security
properties of a protocol.

3.2.6 Code generation

The last development phase is the generation of concrete implementation code in the
Java language. Before starting this phase, the protocol must have been fully modeled
and refined, including implementation details which must have been specified to
their final values. Moreover, the validation process must have been executed without
errors.

In Spi2JavaGUI, code generation is performed by the user via a single push-button
operation (see Figure 3.7). Internally, some Spi2Java libraries are re-used, to achieve
a four-steps code generation process:

1. the generation of spi calculus from the visual model;

2. the generation of a symbol table for each process;

3. the generation and checking of a refinement document for each process;

4. the generation of the final Java code that implements the protocol.

These complex interactions with the Spi2Java libraries are fully abstracted by the
workflow of Spi2JavaGUI. Especially, refinement information is now embedded in
the graphical model (via the property sheets), and so implementation generation can
happen in a single, automatic step.

Using the Spi2Java code generation engine to obtain the final code brings an
added value, i.e. the formally proved soundness of the code generation process.
More precisely, as shown in [23], the generated code is guaranteed to fulfill security
properties such as secrecy and authentication under a Dolev-Yao attacker, provided
that the same properties hold on the abstract formal model from which the code has
been generated. Since security properties are formally verified on the abstract model
before generating code, high confidence on the generated code is finally obtained.

26

3.3 – Related work

3.3 Related work

Some approaches have already been developed to address the modeling, formal verifi-
cation and implementation of security protocols. In this section the focus is mainly
on existing visual modeling formalisms that combine model-driven development and
formal verification.

3.3.1 Custom Visual Formalisms

McDermott [25] presents GSPML, a visual modeling formalism intended to be a
rigorous base for formal verification and to address at the same time some deficiencies
perceived to exist within other visual modeling languages.

A model that uses the GSPML formalism defines implicitly all the possible traces
of an instance of the protocol, which includes not only the expected normal behavior,
but also the behavior when under the attack of a Dolev-Yao intruder. The GSPML
approach specifies only a graphical formalism, not a corresponding textual process
algebra. However, McDermott reports that GSPML can be used as a front-end to
visually represent security protocol models of both the classical CSP [26] and the
PEPA [27] process algebras, which enables formal verification.

Hence, the strength of GSPML is its use of visual models to formally represent
high-level protocol specifications in a concise manner, aiding in both understanding
and verification. The main deficiency of GSPML, in view of model-driven devel-
opment, is that protocol models are event-based and trace-oriented, thus omitting
internal computation aspects, which are essential for protocol implementation. As
a consequence, there is no provision for automated and rigorous transition from a
GSPML model to code, which makes GSPML more oriented to protocol analysis by
security experts than to protocol implementation by software engineers.

From the point of view of visual modeling, GSPML makes extensive use of textual
notation to describe the structure of events and messages. For this reason, GSPML
exploits visual modeling to a lesser extent than the approach presented in this thesis.

Another approach, named SPEAR II is described by Saul and Hutchison [28].
They propose visual modeling of security protocols integrated with the GNY formal
analysis tool, which is based on a variant of the BAN modal logic [29]. Visual
modeling is based on MSC-like diagrams where only the main sequence of messages
exchanged in a normal run of the protocol is represented. While this representation is
enough for a BAN-logic analysis, the gap between it and a protocol implementation
is too large, thus making this kind of model not suitable for a rigorous transition
from model to protocol implementation.

27

3 – Spi2JavaGUI

3.3.2 UML-Based Security Modeling

UML is widely used in software design, as a standard for object-oriented modeling,
however it lacks formal semantics and it does not provide specific features to treat
security aspects. Some work has been done, trying to extend UML in order to
make it possible to model security aspects, and providing UML subsets with formal
semantics.

Some initiatives to use UML for security aspects came from Epstein and Sandhu
[30] and Basin et al. [31]. However, these UML extensions are for specifying role-
based access control policies rather than security protocols. Similarly, Bushager and
Zwolinski [32] exploit SystemC with the Transaction Level Modelling extensions [33]
to create executable models starting from UML models. The executable models give
the opportunity to see the animations of transaction flows defined in the initial UML
specifications. Attacks in different parts of the system can be simulated within the
executable models. Nevertheless, this solution can be applied to all UML models
and does not provide security-specific features, i.e. the user has to define attacker
capabilities and security properties to be verified during simulation.

Jürjens [34] proposed UMLsec, which allows annotation of UML diagrams
(through stereotypes, tagged values and constraints) to express security require-
ments (e.g. confidentiality and integrity of messages). These can be then validated
using formal verification techniques. UMLsec has also been proposed as a means
for visual modeling and formal verification of security protocols [35]. Jürjens also
showed a way to systematically generate test sequences for security properties spec-
ified in UMLsec models, so these sequences can be used to test implementations
for vulnerabilities [36]. The UMLsec-based visual modeling of a security protocol
is based on annotated sequence charts, which has similarities with the approach
proposed here. In more detail, the protocol message sequences are described through
sequence diagrams, while class diagrams describe the state of the agents and contain
annotations that specify security relevant information.

The main differences with respect to the approach proposed here is that messages
are represented only textually, and implementation details cannot be added in the
visual model. As a consequence, the UMLsec approach is good for protocol formal
analysis but it does not support rigorous, traceable and automatic transition from
design to concrete interoperable code. Extending UMLsec to support automatic code
generation would technically be possible. However, this would require the addition of
new views, with the inherent problem of keeping them synchronized. Moreover, the
addition of such views to the several ones already existing would make the protocol
representation too fragmented, and overall difficult to understand. Hence, the visual
modeling being presented in this work is designed to offer a single unified view, where
view-collapsing is used to hide non-relevant details.

SecureMDD [37, 38, 39], proposed by Moebius et al., is another approach based
on UML for the representation of security protocols. This approach is closely related

28

3.3 – Related work

to the one proposed in this chapter because it uses the concept of model-driven
development and enables formal verification.

Unlike Spi2JavaGUI which is targeted to any security protocol, SecureMDD is
an application-specific approach for introducing security aspects into smart card
systems: design models can be translated only to Java Card code and only smart
card domain specific properties can be verified.

From the UML model both a formal model based on state machines and an
interoperable Java Card implementation can be obtained. However, differently from
Spi2JavaGUI, no formal soundness proof relating the formal model and the generated
code is available. Another difference is that SecureMDD requires the definition
of several different models (containing platform-independent and platform-specific
information respectively) to obtain the implementation and the formal model while
Spi2JavaGUI unifies the abstract view and the implementation details into a single
consistent graphical view and model.

Smith et al. [40] developed a modeling technique using UML 2.0, without exten-
sions, that exploits the ports and protocols features to define the communication
between participants. The UML 2.0 infrastructure also provides the ability to create
an executable model and to generate executable code. However, no formal semantics
is provided for the visual model, so formal verification cannot be supported. Indeed,
the user is responsible for modeling and executing possible threat scenarios against
the protocol. This can be used to ensure the designed protocol is resilient to known
flaws, but cannot be used to identify new ones. Lack of formal semantics also implies
that no soundness guarantees can be obtained for the generated code.

29

30

Chapter 4

Automated formal verification of
application-specific security
properties

4.1 Introduction

The issue of formal verification of distributed applications has attracted the interest of
a considerable number of researchers in recent years. In fact, over time, applications
that communicate via networks have become more complex, and at the same time
also the security requirements of those applications have evolved and become more
complex.

Distributed applications use cryptographic protocols to communicate securely over
insecure channels. Generally, an insecure channel is a communication channel that
does not guarantee, by itself, the security (e.g. privacy, integrity, and authenticity)
of the data that are exchanged among the processes of the application that uses the
channel. Examples of insecure channels include Internet, radio channels (e.g. Wi-Fi)
and local networks, if connections can be tampered with by malicious attackers.
Security protocols exploit cryptographic primitives to ensure the desired security
properties when communicating over insecure channels.

Nowadays, solutions like the Transport Layer Security (TLS) protocol can be
used to deploy security in distributed applications, in a stable and reliable way.
With this approach, the security protocol and the application logic layers are to-
tally independent: the protocol guarantees standard security properties (mutual
authentication, confidentiality, data integrity), by introducing a new software layer
under the application, and the application is developed in a nearly security-unaware
way, security being provided just by application insulation, which is guaranteed by
the fact that the application communicates only using the functionalities provided
by the security protocol layer. In other cases, however, protocol and application

31

4 – Automated formal verification of application-specific security properties

logic are less independent. For example, if the application logic needs to interact
more strictly with the protocol, in order to guarantee application-specific properties,
custom protocols may be used. Of course, using an independent security layer
implemented by standard protocols (for instance TLS) is preferred when possible,
because of its simplicity, interoperability and reliability. However, this is not always
possible or convenient, for example because the devices involved do not have enough
hardware resources or do not have standard connectivity to the Internet, but only
limited ad-hoc connectivity.

In the past, the techniques and tools for automated formal verification mostly
targeted to either the analysis of security communication protocols or the analysis of
application code. For example, the tool proposed by [41] can formally verify standard
security properties of cryptographic protocols under the presence of active attackers.
However, such tools can analyze only the bare protocol (message exchanges and
related checks) while they are not adequate to also model and analyze the application
logic that interacts with the protocol, which can be made of complex programs,
developed without particular constraints. Generally, the tools that belong to this
family cannot deal with application-specific security properties. Instead, tools for the
automated formal verification of arbitrary application source code(e.g. software model
checkers [18]), can check even complex requirements, directly on the implementation
of the application. In theory, these tools even allow considering active attackers in
the system, but a model of those attackers must be supplied, and the inclusion of
active attackers increases verification complexity considerably.

However, scalability of these approaches is the main obstacle to extending existing
verification techniques to analyze both protocol and application logic together in the
face of active attackers. In fact, the problem of cryptographic protocol verification is
itself challenging despite the simplicity of such protocols, and application code can
be very large and complex.

The idea that is developed in this chapter of the thesis is that, instead of extending
either of the currently available verification techniques, a convenient way for enabling
the verification of whole distributed applications made of security protocols and
application logic is to exploit already existing verification techniques jointly, by
performing assume-guarantee compositional verification. An innovative methodology
was presented in [5]. It combines two already existing and well-known automated
formal verification techniques, theorem proving for cryptographic protocol verification
and model checking for source code verification, according to the principles of assume-
guarantee compositional verification. This approach brings better scalability, due
to the splitting of the verification problem into simpler sub-problems. Moreover,
the approach described here approach lowers the barriers for non-security-expert
developers, because is based on verification techniques that are automated, simpler
to use, and that can also provide counter examples when the properties to be verified
do not hold. Finally, this solution also aims at automating the entire process of

32

4.2 – Related work

implementing and verifying distributed applications.
More specifically, the proposed development adheres to the principles of model

driven design: the first step consists of the definition of a high-level formal model
of the communication protocol, which also contains the declaration of the expected
security properties of the protocol. The automated formal verification of those
properties is performed by the protocol verifier ProVerif (see Section 2.1), and
the Java implementation of the protocol is automatically generated by the model
driven development framework JavaSPI [3] (see Section 2.3), which guarantees the
preservation of the intended security properties. Then, the generated protocol
implementation has to be integrated within the application logic (both client(s) and
server(s)), which can be developed in any way (hand written or developed using
other code generation techniques). The application-specific properties are formulated
and verified on the final implementation using a Java source code verifier, such as
Java Pathfinder (JPF)[18], but taking the results of the protocol formal verification
into account. This is achieved by replacing the code that implements the protocol
(generated with JavaSPI), with a stub that enforces the properties already verified
on the protocol model. The main advantage of the methodology proposed here is the
reduction of verification complexity, if compared to a separate and independent use
of the theorem prover and the model checker, achieved by leveraging compositional
verification in the assume-guarantee reasoning style.

The development workflow is largely automated: this helps to reduce the proba-
bility of introducing errors, and enables quick error diagnosis (both the tools used
for formal verification phases provide counter examples, i.e. the execution traces
that violate the requested security properties).

4.2 Related work

In the last decades many automated techniques have been developed for the formal
analysis of security protocols, as surveyed in Patel et al. [41].

These techniques analyze high-level abstract models, in order to prove the cor-
rectness of the protocol logic. More recently, some researchers have started working
on techniques that bring automated formal proofs closer to real implementations
of security protocols [14], [42]. Among these are the model-driven development
approaches, like the one exploited in [3].

All the above mentioned techniques are focused on security protocols rather
than on whole applications, and address the generic security properties enforced
by such protocols (e.g. authentication, secrecy and integrity), rather than the
application-specific security properties.

Some papers have addressed the formal verification of security protocols for
specific applications, such as for example electronic commerce, with their related
application-specific properties. Surveys about techniques in this field are given by

33

4 – Automated formal verification of application-specific security properties

Ouchani and Debbabi [43], and Nguyen et al. [44].
Bella et al. [45] presented the formal verification of some application-specific

properties of the suite of protocols “Electronic Secure Transaction”, used for e-
commerce. However, this work is substantially different from the one presented here
because verification is not automatic (being based on the interactive theorem prover
Isabelle [46] which requires human assistance), and what is formally verified is only
an abstract model of the application rather than its final implementation.

Moebius et al. [38] and Borek et al. [39] presented two case studies of formal
verification of application-specific security properties (i.e. the truth of a predicate
involving some variables of the application), taking into account both the protocol
and the application logic together. In these case studies the application is developed
with a model-driven approach and the model is used to generate a formal specification,
which afterwards can be verified by an interactive theorem prover. An important
limitation of this approach is that it is based on interactive theorem proving, which
is not automatic, is very time consuming, and requires a lot of expertise. Moreover,
if the application is flawed, interactive theorem proving does not provide counter
examples, which can make error diagnosis and correction very difficult. A related
publication [47] presents exactly the same methodology but applied to a service-
oriented application. In addition, some other papers have addressed the problem
of developing distributed applications with formally verified security properties. A
recent paper [48] extends the previous approach by integrating the AVANTSSAR [49]
model checker into SecureMDD. As a result, it is possible to automatically generate
a formal specification for the model checker from a UML model. However, only
some application-specific properties can be verified using AVANTSSAR. For example,
differently from the work presented here, which enables the verification of arbitrary
properties, it is not possible to compare numeric values inside the model checker.

Jürjens [35] proposed a UML-based technique for the specification of distributed
applications and automated formal verification of application-specific security prop-
erties. The technique was applied to the Common Electronic Purse Specifications
regarding payment via smart-card. One of the properties that were verified is, for
example, that the amount of money in the system is every time the same, that is the
total sum of budgets of smart-card holders is always equal to the sum of the earnings
of all merchants. However, this technique provides formal verification of UML models
only, whereas a formal link with the application implementation is missing. Moreover,
differently from the approach described here, verification is performed in a single
step on the whole model, without using compositional verification.

Gunawan et al. [50] proposed a method to integrate some standard security
mechanisms (for protecting information transfer) into distributed applications auto-
matically. The paper includes a proof that the security mechanisms are integrated
into the application so as to fulfill some generic properties. However, this approach
does not target the verification of application-specific properties.

34

4.3 – The extended JavaSPI

The idea of using compositional verification to formally verify application-specific
security properties of distributed applications already appeared in Gunawan and
Herrmann [51]. In that work, however, formal verification is done by a general-purpose
model checker, without considering active network attackers and the properties of
cryptographic operations.

Finally, Vasilevskaya et al. [52] proposed a formal domain-specific language
approach for the development of security-enhanced embedded networked applications.
The domain specific language, which defines applications as compositions of building
blocks, provides a bridge between security domain experts and embedded domain
experts. However, this methodology is limited to embedded applications built with
specific blocks, and does not enable the verification of application-specific security
properties.

4.3 The extended JavaSPI

To achieve the final goal of this work the JavaSPI framework has been extended in
order to enable increased interaction between the generated protocol code and the
application that uses the protocol. With the original JavaSPI, only a simple interac-
tion mechanism was possible, where the application starts a protocol session, passing
input arguments, and, upon termination of the protocol session, the application gets
the outputs. With the extended JavaSPI version, the application can be called back
by the protocol code when some events defined in the model occur. In this way,
the application can receive outputs from the protocol at intermediate stages of a
protocol session. The @EventsInterface annotation enables this new mechanism.
When the annotation is present, the code generator generates a Java interface that
contains the methods associated with the events generated by the process and has
the name specified in the annotation. Events are defined inside the JavaSPI model
by means of the instruction event (see details in Section 4.3.1). When a session of
the protocol is started by the application, a callback object that implements the
generated interface must be passed as argument. This extension does not affect
the validity of the ProVerif model that is generated by translating the JavaSPI
code, because the methods called on event occurrence are one way notifications that
cannot alter the protocol behavior (modeled and verified by ProVerif). As detailed in
Section 4.6.6, when performing the verification of the application code, the protocol
code is substituted by stubs that enforce exactly the same event orderings that are
allowed by the protocol.

4.3.1 Matching events in the model and methods in the code

The event instruction of JavaSPI models has a variable number of parameters (at
least one). The first parameter is a string, and represents the name that JavaSPI

35

4 – Automated formal verification of application-specific security properties

associates to the event instruction. The following parameters, if present, must be
objects, previously created in the protocol, that extend the Message class. The event
instruction is translated in the concrete Java implementation of the protocol to a call
of a method, that has the same name of the event, and the corresponding concrete
objects are passed as arguments. The method belongs to a class that implements
the interface defined in the @EventsInterface annotation of the JavaSPI model.

For example, if the JavaSPI model contains the following code:
@EventsInter face (" InterfName")
public void doRun(Channel ch , . . .) {

. . .
f ina l I n t eg e r iVal = ch . r e c e i v e (In t eg e r . class) ;
. . .
event ("evtOne" , iVal) ;
. . .

}

The resulting concrete protocol Java code is:
public Map<Str ing , Message> performHandshake (Channel ch , . . . , InterfName

InterfName_impl) {
. . .
f ina l I n t eg e r iVal = ch . r e c e i v e (In t eg e r . class) ;
. . .
InterfName_impl . evtOne (iVal) ;
. . .

}

In this way, every event instruction in the JavaSPI model has a corresponding
invocation of a specific method in the concrete code, along with the corresponding
arguments.

4.4 Translation rules

This section specifies how, starting from a JavaSPI model, it is possible to auto-
matically generate the stubs that replace the protocol behavior during the formal
verification of the Java application code.

The stubs are built in such a way that they can generate the same sequences of
events that may be generated by a real execution of the protocol. As these sequences
are constrained by the correspondence properties that have been formally verified on
the security protocol, the stubs are built out of such properties.

Correspondence properties (also called queries) are located inside a @PStubQueries
annotation, which is applied to the master class of a JavaSPI model (the master
class is a special actor class that instantiates the roles of the protocol with the right
arguments). Figure 4.1 defines the grammar for correspondence properties accepted
by JavaSPI. In Figure 4.1, non terminals are written in italics and terminals in

36

4.4 – Translation rules

normal font. The root element is queries. Non terminal event-name corresponds
to the name of an event defined as first argument in one of the JavaSPI event
instructions contained in the model. The conjunction (&) has higher priority than
the disjunction (|), but parentheses can be used to disambiguate the expressions.
The inj: prefix is used to specify that the correspondence is injective, i.e. the event
after the ==> symbol must have a 1:1 correspondence with the event defined before
the ==> symbol. The prefix inj: is automatically added to the event before the ==>
symbol, if the event after the ==> symbol has the inj: prefix.

