
10 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Optimizing Network Traffic for Spiking Neural Network Simulations on Densely Interconnected Many-Core Neuromorphic
Platforms / Urgese, Gianvito; Barchi, Francesco; Macii, Enrico; Acquaviva, Andrea. - In: IEEE TRANSACTIONS ON
EMERGING TOPICS IN COMPUTING. - ISSN 2168-6750. - ELETTRONICO. - 6:3(2018), pp. 317-329.
[10.1109/TETC.2016.2579605]

Original

Optimizing Network Traffic for Spiking Neural Network Simulations on Densely Interconnected Many-
Core Neuromorphic Platforms

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/TETC.2016.2579605

Terms of use:

Publisher copyright

©2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2644604 since: 2021-04-06T17:07:57Z

IEEE

1

Optimizing Network Traffic for Spiking Neural
Network Simulations on Densely Interconnected

Many-Core Neuromorphic Platforms
Gianvito Urgese, Student Member, IEEE, Francesco Barchi, Enrico Macii, Senior Member, IEEE

and Andrea Acquaviva, Member, IEEE

Abstract—In this paper we present a new Partitioning and Placement methodology able to maps Spiking Neural Network on parallel
neuromorphic platforms. This methodology improves scalability/reliability of Spiking Neural Network (SNN) simulations on many-core
and densely interconnected platforms. SNNs mimic brain activity by emulating spikes sent between neuron populations. Many-core
platforms are emerging computing targets that aim to achieve real-time SNN simulations. Neurons are mapped to parallel cores, and
spikes are sent in the form of packets over the on-chip and off-chip network. However, the activity of neuron populations is
heterogeneous and complex. Thus, achieving an efficient exploitation of platform resources is a challenge that often impacts on
simulation scalability/reliability. To address this challenge, the proposed methodology use customised SNN to profile the board
bottlenecks and implements a SNN partitioning and placement (SNN-PP) algorithm for improve on-chip and off-chip communication
efficiency. The cortical microcircuit SNN was simulated and performances of the developed SNN-PP algorithm were compared with
performances of standard methods. These comparisons showed significant traffic reduction produced by the new method, that for
some configurations reached up to 96X. Results demonstrate that it is possible to consistently reduce packet traffic and improve
simulation scalability/reliability with an effective neuron placement.

Index Terms—Neuromorphic Platform, Many-core SoC, Profiling Methodology, Spiking Neural Network, Partitioning and Placement.

F

1 INTRODUCTION

The simulation of Biological Neural Networks (BNN), the
structures composing neural tissue, is a promising method-
ology to gain novel insights into unclear mechanisms under-
lying brain functions. The high degree of complexity that
characterizes the nervous system poses several challenges
when dealing with the simulation of its processes using
abstract models. BNNs are usually represented during the
simulations as Spiking Neural Networks (SNNs) [1], inter-
connected neuron models which mimic the behaviour of
real neurons and which communicate using spikes. Chal-
lenges of SNN simulations are related to the computational
and communication effort needed to account for the large
number of neurons and in particular of synapses, that are
the interconnections between them. This effort cannot be
tackled using general purpose computation platforms only.
During the last decade, a number of custom hardware (HW)
architectures have been developed, aimed at supporting
neuron activity with enough parallelism and implementing
efficient spike communication by means of densely inter-
connected networks [2, 3, 4, 5].

Today, one of the most advanced SW/HW simulators
is the SpiNNaker neuromorphic platform [6]. SpiNNaker
is a globally asynchronous locally synchronous (GALS)
application-specific multi-chip many-core architecture used

• G. Urgese, F. Barchi, E. Macii and A. Acquaviva are with the Department
of Control and Computer Engineering - DAUIN, Politecnico di Torino,
Torino 10129, Italy (e-mail: gianvito.urgese@polito.it).

• This research has been founded by Human Brain Project.

Manuscript received January 07, 2016; revised April 25, 2016.

Fig. 1: SpiNNaker board with 48 multi-core chips connected
in a toroidal-shaped triangular mesh.

for the execution of real time simulations of SNNs. The
system is organized in a two-dimensional toroidal-shaped
triangular mesh where SpiNNaker chips represent the pro-
cessing nodes (Figure 1). Each node contains a router for
the communications and 18 ARM968 cores for the parallel
execution of a variety of neuronal models and synapses.
SpiNNaker is made of general purpose cores and for this
reason it can be potentially used for a wide range of appli-
cations requiring intensive communication between parallel
computational elements [7]. Neuron models are mapped on
the cores of SpiNNaker chips and their spikes are propa-
gated across the network in the form of packets.

