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Optimizing Network Traffic for Spiking Neural
Network Simulations on Densely Interconnected

Many-Core Neuromorphic Platforms
Gianvito Urgese, Student Member, IEEE, Francesco Barchi, Enrico Macii, Senior Member, IEEE

and Andrea Acquaviva, Member, IEEE

Abstract—In this paper we present a new Partitioning and Placement methodology able to maps Spiking Neural Network on parallel
neuromorphic platforms. This methodology improves scalability/reliability of Spiking Neural Network (SNN) simulations on many-core
and densely interconnected platforms. SNNs mimic brain activity by emulating spikes sent between neuron populations. Many-core
platforms are emerging computing targets that aim to achieve real-time SNN simulations. Neurons are mapped to parallel cores, and
spikes are sent in the form of packets over the on-chip and off-chip network. However, the activity of neuron populations is
heterogeneous and complex. Thus, achieving an efficient exploitation of platform resources is a challenge that often affects simulation
scalability/reliability. To address this challenge, the proposed methodology uses customised SNN to profile the board bottlenecks and
implements a SNN partitioning and placement (SNN-PP) algorithm for improving on-chip and off-chip communication efficiency. The
cortical microcircuit SNN was simulated and performances of the developed SNN-PP algorithm were compared with performances of
standard methods. These comparisons showed significant traffic reduction produced by the new method, that for some configurations
reached up to 96X. Results demonstrate that it is possible to consistently reduce packet traffic and improve simulation
scalability/reliability with an effective neuron placement.

Index Terms—Neuromorphic Platform, Many-core SoC, Profiling Methodology, Spiking Neural Network, Partitioning and Placement.

F

1 INTRODUCTION

The simulation of Biological Neural Networks (BNN), the
structures composing neural tissue, is a promising method-
ology to gain novel insights into unclear mechanisms under-
lying brain functions. The high degree of complexity that
characterizes the nervous system poses several challenges
when dealing with the simulation of its processes using
abstract models. BNNs are usually represented during the
simulations as Spiking Neural Networks (SNNs) [1], inter-
connected neuron models which mimic the behaviour of
real neurons and which communicate using spikes. Chal-
lenges of SNN simulations are related to the computational
and communication effort needed to account for the large
number of neurons and in particular of synapses, that are
the interconnections between them. This effort cannot be
tackled using general-purpose computation platforms only.
During the last decade, a number of custom hardware (HW)
architectures have been developed, aimed at supporting
neuron activity with enough parallelism and implementing
efficient spike communication by means of densely inter-
connected networks [2, 3, 4, 5].

The SpiNNaker platform [6] is one of the most ad-
vanced neuromoprhic solutions which is also one of
the two currently adopted in the Human Brain Project
(https://www.humanbrainproject.eu/) to simulate SNNs.
SpiNNaker is a globally asynchronous locally synchronous
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Fig. 1: SpiNNaker board with 48 multi-core chips connected
in a toroidal-shaped triangular mesh.

(GALS) application-specific multi-chip many-core architec-
ture used for the execution of real time simulations of SNNs.
The system is organized in a two-dimensional toroidal-
shaped triangular mesh where SpiNNaker chips represent
the processing nodes (Figure 1). Each node contains an on-
chip router and 18 ARM968 cores for the parallel execution
of a variety of neuronal models and synapses. Neuron
models are mapped on the cores of SpiNNaker chips and
their spikes are propagated across the network in the form
of packets. SpiNNaker is made of general-purpose cores and
for this reason it can be potentially used for a wide range
of applications requiring intensive communication between
parallel computational elements [7].

Given the complexity of the communication activity in
simulated SNNs, a significant challenge is to reduce the
risk of unreliable simulation behaviour and failures in the
absence of an efficient exploitation of platform architectural
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resources. In particular, partitioning and placement of neu-
ron populations into chips and cores heavily impacts the
efficiency of on-chip and off-chip communication during the
simulation.

In this paper, we describe a partitioning and placement
algorithm for SNN simulations over neuromorphic plat-
forms. This algorithm is designed to decrease the traffic of
packets over the inter-chip network and to improve simula-
tion reliability and communication efficiency. Thus, the way
is paved to more reliable and scalable SNN simulation.

The methodology has been developed across two main
phases: A top-down profiling analysis was performed first
to detect bottlenecks in the SpiNNaker communication sys-
tem. Then, a SNN Partitioning and Placement (SNN-PP)
algorithm inspired by the profiling results was developed.
The SNN-PP algorithm exploits clustering and legalization
techniques to achieve a more efficient mapping of SNN
simulation components to the platform.

The paper is organized as follows. Section 2 provides
an overview of the SpiNNaker SW/HW architecture. Sec-
tion 3 describes the profiling methodology and highlights
the effectiveness of the methods used to study the packet
traffic in two path locations. A biological SNN simulation
is used to validate the evidences observed. The use of the
customised partitioning and mapping algorithm can im-
prove the standard SNN placement procedure by avoiding
identified configurations that lead to unreliable behaviour.
Section 4 describes SNN-SA-PP, the SNN Partitioning and
Placement algorithm based on Spectral Analysis methods.
Section 5 reports on the results obtained during the SNN-
SA-PP validation process performed on a biological SNN
simulation. Section 6 provides the final evaluations.

2 BACKGROUND

The Neuromorphic engineering aims at developing VLSI sys-
tems to mimic the neuro-biological networks of the nervous
system. A biological neuron collects signals from its pre-
decessors (pre-synaptic neurons) and transmits a spike if
the membrane voltage reaches the firing threshold value,
otherwise the potential reached will decay over time. This
spike is transmitted along a wire called axon to the connec-
tion with the dendrite of other neurons called post-synaptic.
The axon-dendrite contact is called synapse. Each synapse
is characterized by a specific weight that influences the
changes induced by the pre-synaptic spike in the membrane
electric potential of post-synaptic neuron. On average, the
neuron spiking rate (spike/second) ranges from 10 to 100
Hz. The nervous system networks make the importance of
each single neuron relatively low. This is due to its very
high level of parallelism and its ability to adapt to unknown
environments. Remarkable fault tolerance is provided even
after the loss of many neurons.