For simplicity of implementation, some restrictions regarding event declarations
have been defined: (i) it is not possible to use the same event name with a different
number or type of parameters in the JavaSPI model (the JavaSPI model parser does
not allow “overloading” of events); (ii) the same event can be used in different queries,
but it can be used before the ==> in only one query; (iii) the same event name cannot
be used in the @PStubQueries annotation both with and without the inj: prefix
(in order to reduce the complexity of the stub generation process); (iv) the events
contained in the @PStubQueries annotation must have as arguments, in the JavaSPI
model, only values received from the application that calls the protocol through
channels (e.g. it is not possible to use protocol nonces or keys as arguments, because
these values cannot be abstracted from the model). However, these restrictions do not
limit the flexibility of the approach and the possible queries that can be specified, but
may require the definition of multiple events (with different names and/or different
arguments) in the same point of the protocol (in the case of limitations (i) and
(iii)), in order to verify all the properties. In some cases the limitation (ii) can
be overcome by rewriting the queries in the following way: from the two queries
evt1 ==> evt2 and evt1 ==> evt3, to the query evt1 ==> evt2 & evt3. Finally,
regarding limitation (iv), an application that uses a protocol generated by JavaSPI
should not care about internal objects in the protocol. For example, if the protocol
uses shared secret keys to protect messages, the application that uses the protocol
must not access to that objects, because the protocol objects are not relevant for
the logic of the application. Thus, the entire software (application and protocol)
must be designed in order to respect this constraint. In any case, this does not limit
the number and types of object that an application can use as arguments of events
(except internal objects in the protocol), but prevents the application from accessing
to internal protocol objects.

The first generated elements are the interfaces which contain the definitions of
the events. Each actor (excluding the “master”) of the JavaSPI model originates
a different Java interface. The name and the package of the interface may be
customized by using the @EventsInterface annotation. Eventually, it is possible
to select a subset of all the events defined in the actor that will be considered in
the interface generation (by default, all the events are considered). For example,
the instruction event("clientOperation",xValue);, where xValue is an instance

37

4 – Automated formal verification of application-specific security properties

queries ::= { non-empty-q-list }
non-empty-q-list ::= query , non-empty-q-list

| query
query ::= fact ==> hypothesis
fact ::= event-name

| inj:event-name
hypothesis ::= fact

| hypothesis & hypothesis
| hypothesis | hypothesis
| (hypothesis & hypothesis)
| (hypothesis | hypothesis)
| (fact ==> hypothesis)

Figure 4.1. Grammar for correspondence queries.

of the class it.polito.javaSPI.spiWrapperSim.names.Integer, originates the
following method definition in the interface:

public void c l i en tOpe ra t i on (
f ina l i t . p o l i t o . javaSPI . spiWrapperSim . names . I n t eg e r xValue

) ;

All the generated methods in the interfaces have no return value (i.e. void return
type) because the application can only receive objects from the protocol, but not
pass objects to the protocol code as return value of methods associated with the
events. This characteristic ensures that the application does not alter the flow of the
communication protocol by passing objects to the protocol. The application that
uses the JavaSPI generated code must provide classes that implement each interface,
before starting the Java Pathfinder analysis.

The second part of the generation process produces the EventsManager class (the
destination package can be customized by using the @PStubPackage annotation in
the “master” actor). The methods contained in this class enforces the constraints and
precedences defined by the correspondence properties. In particular, the methods
which name ends with _notify track the occurrences of the events with the corre-
sponding object passed as arguments (for the injective events, it is necessary to count
the occurrences for each different set of arguments). These methods use internal
hash maps to keep track of the event occurrences. Similarly, the methods which
name ends with _isEnabled are used to check if events had occurred previously
(i.e. the _notify was invoked with the same arguments). A detailed description of
the methods generated inside the EventsManager is given in the continuation of the
section.

The queries contained in the @PStubQueries annotation are parsed in order to
create four different sets, that contain the names of the events previously declared
in the interfaces. The RNI set contains the names of all the events defined in

38

4.4 – Translation rules

correspondence properties queries after the ==> symbol. Similarly, the LNI set
contains the names of all the events defined before the ==> symbol. The same event
may belong to both RNI and LNI sets. For example, the query evt1 ==> evt2 ==>
evt3 originates the following sets: RNI = {evt2, evt3} and LNI = {evt1, evt2}. If
the an event specified in a query has the inj: prefix, the event will be included into
the RI and/or LI sets (instead of RNI and LNI), following the same rule described
above. However, it is important to remember that the prefix inj: is automatically
added to event before the ==> symbol, if the event after the ==> symbol has the
inj: prefix. For example, the query evt4 ==> inj:evt5 ==> evt6 produces the
following sets: RI = {evt5}, LI = {evt4, evt5} and RNI = {evt6}.

The methods of the EventsManager class are automatically generated by using
different templates for each defined set of events, presented here, where EVT-NAME
is the name of the event, TYPE-PAR-LIST represents the parameters types and
names list in the method declaration, and PAR-LIST is the list the name of the
parameters in the method declaration (i.e. corresponds to TYPE-PAR-LIST without
types). The type Message refers to the it.polito.spi2java.spiWrapper.Message
class.

Each event contained in the RNI is translated using the following template:
private stat ic f ina l HashSet<List<Message>> EVT-NAME = new HashSet<

List<Message>>() ;

public synchronized void EVT-NAME _noti fy (TYPE-PAR-LIST) {
EVT-NAME . add (Arrays . a sL i s t (PAR-LIST)) ;

}

Each event contained in the RI is translated using the following template:
private stat ic f ina l HashMap<List<Message>, java . lang . Integer> EVT-

NAME = new HashMap<List<Message>, java . lang . Integer >() ;

public synchronized void EVT-NAME _noti fy (TYPE-PAR-LIST) {
f ina l List<Message> l i s t= Arrays . a sL i s t (PAR-LIST) ;
f ina l java . lang . In t eg e r v = EVT-NAME . get (l i s t) ;
i f (v != null) {

EVT-NAME . put (l i s t , v + 1) ;
} else {

EVT-NAME . put (l i s t , 1) ;
}

}

private boolean EVT-NAME _injDecrease (TYPE-PAR-LIST) {
f ina l List<Message> l i s t= Arrays . a sL i s t (PAR-LIST) ;
f ina l java . lang . In t eg e r v = EVT-NAME . get (l i s t) ;
i f (v != null && v > 0) {

EVT-NAME . put (l i s t , v − 1) ;
return true ;

} else {

39

4 – Automated formal verification of application-specific security properties

return fa l se ;
}

}

The events contained in LNI and LI are translated using the following template:
public synchronized boolean EVT-NAME_isEnabled (TYPE-PAR-LIST) {

return BOOL-EXP ;
}

The BOOL-EXP value is replaced with a boolean expression which depends on how
the EVT-NAME event precedences are defined in the @PStubQueries annotation.
More precisely, the boolean expression considers the hypothesis defined after the
==> following the EVT-NAME event. For example, if EVT-NAME is evt8 and
the query containing the event is evt7 ==> inj:evt8 ==> inj:evt9 & evt10, the
hypothesis that will be considered is inj:evt9 & evt10. Similarly, if EVT-NAME
is evt7 the hypothesis is inj:evt8. The string BOOL-EXP (initialized to an empty
string) is built using the following algorithm:

i the hypothesis is split into tokens (delimiters are: (,), &, |), and the resulting
array T contains both delimiters and tokens, in the same order as they appear in
the hypothesis

ii the variable i is set to 0

iii the array element T[i] is parsed: if it is a delimiter, then it is copied as is
to the BOOL-EXP string. Otherwise, if T[i] is the name of an event (e.g.
named evt_x) without the inj: prefix, the string evt_x.contains(PAR-LIST)
is appended to the BOOL-EXP string. Finally, if T[i] is the name of an event
with the inj: prefix, the string evt_x_injDecrease(PAR-LIST) is appended
to the BOOL-EXP string

iv the variable i is incremented by 1 and, if i is less that the size of the array T,
the process continues at point (iii). Otherwise, the process is completed.

For example, if the hypothesis is inj:evt9 & evt10, the resulting BOOL-EXP
string is evt9_injDecrease(PAR-LIST) & evt10.contains(PAR-LIST), where
PAR-LIST is replaced with the correct arguments.

The third and last part of the generation process consist of the translation from
the JavaSPI abstract actor model to the corresponding stub. For each actor, a
different Java class is generated. The generated class has a name that corresponds
to the name of the actor in the JavaSPI model plus the _EventsStub suffix (the
destination package can be customized by using the @PStubPackage annotation in
the “master” actor). The stub classes implement the java.lang.Runnable interface,
and the code of the stub, as it happens in the concrete Java class generated by
JavaSPI, is placed inside the doRun method. The translation (from the abstract actor

40

4.4 – Translation rules

S(if(bool-expr){statement-list})

↓

if(Verify.getBoolean()){ S(statement-list) }

S(if(bool-expr){statement-list1} else {statement-list2})

↓

if(Verify.getBoolean()){ S(statement-list1) } else { S(statement-list2) }

S(event(name, arg-list); statement-list)

↓ if name ∈ R and name /∈ L

evt-interface-impl.name(arg-list);
evMan.name_notify(arg-list);

S(statement-list)

S(event(name, arg-list); statement-list)

↓ if name /∈ R and name ∈ L

if(evMan.name_isEnabled(arg-list)){
evt-interface-impl.name(arg-list);

S(statement-list)
} else { return; }
S(event(name, arg-list); statement-list)

↓ if name ∈ R and name ∈ L

if(evMan.name_isEnabled(arg-list)){
evt-interface-impl.name(arg-list);
evMan.name_notify(arg-list);

S(statement-list)
} else { return; }
S(statement; statement-list)

↓

S(statement-list)

Table 4.1. Definition of the S() translation function

model to the stub) is described by the S() function formally defined in Table 4.1.
Two additional sets have been defined as R = RNI ∪RI and L = LNI ∪LI . The first
rule that matches, from top to bottom, is applied. The JavaSPI model instructions

41

4 – Automated formal verification of application-specific security properties

that do not match any rule are ignored, because they do not alter the sequence of
interaction events defined by the correspondence properties.

In Table 4.1, statement represents a single JavaSPI instruction, statement-list
represents a sequence of JavaSPI instructions, and evt-interface-impl is the object
(provided by the final application) that implements the interface where the event
name is defined. The object evMan is a singleton instance of the class EventsManager,
shared among all the process stubs. Objects implementing interfaces and arguments
must be passed to the stub constructor by the final application (the constructor of
the stub is automatically generated in order to accept the correct number and type
of arguments). The Verify.getBoolean() method is provided by Java Pathfinder
libraries. It is used to introduce a non-determinist boolean choice during the analysis.
In this work is used as condition in if-else statements. When Java Pathfinder
reaches these statements, it analyzes both “true” and “false” branches, one at time,
using backtrack when the end of a branch is reached.

4.4.1 Optimization of the generated code

The generation process described in Section 4.4 can produce Java classes for all the
possible queries that respect the grammar illustrated in Figure 4.1 and the constraints
defined in Section 4.4. As the generated classes must be general enough to cover
all the possible combinations, it is possible, in some cases, to slightly optimize the
generated code, in order to reduce the complexity of the Java Pathfinder analysis,
by reducing the number of states of the application model.

In the current version of JavaSPI, the following two optimizations of the generated
code have been implemented.

The first one can be applied in the EventsManager class, when the set RI is not
empty, and consist of using the native Java int type instead of the java.lang.Integer
type, as a counter of event occurrences. However, since the counter is contained
inside a java.util.HashMap
private stat ic f ina l HashMap<List<Message>, java . lang . Integer> EVT-

NAME = new HashMap<List<Message>, java . lang . Integer >() ;

replacing the Integer type with the native int type will produce an error in the
code. Instead, it is necessary to replace the Integer type with an array of int type
private stat ic f ina l HashMap<List<Message>, int [] > EVT-NAME = new

HashMap<List<Message>, int [] >() ;

if the array size is 1, the behaviour of the application does not change when
compared to the version that uses the java.lang.Integer type. In addition to
changing the declaration of the HashMap, it is necessary to change the implementation
of the two methods that operate on the map
public synchronized void EVT-NAME _noti fy (TYPE-PAR-LIST) {

f ina l List<Message> l i s t= Arrays . a sL i s t (PAR-LIST) ;

42

4.4 – Translation rules

f ina l int [] v = EVT-NAME . get (l i s t) ;
i f (v != null) {

v [0]++;
} else {

EVT-NAME . put (l i s t , new int [] { 1 }) ;
}

}

private boolean EVT-NAME _injDecrease (TYPE-PAR-LIST) {
f ina l List<Message> l i s t= Arrays . a sL i s t (PAR-LIST) ;
f ina l int [] v = EVT-NAME . get (l i s t) ;
i f (v != null && v [0] > 0) {

v[0]−−;
return true ;

} else {
return fa l se ;

}
}

This optimization dramatically reduces the number of new instructions that are
called from the application. In fact, since the Integer object is immutable, increasing
or decreasing the integer value causes the creation of a new Integer object (the
autoboxing feature of Java hides the process of creating a new object). Instead, if
an array of int is used, the creation of a new object is executed only once, in the
EVT-NAME_notify method.

The second optimization that has been implemented in JavaSPI, and that involves
the EventsManager class, consists in not using instances of the java.util.List
class when events have only one parameter. In fact, the HashSet objects track the
arguments passed when a method associated to an event (that belongs to RNI) is
called. Similarly, the invocations of methods associated to events that belong to RI

are tracked, and counted, by using HashMap objects. By default the events may have
an unbounded number of parameters and, as a result, the code generator produces
the following code to declare the objects

private stat ic f ina l HashSet<List<Message>> EVT-NAME = new HashSet<
List<Message>>() ;

private stat ic f ina l HashMap<List<Message>, java . lang . Integer> EVT-
NAME = new HashMap<List<Message>, java . lang . Integer >() ;

However, it is pretty straightforward to conclude that, if an event has only
one parameter, the type maintained by the HashSet and the type of the key of
the HashMap can be changed from List<Message> to Message. In addition to the
declarations, it is necessary to change accordingly the code inside the other methods
of the EventsManager class.

This optimization can reduce the number of states that have to be analyzed by
Java Pathfinder, because it reduces the number of instructions, and object creation

43

4 – Automated formal verification of application-specific security properties

statements, contained in the EventsManager class.

Results The statistics of Java Pathfinder show a reduction of the state space,
in some simple applications, of about 20% for the first optimization and 15% for
the second one. However, these results are very dependent on the complexity of
the application under analysis, and optimizations can have less impact in complex
applications. In any case, it can be asserted that the two optimizations, when they
can be applied, contribute to reduce the state space that has to be explored by Java
Pathfinder. The two optimization can be applied at the same time, and the code
generator produces a code that is already optimized.

4.4.2 Replace the protocol code with the stub code

The concrete protocol code generated by JavaSPI (Section 2.3) can be either used
as standalone application, or imported in a Java application. If called inside an
application, the protocol code generated by JavaSPI is used in the following way
(the excerpt of code regards one actor of the protocol):
. . .
// o b j e c t t h a t implement the Even t s In t e r f a c e
InterfName impl = new EvtImpl Inter f (. . .) ;
// o b j e c t used as argument
I n t eg e r va l = new IntegerSR (10) ;
// crea t e a channel ob j e c t , maybe TCP/IP or so f tware sync
Channel ch = new . . . ChannelSR (. . .) ;
// c l a s s genera ted by JavaSPI
proc_Callback ps = new proc_Callback (ch , impl) ;
// send the argument to the proces s
ch . send (va l) ;
. . .

where EvtImplInterf is a class that implements the InterfName interface. The
interface is automatically generated by JavaSPI, and contains the definition of the
methods associated with the process events (Section 4.4).

In order to use the process stub and reduce the complexity of the Java Pathfinder
analysis, it is necessary to slightly modify the application code. For example, the
previous code must be modified in this way:
. . .
// o b j e c t t h a t implement the Even t s In t e r f a c e
InterfName impl = new EvtImpl Inter f (. . .) ;
// o b j e c t used as argument
I n t eg e r va l = new IntegerSR (10) ;
// s tub c l a s s genera ted by JavaSPI
proc_EventsStub ps = new p_Server_EventsStub (impl , va l) ;
// s t a r t a thread wi th the s tub
Thread t s = new Thread (ps) ;

44

4.5 – Proof

t s . s t a r t () ;
t s . j o i n () ;
. . .

The main differences are: the channel is no longer used, and the thread must be
started manually. The channel is not necessary because the argument(s) are directly
passed in the method invocation. The thread(s) must be started manually because
there may be more than one process stub and, in order to execute a correct Java
Pathfinder analysis, all the stubs must be instantiated before launching the threads.

4.5 Proof

This section describes the proof that the generated stub code is a correct abstraction
of the concrete protocol code. It is important to remind that the stub replaces the
protocol code in order to reduce the complexity of the Java Pathfinder analysis.
Since the communication protocol has already been verified using ProVerif, the Java
Pathfinder analysis considers only the methods associated with the events defined by
the JavaSPI model of the process (see Section 4.3).

The proof aims to ensure that, when the final application is verified with Java
Pathfinder and uses the stub, the set that contains all the possible sequences of
invocations of the methods associated to the events (defined in the JavaSPI model),
is a superset of the set containing all the possible sequences of invocations of the
methods associated to the events when the concrete protocol code is used by the
final application (motivation is given in the continuation of this section).

More formally, let assume that E is the set constituted by all the events (parame-
ters are not considered, but each event has a single list of parameters, i.e. overloading
is not supported, see Section 4.4) defined in all the actors of the JavaSPI model,
and that S is the infinite set constituted by all the possible sequences (both finite
and infinite) that are built by events defined in E . In the sequences, the events can
be repeated infinitely many times and appear in any order. However, the model
checker Java Pathfinder cannot analyze an infinite state space due to its nature, so
it is necessary to define the Sb set as the finite set derived from truncating all the
sequences contained in S to a defined length n (finite and greater than zero), such
that each sequence is constituted from a minimum of 0 to a maximum of n events
of E . All the queries specified in the @PStubQueries annotation are saved in the
Q set. Using the rules, described in the continuation of the section, the SbQ set is
defined as a subset of Sb. The SbQ contains only those elements where the sequence
of events satisfies all the precedences defined by the queries of Q. At this point, the
SbQ contains a finite number of sequences, the length of each sequence is between 1
and n events, and contains also an empty sequence (the only with length equal to
zero). The sequences contained in SbQ represent all the sequences of invocations (of
methods associated to the events) that Java Pathfinder has to consider during the

45

4 – Automated formal verification of application-specific security properties

verification with the stubs. The maximum length n depends on the complexity of
the application under analysis and the computational resources available. When the
application uses the concrete code, only one of the sequences belonging to SbQ is
followed for the first n invocations of methods associated to the events. However, at
each run of the application the sequence followed my change (e.g. due to different
inputs, scheduling of processes).