Given the complexity of the communication activity in
simulated SNNs, a significant challenge is to reduce the risk
of unreliable simulation behaviour and failures in absence of
an efficient exploitation of platform architectural resources.

2

In particular, partitioning and placement of neuron popula-
tions into chips and cores heavily impacts the efficiency of
on-chip and off-chip communication during the simulation.

In this paper we describe a new partitioning and place-
ment algorithm for SNN simulations over neuromorphic
platforms. This algorithm is designed to decrease the pack-
ets traffic circulating over the inter-chip network and to im-
prove simulation reliability and communication efficiency.
Thus, the way is paved to more reliable and scalable SNN
simulation. The research developed over two main phases:
A top-down profiling analysis to detect bottlenecks in the
SpiNNaker communication system, followed by the devel-
opment of a SNN Partitioning and Placement (SNN-PP) al-
gorithm. This was inspired by the analysis performed in the
first phase. The SNN-PP algorithm exploits clustering and
legalization techniques to achieve a more efficient mapping
of SNN simulation components to the platform.

The paper is organized as follows. Section 2 provides
an overview of the SpiNNaker SW/HW architecture. Sec-
tion 3 describes the profiling methodology and highlights
the effectiveness of the methods used to study the packet
traffic in two path locations. A biological SNN simulation
is used to validate the evidences observed. The use of the
customised partitioning and mapping algorithm can im-
prove the standard SNN placement procedure by avoiding
identified configurations that lead to unreliable behaviour.
Section 4 describes SNN-SA-PP, the SNN Partitioning and
Placement algorithm based on Spectral Analysis methods.
Section 5 reports on the results obtained during the SNN-
SA-PP validation process performed on a biological SNN
simulation. Section 6 provides the final evaluations.

2 BACKGROUND

The Neuromorphic engineering aims at developing VLSI sys-
tems to mimic the neuro-biological networks of the nervous
system. A biological neuron collects signals from its pre-
decessors (pre-synaptic neurons) and transmits a spike if
the membrane voltage reaches the firing threshold value,
otherwise the potential reached will decay over time. This
spike is transmitted along a wire called axon to the connec-
tion with the dendrite of other neurons called post-synaptic.
The axon-dendrite contact is called synapse. Each synapse
is characterized by a specific weight that influences the
changes induced by the pre-synaptic spike in the membrane
electric potential of post-synaptic neuron. On average, the
neuron spiking rate (spike/second) ranges from 10 to 100
Hz. The nervous system networks make the importance of
each single neuron relatively low. This is due to its very
high level of parallelism and its ability to adapt to unknown
environments. Remarkable fault tolerance is provided even
after the loss of many neurons.

Neuromorphic SW/HW systems support the simulation
of the nervous system. They allow the study of the work-
ing mechanisms acting in the brain and to investigate the
biological process underlying neural diseases. At the same
time, neuromorphic engineers take inspiration from biology
to design brain-like systems with brain-specific features.
These include extreme parallelism, adaptive responsiveness
to unknown environments, fault-tolerance, and very low-
power consumption [8].

2.1 Spiking Neural Network Simulation
Spiking Neural Networks (SNN) are neural networks
adopted to simulate brain activity in a biologically plausible
way. In the SNN simulations neurons and their synapses
are modelled as differential equations. These equations are
capable to emulate the behaviours observed in biological
networks making possible to describe network dynamics
and mechanisms [1]. Two of the most adopted neuron mod-
els are the leaky Integrate and Fire (IF) [9] and Izhikevich (IZK)
[10], because they are able to ensure a plausible picture of
the biological behaviours with reduced computational costs.
SNN simulations, compared with in-vivo experiments al-
low accurate neuron dynamics observation, exploration and
validation of plausible theories regarding brain functions.
Moreover, SNN simulations can reproduce the experiments
with the same conditions.

A SNN can be described as a graph where each node,
called Population, is a homogeneous group of neurons shar-
ing the same model and parameters. Whereas, each edge
(Projection) is the rule used to generate synaptic connec-
tions between the neurons of two Populations. Nengo [11]
and PyNN [12] are the most used APIs to define SNN
simulations. Both of them allow the description of many
neurons/synapses models and can be exploited in a trans-
parent mode on different back-ends such as neuromorphic
platforms or software (SW) simulators running on general-
purpose workstations.