Neuromorphic SW/HW systems support the simulation
of the nervous system. They allow the study of the work-
ing mechanisms acting in the brain and to investigate the
biological process underlying neural diseases. At the same
time, neuromorphic engineers take inspiration from biology
to design brain-like systems with brain-specific features.
These include extreme parallelism, adaptive responsiveness
to unknown environments, fault-tolerance, and very low-
power consumption [8].

2.1 Spiking Neural Network Simulation

Spiking Neural Networks (SNN) are neural networks
adopted to simulate brain activity in a biologically plausible
way. In the SNN simulations neurons and their synapses
are modelled as differential equations. These equations are
capable to emulate the behaviour observed in biological
networks, making possible to describe network dynamics
and mechanisms [1]. Two of the most adopted neuron
models are the leaky Integrate and Fire (IF) [9] and Izhikevich
(IZK) [10], because their accuracy enables the exploitation
of SNN for accurate neuron dynamics observation, explo-
ration, and validation of plausible theories regarding brain
functions at an affordable computational time. Moreover,
SNN simulations can reproduce the experiments with the
same conditions.

Overall, a SNN can be described as a graph where
each node, called Population, is a homogeneous group of
neurons sharing the same model and parameters. Whereas,
each edge (Projection) is the rule used to generate synaptic
connections between the neurons of two Populations. Nengo
[11] and PyNN [12] are the most used APIs to define SNN
simulations. Both of them allow the description of many
neurons/synapses models and can be exploited in a trans-
parent mode on different back-ends such as neuromorphic
platforms or software (SW) simulators running on general-
purpose workstations.

Many research groups have developed SNN simulators
to study brain functions or to develop neuromorphic appli-
cations. An updated review is provided by Carlson et al.
[13]. In general, SNN simulators can be divided into two
main categories: SW (digital domain) and HW (analogic,
digital or mixed domains). The simulator considered in this
work, namely SpiNNaker, belongs to the first category.

2.2 SpiNNaker Board

SpiNNaker is an application specific massively parallel
architecture Globally Asynchronous Locally Synchronous
(GALS) designed to simulate, in real-time, large scale SNN
[6]. The system is built with multi-core SpiNNaker chips
arranged in a two-dimensional toroidal-shaped triangular
mesh (Figure 1). Each chip represents the processing nodes
where neuron activities are simulated. The populations of
neurons are described in SW and their spikes are repre-
sented as packets. These packets are propagated through
the on-chip and inter-chip communication links via routers.
Furber et al. [7] have presented a detailed description
of SpiNNaker architecture. In what follows we give an
overview of the key HW/SW features useful to understand
the proposed methodology.

2.2.1 SpiNNaker Hardware

The SpiNNaker Chip architecture is designed in the form
of a System on Chip connected to a 128MB SDRAM die,
which is physically mounted on top of the SpiNNaker die
and placed in the same package. In this architecture, 18
ARM968 Cores are connected through the System NoC to a
custom router and to various other resources such as system
ROM, System Controller, System RAM, external SDRAM
and Ethernet interface (Figure 2). Each core has its own
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Fig. 2: SpiNNaker chip architecture.

DMA controller, two private tightly coupled memories for
instructions and data and a bridge to the shared resources.

The Router (Figure 3) is the fundamental component of
the SpiNNaker architecture, it routes the incoming packets
to single or multiple outputs. Packets coming both from
external links and from internal cores are presented to the
router and elaborated one by one [14]. SpiNNaker chips
communicate with neighbours chips via packets using the
six external bidirectional links controlled by the router (Fig-
ure 3.c). Three types of packets are used during the board
activity: i) Nearest-Neighbour (NN) for initialization and links
life control at chip level; ii) Point-to-Point (P2P) for data
communication between specific cores; iii) Multicast (MC)
for the spike propagation during the simulation.

In order to distribute spikes across the system SpiN-
Naker make use of the Address Event Representation (AER)
protocol [15]. When a neuron fires, a MC packet that contain
the number that uniquely identifies the spike source neuron
is generated. Then, this packet is provided on the router
internal branch (Figure 3.b) and passed through multiplexer
tree. At this point the packet is introduced in the second
tree (Figure 3.a) that handle also the traffic coming from the
six neighbour chips. The router then compares the packet
identifier with the entries stored in the routing tables and
in case of a match, it looks up the relative routing word.
Routing word is used as selection mask that contains 1 bit
for each output destination: Internal cores and external links
connecting the nearest chips.

2.2.2 SpiNNaker Software
The SNN simulation is configured on the SpiNNaker sys-
tem using a Python package called sPyNNaker. This library
consists of: i) Low level software (board SW), written in
C-ARM to be executed by the SpiNNaker board; ii) High
level software (host SW), used to describe the SNN without
any particular knowledge of the board; iii) A tool-chain
used to translate the SNN described as abstract models into
configuration files to be sent to the SpiNNaker cores.

The board SW is divided in three layers: The first is
called SpiNNaker Application Runtime Kernel (SARK), that
provides low-level functions for the use of SpiNNaker chip
resources. The second called Spin1 API is running on top
of SARK and implements the Event-Driven Programming

Fig. 3: Router details: a) the principal branch that merges
the incoming packets (external and internal) to be provided
to the routeing engine input; b) the multiplexer tree that
connects the internal cores to the principal branch; c) the six
external links of the chip.

Model used to build efficient code. The last SW level is
the application program that implements one of the neuron
models. These SW levels are loaded on the SpiNNaker
machine during the booting phase. At the start-up, each
chip runs a low level HW check. If some component is not
responding it is disabled, otherwise is executed the election
procedure for the monitor processor selection and the router
initialization. The elected monitor processor is in charge
to perform system management tasks while other cores
are addressable for application processing. During the boot
procedure, initiated by the host machine, SARK is loaded on
all the working cores, on top of which the simulated appli-
cation can be executed. The monitor processors are loaded
with a special program called SpiNNaker Control & Monitor
Program (SC&MP), that is responsible for the supervision
of chip operations and for the communications with the
host computer. When SC&MP is loaded, each chip set its
coordinate using as reference the Ethernet enabled chip that
assume the (0, 0) position [16].