The following steps prove that: (i) the application, when it uses the concrete
protocol code, cannot invoke the methods associated to the events in a sequence (for
the first n steps) that does not belong to SbQ, (ii) the model checker Java Pathfinder,
when it analyses the application (that uses the stubs), considers all the sequences of
events that belong to SbQ (i.e. a superset of all the possible sequences of methods
associated to the events that the final application can follow, for the first n steps, are
verified). The prerequisites for the validity of this proof are: (i) the ProVerif model
generated from the JavaSPI model must satisfy all the security properties defined,
(ii) the stubs and the concrete protocol code must be directly generated from the
JavaSPI model (the same JavaSPI model mentioned in the previous point).

Define precedences among events: the syntax limitations of the queries that
can be defined in the @PStubQueries annotation, and how they are parsed, have
been described in Section 4.4. All the events used by the annotation constitute four
sets: RI , LI , RNI and LNI (defined in Section 4.4). The same event may belong to
different sets. However, due to syntax limitations, if an event belongs to RI ∪ LI , it
cannot belong to RNI ∪ LNI , and vice versa. The JavaSPI stub generator parses all
the queries and reduces them to a set of fact ==> hypothesis queries. For example,
if a query is evtA ==> evtB ==> evtC, the parser considers the two queries evtA
==> evtB and evtB ==> evtC. If the original query has only one ==> symbol, it is
not modified by the parser. All the fact ==> hypothesis queries are saved in the Q
set.

The queries in Q are used to define precedences among the different events.
The ==> defines a precedence between fact and hypothesis, as a logic implication.
Obviously, the approach is correct if all the original queries have previously been
verified with ProVerif. The event that represent the fact can be reached, in a
protocol session, if, and only if, the hypothesis is true. For example, the evtD ==>
evtE query implies that the evtD event may be reached in a protocol session if, and
only if, the evtE event has been previously executed at least once, with the same
arguments, and not necessarily in the same session. Differently, the inj:evtF ==>
inj:evtG query means that the evtF event may be reached if, and only if, the evtG
event has been executed with the same arguments. Because the correspondence is
injective, an execution of evtF must match an execution of evtG. In order to emulate
this behaviour, the stub generated by JavaSPI counts the occurrences of evtG (which
belongs to RI) with the corresponding arguments and, before executing evtF (which
belongs to LI), checks if the counter is greater than zero. If it is greater than zero,

46

4.5 – Proof

the counter is decreased by one and the application method associated with evtF is
executed. Otherwise, the stub that wants to call evtF is interrupted, because the
event evtF cannot be activated and an invalid state has been reached. If the query
does not define an injective correspondence, it is not necessary to use a counter to
track the events that compose the hypothesis of the query. For example, in order to
enforce the precedence defined by the evtD ==> evtE query, the stub generated by
JavaSPI saves the calls to the evtE event (which belongs to RNI), along with the
argument values. The stub, before executing evtD, checks if the evtE has previously
been called with the same arguments. If yes, the application method associated
with evtD is invoked. Otherwise, the stub that wants to call evtD is interrupted (an
invalid state has been reached).

Finally, if an event belongs only to RI ∪ RNI , and does not belong to LI ∪ LNI ,
the event has no precedence dependencies and the associated application method
can be always invoked when the stub reaches the invocation point.

All these precedence constraints are enforced in the stubs using the translation
rules described in Section 4.4.

Compare the instruction flow of the concrete process code and the
stub code The concrete protocol code and the stub code are generated following
the same approach. A parser analyzes each instruction of the JavaSPI actors model
and produces a corresponding instruction in the destination code, also considering
the annotations included in the JavaSPI model.

The syntax of the JavaSPI models, along with the generation process of the
concrete protocol code is described in [4]. The stub is a “simplified” version of the
concrete protocol where only event interactions and branches are considered. In
this way, the process stub can reproduce all the possible sequences of invocations of
methods associated to events defined in the process.

In JavaSPI, the only statement that creates a branch is the if-else statement.
However, in the stub it is not possible to use an if-else with the same condition,
because model variables used in the boolean condition are not known (e.g. keys,
identifiers). Java Pathfinder provides a dedicated method for boolean conditions, i.e.
Verify.getBoolean(). This method represents a non-determinist boolean choice.
When used as condition in a if-else statement, Java Pathfinder analyzes both the
“true” branch and the “false” branch, using backtracking when the end of a branch is
reached. The translation rules for this case are reported in the first and second rows
of Table 4.1.

Each instruction of the concrete code can raise an exception, due to wrong
parameters (e.g. values received from a channel), or due to system errors (e.g. out
of memory exception). An occurrence of an exception breaks the flow of the process,
and the subsequent instructions, including the invocations of methods associated
to events are not executed. This situation is not considered by the stubs, that
consider only a complete run of the process. In fact, the break in the process flow

47

4 – Automated formal verification of application-specific security properties

does not create a new branch, because the constructor try-catch is not supported
by JavaSPI. This implies that an exception cannot continue the execution in an
alternative branch where events are defined. Therefore, the stubs can be considered
as over-approximations where breaks caused by exception are omitted, but cover all
the possible sequences of invocations of methods associated to events.

4.6 The case study application development

The case study is the development of a client-server application that implements
a sort of electronic resource access control. In this application, there are a set of
clients and one server (which can accept multiple requests at the same time). Each
client has an internal counter for credits, and performs requests to the server, asking
for additional credits. The initial value of the counter, also called balance of the
client, is zero. The server has a fixed initial value for available credits. Each time the
server receives a request from a client, it checks if the variable that counts credits is
greater that zero, and greater than or equal the amount requested by the client. If
this conditions are true, the server decreases the counter by the requested value, and
grants the credits with a response message. All clients and the server store internally
the same secret key, shared by all trusted components. The secret keys are assumed
to be not accessible, both in the clients and in the server.

The security goals that are considered in this case study are: (i) the server cannot
grant more credits than the amount available at the beginning, (ii) each client cannot
receive more credits than it has requested and, (ii) for each successful request of the
client the server must have granted the credits, and the client should have sent the
request to the server.

These properties must be satisfied even in the presence of potential active attackers
who may intercept/alter/delete messages transmitted between the actors (clients and
server), or create new ones, following the definition of attackers of the Dolev-Yao
model.

4.6.1 The Development Workflow

The key idea of the proposed development approach (depicted in Figure 4.2) is to
divide the application into two distinct parts, to be developed and verified separately:
the protocol, and the application logic.

The protocol is developed according to the JavaSPI model-driven methodology.
It includes all communication activities and must satisfy some security properties,
specified by the developer.

The application logic can be developed in any way, but it must properly interact
with the protocol, by starting protocol sessions and reacting to events.

48

4.6 – The case study application development

ProVerif

Develop application and

generate stub

 JavaSPI model

(with security properties)

ProVerif specification

Properties

satisfied?

NO,

refine model

JavaSPI code generator

YES, generate code

Java Protocol Code

Java PathFinder

Java Application Code

with stub

Properties

satisfied?

Correctly verified
application

YES

NO,

review

JavaSPI translator

Figure 4.2. Workflow of the verification process

The verification process is compositional. The security properties of the protocol
are verified on the abstract protocol model using ProVerif and assuming a generic
scenario with an unbounded number of parallel protocol sessions. The same properties
are guaranteed to hold on the Java code that implements the protocol by the code
generation algorithm. Application-specific security properties are specified and
formally verified using an automated formal verification tool capable of analyzing
Java code directly (Java Pathfinder in this case). When performing this verification
step, it is possible to avoid the explicit modeling of the protocol part, by substituting
it with a stub that describes the security properties proved by ProVerif. The stub is
be automatically generated from the protocol properties, as described in Section 4.4.

The rest of this section details the various steps with reference to the case study.

4.6.2 Developing the JavaSPI abstract protocol model

The protocol designed for this application is based on challenge interactions. Fig-
ure 4.4 shows the interaction between a client and the server during the request
operation.

Each client has an unique identifier, named id, assigned to the client when it is

49

4 – Automated formal verification of application-specific security properties

launched. The client starts the operation by deciding the amount of credits that will
be requested to the server (the value term), and calls the method associated to the
event setupRequest, passing the value as argument. Then, the client generates a
random number, called nonce. The client compose the request message with the
sequence of the client id, the value number and the nonce. This sequence is ciphered
with the shared key sk (known to clients and server), and sent to the server.

When the server receives a request message, it deciphers the content and passes the
value received from the client to the event checkAvailability. The implementation
of the method that matches the event checks if the server has enough credits to
satisfy the client request. If the condition is satisfied, the server replies to the client,
otherwise the server closes the connection with the client. The response to the client
consist of the hashed value of the sequence received from the client.

Upon receiving the response, the client checks if the hashed value is equal to
the expected hash value (calculated with the local values previously sent to the
server). If the values match, the client completes the operation and calls the method
associated to the event finishRequest, passing the value as argument.

In this case study application, the methods associated to the events do the
following operations: setupRequest counts the total amount of credits requested by
each client; checkAvailability checks if the server has enough credits to satisfy
the client request; finishRequest counts the total credits granted by the server to
each client.

The JavaSPI specification of the client behavior is the code excerpt shown in
Figure 4.3.

The JavaSPI model can be simulated in order to check that it behaves as expected.
This security protocol is expected to satisfy two main security properties. The

first one is that the secret shared by all the original components cannot be known by
an attacker, who has access to the communication channel between the clients and
the server. The second one is the correspondence of the protocol events. In this appli-
cation, each time a client obtains credits from the server (finishRequest), the server
must have previously granted the same amount of credits (checkAvailability), and
the client must have sent the request to the server asking for credits (setupRequest).
The query that defines the correspondences among events, according to the gram-
mar specified in Figure 4.1, is inj:finishRequest ==> inj:checkAvailability
& inj:setupRequest. Injectivity is necessary in order to avoid replay attacks (i.e.
a duplicated response message, which would result in an addition of not granted
credits, must be avoided).

Note that a tool like ProVerif cannot model integer arithmetic and precedence
comparisons between integers. Hence, it does not allow to specify more complex
properties, e.g. the ones related to the sum of credit granted, nor it allows to describe
the application logic that processes the events and updates integer counters.

50

4.6 – The case study application development

public class Cl i en t extends sp iP roc e s s {
. . .
@EventsInter face ({ " i t . p o l i t o . javaSPI . eventsExample . gen . C l i e n t I n t e r f a c e

" , " setupRequest " , " f i n i shReque s t " })
public void doRun(Channel cC l i en tS ta r t , Channel cC l i entServer1 ,

SharedKey sk) throws SpiWrapperSimException{

Pair<Integer , Integer> pIdVal = cC l i en tS t a r t . r e c e i v e (Pair . class) ;
I n t eg e r id = pIdVal . g e tLe f t () ;
I n t eg e r va l = pIdVal . getRight () ;

event (" setupRequest " , va l) ;

Nonce n = new Nonce () ;
Pair<Pair<Integer , Integer >,Nonce> pIdValN = new Pair<Pair<Integer ,

Integer >,Nonce>(pIdVal , n) ;

SharedKeyCiphered<Pair<Pair<Integer , Integer >,Nonce>> skc = new
SharedKeyCiphered<Pair<Pair<Integer , Integer >,Nonce>>(pIdValN , sk) ;

cC l i en tSe rve r1 . send (skc) ;

Hashing h = new Hashing (pIdValN) ;
Hashing rH = cCl i en tSe rve r1 . r e c e i v e (Hashing . class) ;

i f (rH . equa l s (h)) {
event (" f i n i shReque s t " , va l) ;
. . .

}
. . .

Figure 4.3. Excerpt of the client model code

REQUEST, {id, value, nonce}sk

RESPONSE, H(id, value, nonce)

Client Server

setupRequest(value)

finishRequest(value)

checkAvailability(value)

Figure 4.4. The load operation

51

4 – Automated formal verification of application-specific security properties

4.6.3 Formal Protocol Verification

The model generated in the previous step is automatically converted by JavaSPI into
the input syntax accepted by ProVerif. The resulting code is ready to be formally
analyzed.

ProVerif succeeds in proving that the intended properties of the protocol hold on
the model. ProVerif takes 13ms to complete the proof on a computer equipped with
Intel i7-3770 CPU running at 3.40GHz, 11GiB of DDR3 RAM, Ubuntu 14.04 64-bit
operating system and ProVerif 1.90.

4.6.4 Protocol Code Generation

After having verified the model with ProVerif, the generation of the Java code that
implements the protocol can take place, by means of the code generator provided
by JavaSPI. The result is a set of Java packages, one for each process in the model,
which implements the behavior defined in the model.

4.6.5 Application Logic Development

The generated protocol code must now be integrated with the application code that
uses it. In the case study described here, the application code has been kept simple,
but it includes all the fundamental aspects of the application that are necessary for
its verification. More precisely, only the functionalities related to the management of
the credit system have been implemented.

4.6.6 Checking the Application Code

The last step of the workflow is the verification of the application-specific properties
using Java Pathfinder. As already anticipated, in order to reduce the complexity
of this verification task, the protocol code generated by JavaSPI is replaced with
a stub that just reproduces any possible behavior of the protocol sessions, as seen
by the application, without really executing the protocol. Of course, the behavior
of the stub must be constrained so as to satisfy the security properties that have
already been verified by ProVerif. In principle, this constraint can be enforced in
one of two different ways: either the constraint is enforced when generating the stub,
or the stub is generated without any constraint but the application-specific security
property P to be verified is rewritten in the following form

C ⇒ P

where C is the constraint (i.e. the property verified by ProVerif). This second
approach is more difficult, because of the difficulty of expressing C. Then, the first

52

4.6 – The case study application development

approach (generation of a stub that incorporates the constraints coming from the
properties verified by ProVerif has been selected for the case study).

As the application processes interact with each other only through the protocol,
having replaced the protocol implementation with the stub makes it possible to avoid
considering the behavior of active attackers any more during the verification of the
application code. In fact, the behavior of potential active attackers has already been
considered when analyzing the protocol by ProVerif, and it is already incorporated
in the stub behavior itself.

Based on the architecture of the developed application, the only possible interac-
tions between the protocol and the application logic are those that occur at the start
and at the end of each session, as well as at the occurrence of one of the intermediate
events described in the model. For this reason, it is enough for the stub to include
the statements corresponding to these interaction points. All the other statements
that make up the protocol implementation can be safely omitted.

In the case study, the stub includes threads that play the role of the client and
threads that play the role of the server (which is a multi-threaded server). The
threads that play the role of the client learn the amount of credit to be asked at their
startup (this information is an input coming from the user when the application
starts the session). Instead, the threads that play the server role are ready to perform
the operation.

Model checking does not allow to analyze systems with an unbounded number of
states. For this reason, a necessary condition is that the number of parallel protocol
sessions (i.e. the number of threads in the stub) is kept bounded. In the case study,
this corresponds to having bounded numbers of clients and servers (each operation
requires one thread for the client and one thread for the server) and, to limit the
number of operations that a client can perform (each client can repeat the request
operation more times).

In addition to bounding the number of threads, as with any software model
checking problem, abstractions in the application code may be necessary, in order to
make the number of states finite and reasonably small.

In the case study, the application-specific properties to be checked are given by
the fact that in every instant (or for every state reached and analyzed by the model
checker) the value of different integer fields are always inside specific bounds. In
details, the counter of available credits (named available) in the server, shared and
synchronized among different threads that play the role of the server, must always
be greater than or equal to zero. This counter is updated by the implementation of
the method that matches the event checkAvailability. In fact, if the counter is
greater than or equal to the value passed to the method as argument, the counter is
decreased by that value. Otherwise, the operation is interrupted with an exception.
The second condition on integer fields requires that, in each client, the total amount
of credits received from the server does not exceeds the total credits requested. This

53

4 – Automated formal verification of application-specific security properties

condition is checked by using two integer fields for each client. The requested field is
updated by the implementation of the method that matches the event setupRequest,
by adding the argument value, before sending the request to the server. Similarly,
the balance field is updated the event finishRequest, by adding the argument
value, after receiving the response message from the server. The condition that must
always be satisfied is that the requested field must always be greater or equal than
the balance field.

Since the instantaneous value of the balance field depends on the field additions
and subtractions performed by the application itself, it is not possible to introduce a
layer of abstraction on it. Nevertheless, it is still affordable to run the model checker
over a reasonable number of possible cases.

To check if it is satisfied there are two possible ways.
The first one is to introduce assertions within the application code. In this case,

since the example application requires that integer field respect some conditions, it is
sufficient to place an assert statement at any point in the code where the fields are
modified. As in this application all the fields involved in the analysis are private, it is
very simple to identify the only places where then can be set or modified. Specifically,
in the server the instruction assert available >= 0 has been added, while the
instruction assert balance <= requested has been placed in the client code.

The second way is to use a plugin for Java Pathfinder that enables the verification
of LTL formulas during the state exploration performed by JPF. This solution has
been described in [5], where a plugin1, that is not maintained directly by the Java
Pathfinder development team, was used. Unfortunately, with the latest update of
JPF (year 2015) that plugin does not work anymore with JPF. It was not possible
to found another plugin that works with the current version of JPF. However, in the
future new plugins might be available in order to extend the functionalities of JPF
and enable LTL verification.

Results confirm that the application behaves as expected. No violations of the
specified properties are detected, thus proving, by exhaustive state exploration, that
the properties hold on the application code.

Verification with JPF was performed on a computer equipped with Intel Xeon
Processor E5-2660 CPU running at 2.20GHz and 128GiB of DDR3 RAM. The software
components relied on an Ubuntu 10.04 64-bit operating system, Java HotSpot(TM)
Server VM (Java version 1.8.0_51-b16, build 25.51-b03, mixed mode).

The initial JavaSPI model is composed by 200 lines of Java code and annotations.
The size of the ProVerif model is 110 lines, and the total size of the generated classes
(described in Section 4.4) is about 200 lines of Java code. All are generated by the
JavaSPI generator starting from the initial model.

Table 4.2 reports elapsed time, required memory and analyzed states for the

1Available at https://bitbucket.org/petercipov/jpf-ltl

54

4.6 – The case study application development

verification of the case study example. With the computational resources specified
above, in this case it has been possible to analyze a scenario with a maximum of
3 clients, and Java Pathfinder can verify up to 3 operations for each client. Java
Pathfinder has a limitation of memory that can be used due to the implementation
of the state set matcher class (gov.nasa.jpf.vm.JenkinsStateSet), which uses an
array to store the visited states (the maximum size of a Java array is 231-1). However,
even when Java Pathfinder is not able to complete the exhaustive space exploration,
all the states reached before the interruption (an exception is thrown) of the analysis
satisfy the specified properties.