Many research groups have developed SNN simulators
to study brain functions or to develop neuromorphic ap-
plications. An updated review is provided by Carlson et
al. [13]. The SNN simulators can be divided into two main
categories: SW (digital domain) and HW (analogic, digital
or mixed domains). In the following we will consider and
discuss a specific HW simulator that works in the digital
domain, called SpiNNaker.

2.2 SpiNNaker Board
SpiNNaker is an application specific massively parallel
architecture Globally Asynchronous Locally Synchronous
(GALS) designed to simulate, in real-time, large scale SNN
[6]. The system is built by multi-core SpiNNaker chips
arranged in a two-dimensional toroidal shaped triangular
mesh (Figure 1). Each chip represents the processing nodes
where neuron activities are simulated. The populations of
neurons are described in SW and their spikes are repre-
sented as packets. These packets are propagated through
the on-chip and inter-chip communication links via routers.
A detailed description of SpiNNaker architecture has been
presented by Furber et al. [7]. In the following we report
only on the key features of HW/SW architecture necessary
for the discussion of the proposed methodologies.

2.2.1 Hardware features
The SpiNNaker Chip architecture is designed in the form
of a System on Chip connected to a 128MB SDRAM die,
which is physically mounted on top of the SpiNNaker die
and placed in the same package. In this architecture 18
ARM968 Cores are connected through the System NoC to a
custom router and to various other resources such as system
ROM, System Controller, System RAM, external SDRAM

3

Fig. 2: SpiNNaker chip architecture

and Ethernet interface (Figure 2). Each core has its own
DMA controller, two private tightly coupled memories for
instructions and data and a bridge to the shared resources.

The Router (Figure 3) is the fundamental component of
the SpiNNaker architecture, it routes the incoming packets
to single or multiple outputs. Packets coming both from
external links and from internal cores are presented to the
router and elaborated one by one [14]. SpiNNaker chips
communicate with neighbours chips via packets using the
six external bidirectional links controlled by the router (Fig-
ure 3.c). Three types of packets are used during the board
activity: i) Nearest-Neighbour (NN) for initialization and links
life control at chip level; ii) Point-to-Point (P2P) for data
communication between specific cores; iii) Multicast (MC)
for the spike propagation during the simulation.

In order to distribute spikes across the system SpiN-
Naker make use of the Address Event Representation (AER)
protocol [15]. When a neuron fires, a MC packet that contain
the number that uniquely identifies the spike source neuron
is generated. Then, this packet is provided on the router
internal branch (Figure 3.b) and passed through multiplexer
tree. At this point the packet is introduced in the second
tree (Figure 3.a) that handle also the traffic coming from the
six neighbour chips. The router then compares the packet
identifier with the entries stored in the routing tables and
in case of match it looks up the relative routing word.
Routing word is used as selection mask that contains 1 bit
for each output destination: Internal cores and external links
connecting the nearest chips.

2.2.2 Software features
The SNN simulation is configured on the SpiNNaker sys-
tem using a Python package called sPyNNaker. This library
consists of: i) Low level software (board SW), written in
C-ARM to be executed by the SpiNNaker board; ii) High
level software (host SW), used to describe the SNN without
any particular knowledge of the board; iii) A tool-chain
used to translate the SNN described as abstract models into
configuration files to be sent to the SpiNNaker cores.

The board SW is divided in three layers: The first is
called SpiNNaker Application Runtime Kernel (SARK), that
provides low-level functions for the use of SpiNNaker chip
resources. The second called Spin1 API is running on top

Fig. 3: Router details: a) the principal branch that merge the
incoming packets (external and internal) to be provided on
the routing engine input; b) the multiplexer tree that connect
the internal cores to the principal branch; c) the six external
link of the chip.

of SARK and implements the Event-Driven Programming
Model used to build efficient code. The last SW level is
the application program that implements one of the neuron
models. These SW levels are loaded on the SpiNNaker
machine during the booting phase. At the start-up, each
chip runs a low level HW check. If some component is not
responding it is disabled, otherwise is executed the election
procedure for the monitor processor selection and the router
initialization. The elected monitor processor is in charge
to perform system management tasks while other cores
are addressable for application processing. During the boot
procedure, called by the host machine, SARK is loaded on
all the working cores, on top of which the simulated appli-
cation can be executed. The monitor processors are loaded
with a special program called SpiNNaker Control & Monitor
Program (SC&MP), that is responsible for the supervision
of chip operations and for the communications with the
host computer. When SC&MP are loaded, each chip set its
coordinate using as reference the Ethernet enabled chip that
assume the (0, 0) position [16].