The Host SW has been developed using of the PyNN
neural system description language for the creation of an
user-friendly front-end [12]. Steps in between the PyNN
SNN description and its execution on the SpiNNaker board
are handled by a python package called PArtition and Config-
uration MANager (PACMAN). This package provides utilities
for SNN Partitioning, Placement and Routing [17].

PACMAN uses the PyNN representation of SNN com-
posed by Populations and Projections to build the Population
graph. This graph is elaborated following three main phases.
During the Partitioning phase, each neuron population is
divided into portions called part-population in order to sat-
isfy the core constraint of maximum number-of-neurons per
core. This division is made by selecting subsets of neurons
without any consideration about the neuron connectivity.

In the Placement phase, each part-population is assigned
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to a different core by means of a simple algorithm perform-
ing the sequential positioning. Once all the cores of a chip
are filled, PACMAN starts to fill the cores of the next chip
following a radial order.

During the Routing phase the part-populations disposi-
tion over the board is evaluated in order to identify the best
routing paths between chips. Once best paths are identified,
the generation of routing tables is performed for each chip
involved in the simulation.

Finally, the partitioned and placed SNN is passed to the
configuration pipeline in charge to configure the SpiNNaker
board with the files generated in the host.

3 TOP-DOWN ANALYSIS METHODOLOGY FOR
SPINNAKER PROFILING

A significant amount of research has been done to highlight
the capability of simulating large SNNs on neuromorphic
platforms such as SpiNNaker [18, 19]. However, the SNN
behaviour is generally evaluated from a biological point of
view without considering hardware faults or missing pack-
ets. Indeed, is well accepted that the SNN simulations are
relatively unaffected by system variations and imperfections
[20]. Profiling data of real case applications can be precious
in order to improve the methods used to split the SNN
populations and to decide where, on the board, is more
convenient the execution of each part-population.

In a precedent work by Urgese et al. [21] a top-down
SNN-based profiling methodology has been discussed. This
methodology was adopted to investigate some of the SpiN-
Naker bottlenecks impacting on the simulation reliability
and limiting the biological network size. We report here the
major insight of the profiling analysis, useful to understand
how the developed SNN Partitioning and Placement algo-
rithm is able overcome the detected inefficiencies.

In order to execute an accurate profiling, we designed
a customised SNN able to stimulate the main bottlenecks
of SpiNNaker communication. This customized SNN is
flexible enough to be used as the basic component for the
design of complex use cases. One of such bottlenecks arises
when a large amount of packets is transmitted in a single
link at the same time in both directions with the consequent
loss of packets.

The Base Configuration is built using two populations
placed on two different chips (Figure 4). The first popu-
lation called Spike Source (SRCPop) is used to send spikes
to a connected target population following a predefined
time vector. The second population, IFPop, is composed of
Integrate and Fire neurons and connected one-to-one to the
SRCPop. The behaviour of both populations is deterministic,
since the IFPop parameters have been set to generate a new
spike when a spike from the SRCPop is received. During
the simulation, spikes generated by the IFPop are stored and
counted in order to be compared with the number of packets
generated in those cores running the SRCPop.

The Base Configuration is characterized by three param-
eters: i) The population size, responsible for the modulation
of the number-of-cores used in the analysis, and the con-
sequent number-of-packets circulating on the segments of
network under test; ii) The max number-of-neurons that can
be simulated over a single core; iii) The exact location of
chips and cores running the two populations.

Fig. 4: The Base Configuration (BC): in orange are described
the SRC Chip while in blue the IF Chip. White circles repre-
sent the cores of the chips.

Using these parameters, several customised configura-
tions can be built to force the overload of specific commu-
nication segments providing useful information about the
traffic sustainability. The Base Configuration allowed us to
highlight a packet loss problem occurring when all the neu-
rons of SRCPop fire together and generate a huge amount
of traffic over the lines of the router under investigation.
In particular, we investigated two classes of traffics: The
Core to Router traffic generated when packets come from the
Cores to the Router of a chip, and the Router to Router traffic
generated when packets are transmitted from a Router to
another Router through one or more chips.

3.1 Core to Router traffic analysis
The Core to Router (C2R) traffic analysis is exploited to
identify inefficient load configurations stressing the first
internal layer of the multiplexer (Figure 3.b). This layer is in
charge of introducing in the router the packets generated by
the internal cores. In order to simulate a very large number
of packets accessing the first internal layer of the router
we adopted the Basic Configuration (in Figure 4) letting
the neurons belonging to SRCPop to fire all together at the
same time. Two SRCPop models have been used during the
analysis: The first model exploits a software buffer to store
the untransmitted packets that have to be re-introduced into
the router, whereas in the second model this buffer is not
used. In Figure 5 are reported four configurations (from
E1 to E4) designed to show the C2R traffic response of the
board with different load scenarios.

In the experiment E 1 the two populations of 4096
neurons grouped into 16 part-populations are placed on
two different chips. The SRC neuron models without re-
transmission buffer are used. The neurons of SRCPop fire
at the simulation time of 100 ms and send spikes to the
connected IF neurons. When the IF neurons receive a spike
they generate a new packet, and store the event. At the
end of the simulation these events are counted and their
occurrence compared with the number of packets conflicts
collected in the SRCPop cores. In Figure 5.E1 are reported
the configuration and the results of experiment E1. It can be
observed that cores connected to the same first layer of the
router internal branch (yellow and green rectangles) miss
an equal amount of packet between each other; 109 packets
for cores 0 and 16, while 2 packets for all the odd cores.
The first hypothesis assumes that the observed behaviour is
caused by bandwidth limitations on the internal router tree
(Figure 3.b) even if the bandwidth reported on the data-
sheet (1250 packets/ms per core) is sufficient to support a
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Fig. 5: Core to Router traffic experiments. The four experi-
ments are represented in the router internal branch of chip
executing the SRCPop. Red circles identify cores running
simulation while in the connection nodes (in yellow or
green) is reported the number of conflicts detected. In the
experiment E 1 256 SRC neurons without retransmission
buffer are placed in each of the 16 cores. Experiment E 2
is executed using only 50 neurons per core. Experiment E 3
run 256 neurons per core on 12 cores. Experiment E 4 run
256 neurons per core with retransmission buffer on 16 cores.

communication rate of 256 packets/ms per core [22], that
produce an overall traffic on the router of 4096 packets/ms.