Operations
Clients 1 2 3

1 1s / 1932 MiB /
2013 states

10m 33s / 2847 MiB
/ 988951 states

70h 43m 4s / 14289
MiB / 322687037

states

2 3s / 1932 MiB / 4761
states

18m 29s / 2762 MiB
/ 1620845 states

6d 2h 53m 56s /
16383 MiB /

541653845 states

3 4s / 1932 MiB /
6342 states

27m 15s / 3372 MiB
/ 2380024 states

7d 10h 12m 52s /
31932 MiB /

796832136 states

4 4s / 1932 MiB /
6498 states

27m 27s / 2918 MiB
/ 2387818 states

exception thrown by
Java Pathfinder

5 4s / 1932 MiB /
6654 states

28m 21s / 3373 MiB
/ 2395612 states

10 5s / 2436 MiB /
7434 states

32m 37s / 3001 MiB
/ 2434582 states

20 5s / 1932 MiB /
8994 states

33m 51s / 3378 MiB
/ 2512522 states

Table 4.2. Java Pathfinder verification time, memory consumption and analyzed
states using the assert construct

Although it is not possible, with a model checker, to formally infer that the
properties hold with any number of users and terminals, the results obtained with a
small number of participants are sufficient to give reasonable confidence that this is
true. In fact, if a distributed application is flawed, usually the error can be detected
even with small numbers of parallel sessions.

As mentioned above, the characteristics of the application itself have a significant
effect on the complexity of model checking, so performance can be very different
depending on the application under test. Finally, some application may reduce the
complexity of model checking by exploiting special JPF features, e.g. native peer

55

4 – Automated formal verification of application-specific security properties

classes and customized schedulers. Again, the applicability of those features strongly
depends on the application under test.

4.6.7 The spiWrapperJpf library

The Java code generated with JavaSPI uses the spiWrapper library, which serializes
data transmitted over sockets with the default Java object serialization feature.
The spiWrapper library can be extended in order to achieve interoperability with
other software. This library performs many safety checks (e.g. uninitialized objects)
that are fundamental when it is used with the concrete communication protocol
implementation generated by JavaSPI. However, the complexity of the spiWrapper
library significantly increases the resources (i.e. memory and time) needed by Java
Pathfinder to complete the analysis. To solve this problem, JavaSPI defines a new
library, called spiWrapperJpf, that redefines the previous spiWrapper types with
new classes that only implements the data manipulation functions, excluding the
codifying layer handling. The application code does not need to be changed: the only
modification required is to change the import instructions. For example, the case
study described above uses the Integer type of the spiWrapper library for the differ-
ent counters. The Integer type defined by the spiWrapperJpf library can be used
to replace the former type during the Java Pathfinder analysis. Both classes have the
same method signature and extend the it.polito.spi2java.spiWrapper.Message
class. However, the latter Integer type do not implement all the serialization/dese-
rialization function. In fact, these features cannot be invoked by the final application,
but only by the generated communication protocol.

Table 4.3 shows the results of the Java Pathfinder analysis of the same case
study described above, but where the spiWrapper library has been replaced with
the spiWrapperJpf library.

56

4.6 – The case study application development

Operations
Clients 1 2 3

1 1s / 1932 MiB /
1329 states

2m 20s / 4580 MiB
/ 493962 states

10h 49m 16s /
7117 MiB /

106535444 states

2 2s / 1932 MiB /
2962 states

3m 33s / 5387 MiB
/ 712161 states

16h 53m 39s /
5767 MiB /

158434108 states

3 2s / 1932 MiB /
3747 states

4m 55s / 5388 MiB
/ 971571 states

24h 18m 52s /
10360 MiB /

218779203 states

4 2s / 1932 MiB /
3861 states

4m 59s / 5388 MiB
/ 976149 states

24h 57m 6s /
10667 MiB /

218933863 states

5 2s / 1932 MiB /
3975 states

4s 59s / 7808 MiB
/ 980727 states

25h 46m 18s /
9770 MiB /

219088523 states

10 2s / 1932 MiB /
4545 states

5m 6s / 7809 MiB
/ 1003617 states

29h 51m 12s /
31051 MiB /

219861823 states

20 2s / 1932 MiB /
5685 states

5m 27s / 5390 MiB
/ 1049397 states

31h 1m 49s /
29203 MiB /

221408423 states

Table 4.3. Java Pathfinder verification time, memory consumption and analyzed states
using the assert construct and the spiWrapperJpf library

57

58

Part II

Mobile protocols security analysis

59

Chapter 5

Formal verification of LTE and
UMTS handover procedures

5.1 Introduction

Mobile communication networks are rapidly evolving. The Long Term Evolution
(LTE) was standardized in 2008, and it represents the fourth generation (4G) evolution
in mobile networks. LTE is an evolution of the previous third generation (3G)
Universal Mobile Telecommunications System (UMTS), and nowadays (2015) is
already available in in most of the countries of the world. For a considerable period
of time these two technologies will co-exist, because the new devices on the market,
such as smartphones, at this time support both connection technologies. The older
Global System for Mobile Communications (or GSM, second generation) is still used,
but the modern mobile terminals prefer to use UMTS and LTE, in order to exploit
the higher bandwidth provided by third and fourth generation networks.

Enabling seamless user mobility is a key factor in the LTE and UMTS standards
defined by the 3GPP (3rd Generation Partnership Project)[53]. Different procedures
have been specified in order to ensure continuity of service to users who move, for
example, from an area which is covered by an LTE cell to an area covered by another
adjacent LTE cell. Similarly, the standards define procedures to seamlessly move from
an area where both 4G and 3G networks are available to an area with only 3G network
coverage (or vice versa). In particular, these scenarios where different technologies are
cooperating require non-trivial procedures. In fact, an important difference between
3G and 4G networks is that the latter have a flat-IP architecture (all network devices
communicate over IP technology), unlike 3G, where communications between devices
use âĂŃâĂŃradio channels with multiple access technologies.

In the past, formal verification has already been applied to security protocols for
mobile networks. In particular, many works in the literature have formally analyzed
the basic procedures for authenticating users in 3G and in 4G networks, while a

61

5 – Formal verification of LTE and UMTS handover procedures

smaller number of studies has been devoted to the procedures that allow user mobility
in these networks. As a consequence, not all the possible mobility scenarios already
have a formal analysis.

The 3GPP defines as IRAT (Inter-Radio Access Technology) handover the proce-
dures in which it is necessary to map the existing security context (ciphering keys,
user data) in the transition between two different technologies (such as for example
from LTE to UMTS). Instead, the procedures activated when a connection must
be seamlessly moved between two LTE network nodes are called Intra-Handover
procedures.

Intra-Handover procedures have been formally analyzed in [54], while recently
the results of a formal analysis of the IRAT handover procedures that enable users to
seamlessly switch from a 3G to a 4G connection, and vice versa, have been presented
in [7].

This section of the thesis provides a thorough formal analysis of LTE-LTE
and LTE-UMTS procedures, which extends the results previously provided in [54]
and in a previous conference paper [7]. In particular, the analysis of LTE-LTE
handover procedures includes the verification of some additional aspects that were
not considered in [54], and the analysis of LTE-UMTS procedures also considers
scenarios including emergency calls. Moreover, a thorough description and motivation
of all the formal models used for the analysis and of the underlying design choices is
provided.

The tool used for formal analysis is ProVerif (Section 2.1). The security properties
that are considered in this work are secrecy of all the keys used before, during and
after the handovers, secrecy of payloads exchanged and authentication between
network components. In addition to the bare security properties mentioned above,
this work also analyses some more specific security properties: backward and forward
secrecy of keys, conditional secrecy of payloads (i.e. secrecy that must hold only
when optional encryption of data is enabled) and immunity from off-line guessing
attacks. The results that have been obtained show that in some particular scenarios,
allowed by the standards, and common in real network deployments where IP network
security mechanisms are omitted, the aforementioned security properties are only in
part assured in the models that have been developed. In these cases, confidentiality
of user data traffic is not always provided, and the lack of authentication between
network elements makes injection of fake signaling messages possible. This kind of
result may be interesting especially for mobile operators, who have to assess security
risks in their networks.

5.2 UMTS and LTE overview

This section presents the basic concepts of 3G and 4G mobile networks, which are
essential in order to understand the work presented in this thesis. For further details,

62

5.2 – UMTS and LTE overview

refer to the 3GPP specifications [53].

5.2.1 UMTS overview

Figure 5.1a shows the architecture of a UMTS network. The different components
are grouped into three domains: the Mobile Station (MS), Serving Network (SN)
and Home Network (HN). The mobile station domain is composed of the Mobile
Equipment (ME), which is the mobile device, and the Universal Subscriber Identity
Module (USIM). The latter contains a worldwide unique identification number, called
International Mobile Subscriber Identity (IMSI), and other information shared with
the Authentication Center (AuC) of the mobile operator (more details to follow).
The Universal Terrestrial Radio Access Network (UTRAN) is the access network for
UMTS networks. The UTRAN is composed of Radio Network Controllers (RNCs)
and base stations, called NodeB. The RNC is the control unit of the UTRAN network
(a single RNC can control a large number of NodeB, which have minimal functionality
and mainly propagate messages between MS and RNC). The SN may belong to
the same provider of the USIM or to another provider, in areas not covered by the
provider of the USIM. The SN is composed of Mobile Switching Centers (MSC)
and Visitor Location Registers (VLR). An MSC is able to manage several UTRAN
networks. The VLR records information of the MS attached to the network and keeps
track of the MS positions. In a real UMTS network, the MSC works in combination
with the Serving GPRS Support Node (SGSN) and the Gateway GPRS Support Node
(GGSN): the SGSN and the GGSN manage packet data connections (i.e. Internet),
while the MSC manages circuit switched connections (i.e. voice). However, in this
thesis, they are assumed to be the same entity (i.e. the MSC), because the differences
between them are related to technical aspects (i.e. packet data vs. circuit switched
connections), but the security aspects are the same for all the devices (i.e. position
in the network, security characteristics of interconnections). The home network
contains the MSC (the operation is similar to those of the SN), and Home Location
Registers (HLR), which contain persistent information on registered operator users,
and records the locations of users. Finally, the Authentication Center (AuC) is used
to generate the authentication data. For each subscriber identified by the IMSI,
it contains the security algorithms and an individual key (Ki) which is a copy of
the Ki permanently stored on the USIM card of the subscriber. The IMSI value is
public, and can be read from the device that mounts the USIM. The key, however,
must remain secret, and must never be revealed by USIM and AuC. For this reason,
the USIM provides functions, accessible to the ME, that can be used during the
authentication phase in order to obtain temporary keys from Ki. In this way, the
secret Ki is never revealed to the ME.

63

5 – Formal verification of LTE and UMTS handover procedures

MMEMME

VLR

eNodeB

eNodeB

ME

USIM

SN

MSC

VLR

RNC

NodeB

MSC

HLR

NodeB
AuC

(a) UMTS network (b) LTE network

HLR

AuC

HSS

SN HN

E-UTRAN

SN

UTRAN

HN

MS

Figure 5.1. UMTS and LTE network architectures

5.2.2 LTE overview

Figure 5.1b depicts the architecture of an LTE network. Unlike the UTRAN, where a
RNC controls many NodeB, the Evolved Universal Terrestrial Radio Access Network
(E-UTRAN) is composed of only one type of element: the Evolved NodeB (eNodeB
or eNB). A Home-eNB (HeNB) performs the same function of an eNodeB, but is
optimized for deployment for smaller coverage than macro eNodeB, such as indoor
premises and public hotspots. Thus, in this part of the thesis the acronym eNB will
be used to refer both to eNodeB an Home-eNB. The eNB are “logically” connected
directly to the Mobility Management Entity (MME). In reality, if the eNB-MME
connections are protected with IPsec, as 3GPP specification recommends, security
gateways are placed between E-UTRAN and MME to terminate IPsec tunnels.
However, using IPsec tunnels is at discretion of network operators.

A major difference of the system architecture between LTE and UMTS network is
that features that were performed by RNC in the UMTS have now been distributed
between eNB and MME. The MME is the main control component for the access
network and initiates the authentication process, keeps track of the positions of
MS, retrieves subscriptions of MS by HN, and manages connectivity. In LTE, the
“concatenation” of HLR and AuC is represented by the Home Subscriber Server
(HSS), a single component that combines the functionality of HLR and AuC.

5.2.3 Key hierarchies in LTE and UMTS

Both in LTE and in UMTS, the first procedure done by a mobile device that wants to
connect to the network is the Authentication and Key Agreement (AKA) procedure.
The objective of this procedure is to establish the keys to be used in cryptographic

64

5.2 – UMTS and LTE overview

operations during communication between mobile device and network. The keys are
derived from the shared key Ki and from some randomly generated values. Details of
authentication procedures can be found in [53] (TS 33.401). The keys are renewed
periodically, in order to prevent possible attacks due to encryption of large volumes
of data with the same keys.

The AKA procedure in UMTS networks determines two keys: the Cipher Key
(CK) and the Integrity Key (IK), respectively used to encrypt and check the integrity
of data exchanged between MS and RNC. UMTS defines only one class of traffic
between MS and the network. Thus, only one pair of keys is established (Figure 5.2,
right side), which is used for all communications between MS and RNC.

The LTE technology introduces significant differences in key management [53]
(TS 33.821). LTE uses different keys for different protocols used between the terminal
and the different components of the serving network. These keys are organized in a
hierarchy as shown in Figure 5.2 (left side). At the top (root), the key Ki shared
between USIM and AuC. The other keys are derived from Ki, following the levels of
the hierarchy from top to bottom. Each level of the hierarchy indicates which parts
of the network know the keys in the level. As expected, the mobile device knows
all the keys except Ki. As in UMTS, starting from the key Ki, the CK and IK keys
are derived, even if they are not actually used for encryption and integrity in LTE
networks, but rather are used to derive the successive keys. Following the hierarchy,
the KASME key, generated during authentication, is derived by the HSS and then
sent to the MME (in the same way, the MS derives the same key). The KeNB key is
derived by MS and MME, starting from KASME, and then sent to the eNB, which
can thus activate the security procedures between eNB and MS. However, KASME

and KeNB are not directly used in cryptographic operations. LTE provides two
mechanisms of protection for two different classes of control traffic (Control Plane):
Non Access Stratum (NAS) traffic, and Access Stratum (AS) traffic. NAS traffic
consist of communications between MME and MS (forwarded in a “transparent” way
through the eNB), while AS traffic (also called Radio Resource Control (RRC) traffic)
includes the control messages between MS and eNB. For this reason, two keys are
derived from KASME: KNASenc, used for encryption, and KNASint, used for integrity
checking of NAS messages. Similarly, from KeNB, the keys KRRCenc and KRRCint are
derived and used for AS messages. The user traffic (User Plane), is encrypted using
a different key, called KUPenc. Integrity protection is not supported for this class of
traffic.

Finally, after a successful handover of the MS between two neighbor eNB, it
is necessary to renew the KeNB [53] (TS 33.401). To do this, the MME derives a
new value from the key KASME, called Next Hop key, which is used, along with the
previous KeNB, to generate the KeNB key (called K?

eNB) used by the target eNB after
the handover. Further details on these procedures and their analysis can be found in
[53] (TS 23.401 and TS 33.401) and [54] respectively.

65

5 – Formal verification of LTE and UMTS handover procedures

USIM & AuC

UE & eNB

K UPenc K RRCenc K RRCint K eNB

UE & MME

K NASenc K NASint

K eNB

UE & HSS

K ASME

CK,IK

Next Hop
 key

replaces

K i

UE & HLR & RNC
CK,IK

UMTS key hierarchyLTE key hierarchy

*

Figure 5.2. LTE and UMTS key hierarchies

5.2.4 Handover procedures

Handover procedures are activated by the serving network (eNB in LTE, RNC in
UMTS) when the strength of the radio signal between a mobile station and the
current eNodeB/NodeB becomes too much degraded. The decision of performing
a handover is taken by the eNB or RNC, which selects the target eNB/RNC from
a list of neighbors (the list is previously known). When a neighbor with the same
technology (LTE/UMTS) is not available for the handover, then a handover to a
network with other technology is executed. Intra-Handover procedures are adopted
when a user moves between different LTE cells, while Inter-RAT procedures are
adopted while moving from a radio access technology (GSM, UMTS, LTE, WiMAX
or any other wireless technology) to another. These procedures are described in the
3GPP TS 23.401 and TS 33.401 specifications [53]. eNBs can be directly connected
by an X2 interface which can be used to perform handover procedures. Instead,
eNBs are connected to the MME via the S1 interface. Both interfaces are IP based.

5.3 Security requirements and threats

The handover procedures have different security requirements, as specified by the
3GPP standards. All the procedures, assuming that the mobile device is authenticated
with the network components (MSC in UMTS, eNB and MME in LTE) before the
handover begins, must guarantee the validity of the same authentication properties
after the handover is completed, in the destination network. Similarly, all the
procedures must keep the secrecy of all the keys used before, during and after the
handover in the mobile device and in the operator network. Consequently, the

66

5.4 – Modeling handover procedures for security verification

procedures for handover always activate the protection of the data transmitted with
the exception for unauthenticated emergency call when integrity checks and ciphering
procedures cannot be applied.

Security threats derive from different causes. While physical damages and
technical failures are out of the scope of this work, the analysis considers malicious
threats originated by attackers who can eavesdrop, alter and drop communications
between the mobile device and the operator network, and among some components
of the operator network, even when emergency calls are ongoing. In this scenario,
the threat consequences, in the handover procedures, may be the disruption of
authentication between components and loss of data privacy.

In order to counter security threats, communication among components of the
home and serving network should be secured by the mobile operators that own the
networks. While the risk of attacks on the MSC-MSC, MME-MME, MME-MSC and
MSC-RNC links is not very relevant, because the involved nodes are not physically
accessible, the same is not true for the eNB-MME and eNB-eNB links, especially
in the case of HeNBs, because these nodes are often located in publicly accessible
locations, and hence they may be tampered by a malicious attacker. The 3GPP
TS 33.820 and 33.401 [53] specifications specify that the eNB-MME and eNB-eNB
connections should be protected by IPsec, which guarantees authentication, integrity
and confidentiality of data. Moreover, Security Gateways (SeGW) should be used to
handle the IPsec connections in the serving network. However, the 3GPP TS 33.401
[53] specification reports that, if the interfaces are trusted (e.g. physically protected),
the use of IPsec based protection is not needed, depending on operator evaluations.
In practice, several operators avoid using IPsec on their networks. Reasons might be
several: some fear that IPsec would increase both network complexity and traffic
latency, others simply underestimate the problem as, for example, they assume
that encryption is performed by applications, which is not always true. A clear
presentation of all the possible motivations that are leading several network operators
to avoid using IPsec is available in [55].

5.4 Modeling handover procedures for security ver-
ification

5.4.1 Modeling choices

This section presents the main modeling choices made in developing the formal
models of the handover procedures. The final aim is to create models that faithfully
represent the procedures to be analyzed but that are as simple as possible, so as to
efficiently exploit the analysis tool ProVerif.

67

5 – Formal verification of LTE and UMTS handover procedures

Omitting non-relevant data and operations

When modeling handover procedures for analyzing their security, only the data and
operations related to cryptography and authentication need to be included in the
models, while information related to resource allocation and relocation is not relevant
for the security analysis and can be omitted.