The Host SW has been developed using of the PyNN
neural system description language for the creation of an
user-friendly front-end [12]. Steps in between the PyNN
SNN description and its execution on the SpiNNaker board
are handled by a python package called PArtition and Config-
uration MANager (PACMAN). This package provide utilities
for SNN Partitioning, Placement and Routing [17].

PACMAN uses the PyNN representation of SNN com-
posed by Populations and Projections to build the Population
graph. This graph is elaborated following three main phases.
During the Partitioning phase, each neuron population is
divided in portions called part-population in order to satisfy
the core constraint of maximum number-of-neurons per
core. This division is made by selecting subset of neurons
without any consideration about the neuron connectivity.

4

Fig. 4: The Base Configuration (BC): in orange are described
the SRC Chip while in blue the IF Chip. The white circle
represents the cores of chip.

In the Placement phase, each part-population is assigned
to a different core by means of a simple algorithm perform-
ing the sequential positioning. Once all the cores of a chip
are filled, PACMAN starts to fill the cores of the next chip
following a radial order.

During the Routing phase the part-populations disposi-
tion over the board is evaluated in order to identify the best
routing paths between chips. Once best paths are identified,
the generation of routing tables is performed for each chip
involved in the simulation.

Finally, the partitioned and placed SNN is passed to the
configuration pipeline in charge to configure the SpiNNaker
board with the files generated in the host.

3 TOP-DOWN ANALYSIS METHODOLOGY FOR
SPINNAKER PROFILING

A significant amount of research has been done to highlight
the capability of simulating large SNNs on neuromorphic
platforms such as SpiNNaker [18, 19]. However, the SNN
behaviour is generally evaluated from a biological point
of view without considering hardware faults or missing
packets. Indeed, is well accepted that the SNN simulations
are relatively uninfluenced by system variations and imper-
fections [20]. Profiling data of real case applications can be
precious in order to improve the methods used to split the
SNN populations and to decide where, on the board, is more
convenient the execution of each part-population.

In a precedent work by Urgese et al. [21] it has been
thoroughly discussed the profiling methodology adopted to
investigate some of the SpiNNaker bottlenecks impacting on
the simulation reliability and limiting the biological network
size. For practical purposes we report here the major insight
of the profiling analysis. This is useful to check the capacity
of the developed SNN Partitioning and Placement (SNN-
PP) algorithm to overcome the identified limits.

In order to execute an accurate profiling, we designed a
customised SNN able to stimulate the critical behaviours of
SpiNNaker. This customized SNN is flexible enough to be
used as the basic component for the design of complex use
cases. One of those behaviours arises when a large amount
of packets are transmitted in a single link at the same time
in both directions with the consequent loss of packets.

The Base Configuration is build using two populations
placed on two different chips (Figure 4). The first popu-
lation called Spike Source (SRCPop) is used to send spikes
to a connected target population following a predefined
time vector. The second population, IFPop, is composed by
Integrate and Fire neurons and connected one-to-one to the

SRCPop. The behaviour of both populations is deterministic,
since the IFPop parameters have been set to generate a new
spike when a spike from the SRCPop is received. During
the simulation, spikes generated by the IFPop are stored and
counted in order to be compared with the number of packets
generated in those cores running the SRCPop.

The Base Configuration can be parametrised at three
levels: i) The population size, responsible for the modula-
tion of the number-of-cores used in the analysis, and the
consequent number-of-packets circulating on the segments
of network under test; ii) The max number-of-neurons that
can be simulated over a single core; iii) The exact location of
chips and cores running the two populations.

Using these parameters, several customised configura-
tions can be build to force the overload of specific com-
munication segments providing useful information about
the traffic sustainability. The Base Configuration allowed
us to highlight a critical problem represented by the loss
of packets. This occurs when all the neurons of SRCPop
fire together and generate a huge amount of traffic over
the lines of the router under investigation. In particular, we
investigated two classes of traffics: The Core to Router traffic
generated when packets come from the Cores to the Router
of a chip, and the Router to Router traffic generated when
packets are transmitted from a Router to another Router
through one or more chips.