Two configurations are then executed to evaluate this
bandwidth limitation hypothesis. The configuration E2 (Fig-
ure 5.E2) reduces the number of neurons per core from 256
to 50 in order to decrease the C2R traffic on the router to
800 packets/ms. The configuration E3 (Figure 5.E3) avoids
concurrent packets in the first layer of router (where the
majority of packet conflicts are detected), applying a delay
of 1 ms to the cores 0-16 and 1-17. This configuration gen-
erates a C2R traffic on the router equal to 3584 packets/ms.
Results in Figure 5.E2 shown that even in the configuration
E2 some packets are dropped in the first router layer shared
by cores 0 and 16. Instead, in configuration E3 all the 3584
packets were simultaneously transmitted without losses.
These results highlight that conflicts are generated in the
first internal router layer and are related to the SRCPops
placement on the cores, disproving the hypothesis of router
bandwidth limitation.

Finally, as last analysis, the first configuration is re-
executed using the SRC neuron model with retransmission
buffer. SRC models that make use of this buffer are able
to store the conflicting packets and re-inject them as soon
as possible. This re-injection system allow the correct trans-
mission of all the 4096 generated packets. However, during
this experiment we detected a higher number of conflicts
with respect to the unbuffered solution (Figure 5.E4). An
average of 151 conflicts per core for the buffered SRCPops
versus 13 conflicts per core for the unbuffered version. All
neuron models implement this technique and for this reason
is difficult to lose internally generated packets. However, in

case of congested configurations or for highly synchronous
applications this solution can be time consuming. Indeed, a
supplementary computational load is required from cores
to support the re-transmission operations. Moreover, the
adoption of these neuron models can cause premature ter-
mination of simulations due to the accumulation of delays
caused by cores that are busy to retransmit packets.

3.2 Router to Router traffic analysis
The Router to Router (R2R) traffic analysis is designed to
investigate traffic configurations that cause dropped packets
in the inter-chip network. The identification of such config-
urations is fundamental to define reliable rules about traffic
fluxes that can be used by the SNN-PP software to avoid
the creation of hot spots. We designed three configuration
schemes (Figure 6) to simulate traffic peaks on routers and
links. In these configurations, the SRCPops are placed on
different chips, connected to IFpops and configured to fire
all together at the same time.

In the first configuration called F (Figure 6.F) the SR-
CPops are placed to transmit packets through 4 ports of
the Cross Chip. Two out of four ports are used both as
input/output: The port East(0) gets input traffic from SR-
CPops A and output traffic from the SRCPops B. Similarly the
West(3) port sustains the traffic of the same populations with
reversed input/output order. The other two ports North-
Est(1) and North(2) are used in one direction only to pass
packets from SRCPops D and C to the IFPops connected
to the ports South-West(4) and South(5). During this anal-
ysis a considerable amount of packets is lost in all the
routers that try to send packets through the chip under
investigation. Indeed, even if 16 384 spikes are generated

Fig. 6: The three configurations investigated for the R2R
traffic analysis. Configurations have three main character-
istics: i) the orange and blue hexagon represent the SRCPops
and IFpops; ii) SRCPops and the connected IFpops are placed
symmetrically in relation to the chip under investigation
and marked with the same letter; iii) the hot-spot chip is
represented as the white central hexagon. In the traffic
section is reported the percentage of packets reaching the
destinations.
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by the SRCPops (4 SRCPops * 16 cores * 256 neurons-per-core)
the router of Cross Chip processed only 10 336 packets.
The 6 048 lost packets can be due to the simultaneous use
of East-West communication links in both directions that
generate deadlock conditions in the routers involved in the
transmission path.

The configuration EF (Figure 6.EF) is designed to inves-
tigate the hypothesis that simultaneous bidirectional trans-
mission from the same port can be the cause of critical
traffic situations. In this configuration all the four involved
ports of the Cross Chip are used as input/output at the
same time. This configuration accounts for a higher number
of lost packets with respect the F case. Indeed, only 6 508
spikes are processed by the Cross chip router, instead of the
expected 16 384 spikes or the 10 336 packets processed by F
configuration. Whereas, the majority of packets is dumped
in the neighbour chips. In both configurations, all the routers
of chips running SRCPops get all the packets from their
cores. However, because the Cross chip is in a busy state,
that increase when the ports are used in both directions
at the same time, a deadlock chain effect is backward
propagated from the busy router to the chips involved in
the communication path with the relative loss of packets.

A third configuration called F-mono has been designed
(Figure 6.F-mono) in order to validate the hypothesis that a
deadlock is more likely to occur if the links are used at the
same time in both directions, and to confirm that the packets
loss is not due to bandwidth problems. In this configuration
the traffic flows through the Cross chip in one direction only.
Three SRCPops send packets through the three input ports
of the Cross chip (Est(0), North-Est(1) and North(2)). These
packets are then redirected respectively to West(3), South-
West(4) and South(5) where nine IFpops are connected. With
this configuration 36 864 spike packets are sent through the
Cross chip without any loss of packets.

The use of retransmission buffer for the simulation of
configurations F and EF determined a huge amount of
conflicts, on average 6 conflicts per packet are generated.
Furthermore, the number of links simultaneously accessed
as input/output seems to impact on the number of conflicts.
Indeed, 108 k conflicts were detected for the four bidirec-
tional links configuration versus 94.5 k conflicts detected in
the F configuration. These results demonstrate that the si-
multaneous communication involving opposite router links
leads also to core load balancing issues.

3.3 Bio-Application Example

In order to evaluate SpiNNaker performances on real SNNs
we executed the simulation of the Cortical Microcircuit (CM)
proposed by Potjans et al. [23]. This network represents the
four layers under a surface of 1mm2 of the human brain cor-
tex (L23, L4, L5, and L6). Each layer consists of inhibitory and
excitatory neuron populations modelled through the setting
of specific parameters in the IF neuron model. Excitatory
populations have positive synaptic weight while inhibitory
neuron synapses are negative. The network represented in
Figure 7 is described in PyNN [24]. It is composed by 77 k
neurons, grouped in eight populations, and about 3 ∗ 108

synapses. Special source populations (SRCPops) are used to
generate spikes with a Poisson probabilistic process. These

Fig. 7: Cortical Microcircuit: Graph representation of the
SNN populations used to simulate the CM behaviour. The 4
layers are represented with different colours, the square rep-
resents Excitatory populations while Inhibitory are drawn
as circles. The hexagons in grey stand for spike sources.