Abstracting algorithms and algorithm identifiers in key derivation func-
tions

Since perfect cryptography is assumed in the Dolev-Yao attacker model, the handover
models consider only whether encryption is enabled or not, no matter which algorithm
is chosen. Therefore, the algorithms and the algorithm identifiers are abstracted
away from key derivation functions.

Using a single fresh value to represent an IMSI

An IMSI consists of three parts [53] (TS 23.003): (i) Mobile Country Code (MCC),
which identifies the country that the subscriber domiciles, (ii) Mobile Network
Code (MNC), which identifies the HN of the subscriber, and (iii) Mobile Subscriber
Identification Number (MSIN), which identifies the subscriber within the HN. As the
splitting of an IMSI into its components is not relevant for this analysis, in this work
a single value is used to represent the IMSI. As subscribers are uniquely identified
by their IMSI, an IMSI is modeled as a fresh value, i.e. as a value generated before
the start of the protocol and guaranteed to be unique. Fresh values are considered
by ProVerif initially unknown and unguessable by the attacker, while in practice
an active attacker can obtain a subscriber’s IMSI using so-called IMSI catchers. In
order to take this into account, in the models the MS sends its IMSI in clear over
the public channel in the first message. Thus, the attacker can learn the IMSI by
eavesdropping on the public channel.

Modeling AKA procedures

As the handover procedures can be activated at any time, when the MS is already
authenticated with the serving network, and the previous authentication state is
important, the model cannot just include the procedures themselves, but it needs to
represent what may happen before the procedures are activated. Most notably, the
model should include the last AKA procedure that has been executed by the entities
involved in the handover. As the inclusion of a full AKA procedure model would

68

5.4 – Modeling handover procedures for security verification

make the overall model too complex to be analyzed1, the initial authentication is not
fully modeled, but it is substituted by an equivalent model, which creates the same
security context that is assumed to be established by the executed AKA procedure.
This modeling choice was also adopted in [54].

In each AKA equivalent model, a fresh term used as IMSI is first generated by
the MS, and whether to activate encryption or not is non-deterministically chosen,
so as to consider both cases.

In the LTE to UMTS, LTE X2 and LTE S1 handover models each MS also
generates a fresh term used as KASME (that in reality is established during the
AKA). Encryption selection and KASME are inserted as values in private perfect hash
tables, shared only with the MME and called capab and keys. In these tables, the
corresponding IMSI is used as key for selecting the corresponding values. So, the
MME can retrieve the correct values for each MS from these hash tables, by using
the IMSI value (which is public). In other words, the agreement achieved by the
initial AKA context setup is replaced by the two shared tables. Such tables, being
private, cannot be accessed by the attacker. Here are the ProVerif code segments
that represent the handling of the shared data:

1 (∗ define two tables ∗)
2 table keys (ident , asmeKey) .
3 table capab (ident , bool) .

5 (∗ generate fresh IMSI ∗)
6 new ims i : i dent ;
7 (∗ nondeterministically chose a value between true and false ∗)
8 let cap_ue : bool suchthat mem(cap_ue , uecaps) in
9 (∗ generate a fresh term used as KASME ∗)

10 new kasme : asmeKey ;
11 (∗ insert new terms into the tables ∗)
12 insert capab (imsi , cap) ;
13 insert keys (imsi , kasme) ;

15 (∗ retrieve terms from the tables, using IMSI as key ∗)
16 get keys(=imsi , kasme_recv) in
17 get capab(=imsi , cap_recv) in

Instead, in the UMTS to LTE models, in addition to nondeterministically selecting
whether encryption is enabled or not, the MS also generates two fresh terms used
as ciphering and integrity keys in UMTS (CK,IK), that in reality are established
during the AKA. Similarly to the previous case, the selected encryption capability
and the (CK,IK) key pair are inserted as values in private perfect hash tables, shared
only with the MSC, called capab and keys. The corresponding IMSI value (which is
public) is used as key for addressing these tables, thus allowing the MSC to retrieve
the correct values for each MS.

1The inclusion of the complete model of AKA procedure caused the non-termination of the
ProVerif analysis.

69

5 – Formal verification of LTE and UMTS handover procedures

Modeling communication channels

Communication channels are modeled according to the considerations made in
Section 5.3. Given that the MSC-MSC, MME-MME, MME-MSC and MSC-RNC
links are generally not physically accessible to attackers, while the eNB-MME and
eNB-eNB links are often accessible and not endowed with IPsec protection, in the
analysis it is assumed that the MSC-MSC, MME-MME, MME-MSC and MSC-RNC
links are secure channels, i.e. not accessible by the attacker, whereas for the eNB-
MME and eNB-eNB links this thesis explores both the case that the channels are
secured by IPsec, and hence actually not accessible by the attacker, and the case
that an attacker may be able to control the channels, which is a possibility if the
operator does not use IPsec protection for these channels and the attacker succeeds
in having access to a trusted interface.

One simple possible way of modeling a secure channel in ProVerif is to use a
private channel, which, by definition, cannot be accessed by the attacker. A second
possible way is by encrypting the data that flow through the channel with secret keys
that are shared by the end-points of the channel, are not known to the attacker, and
are never disclosed. With this solution, the impossibility for the attacker to access
the secure channel is guaranteed by the Dolev-Yao attacker model which assumes
perfect cryptography. The latter method is more complex than the one using a
private channel. For this reason, the ProVerif models used in this work adopt the
former approach:

1 free pubChannel : channel . (∗ public channel used to connect MS and eNB/RNC ∗)
2 free secureChannelEnbMme : channel [p r i va t e] . (∗ private channel ∗)

Modeling message headers

Each message has a header that identifies the type of message content. Headers are
defined as constants in the model. Each process that receives a message checks if
the message header matches the one expected for the current input instruction. If it
does not match, the message is immediately discarded by the process:

1 const HO_REQUIRED:msgHdr . (∗ message header definition ∗)
2 in(=HO_REQUIRED, . . .) (∗ message input with header filter ∗)

This solution faithfully represents the way input messages have to be checked
but at the same time it keeps a low footprint on the state space size of the model.

Modeling capabilities

As in Dolev-Yao models the details about ciphering algorithms are omitted, the same
is done here: the model only represents whether the MS activates encryption (true
value) or not (false value), but it does not represent other choices (e.g. encryption
algorithm). Note that encryption is optional, but integrity protection is mandatory

70

5.4 – Modeling handover procedures for security verification

in LTE. Hence, only the encryption capability has to be represented. As said, the
boolean value of this capability is nondeterministically chosen by the MS, so that
the analysis considers both cases. The selected value of the capability is disclosed to
the attacker in the first message sent by the MS.

1 (∗ create a set containing only true and false values ∗)
2 let uecaps = cons s e t (true , c on s s e t (false , emptyset)) in

4 (∗ nondeterministically chose a value in the set ∗)
5 let cap_ue : bool suchthat mem(cap_ue , uecaps) in

Omitting temporary identifiers

In the model, the IMSI is used to identify the MS, while in reality temporary
identifiers are used, i.e. Temporary Mobile Subscriber Identity (TMSI) in UMTS,
and Globally Unique Temporary Identifier (GUTI) in LTE. This abstraction does
not alter the security properties of the procedures, because the attacker can obtain
the IMSI from temporary identifiers, as demonstrated by Arapinis et al. [56].

Representing data message exchanges

Before and after the handover procedures take place, data messages can be exchanged.
This is taken into account, but only the exchange of two data messages is included,
one before the procedure starts and one after its completion, because exchanging
more messages would not add anything significant to the model. These messages are
also used to check the secrecy of the data traffic when encryption is enabled.

Using a fresh term to model a counter

The LTE to UMTS handover uses a counter to derive the UMTS CK′ and IK′ keys.
This counter is called NAS downlink count, and represents the NAS protocol message
counter. The counter is bounded, and when it is about to wrap around a new AKA
procedure is activated, in order to generate a new set of keys (KASME, KeNB and all
derived keys). Integer values are not directly supported by ProVerif. The increment
of the NAS downlink count value is therefore modeled as the creation of a fresh
new value, which is disclosed to the attacker in the next message, as shown in the
following ProVerif code:

1 new nasDownlinkCount : bitstring ;
2 let ck ’ : ckKey = kdf_ck ’ (kasme , nasDownlinkCount) in
3 let ik ’ : ikKey = kdf_ik ’ (kasme , nasDownlinkCount) in
4 out (pubChannel , nasDownlinkCount) ;

The disclosure operation models the fact that a counter can be eventually guessed
by an attacker, because it is a bounded integer value. Using a private fresh term does
not correctly represent a counter in the model, because a fresh term is unguessable.
Disclosing the fresh term used as counter is an acceptable approximation because

71

5 – Formal verification of LTE and UMTS handover procedures

it adds the counter value to the attacker knowledge database, and covers the case
when the attacker guesses the counter value. This design choice was already adopted
in [54].

Simplifying transmission paths

In order to reduce the complexity of the analysis, some messages in the models do
not follow the real path from source to target, but they follow a simplified path. For
example, the HANDOVER COMMAND message (in the LTE to UMTS and UMTS
to LTE procedures) is directly exchanged between MS and MME in the model. In
reality, this message passes through the eNB node, but the eNB does not alter the
contents of the message, unless some physical parameters, and the ciphering and
integrity checking, done with the KRRCenc and KRRCint keys. Modeling the path
through the eNB, with the additional ciphering and integrity checking, is possible,
but leads to models that cause the inability of ProVerif to terminate successfully.
This problem has been avoided by introducing a public direct channel between MS
and MME, which replaces the sequence of MS-eNB (public channel) and eNB-MME
(private channel if protected with IPSec, public otherwise) channels that in reality
exist in the network. This replacement is a sound approximation of reality, because
it enlarges the possible attacks on the protocol (the MS-MME channel is public,
and the ciphering and integrity checking done with the KRRCenc and KRRCint keys is
omitted). Hence, if a security property holds on this model, it must hold a fortiori
when the real channels are used. Note that the encryption of messages between MS
and MME with the KNASenc key is still modeled, when required.

Modeling emergency sessions

LTE redefines the management of emergency calls. Emergency services are handled
by the IP Multimedia Subsystem [53] (TS 23.167), and can be activated even if
the user is not authenticated (i.e. the MS does not mount a USIM card). During
emergency calls, a handover from LTE to UMTS can be performed if necessary,
while the handover from UMTS to LTE is not supported [53] (TS 23.401). The
ProVerif models of the LTE to UMTS handover consider the possibility that a user
may activate emergency mode, in order to verify if an attacker can exploit data
acquired during the emergency session handovers to break the security of legitimate
communications. Similarly, the models of LTE to LTE handovers consider emergency
sessions. Emergency session have been modeled as separate processes, one for each
actor, where encryption and integrity checks are disabled. The same IMSI is used
to start a MS process that models an emergency terminal (unauthenticated), and
one process that follows the authenticated session. By adopting this approach, the
models consider the possibility that the same IMSI is used at the same time for
an authenticated session and for an emergency session. This possibility in reality

72

5.4 – Modeling handover procedures for security verification

may happen if an attacker uses the IMSI to start an emergency session, while the
legitimate user is connected to the network.

5.4.2 Procedure models

The next subsections give an informal description of the procedure models used for
security verification, in the form of charts. The models have been derived from the
procedure descriptions given in 3GPP TS 23.401 and TS 33.401 [53] specifications,
but omitting non security relevant data and operations and following the design
choices detailed above.

The equivalent model that substitutes the AKA procedures is inserted at the
beginning of each handover procedure model, in order to represent the establishment
of the security context assumed before starting the handover procedure itself. Just
after the first two messages representing the initial AKA equivalent model, a third
message exchange is inserted before starting each handover procedure itself. This
message represents a user data exchange between MS and eNB/MME/RNC, done
before the handover procedure itself. These initial messages can be seen, for example,
in the chart in Figure 5.4, which represents the messages exchanged during a LTE to
UMTS handover.

Figure 5.3 contains an excerpt of the ProVerif model used to verify the LTE
to UMTS handover procedure, and follows the standard patterns used in ProVerif
modeling. The LTE to UMTS handover model is used in this section as reference for
describing how the security properties have been verified. All the handover models
follow the same modeling technique. The compete handover models are available
for download at the URL http://staff.polito.it/riccardo.sisto/lte.umts.
handover/fullmodels.zip

73

http://staff.polito.it/riccardo.sisto/lte.umts.handover/fullmodels.zip
http://staff.polito.it/riccardo.sisto/lte.umts.handover/fullmodels.zip

1 free pubChannel : channel . free secureChannelEnbMme : channel [p r i va t e] .
2 const HO_REQUIRED:msgHdr . const FWD_RELOC_REQ:msgHdr . const ID :msgHdr .
3 table keys (ident , asmeKey) . table capab (ident , bool) .
4 query a t tacke r (new kasme_ue) .
5 query a t tacke r (kdf_enb (new kasme_ue)) .
6 query x1 : ident , x2 : enbKey ;
7 inj−event (endMS_ENB(x1 , x2)) ==> inj−event (begMS_ENB(x1 , x2)) .
8 query x1 : ident , x2 : ckKey , x3 : ikKey ;
9 inj−event (endRNC_MS(x1 , x2 , x3)) ==> inj−event (begRNC_MS(x1 , x2 , x3)) .

10 query x1 : ident , x2 : asmeKey , x3 : bitstring , x4 : ckKey , x5 : ikKey ;
11 inj−event (endMME_MS(x1 , x2 , x3 , x4 , x5))
12 ==> inj−event (begMME_MS(x1 , x2 , x3 , x4 , x5)) .
13 query a t tacke r (payloadLTE) ==> event (d i sab leEnc) .
14 query a t tacke r (payloadUMTS) ==> event (d i sab leEnc) .
15 . . .
16 weaksecret payloadLTE .
17 weaksecret payloadUMTS .
18 . . .
19 let processMS (uecaps : bset) =
20 new imsi_ue : ident ;
21 let cap_ue : bool suchthat mem(cap_ue , uecaps) in
22 new kasme_ue : asmeKey ;
23 insert capab (imsi_ue , cap_ue) ; insert keys (imsi_ue , kasme_ue) ;
24 (∗ key derivation from Kasme ∗)
25 let knasenc_ue : nasEncKey = kdf_nas_enc (kasme_ue) in
26 let knasint_ue : nasIntKey = kdf_nas_int (kasme_ue) in
27 let kenb_ue : enbKey = kdf_enb (kasme_ue) in
28 . . .
29 event begMS_ENB(imsi_ue , kenb_ue) ;
30 out (pubChannel , (ID , imsi_ue , cap_ue)) ;
31 i f cap_ue = true then ((∗ encryption enabled inside this branch ∗)
32 . . .
33) else (
34 i f cap_ue = fa l se then ((∗ encryption disabled inside this branch ∗)
35 event disab leEnc ;
36 . . .
37) else (0)
38) .
39 . . .
40 let processMME =
41 in (pubChannel , (=ID , imsi_mme : ident , cap_mme_recv : bool)) ;
42 get keys(=imsi_mme , kasme_mme) in (get capab(=imsi_mme , cap_mme) in
43 let knasenc_mme : nasEncKey = kdf_nas_enc (kasme_mme) in
44 new nasDownlinkCount : bitstring ;
45 let ck ’_mme: ckKey = kdf_ck ’ (kasme_mme, nasDownlinkCount) in
46 let ik ’_mme: ikKey = kdf_ik ’ (kasme_mme, nasDownlinkCount) in
47 . . .
48) .
49 process
50 let uecaps = cons s e t (true , c on s s e t (false , emptyset)) in
51 ((! processMS (uecaps)) | (! processENB) | (! processMME) |
52 (! processMSC) | (! processRNC))

Figure 5.3. An excerpt of the LTE to UMTS handover

5.4 – Modeling handover procedures for security verification

LTE to UMTS

Figure 5.4 depicts the simplified message exchange flow performed during Inter-RAT
handover from LTE to UMTS technologies, and represents the ProVerif model used
for the verification of the handover procedure.

After the first three context messages already explained, the handover is activated
by the eNB with the HANDOVER REQUIRED message, which informs the MME
that the procedure must be performed for the user identified by the IMSI contained
in the message. The MME derives the new CK′ and IK′ UMTS keys from the
previous KASME and the NAS downlink count value. The FORWARD RELOCATION
REQUEST message provides the target MSC with the two keys and the IMSI. The
MSC provides the target RNC with the keys just received and the user identity
(RELOCATION REQUEST message). Now the RNC has all information required
to communicate with the MS. RELOCATION REQUEST ACK and FORWARD
RELOCATION RESPONSE messages are used to inform that the target UMTS
network is ready to accept the connection from MS. The HANDOVER COMMAND
is a NAS message that provides the MS with the data (NAS downlink count) required
for the derivation of CK′ and IK′ in the MS. Then the MS sends a HANDOVER TO
UTRAN COMPLETE message to the target RNC for signalling that the MS is ready
to use the UMTS network. Finally, two messages are used to establish agreement
upon the encryption algorithm, using the SMC (SECURITY MODE COMMAND)
and the SMC COMPLETE messages. The last message represents data exchange
after the handover, as already discussed.

75

5 – Formal verification of LTE and UMTS handover procedures

MS eNB

Generate imsi
Select encryption = true/false
Generate KASME

Insert table keys(imsi,kasme)
Insert table capab(imsi,encryption)
Derive keys from KASME

event(begMS_ENB(imsi,kenb))

MME

Get (kasme, encryption) from keys and capab tables
Derive keys from KASME

IMSI, KENB

Derive keys from KENBpayload LTE

event(endMS_ENB(imsi,kenb))

HO_REQUIRED, IMSI

Generate nasDownlinkCount
Derive CK’, IK’ from nasDownlinkCount and KASME

event(begMME_MS(imsi,kasme,
 nasDownlinkCount,ck’,ik’))

MSC

FWD_RELOCATION_REQ, IMSI, CK', IK'

RNC

RELOCATION_REQ, IMSI, CK', IK'

RELOCATION_REQ_ACK, IMSI
FWD_RELOCATION_RES, IMSI

HO_COMMAND, nasDownlinkCount

HO_TO_UTRAN_COMPLETE, IMSI

payload UMTS

event(endMME_MS(imsi,kasme,
 nasDownlinkCount,ck’,ik’))

event(endRNC_MS(imsi,ck’,ik’))

event(begRNC_MS(imsi,ck’,ik’))

Derive CK’, IK’ from nasDownlinkCount
 and KASME

Generate fresh_numb

SECURITY_MODE_CMD_COMPLETE

integrity protected with KNASint

integrity protected with IK’

ciphered with KUPenc

integrity protected with IK’

ciphered with CK’ and
integrity protected with IK’

SECURITY_MODE_CMD, ENCRYPTION, FRESH_NUMB

IMSI, encryption

Figure 5.4. LTE to UMTS handover

76

5.4 – Modeling handover procedures for security verification

UMTS to LTE

Handover from UMTS to LTE (Figure 5.5) is similar to the LTE to UMTS handover,
but with the network roles reversed.