3.1 Core to Router traffic analysis

The Core to Router (C2R) traffic analysis is exploited to
identify inefficient load configurations stressing the first
internal layer of the multiplexer (Figure 3.b). This layer is
in charge to introduce in the router the packets generated
by the internal cores. In order to simulate a huge number
of packets accessing the first internal layer of the router
we adopted the Basic Configuration (in Figure 4) letting
the neurons belonging to SRCPop to fire all together at the
same time. Two SRCPop models have been used during the
analysis: The first model exploits a software buffer to store
the untransmitted packets that have to be re-introduced into
the router, whereas in the second model this buffer is not
used. In Figure 5 are reported four configurations (from
E1 to E4) designed to show the C2R traffic response of the
board with different load scenarios.

In the experiment E 1 the two populations of 4096 neu-
rons grouped in 16 part-population are placed on two
different chips. The SRC neurons models without retrans-
mission buffer are used. The neurons of SRCPop fire at
the simulation time of 100 ms and send spikes to the con-
nected IF neurons. When the IF neurons receive a spike
they generate a new packet and store the event. At the
end of the simulation these events are counted and their
occurrence compared with the number of packets conflicts
collected in the SRCPop cores. In Figure 5.E1 are reported
the configuration and the results of experiment E1. It can be
observed that cores connected to the same first layer of the
router internal branch (yellow and green rectangles) miss an
equal amount of packet between each other; 109 packets for
cores 0 and 16, while 2 packets for all the odd cores. The
first hypothesis assumes that the observed relationship is
caused by bandwidth limitations on the internal router tree

5

Fig. 5: Core to Router traffic experiments. The four experi-
ments are represented in the router internal branch of chip
executing the SRCPop. Red circles identify cores running
simulation while in the connection nodes (in yellow or
green) are reported the number of conflicts detected. In
the experiment E 1 256 SRC neurons without retransmission
buffer are placed in each of the 16 cores. Experiment E 2 is
executed using only 50 neurons per core. Experiment E 3
run 256 neurons per core on 12 cores. Experiment E 4 run
256 neurons per core with retransmission buffer on 16 cores.

(Figure 3.b) even if the bandwidth reported on the data-
sheet (1250 packets/ms per core) is sufficient to support a
communication rate of 256 packets/ms per core [22], that
produce an overall traffic on the router of 4096 packets/ms.

Two configurations are then executed to evaluate the
reasonableness of this bandwidth limitation hypothesis. The
configuration E2 (Figure 5.E2) reduces the number of neu-
rons per core from 256 to 50 in order to decrease the C2R
traffic on the router to 800 packets/ms. The configuration E3
(Figure 5.E3) avoids concurrent packets in the first layer of
router (where the majority of packet conflicts are detected),
applying a delay of 1 ms to the cores 0-16 and 1-17. This
configuration generates a C2R traffic on the router equal to
3584 packets/ms. Results in Figure 5.E2 shown that even
in the configuration E2 some packets are dropped in the
first router layer shared by cores 0 and 16. Instead, in
configuration E3 all the 3584 packets were simultaneously
transmitted without losses. These results highlight that con-
flicts are generated in the first internal router layer and are
related to the SRCPops placement on the cores, disproving
the hypothesis of router bandwidth limitation.

Finally, as last analysis, the first configuration is re-
executed using the SRC neuron model with retransmission
buffer. SRC models that make use of this buffer are able
to store the conflicting packets and re-inject them as soon as
possible. This re-injection system allow the correct transmis-
sion of all the 4096 generated packets. However, during this
experiment we detected an higher number of conflicts with
respect to the unbuffered solution (Figure 5.E4). An average
of 151 conflicts per core for the buffered SRCPops versus
13 conflicts per core for the unbuffered version. All neuron

models implements this technique and for this motivation
is difficult to lose internally generated packets. However, in
case of congested configurations or for highly synchronous
applications this solution can be time spending. Indeed,
supplementary computational load is required from cores
to sustain the re-transmission operations. Moreover, the
adoption of these neuron models can cause premature ter-
mination of simulations due to the accumulation of delays
by cores that are busy to retransmit packets.

3.2 Router to Router traffic analysis
The Router to Router (R2R) traffic analysis is designed to
investigate traffic configurations that cause dropped packets
in the inter-chip network. The identification of such config-
urations is fundamental to define reliable rules about traffic
fluxes that can be used by the SNN-PP software to avoid
the creation of hot spots. We designed three configuration
schemes (Figure 6) to simulate traffic peaks on routers and
links. In these configurations, the SRCPops are placed on
different chips, connected to IFpops and configured to fire
all together at the same time.