SRCPops are connected to each IF population of the CM to
simulate the background activity of adjacent areas.

During the analysis the network has been reduced in
terms of number of neurons and synapses to satisfy con-
straints of time and resources availability. Adopted scaling
factors are in the range from 1% to 20% both for neurons
and synapses. The maximum allowed neurons-per-core is
an important parameter for a reliable simulation. If few
neurons-per-core are set, to many cores are used and a
general traffic increasing is detected in the R2R link levels.
While a high number of neurons-per-core can lead to R2R
traffic reduction since less cores are used, but on the other
hand cores may not be able to update the neuron dynamic
state in time and the C2R traffic is increased.

We run the Cortical Microcircuit (CM) adopting the de-
fault SNN-PP implemented in PACMAN and a customised
SNN-PP method called MANUAL. The MANUAL SNN-
PP forces the population placement on the board. Each
chip executes the simulation of a single population, and
the SRCPops are placed into the border chips close to their
IFPop targets. In this way it was possible to obtain a sort of
mono-directionality in the traffic fluxes between SRCPops
and their IFPop targets. The CM simulation is executed by
imposing following parameters: 5% of neurons (N05), 20%
of synapses (K20), and 100 neurons-per-core. This configura-
tion was chosen because N05 produce 3 854 IF neurons, the
same amount of SRC neurons and special populations used
to extend the synaptic delay called DelayExtension. These
11 562 neurons can be simulated over 144 cores in 10 chips
with reasonable configuration and simulation time.

In Figure 8 are reported the populations arrangement on
the SpiNNaker board when PACMAN and the MANUAL
SNN-PP procedures are adopted. The chips are coloured
with the same colours used to represent the populations in
Figure 7. Moreover, the overall data traffic collected by the
router counters during one second of simulation is reported,
together with the missed spikes. In the first CM simulation,
when PACMAN is adopted, a total of 723 packets have been
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Fig. 8: Placement of CM network: each hexagon represents
a SpiNNaker chip. The colour represents the CM popula-
tion executed in each chip, in grey chips that contains the
SRCPops.

dropped. Whereas, the R2R packets characterizing the on
board traffic are about 24M. Even if the number of dropped
packets can be considered very low with respect to the
overall number of circulating packets, it is a good practice
to ensure the correct transmission in order to prevent un-
reliable simulation results. In the second CM simulation,
the populations are mapped on the board applying the
MANUAL SNN-PP algorithm. On the right side of figure 8
it is shown this positioning where a full chip is used to run
a single population. In order to optimize the packets flow
among the chips, SRCPops are executed in the perimeter
chips while other populations are placed in the middle. The
use of MANUAL mapping procedure, that prevented sub-
optimal configurations, is useful to reduce the number of
R2R packets and to eliminate the dropping events. Indeed,
this customized procedure produces a reduction of 33% of
the number of R2R packets, from 24 M to 16 M.

4 SNN PARTITIONING AND PLACEMENT

We studied the SNN Partitioning and Placement (SNN-PP)
algorithms currently used in PACMAN (see Section 2.2.2)
and we noted that none of the highlighted problems were
considered during these procedures. Two considerations
should be made on the SNN-PP procedure implemented by
PACMAN. The Basic Partitioning algorithm is very naive, it
splits the populations considering as the only constraint the
neurons-per-core that a single core can simulate. Popula-
tions with a number of neurons exceeding this threshold are
sequentially split to create part-populations of the correct
size. In the worst cases the last part-population can be
created even for a single neuron, wasting the resources of
a core while keeping all the others saturated.

The second consideration concerns the PACMAN SNN
placer. The Radial Placer algorithm maps the part-population
without considering the effective network connectivity with
the risk to place far away two highly connected groups
of neurons. The high flow of packets inside the network,
caused by naive part-populations placement, can be the
cause of the hot-spot creation with consequent packet traffic
unreliability. Using these two considerations as starting
point, we present in the following our SNN-PP method that
improves the performance and the reliability of these two
important steps.

Placement techniques are extensively studied in the VLSI
field where the component graph is positioned in the chip

area using the design constraints. These techniques are typi-
cally based on a Simulated Annealing, Analytical Paradigms,
or Partition Based approaches. The aim of Partition Based
approaches is to minimize the mutual connections and keep
close the highly connected components. This class of algo-
rithms is often preceded by several clustering phases aimed
at reducing the dimensionality of the networks and for this
motivation is commonly referred as Multilevel Partition Based
Approach (MPBA) [25].

The SpiNNaker cores can simulate at most a number-of-
neurons, belonging to the same populations, proportional to
the complexity of used neuron model (upper limits is 256).
For this motivation, when a SNN graph is placed on the
SpiNNaker cores, it is necessary a partition procedure able
to split the populations with a number-of-neurons greater
than the core upper limit.

In literature a Simulated Annealing approach has been
theorised by Brown et al. [26] to find a solution to the SNN
partitioning and placement (SNN-PP) problem. However,
at the state-of-the-art none implementation can be found.
We studied the three main placement techniques adopted
in the VLSI field and identify the MPBA class as the most
compliant to solve the SNN-PP problem. Indeed, the SNN
partitioning procedure can be natively supported by parti-
tion based techniques. The MPBA can be used such a start-
ing point for the development of an ad-hoc methodology
to solve the SNN-PP problem on the SpiNNaker board. The
graph representing SNN can be partitioned and placed such
as the graph of VLSI components. The major difference is
represented by the SNN huge fan-in to be handled (up to
10k synapses per neuron).