Handover is activated by the RNC with the RELOCATION REQUIRED message,
which informs the MSC that the procedure must be performed for the user identified
by the IMSI contained in the message. The MSC forwards the data received from
the MSC to the target MME, using the FORWARD RELOCATION REQUEST.
The MME computes the new LTE keys following these steps: (i) generates a fresh
nonce, (ii) uses a derivation function to obtain a K′ASME key from the nonce, CK
and IK received from MSC, (iii) derives the new KeNB, KNASenc and KNASint keys
from K′ASME. The KeNB is sent, along with the IMSI and the nonce, to the target
eNB (HANDOVER REQUEST message), which confirms the reception with the
HANDOVER REQUEST ACKNOWLEDGE message. The eNB can therefore derive
the KRRCenc, KRRCint and KUPenc keys from the received KeNB. Then, the MME
sends the FORWARD RELOCATION RESPONSE to the MSC, which forwards
the nonce to the MS with the HANDOVER COMMAND. Now the MS can derive
the complete set of LTE keys from the received nonce and the previous CK and
IK. When the derivation process is completed, the MS informs the target eNB with
the HANDOVER TO E-UTRAN COMPLETE message. The next four messages
activate the security (i.e. agree upon the security algorithms) of the Access Stratum
and Non Access Stratum security, respectively between MS and eNB, and between
MS and MME. The messages HANDOVER NOTIFY, FORWARD RELOCATION
COMPLETE and FORWARD RELOCATION COMPLETE ACKNOWLEDGE
completes the handover procedure by signalling to the MSC that the handover
completed successfully. Finally, the last message represents data exchange after the
handover.

77

5 – Formal verification of LTE and UMTS handover procedures

ciphered with CK and
integrity protected with IK

MS RNC

Generate imsi
Select encryption = true/false
Generate CK,IK
Insert table keys(imsi,(CK,IK))
Insert table capab(imsi,encryption)

event(begUE_RNC(imsi,CK,IK))

MSC

IMSI, encryption

Get ((CK,IK), encryption) from keys and capab tables

IMSI, CK, IK
payload UMTS

event(endUE_RNC(imsi,kenb))

RELOCATION_REQ, IMSI

MME

FWD_RELOCATION_REQ, IMSI, CK, IK

eNB

HO_REQ, IMSI, KENB, nonceMME

HO_REQ_ACK, IMSI, KENB, nonceMME

FWD_RELOC_RES, IMSI, nonceMME

HO_COMMAND, nonceMME

HO_TO_EUTRAN_COMPLETE, IMSI

payload LTE

event(endMME_UE(imsi,kasme’,
 ck,ik,nonceMME))

event(endENB_UE(imsi,
 (kenb,nonceMME))

event(begENB_UE(imsi,
 kenb,nonceMME))

Derive KASME’ from CK, IK, nonceMME
Derive keys from KASME’

NAS_SECURITY_MODE_CMD, IMSI

Generate nonceMME
Derive KASME’ from CK, IK, nonceMME
Derive keys from KASME’

event(begMME_UE(imsi,kasme’,ck,ik,nonceMME))

Derive keys from KENB

ciphered with CK and
integrity protected with IK

HO_NOTIFY, IMSI

FWD_RELOCATION_COMPLETE, IMSI

FWD_RELOCATION_COMP_ACK, IMSI

NAS_SMC_COMPLETE, encryption

integrity protected with KNASINT

AS_SECURITY_MODE_CMD, encryption

integrity protected with KASINT

AS_SECURITY_MODE_CMD_COMPLETE

integrity protected with KASINT

ciphered with KUPENC

Figure 5.5. UMTS to LTE handover

78

5.4 – Modeling handover procedures for security verification

LTE X2

The X2 handover (Figure 5.6) is an LTE to LTE handover procedure. The funda-
mental characteristic of the X2 procedure is the fact that the handover is performed
between two eNB, without MME intervention. Indeed, the MME is informed that
the handover has been performed after the procedure completed. An X2 handover
can be executed between two eNB only if they are directly connected via the X2
interface. Otherwise, an S1 handover must be performed (Section 5.4.2).

The X2 handover is initiated by the SeNB (Source eNodeB) deriving the K?
eNB key

from the current KeNB and the Target Cell ID, an identifier that is associated by the
SeNB to the TeNB (Target eNodeB). The Target Cell ID is modeled as a fresh term
that is disclosed to the attacker, because this ID is known by any MS that connects
to the eNB, thus the attacker can obtain it by starting a legitimate connection to the
eNB. The SeNB informs the TeNB that the handover is starting, by sending K?

eNB,
MS identity and encryption capability in the HANDOVER REQUEST message.

The TeNB derives the new set of keys (KRRCenc, KRRCint and KUPenc) from the
received K?

eNB, and informs the SeNB that it is ready to accept the connection
from MS (HANDOVER REQUEST ACKNOWLEDGE message). Then, the SeNB
sends all the information required (encryption capability, that the MS checks to be
corresponding to the value selected at the beginning, and Target Cell ID) to the MS
in a RRC CONNECTION RECONFIGURATION message. Now the MS can derive
the new K?

eNB key and all the subsequent keys (KRRCenc, KRRCint and KUPenc) that
are used to communicate with the TeNB. Thus, the MS disconnects from the SeNB
and sends a RRC CONNECTION RECONFIGURATION COMPLETE message to
the TeNB. When the TeNB receives this message, it can start to communicate with
the MS. Then, the TeNB informs the MME that an X2 handover has been performed
with the PATH SWITCH REQUEST. The MME derives two new keys, called next
hop key 1 (from KeNB and KASME) and next hop key 2 (from next hop key 1 and
KASME). The next hop key 2 is sent to the TeNB in the PATH SWITCH REQUEST
ACKNOWLEDGE message, and must be used by the TeNB to derive another K?

eNB
for the next handover. This implies a two-step forward key separation, because even
though the SeNB can derive the key used for the TeNB, it cannot derive a key for
the next target eNB. Finally, the last message represents data exchange after the
handover.

79

5 – Formal verification of LTE and UMTS handover procedures

MS SeNB

Generate imsi
Select encryption = true/false
Generate KASME

Insert table keys(imsi,kasme)
Insert table capab(imsi,encryption)
Derive keys from KASME

TeNB

IMSI, encryption

IMSI, KENB

Derive keys from KENB

payload LTE 1

event(endMS_ENB(imsi,kenb))

HO_REQUEST, IMSI, KENB*

Derive keys from KENB*

MME

PATH_SWITCH_REQUEST, IMSI

PATH_SWITCH_REQUEST_ACK, NH_KEY_2

RRC_CONN_RECONF_COMPLETE

payload LTE 2

event(endENB_MS(imsi,kenb*))

Derive NH_KEY_1 from
 KENB and KASME

Derive NH_KEY_2 from
 NH_KEY_1 and KASME

RRC_CONN_RECONF, encryption, Target_Cell_ID

event(begMS_ENB(imsi,kenb))

Get (kasme, encryption) from
 keys and capab tables
Derive keys from KASME

Derive KENB* from KENB and Target_Cell_ID

HO_REQUEST_ACK

ciphered with KRRCENC and integrity
protected with KRRCINT

Derive KENB* from KENB and Target_Cell_ID
Derive new keys from KENB*

event(begENB_MS(imsi,kenb*))

ciphered with KRRCENC and integrity
protected with KRRCINT

ciphered with KUPenc

ciphered with KUPenc

Knows Target_Cell_ID

Figure 5.6. LTE X2 handover

80

5.4 – Modeling handover procedures for security verification

LTE S1

The S1 handover (Figure 5.7) is an LTE to LTE handover procedure. Differently from
the X2 handover (Section 5.4.2), the S1 handover procedure requires the intervention
of the MME.

The S1 handover is initiated by the SeNB deriving the K?
eNB key from the current

KeNB and the Target Cell ID (an identifier that is associated by the SeNB to the
TeNB, modeled as a fresh term that is disclosed to the attacker). The SeNB informs
the MME of the necessity that a handover is required, by sending K?

eNB, MS identity
and encryption capability in the HANDOVER REQUIRED message.

The MME derives two new keys, called next hop key 1 (from KeNB and KASME)
and next hop key 2 (from next hop key 1 and KASME). The next hop key 2 is sent
to the TeNB, along with the MS identity (IMSI) in the HANDOVER REQUEST
message. The TeNB derives the new K?

eNB key from the received next hop key 2
and the Target Cell ID, which is known from the beginning for simplicity. Then,
the TeNB derives the following KRRCenc, KRRCint and KUPenc keys. Meanwhile, the
MME sends the HANDOVER COMMAND message to the SeNB, which forwards to
the MS the message along with the encryption capability (that the MS checks to be
equal to the value selected at the beginning) and the Target Cell ID.

The MS can derive the new set of keys: the KRRCenc, KRRCint and KUPenc keys
will be used to communicate with the TeNB. Then, the MS disconnects from SeNB
and initiates the message exchange with the TeNB by sending the HANDOVER
CONFIRM message.

Finally, the last message represents data exchange after the handover.
The S1 handover procedure implies a one-step forward key separation: the SeNB

cannot derive the key used in TeNB when the handover is completed, because the
keyring material of the TeNB is provided directly by the MME.

81

5 – Formal verification of LTE and UMTS handover procedures

MS SeNB

Generate imsi
Select encryption = true/false
Generate KASME

Insert table keys(imsi,kasme)
Insert table capab(imsi,encryption)
Derive keys from KASME

TeNB

IMSI, encryption

IMSI, KENB

Derive keys from KENBpayload LTE 1

event(endMS_ENB(imsi,kenb))

HO_REQUIRED, IMSI, KENB*

MME

HO_REQUEST_ACK

HO_COMMAND

event(endENB_MS(imsi,kenb*))

Derive NH_KEY_1 from KENB and KASME

Derive NH_KEY_2 from NH_KEY_1 and KASME

HO_REQUEST, IMSI, NH_KEY_2

HO_COMMAND, encryption, Target_Cell_ID

event(begMS_ENB(imsi,kenb))

Get (kasme, encryption) from keys and
capab tables
Derive keys from KASME and NAS _UL_COUNT

Derive KENB* from KENB and Target_Cell_ID

HO_CONFIRM

ciphered with KRRCENC and integrity
protected with KRRCINT

event(begENB_MS(imsi,kenb*))

ciphered with KRRCENC and integrity
protected with KRRCINT

payload LTE 2

ciphered with KUPenc

ciphered with KUPenc

Knows Target_Cell_ID

Derive NH_KEY_1 from KENB and KASME

Derive NH_KEY_2 from NH_KEY_1 and KASME

Derive KENB* from KENB and Target_Cell_ID
Derive new keys from KENB*

Knows Target_Cell_ID

Derive KENB* from NH_KEY_2 and Target_Cell_ID
Derive new keys from KENB*

Figure 5.7. LTE S1 handover

82

5.4 – Modeling handover procedures for security verification

5.4.3 Security properties specification

The main security properties that the handover procedures are expected to guarantee
have been specified as follows (line numbers refer to the LTE to UMTS ProVerif
code in Figure 5.3):

• Secrecy of keys : all the keys involved in the handover procedures must remain
secret (lines 4, 5).

• Conditional secrecy of payloads : in UMTS and LTE, encryption of data between
MS and SN is optional, unless an emergency call without authentication
is running, in which case encryption is disabled. Accordingly, the terms
payloadLTE and payloadUMTS, used to represent the data transferred between
MS and eNB/RNC (when an emergency session is not active), must be kept
secret if encryption is enabled. An equivalent formulation is that, if the attacker
knows the secret payload, then the event disableEncmust have been previously
executed (lines 13, 14). Note that the secret payload referred by this property
is not the payload of emergency sessions messages, which is represented in the
model by another term and is not protected (the attacker can read and modify
it).

• Forward secrecy and backward secrecy of keys : the compromise of a secret key
must not affect the confidentiality of future keys (forward secrecy) and of earlier
keys (backward secrecy). In the handover from LTE to UMTS, forward secrecy
is specified as the inability of the attacker to derive UMTS keys (CK′, IK′)
when he knows KeNB. Likewise, in the handover from UMTS to LTE, forward
secrecy is specified as the inability of the attacker to derive LTE keys (K′ASME,
KeNB) when he knows CK and IK. In both X2 and S1 LTE to LTE handovers,
forward secrecy is specified as the inability of the attacker to derive the K?

eNB
key used in the target eNB when he knows the KeNB used in the source eNB.
Backward secrecy is defined as the inability of the attacker to derive KeNB from
CK′ and IK′ in the first case, to derive CK and IK from KeNB in the second
case, and to derive KeNB from K?

eNB in the LTE S1 and X2 cases. ProVerif
provides a dedicated feature (the phase instruction) for checking forward and
backward secrecy. The following lines show how forward secrecy is verified in
the LTE to UMTS handover 2:

1 . . .
2 (∗ verify forward secrecy ∗)
3 query a t ta cke r (payloadUMTS) phase 1 .
4 . . .
5 let processMS (uecaps : bset) =
6 (∗ complete handover procedure ∗)

2these lines are not displayed in Figure 5.3 for simplicity

83

5 – Formal verification of LTE and UMTS handover procedures

7 . . .
8 phase 1 ;
9 out (pubChannel , (kenb_ue)) ;

10 0 .
11 . . .

The phase instruction in the processMS process breaks the protocol into
two phases: phase 0 (the default phase) contains all the instructions and
communications that are performed before reaching the instruction phase
1. When the latter instruction is reached (i.e. the handover has completed
successfully) a new phase (phase 1) begins. In phase 1, only the statements
defined after the phase 1 instruction are executed (in this case, the KeNB key
is disclosed), but the adversary keeps all the knowledge acquired during the
previous phase (e.g. all the messages exchanged), and integrates it with new
terms, if possible (the KeNB key in the example). Similarly, the queries that
specify a phase n condition are evaluated only after the beginning of phase n.
In this excerpt of code, ProVerif evaluates the query when the attacker knows
KeNB.

• Immunity to off-line guessing attacks : a term is a weak-secret if it is vulnerable
to brute-force off-line guessing, and the attacker has the ability to verify if a
guessed value is indeed the weak-secret without further interaction after an
execution of the protocol. In the handover models, the payloads are data that
could be guessed, so it is specified that they must not be weak-secrets. The
query weaksecret, available in ProVerif to specify that a term must not be a
weak-secret, i.e. that the adversary must not be able to distinguish a correct
guess of the secret term from an incorrect guess, is used to specify that the
payloads must not be weak secrets (lines 16, 17).

• Authentication: in the LTE to UMTS and UMTS to LTE handover models,
the following authentication properties between the MS and the SN (eNB
and RNC) are specified : (i) the MS is authenticated to the source network,
(ii) the MS is authenticated to the target network (if the handover procedure
has completed successfully), (iii) each time the MS successfully concludes a
handover, then the MME previously derived the same keys (K′ASME or CK′/IK′).
In the LTE to LTE handover models (both X2 and S1), two authentication
queries similar to the first two ones of the LTE to UMTS and UMTS to
LTE handovers have been defined: (i) the MS is authenticated to the source
eNB, and (ii) the MS is authenticated to the target eNB (if the handover
procedure has completed successfully). The third query about the identity
of derived keys is useless in this case, because no new key is derived, but
the KASME, KNASenc and KNASint keys, shared between MS and MME, do
not change during the handover. Authentication properties are specified
as correspondence queries in ProVerif (lines 6 - 12, 29). For example, the

84

5.5 – Verification results

authentication requirement expressed as inj-event(endMS_ENB(x1,x2)) ⇒
inj-event(begMS_ENB(x1,x2)) means that each time the event endMS_ENB
(x1,x2) in the eNB process occurs, the MS process has previously started a
session of the protocol (i.e. event begMS_ENB(x1,x2) has occurred).

5.5 Verification results

As already explained, all handover types have been analyzed considering both the
case that the eNB-MME link includes IPsec protection, and the case that it does not.
This produces two different models for each handover type: the two models differ
only in the definition of the eNB-MME channel (private in the first case, public in
the latter case).

It is worth noting that each property has been verified independently. This is
necessary not only for limiting the complexity of the analysis, but also because
different properties require different assumptions. For example, when verifying
backward/forward secrecy, some keys are intentionally disclosed to the attacker,
while the same must not happen when verifying other properties.

5.5.1 LTE to UMTS

Table 5.1 resumes the results of the formal analysis of the LTE to UMTS handover
model.

The second column of Table 5.1 contains the results of the analysis when the
channel between eNB and MME is private, i.e. the adversary has no access to it.
These results confirm that all the expected properties hold: all keys (KASME, KeNB

and derived) remain secret; forward and backward secrecy are valid; the payloads are
conditionally secret and are not weak-secrets, and authentication properties hold.

The third column of Table 5.1 refers to the case of a public eNB-MME channel
(the adversary can spoof, delete and transmit new messages over the channel). In this
scenario, the attacker can know a subset of the LTE keys: KeNB and the derived keys
KRRCenc, KRRCint and KUPenc. However, KASME and the UMTS keys (CK′/IK′) are
kept secret. The disclosure of KeNB makes the LTE payload not secret (the attacker
can derive the ciphering key KUPenc), which also invalids the immunity to guessing
attacks on the LTE payload. Instead, the secrecy of the UMTS payload is preserved,
because CK remains secret, as well as the immunity to guessing attacks on the UMTS
payload. In this scenario, backward secrecy is not valid: the attacker directly knows
KeNB. Instead, forward secrecy is kept: the attacker never knows KASME, so he has
no way to derive CK′ and IK′. Finally, the authentication between MS and eNB
does not hold: an attacker can force a handover of the MS from LTE to UMTS. In
fact, the attacker, knowing the IMSI and having access to the eNB-MME channel,
can initiate an arbitrary handover by sending a forged HANDOVER REQUIRED

85

5 – Formal verification of LTE and UMTS handover procedures

message to the MME. The MS cannot recognize the attacker because the handover
procedure continues as in a regular handover, and receives a genuine HANDOVER
COMMAND message from the network. The attacker never knows KASME: if the
handover completes in the MS, then the MME must have previously derived, in
a corresponding session, the CK′ and IK′ keys from KASME, so MME and MS are
correctly authenticated during the handover. Similarly, the attacker has no access
to the 3G serving network and, from the previous properties, to the CK′ and IK′
keys: the attacker cannot alter communications between RNC and MS and, when
the handover procedure completes, the MS and the UMTS SN are authenticated.

LTE to UMTS
eNB-MME channel private public

Secrecy of keys true
false for KeNB and keys derived from

KeNB

Conditional secrecy of LTE
payload true false

Conditional secrecy of UMTS
payload true true

Forward secrecy true true
Backward secrecy true false
Immunity to off-line guessing
attacks

true
false for payloadLTE, true for

payloadUMTS
Auth. MS-eNB true false
Auth. MS-MME true true
Auth. MS-RNC true true

Table 5.1. Analysis results: LTE to UMTS handover

5.5.2 UMTS to LTE

The same considerations made for the two previous scenarios are also applicable
to the other handover procedure, from UMTS to LTE (second and third column
in Table 5.2), with only some differences. The only results that differ are the ones
about forward and backward secrecy. In this handover scenario, forward secrecy does
not hold because if the attacker knows CK and IK, he can decrypt all the messages
between MS and the UMTS network. In this way, the adversary can read the nonce,
transmitted from the RNC to the MS, that is used by MME and MS, along with
CK and IK, to derive the K′ASME key, and subsequently all the LTE keys. Instead,
backward secrecy holds: an attacker who knows KeNB cannot derive the previous CK
and IK keys.