In the first configuration called F (Figure 6.F) the SR-
CPops are placed to transmit packets through 4 ports of
the Cross Chip. Two out of four ports are used both as
input/output: The port East(0) gets input traffic from SR-
CPops A and output traffic from the SRCPops B. Similarly the
West(3) port sustains the traffic of the same populations with
reversed input/output order. The other two ports North-
Est(1) and North(2) are used in one direction only to pass
packets from SRCPops D and C to the IFPops connected
on the port South-West(4) and South(5). During this anal-
ysis a considerable amount of packets is lost in all the

Fig. 6: The three configurations investigated for the R2R
traffic analysis. Configurations have three main character-
istics: i) the orange and blue hexagon represent the SRCPops
and IFpops; ii) SRCPops and the connected IFpops are placed
symmetrically in relation to the chip under investigation
and marked with the same letter; iii) the hot-spot chip is
represented as the white central hexagon. In the traffic
section is reported the percentage of packets reaching the
destinations.

6

routers that try to send packets through the chip under
investigation. Indeed even if 16 384 spikes are generated
by the SRCPops (4 SRCPops * 16 cores * 256 neurons-per-core)
the router of Cross Chip processed only 10 336 packets.
The 6 048 lost packets can be due to the simultaneous use
of East-West communication links in both directions that
generate deadlock conditions in the routers involved in the
transmission path.

The configuration EF (Figure 6.EF) is designed to inves-
tigate the hypothesis that simultaneous bidirectional trans-
mission from the same port can be the cause of critical traffic
situations. In this configuration all the four involved ports
of the Cross Chip are used as input/output at the same time.
This configuration accounts for an higher number of lost
packets with respect the F case. Indeed, only 6 508 spikes
are process by Cross chip router, instead of the expected
16 384 spikes or the 10 336 packet processed by F configu-
ration. Whereas, the majority of packets are dumped in the
neighbour chips. In both configurations all the routers of
chips running SRCPops get all the packets from their cores.
However, because the Cross chip is in a busy state, that in-
crease when the ports are used in both direction at the same
time, a deadlock chain effect is backward propagated from
the busy router to the chips involved in the communication
path with relative loss of packets.

A third configuration called F-mono has been designed
(Figure 6.F-mono) in order to validate the hypothesis that a
deadlock is more likely to occur if the links are used at the
same time in both directions, and to confirm that the packets
loss is not due to bandwidth problems. In this configuration
the traffic flows through the Cross chip in one direction only.
Three SRCPops send packets through the three inputs ports
of the Cross chip (Est(0), North-Est(1) and North(2)). These
packets are then redirected respectively to West(3), South-
West(4) and South(5) where nine IFpops are connected. With
this configuration 36 864 spike packets are sent through the
Cross chip without any loss of packets.

The use of retransmission buffer for the simulation of
configurations F and EF determined a huge amount of
conflicts, on average 6 conflicts per packet are generated.
Furthermore, the number of links simultaneously accessed
as input/output seems to impact on the number of conflicts.
Indeed, 108 k conflicts were detected for the four bidirec-
tional links configuration versus 94.5 k conflicts detected in
the F configuration. These results demonstrate that the si-
multaneous communication involving opposite router links
give disadvantages even for the balancing of load per core.

3.3 Bio-Application Example

In order to evaluate SpiNNaker performances on real SNNs
we executed the simulation of the Cortical Microcircuit (CM)
proposed by Potjans et al. [23]. This network represents
the four layers constituting 1mm2 of human brain cortex
(L23, L4, L5, and L6). Each layer consist of inhibitory and
excitatory neuron populations modelled through the setting
of specific parameters in the IF neuron model. Excitatory
populations have positive synaptic weight while inhibitory
neuron synapses are negative. The network represented in
Figure 7 is described in PyNN [24]. It is composed by 77 k
neurons, grouped in eight populations, and about 3 ∗ 108

Fig. 7: Cortical Microcircuit: Graph representation of the
SNN populations used to simulate the CM behaviour. The 4
layers are represented with different colors, the square rep-
resents Excitatory populations while Inhibitory are drawn
as circle. The hexagon in grey stand for spike sources.

synapses. Special source populations (SRCPops) are used to
generate spikes with a Poisson probabilistic process. These
SRCPops are connected to each IF population of the CM to
simulate the background activity of adjacent areas.