In order to design an optimised SNN-PP method capable
to assign the neuron populations to the SpiNNaker cores,
we exploited the evidences identified during the profiling
analysis. We identified two major aspects to be considered
during the SNN-PP: i) The physical position, in the chip
architecture, of cores running the populations has an ef-
fect on the efficiency of the packet transmission. The load
balancing of the internal multiplexer tree can be a good
practice to reduce the overload due to packet conflicts. ii)
Bidirectional traffic involving opposite ports of a chip can
lead to deadlock conditions that cause dumping events with
relative loss of packets.

In biologically meaningful cases links cannot be used
in a mono-directional mode because of SNNs complexity.
Therefore, it has been studied an SNN-PP algorithm able
to minimize the packet flows in the inter-chip network
(R2R) without trying to force mono-directional traffic. This
algorithm, called SNN Spectral Analysis based Partitioning
and Placement (SNN-SA-PP), is applied to the graph repre-
sentations of the analysed SNN.

SNNs are represented through three graph layers, each
of them useful for the execution of specific operations: i)
Population Graph is the representation where each vertex is
a PyNN Population and each edge is a Projection with a
connector for the synapses generation; ii) Neuron Graph is a
SNN representation where each vertex is a neuron and each
edge is a synapse; iii) Part-population Graph, generated from
the Neuron Graph clustering, is the representation where
each edge is a set of synapses and each vertex is a part-
population with a number of neurons that can fit in a core.
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The main processing flow (shown in Figure 9) takes as
input the Population Graph, removes the SRCPops that will
be partitioned and placed at the end of the procedure, and
expands this graph in order to get the Neuron Graph.

During the Partitioning phase, this detailed graph is
analysed using spectral clustering techniques. The gener-
ated clusters, of predefined neuron size, are then used
to create the Part-population Graph. The spectral analysis
applied to the Neuron Graph allows to label each neuron
with a n-dimensional coordinates, in this way neurons can
be managed like points where the distance between two of
them represent their connectivity. By applying the clustering
algorithm is then possible to isolate sets of neuron highly
connected and to map them together. Thus, the partitioning
problem can be solved iteratively through the Sub-Clustering
phases, where neurons from the same population and clus-
ter are grouped in sub-clusters matching the core constraints
(neurons-per-core).

Vertexes of Part-population Graph are generated using the
centroids of sub-clusters. Thus, each vertex of this graph
represents a sub-cluster. Moreover, in order to prevent the
generation of small part-populations, that lead to unopti-
mised use of cores, a Fusion phase is executed where sub-
clusters are analysed and in some cases manipulated.

For the Placement phase the part-populations graph is
elaborated using the Sammon Mapping multidimensional
scaling algorithm. This scaling procedure is applied in order
to adapt the graph multidimensionality in a bi-dimensional
space. This representation can be used for a direct placement
process where a rectangular grid is build upper the points
and each area is associated with a chip. During the Sammon
Mapping part-populations that fall in an area are mapped in
the free cores of the chip. If the number of part-populations
in a single chip/square exceed the number of available cores
a Legalization procedure is applied where a simple greedy
algorithm move the extra point in the free nearest areas. In
the example reported in Figure 9 the constraint is one part-
population for each chip, whereas in real cases up to 16 part-
populations can be placed. Placement procedure ends with
the assignation of the SRCPops, extracted in the first phase
of SNN-SA-PP, to each chip running the associated part-
populations. Space can be reserved in each chip for this type
of population accordingly to their particular connectivity. At
last step, the configuration files are generated and sent to the
SpiNNaker board.

We implemented the SNN-SA-PP method in a Python
module called GrapH Optimizer SpiNNaker Tool (GHOST).
This SW layer exposes a PyNN front-end and provides
a pre-partitioned and pre-placed population graph to the
sPyNNaker library that generate the configuration files to
be sent to SpiNNaker for the simulation.

4.1 Partitioning

In order to design an efficient Partitioning algorithm we
adopted a Multilevel Partition Based Approach (MPBA). Two
clustering algorithms were identified such as easily ap-
plicable to the graph partition problem: The Highly Con-
nected Sub-graphs (HCS) and the Spectral Clustering. The HCS
algorithm implements recursively bi-partition steps over
the input graph until the sub-graphs reach a predefined

Fig. 9: Flowchart of SNN Spectral Analysis based Parti-
tioning and Placement algorithm. From SNN Population
Graph to the chip placement of neurons.

degree of connectivity [27]. The definition of the degree of
connectivity for the termination condition and the choice
of the method to be used to execute the bi-partition steps
are the major problems of this method. These problems are
avoided if the Spectral Clustering techniques are adopted.
The Spectral Clustering method makes use of the eigenvec-
tors of the similarity matrix associated to the input graph
to obtain an optimised spatial disposition of the data [28].
Applying this method on the Neuron Graph we obtained an
optimised spatial disposition of the neurons useful for both
Partitioning and Placement phases.

The Population Graph is transformed into a more detailed
Neuron Graph representation extracting the neuron grouped
in the populations and generating all the synaptic connec-

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TETC.2016.2579605

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



9

tions. The Neuron Graph is a directed graph G(N,S) where
N and S are respectively the neurons and the synapses sets.
Each synapse s ∈ S, is defined with four parameters: The
source neuron i, the target neuron j, the synaptic weight
wij and the synaptic delay dij .

An undirected graph can be represented with the Adja-
cency matrix A(i, j)=1 if wij>0. This matrix is then elabo-
rated in order to obtain the Affinity matrix L=D−AwhereD
is the Degree matrix (a diagonal matrix containing the degree
of each vertex). In our case, the direct graph elaboration
required a more complex procedure. This procedure starts
with the computation of the Normalized Laplacian matrix of
G defined in Equation 1, where I represents the Identity
matrix, P is the Transition matrix of the graph G induced
by a random walk method and Φ is the matrix with the
Perron vector of P in the diagonal and zeros elsewhere [29].