The results about authentication are the same, albeit their explanation is different.

86

5.5 – Verification results

Lack of authentication between MS and eNB, in the last scenario, makes the adversary
able to alter all subsequent Access Stratum and User Plane communications between
MS and eNB. However, the attacker cannot read and modify Non Access Stratum
messages between MS and MME. For this reason MS-MME authentication remains
valid: if the handover completes in the MS, then the MME ran a session where the
KASME key was derived, so MME and MS are authenticated during the handover.
Finally, before starting the handover, MS-RNC are authenticated, as confirmed by
the last query, because the attacker has no access to the UMTS network.

UMTS to LTE
eNB-MME channel private public

Secrecy of keys true
false for KeNB and keys derived from

KeNB

Conditional secrecy of LTE
payload true false

Conditional secrecy of UMTS
payload true true

Forward secrecy false false
Backward secrecy true true
Immunity to off-line guessing
attacks

true
false for payloadLTE, true for

payloadUMTS
Auth. MS-eNB true false
Auth. MS-MME true true
Auth. MS-RNC true true

Table 5.2. Analysis results: UMTS to LTE handover

5.5.3 LTE X2

Table 5.3 resumes the results of the formal analysis of the LTE X2 handover model.
In this handover scenario, for the three channels has been considered the possibility

that each channel may be insecure. Thus, a total of eight combinations are possible,
when channels are alternatively considered as private or public channels. In certain
cases, ProVerif is not able to verify all the properties (“unres”, i.e. unresolved, cells
in Table 5.3).

In the X2 handover, forward secrecy never holds, as already known from the
specifications [53] (TS 33.401).

The columns of Table 5.3 confirm that the security properties of the current
handover procedure are not influenced by the protection on the TeNB-MME channel:
this can be explained because the only key that is transmitted on that channel is the
Next Hop Key 2, which will be eventually used in the next handover. However, the

87

5 – Formal verification of LTE and UMTS handover procedures

next handover may be compromised if the attacker has the Next Hop Key 2. If this
happens, during the following handover the security properties will not hold.

The fourth and fifth columns consider the case when the the SeNB-TeNB channel
is protected while the SeNB-MME channel lacks protection. In this scenario, the
attacker obtains KeNB from the second message, and can derive all the subsequent
keys. Moreover, if the TeNB-MME channel is also unprotected (fifth column), the
attacker can read the Next Hop Key 2 sent by the MME. Conditional secrecy of
payloads is not true, because the ciphering keys are disclosed (ProVerif is not able to
resolve the query about payload 2). This implies that the payloads are also reported
as weak-secrets, because the attacker knows the exact values from the previous
point. Similarly, backward secrecy is not valid because KeNB is directly known by
the attacker. Finally, authentication does not hold: the attacker obtains all the
keys needed in the handover procedure, thus he can act as fake SeNB and TeNB.
Unfortunately, ProVerif cannot resolve the query about the authentication between
MS and SeNB, i.e. it cannot complete this verification. However, it can be argued
that if the attacker has KeNB, he can replicate the behaviour of the SeNB, thus
invalidating this authentication.

The sixth to ninth columns of Table 5.3 consider the case when the channel
between SeNB and TeNB (the X2 interface) is not protected. In this scenario it is
clear that the attacker always knows K?

eNB. The direct effect is that the authentication
between MS and TeNB never holds: in fact the attacker may operate as fake TeNB
because all the keys are derived from K?

eNB. In particular, the attacker can arbitrarily
force a handover execution, by sending a forged HANDOVER REQUEST message
to the TeNB. Moreover, Table 5.3 shows that the protection of the TeNB-MME
channel does not influence the security properties apart from the fact that the Next
Hop Key 2 is disclosed if the TeNB-MME and SeNB-TeNB channels are public.
When the SeNB-MME channel is private (the attacker does not know KeNB and
KUPenc), the conditional secrecy of payload 1 (sent before the handover begins)
holds, while payload 2 (sent after the handover completion) is always known by
the attacker (because it is ciphered with the KUPenc derived from K?

eNB), thus the
conditional secrecy of payload 2 is false (ProVerif is not able to resolve the queries
when the the SeNB-MME channel is public). Similarly, backward secrecy holds only
if the SeNB-MME channel is private. Otherwise, the attacker can obtain KeNB and
invalidate the property. Moreover, payload 1 cannot be guessed if the SeNB-MME
channel is private: the attacker cannot derive KUPenc because he does not know KeNB.
Finally, authentication between MS and SeNB holds only if the SeNB-MME channel
is protected. If it is not, the attacker can behave as a fake SeNB (ProVerif is not
able to resolve this query).

88

5.5 – Verification results

LTE X2
SeNB-TeNB
channel private public

SeNB-MME
channel private public private public

TeNB-MME
channel private public private public private public private public

Secrecy of
keys true true

false for
KeNB
and

derived

false for
KeNB
and

derived
and NH2

key

false for
K?

eNB
and

derived

false for
K?

eNB
and

derived

false
(except
KASME
and NH1
key)

false
(except
KASME,
NH1 and
NH2
keys)

Conditional
secrecy of
LTE 1
payload

true true false false true true false false

Conditional
secrecy of
LTE 2
payload

true true unres unres false false unres unres

Forward
secrecy false false false false false false false false

Backward
secrecy true true false false true true false false

Immunity to
off-line
guessing
attacks

true true false false

true for
payload
1, false
for

payload
2

true for
payload
1, false
for

payload
2

false false

Auth.
MS-SeNB true true unres unres true true unres unres

Auth.
MS-TeNB true true false false false false false false

Notes:
unres = unresolved, i.e. ProVerif cannot resolve the query
NH1 = Next Hop 1 key
NH2 = Next Hop 2 key

Table 5.3. Analysis results: LTE X2 handover

5.5.4 LTE S1

Table 5.4 resumes the results of the formal analysis of the LTE S1 handover model.
In this handover scenario, for the SeNB-MME and TeNB-MME channels, both the

case of protected channel and the case of unprotected channel have been considered,
for a total of four different scenarios (note that in this kind of handover there is no
SeNB-TeNB channel, see Section 5.4.2).

The second column of Table 5.4 considers the case when both channels are private:
all the security properties are verified. Conversely, if both channels are modeled as
public channels, none of the properties is verified (ProVerif is not even able to resolve
all the queries), as reported in the fifth column of Table 5.4.

If the SeNB-MME channel is private and the TeNB-MME channel is public (third
column of Table 5.4), the attacker may obtain all the keys used in the TeNB, because
all the keys are derived from the Next Hop 2 and the Target Cell ID (which is
public). The attacker does not know the keys used in the SeNB, which implies that
the conditional secrecy of payload 1 holds. ProVerif is not able to resolve the query
about payload 2. However, payload 2 is known by the attacker because he knows all

89

5 – Formal verification of LTE and UMTS handover procedures

the keys used in the TeNB. The fact that the attacker has all the keys derived in
the TeNB also falsifies the queries about forward secrecy (because the attacker may
derive K?

eNB), and about the MS-TeNB authentication (the attacker has all the keys
to act as TeNB). Backward secrecy is verified, which can be explained because the
attacker has no way to obtain the initial KeNB. Finally, payload 1 cannot be guessed
offline, but payload 2 is known by the attacker because it is received by the TeNB,
and the attacker has the keys used in th TeNB.

LTE S1
SeNB-MME
channel

private public

TeNB-MME
channel

private public private public

Secrecy of keys true
unres for HH2
and TeNB keys

unres unres

Conditional secrecy
of LTE 1 payload true true unres unres

Conditional secrecy
of LTE 2 payload true unres true unres

Forward secrecy true false true false
Backward secrecy true true false false

Immunity to off-line
guessing attacks true

true for payload
1, false for
payload 2

true for payload
2, false for
payload 1

false

Auth. MS-SeNB true true unres unres
Auth. MS-TeNB true false true false

Table 5.4. Analysis results: LTE S1 handover

The last scenario, which results are reported in the fourth column of Table 5.4,
considers the case when the SeNB-MME channel is public and the TeNB-MME
channel is private. ProVerif is not able to resolve the queries about the secrecy of
the keys. However, from the model it is clear that the attacker knows KeNB (from
the second message sent by the MME to the SeNB), and is able to derive all the
keys used by the SeNB. Thus, the attacker can obtain payload 1, which falsifies
its conditional secrecy and off-line guessing resistance. Finally, the attacker may
act as SeNB: the authentication between MS and SeNB is not verified by ProVerif,
and the attacker can force a handover execution, by sending a forged HANDOVER
REQUIRED message to the MME (this is also possible when both channels are
public, fifth column). Since the TeNB-MME channel is private, the attacker does
not know the keys used in the TeNB. Payload 2 remains conditionally secret and
resistant to off-line guessing. Similarly, forward secrecy holds, which can be explained
because K?

eNB, derived from TeNB, is not known by the attacker, while the backward

90

5.6 – Related work

secrecy query is falsified because the attacker directly knows KeNB from the second
message (sent by the MME to the SeNB). Finally, the authentication between MS
and TeNB holds, which can be explained because the attacker is not able to obtain
the keys used in the TeNB.

5.6 Related work
In [7] preliminary results of the formal analysis of the handover procedures between
LTE and UMTS were presented. This thesis extends the results by also considering
emergency calls and provides full details about the formal models used for verification,
along with an explanation of design choices. Moreover, the analysis of the handover
procedures between LTE and UMTS has been completed with a thorough formal
analysis of the LTE X2 and LTE S1 procedures.

Ben Henda and Norrman [54] recently used ProVerif to analyze the LTE proce-
dures related to session management (used to establish security algorithms between
the mobile device and the network) and mobility (handover between two LTE cells).
The procedures analyzed are: Network Access Stratum (NAS) security control pro-
cedure, i.e. security algorithm negotiation between MS and MME, NAS Service
Request Procedure (security algorithm negotiation between MS and eNodeB), X2
handover, and S1 handover. The reported results show that secrecy and agreement
properties hold as expected. However, differently from the work described in this
part of the thesis, the analysis proposed in [54] does not consider the possibility that
data encryption may be disabled and that some channels may lack IPSec protection
as allowed by the standard [53] (TS 33.401). Moreover, Ben Henda and Norrman [54]
do not consider the possibility of having emergency calls. Finally, the work described
here checks also weak-secrecy, i.e. prove that the adversary cannot distinguish a
correct guess of a secret term from an incorrect guess.

The research community mainly focused on analyzing the Authentication and
Key Agreement (AKA) procedure and on proposing improvements in that procedure
[57], [58], [59] and [60]. LTE and UMTS authentication procedures are very similar,
and only computation of keys and used algorithms differ. The UMTS AKA was
formally analyzed using BAN logic in TS 33.902 [53] and, due to the similarity of
the procedures, all analysis results carry over to LTE AKA.

Arapinis et al. [56] used ProVerif to analyze privacy aspects of UMTS. However,
the paging procedure analyzed is the same in LTE and UMTS technologies, so the
results should be valid for both networks.

Qachri et al. [61] propose and analyze a system for handovers between different
wireless network technologies (e.g. 3G, 4G, WiFi, WiMax). The proposed system
has been formally verified with ProVerif. However, the paper does not provide an
analysis of the LTE network defined by the 3GPP standards.

91

92

Part III

Conclusion

93

Chapter 6

Conclusion

Formal verification techniques can be applied in various fields, e.g. software applica-
tions, hardware devices, or mixed software/hardware systems. The formal verification
procedures exploit mathematical models and logical reasoning in order to establish if
the system under analysis satisfies certain properties. However, building a formal
model is not a simple task: they must be proper a abstraction of the real system,
without being too complex (because they would be unfeasible to analyze) and, at the
same time, not too simple (in order to obtain significant results). Throughout the
years, different methodologies, tools and frameworks have been proposed in order
to reduce the complexity of formal verification processes, and enable inexperienced
developers to use it, by automating some phases or all of the verification process.

Part I of this thesis presented Spi2JavaGUI and JavaSPI: two frameworks that
facilitate the use of formal verification techniques in the verification of distributed
applications. In particular, these solutions lower the adoption barriers for developers
that are not formal verification experts, and reduce the resources necessary to
complete the verification than previous existing solutions. In particular, Spi2JavaGUI
combines a graphical editor (implemented as a plugin for the Eclipse platform), formal
verification (with symbolic model), and the generation of Java code that implements
the protocol. Instead, JavaSPI enables the verification of application dependent
security properties, in addition to generic security properties (i.e. secrecy and integrity
of data, authentication of parties). The former class contains properties that heavily
depends on the application under examination. For example, the value of a variable
must always be greater than zero for all possible execution paths that can be followed
when the different processes (that compose the distributed application) are running.

Part II of the thesis presented the formal analysis of handover procedures, defined
in the Long Term Evolution (LTE) standard for mobile communication networks,
that were not previously analyzed in literature. The ProVerif tool has been used to
perform the formal analysis. Finally, a detailed description of the methodology used
to translate the LTE standards to ProVerif models has been given.

The next sections resume the results obtained and possible future evolutions and

95

6 – Conclusion

improvements.

6.1 Spi2JavaGUI

Spi2JavaGUI is a domain-specific approach for visual MDD of security protocols.
This approach combines visual editing, which is more intuitive than existing textual
formal languages, with a rigorous formal approach to model verification and code
generation.

The visual model hides the complexity of textual formal notation at different
levels of abstraction. At the same time, the soundness of the Spi2Java framework
upon which Spi2JavaGUI builds provides the possibility to generate code with high
confidence of correctness.

It has been shown how a security protocol can be modeled with Spi2JavaGUI,
how to perform formal analysis and how to generate the final code that implements
the protocol, following the MDD paradigm. In conclusion, the approach described
here makes it possible to easily use the of Spi2Java framework without the need to
know the syntax of spi calculus language.

Spi2JavaGUI is implemented as a set of plug-ins for the Eclipse platform, which
is widely used in the software modeling and development community. The Eclipse
platform provides advanced editing facilities and facilitates deployment and distribu-
tion.

Currently, Spi2JavaGUI covers almost all functionality of Spi2Java framework,
then all security considerations about Spi2Java can be applied also to Spi2JavaGUI.

Compared to the related works presented in Section 3.3, Spi2JavaGUI can be
considered a good step ahead, because none of the related techniques provides at
the same time intuitive visual modeling, formal analysis and sound generation of
interoperable code for the whole class of security protocols. Also, the Spi2JavaGUI
visual models differ substantially from previous proposals. Compared to UML-
based approaches, which use many views and diagrams, Spi2JavaGUI provides a
single comprehensive view tailored on the specific needs of security protocol modeling.
Compared to other approaches that provide linkage with formal models, Spi2JavaGUI
is more oriented to software developers because the data-flow-oriented models used
by Spi2JavaGUI are easy to understand and provide enough implementation detail
to generate interoperable implementation code automatically.

Spi2JavaGUI visual models substantially differ from previous proposals. While
UML-based approaches use many views and diagrams, Spi2JavaGUI provides a single
comprehensive view, tailored to the specific needs of security protocol modeling.
Furthermore, with respect to other approaches providing linkage with formal models
that are oriented to experts in formal methods and security, Spi2JavaGUI targets
software developers by means of using data-flow-oriented models that are similar to
other models well-known by software developers, and thus of easy understanding for

96

6.2 – Automated formal verification of application-specific security properties

software developers. These models also provide enough implementation details to
enable automatic code generation.

The proposed Spi2JavaGUI formalism fulfills the main key characteristics for a
model-driven approach, as described by Selic [1]. Abstraction is enforced by view
collapsing and hierarchical models. Understandability is achieved by visualizing
the protocol data path of each protocol session in MSC-like style. In addition,
the Spi2JavaGUI approach clearly fulfills accuracy, i.e. true-to-life representation
and predictiveness, i.e. possibility to predict interesting but non-obvious properties,
because of its ability to discover attacks on the modeled protocol. Even if not
verified experimentally, it is believable that the Spi2JavaGUI approach also fulfills
inexpensiveness, i.e. the fact that models are significantly cheaper to construct and
analyze than the modeled system, because Spi2JavaGUI models are relatively simple
and let the user focus on the protocol logic alone before being involved in other
implementation details.

Empirical evaluations of Spi2JavaGUI, which may complete its assessment, and
are left as future work.

The implementation of the framework is still at an early stage. Graphical appeal,
flexibility and usability of the interface can be further improved.

The integration with the automatic protocol verifier ProVerif can be further
improved (currently the result of analysis is only textual), by reporting results on
the graphical interface, visually simulating the attacks on the protocol, as found by
the tool.

The Spi2Java framework can also be improved in some of its features. For
example, one of the current limitations of this framework is that it covers only the
protocol logic while it leaves the encoding and decoding functions to be written
manually. Automating the generation of code for this software layer is a possible
research aim.

An idea of how it can be done is to describe abstract data types with languages
like ASN.1 or NetPDL, then, using already existing tools (or by developing a new
tool), the encoding libraries may be automatically generated. With this functionality,
the user who wants to customize the encoding layer of a protocol is no more required
to handle the programming language in details.

Another possible extension to Spi2JavaGUI consists in widening its scope from
security protocols to distributed cloud applications and mobile environments.

6.2 Automated formal verification of
application-specific security properties

Chapter 4 described how a distributed application with application-specific security
requirements can be developed using a model-driven approach that finally yields

97

6 – Conclusion

a formally verified Java implementation. The formal verification of the security
properties takes into account active attackers and is entirely automated. The
most critical part of the code, i.e. the implementation of the security protocol,
is generated automatically from an abstract model with the guarantee of security
property preservation. Moreover, the model is written in Java, instead of using
domain-specific formal languages. The adoption of a compositional verification
approach splits verification into two separate simpler tasks, which potentially leads
to the possibility to handle larger applications.

Currently, no other approach was previously proposed with all these features
together. Compared to the approach presented in [38], which developed the same
case study, the approach described here has the advantage of being fully automated.
Even if model checking does not allow to get a result that holds for any number of
users and terminals, the result gives anyway good security assurance and can be
obtained using only automated tools and without requiring excessive expertise.

The results obtained are encouraging because they confirm that it is possible to
develop distributed applications with formally verified application-specific security
properties using only automated tools.

One drawback is the high quantity of resources that the model checking with
JPF requires, in terms of memory and time. This is partially due to the kind of
verification that interprets the bytecode of the real Java application. Using other
verification tools for Java may improve the performance. Future works will address
the verification of generic security properties in the final application code, for example
guarantee that the value of a field added manually remains confidential in the final
application.