During the analysis the network has been reduced in
terms of neurons and synapses number to satisfy constraints
of time and resources availability. Adopted scaling factors
are in range from 1% to 20% both for neurons and synapses.
Maximum allowed neurons-per-core is an important param-
eter for a reliable simulation. If few neurons-per-core are set,
to many cores are used and a general traffic increasing is
detected in the R2R link levels. While an high number of
neurons-per-core on one hand can impact on the R2R traffic
reduction, since less core are used, but on the other hand
cores may not be able to update the neuron dynamic state
in time and the C2R traffic is increased.

We run the Cortical Microcircuit (CM) adopting the de-
fault SNN-PP implemented in PACMAN and a customised
SNN-PP method called MANUAL. The MANUAL SNN-
PP forces the population placement in the board. Each
chip execute the simulation of a single population, and
the SRCPop are placed in the border chips close to their
IFPop targets. In this way it was possible to obtain a sort of
mono-directionality in the traffic fluxes between SRCPops
and their IFPop targets. The CM simulation is executed by
imposing following parameters: 5% of neurons (N05), 20%
of synapses (K20), and 100 neurons-per-core. This configura-
tion was chosen because N05 produce 3 854 IF neurons, the
same amount of SRC neurons and special populations used
to extend the synaptic delay called DelayExtension. These
11 562 neurons can be simulated over 144 cores in 10 chips
with reasonable configuration and simulation time.

In Figure 8 are reported the populations arrangement in
the SpiNNaker board when PACMAN and the MANUAL
SNN-PP procedures are adopted. The chips are coloured
with the same colors used to represent the populations
in Figure 7. Moreover, the overall data traffic collected
by the router counters, during one second of simulation,

7

Fig. 8: Placement of CM network: each hexagon represent a
SpiNNaker chip. The color represent the CM population ex-
ecuted in each chip, in gray chips that contains the SRCPops.

is reported below the configurations, together with the
missed spikes. In the first CM simulation, when PACMAN is
adopted, a total of 723 packets have been dropped. Whereas,
the R2R packets characterizing the on board traffic are
about 24M. Even if the number of dropped packets can
be considered very low with respect to the overall number
of circulating packets, it is a good practice to ensure the
correct transmission in order to prevent unreliable simula-
tion results. In the second CM simulation, the populations
are mapped on the board applying the MANUAL SNN-
PP algorithm. On the right side of figure 8 it is shown
this positioning where a full chip is used to run a single
population. In order to optimize the packets flow among
the chips, SRCPops are executed in the perimeter chips
while other populations are placed in the middle. The
use of MANUAL mapping procedure, that prevented sub-
optimal configurations, is useful to reduce the number of
R2R packets and to eliminate the dropping events. Indeed
this customized procedure produces a reduction of 33% of
the number of R2R packets, from 24 M to 16 M.

4 SNN PARTITIONING AND PLACEMENT

We studied the SNN Partitioning and Placement (SNN-PP)
algorithms currently used in PACMAN (see Section 2.2.2)
and we noted that none of the highlighted problems were
considered during these procedures. Two considerations
should be done on the SNN-PP procedure implemented by
PACMAN. The Basic Partitioning algorithm is very naive, it
splits the populations considering as the only constraint the
neurons-per-core that a single core can simulate. Popula-
tions with a number of neurons exceeding this threshold are
sequentially split to create part-populations of the correct
size. In the worst cases the last part-population can be
created even for a single neuron, wasting the resources of
a core while keeping all the others saturated.

The second consideration concerns the PACMAN SNN
placer. The Radial Placer algorithm maps the part-population
without considering the effective network connectivity with
the risk to place far away two highly connected groups
of neurons. The high flow of packets inside the network,
caused by naive part-populations placement, can be the
cause of the hot-spot creation with consequent packet traf-
fic unreliability. Using these two consideration as starting
point, we present in the following our SNN-PP method that

improve the performance and the reliability of these two
important steps.

Placement techniques are extensively studied in the VLSI
field where the component graph is positioned in the chip
area using the design constraints. These techniques are typi-
cally based on a Simulated Annealing, Analytical Paradigms,
or Partition Based approaches. Aim of Partition Based ap-
proaches is to minimize the mutual connections and keep
close the highly connected components. This class of algo-
rithms is often preceded by several clustering phases aimed
at reducing the dimensionality of the networks and for this
motivation is commonly referred as Multilevel Partition Based
Approach (MPBA) [25].

The SpiNNaker cores can simulate at most a number-of-
neurons, belonging to the same populations, proportional to
the complexity of used neuron model (upper limits is 256).
For this motivation, when a SNN graph is placed on the
SpiNNaker cores, it is necessary a partition procedure able
to split the populations with a number-of-neurons greater
than the core upper limit.