L = I − (Φ
1
2PΦ−

1
2 + Φ−

1
2PT Φ

1
2 )

2
(1)

Using L like Affinity matrix we compute eigenvalues and
eigenvectors. Each neuron can be represented in u dimen-
sions of the spectral space using the first u eigenvectors
sorted from the largest to the smallest eigenvalues. The
number of dimensions u, is fixed such as u = k where
the k parameter represents the number of clusters to be
imposed to the first step of the clustering algorithm. The
k parameter can be calculated using the Equation 2, where
N is the number of neurons to be simulated, c represent the
available cores on each chip and n is the maximum number
of neurons that can be executed on each core.

k = d N

c ∗ n
e (2)

The k-Means clustering procedure is at this point used to
transform the Neuron graph into the Part-population Graph.
The objective function in Equation 3 aims to minimize the
distance between the x points of the cluster S with respect
to the cluster centre φ.

min
k∑

i=1

∑
x∈Si

‖ x− φi ‖2 (3)

Clustering is executed in three steps: i) k cluster centroids
are chosen randomly; ii) for each iteration, points are as-
signed to the closest centroid and the new cluster centroid is
updated; iii) computation ends when the difference between
the objective function value in two successive iterations
is lower than a fixed threshold. Concluded the clustering
procedure, each cluster is analysed and divided in part-
populations. Neurons belonging to the same population
are grouped to create sub-clusters of size compatible with
core constraints. The centroids of clusters are then used
as vertices of the SNN Part-population Graph representa-
tion. Three methods can be used to make this intra-cluster
division: Random neuron division, position based neuron
division, or using a balanced sub-clustering method. For the
Partitioning algorithm here reported has been used the k-
Means algorithm together with a heuristic voted to balance
the number of neurons for each sub-cluster.

During the cluster division phase the Fusion procedure
is executed in order to prevent the generation of small part-
populations that lead to unoptimised use of resources and

to increase the packet traffic. If neurons belonging to the
same population are split in more than one cluster and
one of them has less than 20% of neurons that a core can
simulate, these neurons are moved into the nearest cluster.
In Figure 10 a simple example is shown, where a neuron
belonging to the green population is clustered with neurons
of the blue population. The fusion procedure recognises the
green neuron and reassign it to one of the green sub-clusters,
avoiding the creation of a supplementary vertex into the
Part-population Graph.

Fig. 10: Fusion step. This procedure allows merging uncom-
pleted clusters in order to optimise the resources use.

4.2 Placement

The part-populations placement on the SpiNNaker cores
is made by considering the coordinates in the eigenvec-
tors space obtained during the Partitioning. Since part-
populations have coordinates in k dimensions, a dimension
reduction process is applied to place them on the planar
hexagonal mesh formed by SpiNNaker chips. This process
can be done by using the first two eigenvalues only or by
applying an algorithm to calculate a more accurate multidi-
mensional scaling. The application of a multidimensional
scaling algorithm on the coordinates of points allows to
reduce the dimensionality of points taking into account
the distances in the k dimensional space. In the SNN-SA-
PP this task is done using a Sammon Mapping algorithm
[30]. This algorithm uses a non-linear approach to minimize
the relative distance d of the high dimensional points with
respect to the relative distances of the points with low
dimensionality (Equation 4).

E =
1∑

i<j d
∗
ij

∑
i<j

(d∗ij − dij)2

d∗ij
(4)

Using the Equation 4 we map the points in the Sammon space,
a bi-dimensional space populated by the part-populations
to be placed on the SpiNNaker architecture. In order to
exploit the spatial information of part-populations during
their placement over the chips, we divided the Sammon
space applying a rectangular grid with shifted columns
(placement step in Figure 9). This grid has z rows and z
columns with z = d

√
p/ce where p is the number of part-

populations and c is the max number of part-populations
for each chip. Even columns are vertically moved for mimic
a hexagonal shape, in this way each rectangle is in touch
with six neighbours and represents a SpiNNaker chip.

All points that fall in a rectangle should be mapped
on a core of the relative chip. Since more points than
available cores can fall into the same square a Legalization
step is executed to move the extra part-populations to the
free neighbours chips. This procedure is implemented as a
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greedy algorithm that move extra points to the free nearest
areas (as shown in Figure 9 at Placement step).

At last step, the SRCPops isolated in the early phase
are directly placed on the reserved cores. The spike source
neuron models (SRC) are used in SNNs to start or maintain
special regimes of activity. For example, in the Cortical
Microcircuit analysed in Section 3.3, the SRC neurons are
used to simulate the background activity of adjacent cortical
areas. SRC neuron is usually connected to a single target
neuron and configured to simulate a high level of activity
generating an intense traffic of packets. For these motiva-
tions placing SRCPops on the same chips that host the target
neurons resulted as a good practice to reduce the R2R traffic.

5 RESULTS

The validation process adopted to demonstrate the improve-
ment obtained using the SNN-SA-PP algorithm is here dis-
cussed, together with the achieved results. Three Partition-
ing and Placement variants are adopted for this purpose.
i) The No-Fusion make use of the SNN-SA-PP algorithm de-
scribed in Section 4 with the exception of the fusion step that
is not implemented. ii) The Fusion uses the full procedure
SNN-SA-PP shown in Figure 9 to transform the Population
graph into an optimized SpiNNaker configuration. iii) The
Random is used as a reference to validate the improvement
obtained by the other two SNN-SA-PP variants. It makes
a random division of Neuron graph considering only the
number-of-neurons per part-population that must be kept
homogeneous. Whereas, it applies a radial placement of the
IF part-populations keeping in the same chip the associated
SRCPops and DelayExtension.

The Cortical Microcircuit (CM) has been used to demon-
strate the effectiveness of SNN-SA-PP method implemented
in GHOST and to compare the achieved results with those
obtained by the use of the SNN-PP implemented in PAC-
MAN. In order to be compliant with the experiment pro-
posed in Section 3.3 the scaling factor N05-K20 has been
adopted. Moreover, in order to observe the system response
when synapses number decrease from 3 M (20%) to 750 k
(5%) we used a second scaling factor equal to N05-K05.

Six rounds of simulations were executed to extract the
ratio R2R/C2R and the overall R2R packets circulating in
the network. In each round, 20 simulations were performed
using one of the three SNN-PP variant (Fusion, No-Fusion
or Random) to set-up the SpiNNaker board with one of
the two scaled CM. R2R/C2R ratio represents the traffic
circulating in the inter-chip network versus the traffic gen-
erated into the chips. This ratio is used to compare the
performances of the three investigated SNN-PP variants.
Lower values of this rate correspond to the capacity of the
network to keep local the communications, reducing the
number of packets circulating on the inter-chip links.