6.3 LTE and UMTS handover procedures

LTE is the most recent standard in communication systems developed by 3GPP.
Part II of this thesis presented a thorough formal security analysis of handover
procedures activated when a mobile device moves between LTE and UMTS networks
or between LTE nodes. The tool used to formalize models and to verify procedures
is ProVerif, which uses symbolic models based on perfect cryptography assumptions.
The results about UMTS-LTE handovers already presented in [7] have been extended
with the analysis of new verification scenarios in the presence of emergency calls (in
order to check if an attacker can exploit emergency sessions to break the security of
the network) and by giving full details about the formal models used for verification
and the design choices adopted in their definition. The results about LTE to LTE
handovers (X2 and S1) that were available in the literature have been completed
with new results that consider new kinds of properties and new assumptions not
previously considered in the literature. In particular, the results already presented by
Ben Henda and Norrman [54], regrading authentication and secrecy in LTE X2 and

98

S1 handovers, have been confirmed by this thesis. For all the considered handover
procedures, secrecy of ciphering and integrity keys, conditional secrecy of payloads,
forward and backward secrecy of keys, immunity to guessing attacks on payloads
and authentication between network components have been analyzed.

3GPP specifies that mobile operators can decide to omit IPsec protection on
eNB-MME and eNB-eNB channels, if the interfaces are trusted. However, a definition
of “trusted” is not given by 3GPP specifications, but it is left to the mobile operators’
discretion. As currently several operators do not protect the eNB-MME and eNB-
eNB channels, the analysis was conducted by considering both the cases of protected
and unprotected eNB-MME and eNB-eNB channels.

Results confirm that, under the assumptions made, almost all the properties that
have been considered hold when eNB-MME and eNB-eNB channels are protected in
all the four handover procedures. The only property that does not hold is forward
secrecy (as defined in Section 5.4.2) in the UMTS to LTE and the X2 handovers.
Moreover, it is possible to confirm that the emergency sessions do not disclose to
the attackers data that can be used to break network security during handover
procedures.

In the case of unprotected eNB-MME or eNB-eNB channels, results show which
properties are broken and which remain valid under the assumptions made. When
having access to the eNB-MME channels, an attacker can force a handover from LTE
to UMTS, or control the Access Stratum and User Plane communications after a
handover from UMTS to LTE. However, the main LTE key (KASME) and the UMTS
keys (CK′/IK′) are kept secret.

In the LTE to LTE procedures a greater number of combinations are possible,
because the channels that may be considered insecure are 2 (S1 handover), or 3 (X2
handover). In both the handover cases, the attacker can alter sections, or the entire
handover process, depending on which channels he controls.

Finally, results highlight that the handover procedure from UMTS to LTE does
not provide forward secrecy of the keys, with respect to the definition given in
Section 5.4.2. Similarly, the X2 handover never guarantees forward secrecy, but this
is a precise 3GPP design choice in order to obtain a very fast handover procedure,
which is particularly useful for fast-moving users and devices.

A total of 16 ProVerif models have been analyzed. All the handover procedure
were verified considering the possibility that the attacker can control the channel
between eNB and MME and between eNB and eNB.

99

References

[1] Bran Selic. The pragmatics of model-driven development. IEEE Softw., 20:
19–25, September 2003. ISSN 0740-7459.

[2] Piergiuseppe Bettassa Copet, Alfredo Pironti, Davide Pozza, Riccardo Sisto,
and Pietro Vivoli. Visual model-driven design, verification and implementation
of security protocols. In HASE, pages 62–65, 2012.

[3] M. Avalle, A. Pironti, R. Sisto, and D. Pozza. The Java SPI framework for secu-
rity protocol implementation. In Availability, Reliability and Security (ARES),
2011 Sixth International Conference on, pages 746 –751, aug. 2011.

[4] Matteo Avalle, Alfredo Pironti, Davide Pozza, and Riccardo Sisto. JavaSPI:
A framework for security protocol implementation. International Journal of
Secure Software Engineering, 2(4):34–48, 2011.

[5] Piergiuseppe Bettassa Copet and Riccardo Sisto. Automated formal verification
of application-specific security properties. In Engineering Secure Software and
Systems, volume 8364 of Lecture Notes in Computer Science, pages 45–59.
Springer International Publishing, 2014. ISBN 978-3-319-04896-3.

[6] Matteo Avalle. New Techniques to Improve Network Security. PhD thesis,
Politecnico di Torino, 2014.

[7] Piergiuseppe Bettassa Copet, Guido Marchetto, Riccardo Sisto, and Luciana
Costa. Formal verification of LTE-UMTS handover procedures. In IEEE
Symposium on Computers and Communication (ISCC), pages 738–744, July
2015.

[8] B. Moeller. Security of CBC ciphersuites in SSL/TLS: Problems and
countermeasures. http://www.openssl.org/ bodo/tls-cbc.txt, 2004.

[9] Marsh Ray and S Dispensa. Authentication gap in TLS renegotiation, 2009.

[10] S. Turner and T. Polk. Prohibiting secure sockets layer (SSL) version 2.0. RFC
6176, 2011.

100

[11] Apple goto fail bug, 2014. URL http://web.nvd.nist.gov/view/vuln/
detail?vulnId=CVE-2014-1266. CVE-2014-1266.

[12] GnuTLS certificate verification issue, 2014. URL http://web.nvd.nist.gov/
view/vuln/detail?vulnId=CVE-2014-0092. CVE-2014-0092.

[13] Heartbleed bug, 2014. URL http://web.nvd.nist.gov/view/vuln/detail?
vulnId=CVE-2014-0160. CVE-2014-0160.

[14] Matteo Avalle, Alfredo Pironti, and Riccardo Sisto. Formal verification of
security protocol implementations: a survey. Formal Aspects of Computing, 26
(1):99–123, 2012. ISSN 1433-299X.

[15] Bruno Blanchet. An efficient cryptographic protocol verifier based on Prolog
rules. In 14th IEEE workshop on Computer Security Foundations, pages 82–96,
2001.

[16] Bruno Blanchet. Automatic verification of correspondences for security protocols.
Journal of Computer Security, 17(4):363–434, 2009.

[17] Danny Dolev and Andrew Chi-Chih Yao. On the security of public key protocols.
IEEE Transactions on Information Theory, 29(2):198–207, 1983.

[18] Willem Visser, Klaus Havelund, Guillaume Brat, Seungjoon Park, and Flavio
Lerda. Model checking programs. Automated Software Engg., 10(2):203–232,
2003. ISSN 0928-8910.

[19] D. Pozza, R. Sisto, and L. Durante. Spi2Java: automatic cryptographic protocol
Java code generation from spi calculus. In Advanced Information Networking
and Applications, 2004. 18th International Conference on, volume 1, pages 400 –
405 Vol.1, 2004.

[20] Alfredo Pironti and Riccardo Sisto. An experiment in interoperable cryptographic
protocol implementation using automatic code generation. In IEEE Symposium
on Computers and Communications, pages 839–844, 2007.

[21] Martín Abadi and Andrew D. Gordon. A calculus for cryptographic protocols:
the spi calculus. In Proceedings of the 4th ACM conference on Computer and
communications security, pages 36–47, 1997. ISBN 0-89791-912-2.

[22] Alfredo Pironti, Davide Pozza, and Riccardo Sisto. Formally-based semi-
automatic implementation of an open security protocol. Journal of Systems and
Software, 85:835–849, 2012.

[23] A. Pironti and R Sisto. Provably correct Java implementations of Spi Calculus
security protocols specifications. Computers & Security, 29:302–314, 2010.

101

http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-1266
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-1266
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0092
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0092
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160

[24] Gavin Lowe. A hierarchy of authentication specifications. In Proceedings of
the 10th IEEE workshop on Computer Security Foundations, pages 31–43, 1997.
ISBN 0-8186-7990-5.

[25] J. McDermott. Visual security protocol modeling. In Proceedings of the 2005
workshop on New security paradigms, pages 97–109, 2005. ISBN 1-59593-317-4.

[26] C. A. R. Hoare. Communicating sequential processes. 1985. ISBN 0-13-153271-5.

[27] Jane Hillston. A compositional approach to performance modelling. 1996. ISBN
0-521-57189-8.

[28] Elton Saul and Andrew Hutchison. Using GYPSIE, GYNGER and Visual GNY
to analyze cryptographic protocols in Spear II. In Advances in Information
Security Management & Small Systems Security, volume 72, pages 73–85. 2001.
ISBN 978-0-7923-7506-7.

[29] Michael Burrows, Martin Abadi, and Roger Needham. A logic of authentication.
ACM Trans. Comput. Syst., 8(1):18–36, February 1990. ISSN 0734-2071.

[30] Pete Epstein and Ravi Sandhu. Towards a UML based approach to role enginee-
ring. In Proceedings of the fourth ACM workshop on Role-based access control,
pages 135–143, 1999. ISBN 1-58113-180-1.

[31] David Basin, Jürgen Doser, and Torsten Lodderstedt. Model driven security for
process-oriented systems. In Proceedings of the eighth ACM symposium on Access
control models and technologies, pages 100–109, 2003. ISBN 1-58113-681-1.

[32] Aisha Bushager and Mark Zwolinski. Evaluating system security using tran-
saction level modelling. Electronics and Energetics, 27(1):137–151, March
2014.

[33] IEEE Standard System C Language Reference Manual. IEEE Std 1666, 2005.

[34] Jan Jürjens. UMLsec: Extending UML for Secure Systems Development. In Pro-
ceedings of the 5th International Conference on The Unified Modeling Language,
pages 412–425, 2002. ISBN 3-540-44254-5.

[35] Jan Jürjens. Developing high-assurance secure systems with UML: a smartcard-
based purchase protocol. In Proceedings of the Eighth IEEE international
conference on High assurance systems engineering, pages 231–240, 2004. ISBN
0-7695-2094-4.

[36] Jan Jürjens. Model-based security testing using UMLsec. Electron. Notes Theor.
Comput. Sci., 220(1):93–104, December 2008. ISSN 1571-0661.

102

[37] N. Moebius, K. Stenzel, H. Grandy, and W. Reif. SecureMDD: A model-
driven development method for secure smart card applications. In Availability,
Reliability and Security, 2009. International Conference on, pages 841 –846,
march 2009.

[38] Nina Moebius, Kurt Stenzel, and Wolfgang Reif. Formal verification of
application-specific security properties in a model-driven approach. In Enginee-
ring Secure Software and Systems, volume 5965 of Lecture Notes in Computer
Science, pages 166–181, 2010. ISBN 978-3-642-11746-6.

[39] Marian Borek, Kuzman Katkalov, Nina Moebius, Wolfgang Reif, Gerhard
Schellhorn, and Kurt Stenzel. Integrating a model-driven approach and formal
verification for the development of secure service applications. In Bernhard
Thalheim, Klaus-Dieter Schewe, Andreas Prinz, and Bruno Buchberger, editors,
Correct Software in Web Applications and Web Services, Texts & Monographs
in Symbolic Computation, pages 45–81. Springer International Publishing, 2015.
ISBN 978-3-319-17111-1.

[40] S. Smith, A. Beaulieu, and W.G. Phillips. Modeling and verifying security pro-
tocols using UML 2. In Systems Conference (SysCon), 2011 IEEE International,
pages 72 –79, 2011.

[41] Reema Patel, Bhavesh Borisaniya, Avi Patel, Dhiren Patel, Muttukrishnan
Rajarajan, and Andrea Zisman. Comparative analysis of formal model checking
tools for security protocol verification. In Natarajan Meghanathan, Selma
Boumerdassi, Nabendu Chaki, and Dhinaharan Nagamalai, editors, Recent
Trends in Network Security and Applications, volume 89 of Communications in
Computer and Information Science, pages 152–163. Springer Berlin Heidelberg,
2010. ISBN 978-3-642-14477-6.

[42] Paolo Modesti. Efficient Java code generation of security protocols specified in
AnB/AnBx. In Sjouke Mauw and ChristianDamsgaard Jensen, editors, Security
and Trust Management, volume 8743 of Lecture Notes in Computer Science,
pages 204–208. Springer International Publishing, 2014. ISBN 978-3-319-11850-5.

[43] Samir Ouchani and Mourad Debbabi. Specification, verification, and quantifica-
tion of security in model-based systems. Computing, 97(7):691–711, 2015. ISSN
0010-485X.

[44] Phu Hong Nguyen, Max E. Kramer, Jacques Klein, and Yves Le Traon. An
extensive systematic review on model-driven development of secure systems.
CoRR, abs/1505.06557, 2015.

[45] Giampaolo Bella, Fabio Massacci, and Lawrence C. Paulson. Verifying the SET
purchase protocols. J. Autom. Reason., 36(1-2):5–37, 2006. ISSN 0168-7433.

103

[46] Tobias Nipkow, Markus Wenzel, and Lawrence C. Paulson. Isabelle/HOL: a
proof assistant for higher-order logic. Springer-Verlag, Berlin, Heidelberg, 2002.
ISBN 3-540-43376-7.

[47] Marian Borek, Nina Moebius, Kurt Stenzel, and Wolfgang Reif. Model-driven
development of secure service applications. In Proceedings of the 35th Annual
IEEE Software Engineering Workshop (SEW), pages 62–71. IEEE, 2012.

[48] Marian Borek, Nina Moebius, Kurt Stenzel, and Wolfgang Reif. Model checking
of security-critical applications in a model-driven approach. In Robert M.
Hierons, Mercedes G. Merayo, and Mario Bravetti, editors, SEFM, volume
8137 of Lecture Notes in Computer Science, pages 76–90. Springer, 2013. ISBN
978-3-642-40560-0.

[49] Alessandro Armando, Wihem Arsac, Tigran Avanesov, Michele Barletta, Alberto
Calvi, Alessandro Cappai, Roberto Carbone, Yannick Chevalier, Luca Compagna,
Jorge Cuéllar, Gabriel Erzse, Simone Frau, Marius Minea, Sebastian Mödersheim,
David von Oheimb, Giancarlo Pellegrino, Serena Elisa Ponta, Marco Rocchetto,
Michaël Rusinowitch, Mohammad Torabi Dashti, Mathieu Turuani, and Luca
Viganò. The AVANTSSAR platform for the automated validation of trust and
security of service-oriented architectures. In TACAS, volume 7214 of Lecture
Notes in Computer Science, pages 267–282. Springer, 2012.

[50] Linda Ariani Gunawan, Frank Alexander Kraemer, and Peter Herrmann. A
tool-supported method for the design and implementation of secure distributed
applications. In Proceedings of the Third international conference on Engineering
Secure Software and Systems (ESSoS), pages 142–155, Berlin, Heidelberg, 2011.
Springer-Verlag.

[51] Linda Ariani Gunawan and Peter Herrmann. Compositional verification of
application-level security properties. In Proceedings of the Fifth international
conference on Engineering Secure Software and Systems (ESSoS), pages 75–90,
Berlin, Heidelberg, 2013. Springer-Verlag.

[52] Maria Vasilevskaya, Linda Ariani Gunawan, Simin Nadjm-Tehrani, and Peter
Herrmann. Integrating security mechanisms into embedded systems by domain-
specific modelling. Security and Communication Networks, 7(12):2815–2832,
2014. ISSN 1939-0122.

[53] 3rd Generation Partnership Project (3GPP). 3GPP specifications. http://www.
3gpp.org/specifications, December 2015.

[54] Noomene Ben Henda and Karl Norrman. Formal analysis of security procedures
in LTE - a feasibility study. In Angelos Stavrou, Herbert Bos, and Georgios

104

http://www.3gpp.org/specifications
http://www.3gpp.org/specifications

Portokalidis, editors, Research in Attacks, Intrusions and Defenses, volume 8688
of Lecture Notes in Computer Science, pages 341–361. Springer International
Publishing, 2014. ISBN 978-3-319-11378-4.

[55] Patrick Donegan. The security vulnerabilities of LTE: Risks for operators.
Juniper Networks white paper, 2013.

[56] Myrto Arapinis, Loretta Mancini, Eike Ritter, Mark Ryan, Nico Golde, Kevin
Redon, and Ravishankar Borgaonkar. New privacy issues in mobile telephony:
Fix and verification. In Proceedings of the 2012 ACM Conference on Computer
and Communications Security, CCS ’12, pages 205–216, New York, NY, USA,
2012. ACM. ISBN 978-1-4503-1651-4.

[57] Chunyu Tang, David A. Naumann, and Susanne Wetzel. Symbolic analysis for
security of roaming protocols in mobile networks. In Muttukrishnan Rajarajan,
Fred Piper, Haining Wang, and George Kesidis, editors, Security and Privacy
in Communication Networks, volume 96 of Lecture Notes of the Institute for
Computer Sciences, Social Informatics and Telecommunications Engineering,
pages 480–490. Springer Berlin Heidelberg, 2012. ISBN 978-3-642-31908-2.

[58] Joe-Kai Tsay and StigF. Mjølsnes. A vulnerability in the UMTS and LTE
authentication and key agreement protocols. In Igor Kotenko and Victor
Skormin, editors, Computer Network Security, volume 7531 of Lecture Notes
in Computer Science, pages 65–76. Springer Berlin Heidelberg, 2012. ISBN
978-3-642-33703-1.

[59] Muxiang Zhang and Yuguang Fang. Security analysis and enhancements of
3GPP authentication and key agreement protocol. Wireless Communications,
IEEE Transactions on, 4(2):734–742, March 2005. ISSN 1536-1276.

[60] Jiexiang Fang and Rui Jiang. An analysis and improvement of 3GPP SAE
AKA protocol based on strand space model. In Network Infrastructure and
Digital Content, 2010 2nd IEEE International Conference on, pages 789–793,
Sept 2010.

[61] Naïm Qachri, Olivier Markowitch, and Jean-Michel Dricot. A formally ve-
rified protocol for secure vertical handovers in 4G heterogeneous networks.
International Journal of Security and Its Applications, 2013.

105

	Summary
	Introduction
	Contribution

	I Formal Methods in model-driven development of secure software
	Background
	ProVerif
	Spi2Java
	The JavaSPI framework
	Java Pathfinder

	Spi2JavaGUI
	Introduction
	Spi2JavaGUI
	The model
	Visual syntax
	The RPC example
	Model validation
	Formal analysis
	Code generation

	Related work
	Custom Visual Formalisms
	UML-Based Security Modeling

	Automated formal verification of application-specific security properties
	Introduction
	Related work
	The extended JavaSPI
	Matching events in the model and methods in the code

	Translation rules
	Optimization of the generated code
	Replace the protocol code with the stub code

	Proof
	The case study application development
	The Development Workflow
	Developing the JavaSPI abstract protocol model
	Formal Protocol Verification
	Protocol Code Generation
	Application Logic Development
	Checking the Application Code
	The spiWrapperJpf library

	II Mobile protocols security analysis
	Formal verification of LTE and UMTS handover procedures
	Introduction
	UMTS and LTE overview
	UMTS overview
	LTE overview
	Key hierarchies in LTE and UMTS
	Handover procedures

	Security requirements and threats
	Modeling handover procedures for security verification
	Modeling choices
	Procedure models
	Security properties specification

	Verification results
	LTE to UMTS
	UMTS to LTE
	LTE X2
	LTE S1

	Related work

	III Conclusion
	Conclusion
	Spi2JavaGUI
	Automated formal verification of application-specific security properties
	LTE and UMTS handover procedures