As can be seen in Table 1, the N05-K05 SNN placed
with the SNN-PP Random variant generates an average of
292 k R2R packets. Instead, the network scaled at N05-
K20 generates an average of 323 k R2R packets. In Figure
11 it is shown as CM configurations generated using the
SNN-PP Random variant produces small fluctuations on the
R2R/C2R ratio, with all the values concentrated near 9.10E-
2 for the N05-K05 case and 2.55E-2 for the N05-K20.

Partitioning & Placement Packets R2R [k]

CM config. Version Worst Average Best

N05-K05
Random 302 292 283

No-Fusion 378(+25%) 318(+9%) 231(-18%)

Fusion 265(-12%) 237(-19%) 228(-19%)

N05-K20
Random 331 323 309

No-Fusion 411(+24%) 264(-18%) 245(-21%)

Fusion 289(-13%) 252(-22%) 238(-23%)

TABLE 1: Cortical microcircuit R2R traffic detected for
two configurations N05-K05 and N05-K20 when three Par-
titioning and Placement variants of proposed technique are
applied: Random, No-Fusion and Fusion. The R2R packets
percentage is computed comparing Spectral and Fusion
variant with the Random configuration.

Fig. 11: Distribution of R2R/C2R ratio computed on a two
configurations N05-K05 and N05-K20. 20 simulations have
been performed for the three SNN-PP techniques.

The executions of N05-K05 configured with SNN-PP No-
Fusion variant produced a larger range of R2R/C2R ratio
(Figure 11.a). Indeed, if compared with the Random variant,
only part of the experiments come out with more balanced
configurations. This was due to the generation of small part-
populations (less than 10 neurons) that lead to the use of
supplementary cores, thus increasing the R2R traffic.

To prevent this unwanted behaviour, in the SNN-PP has
been added the Fusion step that is able to solve this problem.
Experiments performed using the SNN-PP Fusion variant
demonstrate that the R2R/C2R rate is always lower than the
rate produced by the Random variant. Considering the N05-
K20 we note that even the R2R/C2R rate of SNN-PP No-
Fusion variant is always better than the rate of Random. This
is principally due to the higher number of connections that
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produce more distant points for the clustering algorithm
that can better balance the clusters and make negligible the
generation of small clusters.

The average number of R2R packets produced by N05-
K20 placed on SpiNNaker using the SNN-PP No-Fusion is
reduced of 60 k packets with respect to those placed with the
Random variant (Table 1). This is not true for N05-K05 where
the influence of small part-population affects the average.
Indeed, an increase of 26 k R2R packets is detected when the
No-fusion variant is used. CM configurations generated with
Fusion variant give always better balanced traffic and less
R2R packets than the Random and No-fusion variants. The
Fusion worst case with 265 k and 289 k packets is better than
Random best case of 20 k R2R packets (-6% of R2R packet). In
average, the Fusion variant decreases the R2R packets of 55 k
in N05-K05 and 70 k in CM N05-K20 (20% of R2R packet less
than Random variant).

First and third quartiles of Fusion box plots in Figure
11 confirm that the spectral analysis is a suitable technique
that applied to the SNN-PP problem within SpiNNaker can
produce good results in reducing the inter-chip traffic. The
effect is increased if associated with a fusion system capable
to avoid the generation of little Part-populations.

At last analysis step, we propose a comparison be-
tween CM Partitioned and Placed using PACMAN and
the configuration produced by our SNN-SA-PP algorithm
implemented in GHOST. As it is possible to note in Figure
12 the 24 M of R2R packets generated by CM placed with
PACMAN are reduced to 250 k if CM is configured with
GHOST allowing a 96X reduction of R2R traffic.

Fig. 12: The placing of CM network: Each hexagon rep-
resents a SpiNNaker chip. The colours represent the CM
populations inside the chips. In grey the chips that run the
SRCPops.

6 CONCLUSIONS

In this paper we described a methodology to efficiently
map spiking neuron populations in neuromorphic plat-
forms for reliable and scalable SNN simulations. We applied
our methodology to SpiNNaker, a densely interconnected
neuromorphic multi-chip many-core platform for real-time
SNN simulations. We first described a top-down profiling
analysis performed to characterise reliability issues in the
SpiNNaker platform. This profiling methodology was de-
signed in order to highlight the impact of neuron population
mapping on the optimal platforms resource exploitation.
We discussed the profiling methodology based on the use

of custom SNN configurations that revealed both Core-
to-Router and Router-to-Router traffic issues. The Core-to-
Router traffic analysis was useful to detect packet conflicts
in the internal router tree related to traffic congestion caused
by the high contemporaneity and intensity of generated
spikes. While exploiting the Router-to-Router analysis, we
found out that the simultaneous occupation of links in both
directions is a potential source of unreliability.

A simulation of a Cortical Microcircuit SNN was evalu-
ated to characterise unreliable SpiNNaker behaviours such
as packet losses in communication links and simulation
failure when the PACMAN SNN-PP algorithm is used. In
the second part of the paper, we focused on the cluster-based
SNN-PP algorithm we developed where SNNs represented
as Population Graphs are exploded in Neuron graphs and clus-
tered using Spectral Clustering techniques. Isolated clusters
were then arranged in a Part-population Graph and placed on
the available cores and chips using the information collected
during the clustering step. This method was implemented in
a Python module compliant with the PACMAN tool chain,
called GHOST.

A Cortical Microcircuit was simulated again with two
scale factors in order to demonstrate the effectiveness of the
developed SNN-PP cluster approach with respect to random
neuron placement. Moreover, from these simulations was
evident that the Fusion procedure, which is capable to
reduce the number of used cores, results in lower R2R traffic.

Finally, comparisons were made between configurations
produced by PACMAN SNN-PP algorithm and the SNN-
SA-PP implemented in GHOST. These comparisons showed
a R2R traffic reduction of 96X when GHOST is adopted. In
future works we plan to upgrade the SNN-PP algorithm
phases by expanding the clustering and legalization steps.
In addition we plan to improve the portability of the algo-
rithm in order to give support to alternative SNN descrip-
tion languages used in different neuromorphic platforms.
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