In literature a Simulated Annealing approach has been
theorised by Brown et al. [26] to find solution to the SNN
partitioning and placement (SNN-PP) problem. However,
at the state-of-the-art none implementation can be found.
We studied the three main placement techniques adopted
in the VLSI field and identify the MPBA class as the most
compliant to solve the SNN-PP problem. Indeed, the SNN
partitioning procedure can be natively supported by parti-
tion based techniques. The MPBA can be used such a start-
ing point for the development of an ad-hoc methodology
to solve the SNN-PP problem on the SpiNNaker board. The
graph representing SNN can be partitioned and placed such
as the graph of VLSI components. The major difference is
represented by the SNN huge fan-in to be handled (up to
10k synapses per neuron).

In order to design an optimised SNN-PP method capable
to assign the neuron populations to the SpiNNaker cores,
we exploited the evidences identified during the profiling
analysis. We identified two major aspects to be considered
during the SNN-PP: i) The physical position, in the chip
architecture, of cores running the populations has an ef-
fect on the efficiency of the packet transmission. The load
balancing of the internal multiplexer tree can be a good
practice to reduce the overload due to packet conflicts. ii)
Bidirectional traffic involving opposite ports of a chip can
lead to deadlock conditions that cause dumping events with
relative loss of packets.

In the real cases the links can not be used in a mono-
directional mode because of SNNs complexity. Therefore, it
has been studied an SNN-PP algorithm capable to minimize
the packet flows in the inter-chip network (R2R) without try-
ing to force mono-directional traffic. This algorithm, called
SNN Spectral Analysis based Partitioning and Placement
(SNN-SA-PP), is applied on the graph representations of the
analysed SNN.

SNNs are represented through three graph layers, each
of them useful for the execution of specific operations: i)
Population Graph is the representation where each vertex is
a PyNN Population and each edge is a Projection with a
connector for the synapses generation; ii) Neuron Graph is a
SNN representation where each vertex is a neuron and each

8

edge is a synapse; iii) Part-population Graph, generated from
the Neuron Graph clustering, is the representation where
each edge is a set of synapses and each vertex is a part-
population with a number of neurons that can fit in a core.

The main processing flow, shown in Figure 9, take as
input the Population Graph remove the SRCPops that will be
partitioned and placed at the end of procedure, and expand
this graph in order to get the Neuron Graph.

During the Partitioning phase, this detailed graph is
analysed using spectral clustering techniques. The gener-
ated clusters, of predefined neuron size, are then used
to create the Part-population Graph. The spectral analysis
applied to the Neuron Graph allows to label each neuron
with a n-dimensional coordinates, in this way neurons can
be managed like points where the distance between two of
them represent their connectivity. Applying the clustering
algorithm is then possible to isolate sets of neuron highly
connected and to map them together. Thus, the partitioning
problem can be solved iteratively through the Sub-Clustering
phases, where neurons from the same population and clus-
ter are grouped in sub-clusters matching the core constraints
(neurons-per-core).

Vertexes of Part-population Graph are generated using the
centroids of sub-clusters. Thus, each vertex of this graph
represent a sub-cluster. Moreover, in order to prevent the
generation of small part-populations, that lead to unopti-
mised use of cores, a Fusion phase is executed where sub-
clusters are analysed and in some cases manipulated.

For the Placement phase the part-populations graph is
elaborated using the Sammon Mapping multidimensional
scaling algorithm. This scaling procedure is applied in order
to adapt the graph multidimensionality in a bi-dimensional
space. This representation can be used for a direct placement
process where a rectangular grid is build upper the points
and each area is associated to a chip. During the Sammon
Mapping part-populations that fall in an area are mapped in
the free cores of the chip. If the number of part-populations
in a single chip/square exceed the number of available cores
a Legalization procedure is applied where a simple greedy
algorithm move the extra point in the free nearest areas. In
the example reported in Figure 9 the constraint is one part-
population for each chip, whereas in real cases up to 16 part-
populations can be placed. Placement procedure ends with
the assignation of the SRCPops, extracted in the first phase
of SNN-SA-PP, to each chip running the associated part-
populations. Space can be reserved in each chip for this type
of population accordingly to their particular connectivity. At
last step, the configuration files are generated and sent to the
SpiNNaker board.

We implemented the SNN-SA-PP method in a Python
module called GrapH Optimizer SpiNNaker Tool (GHOST).
This SW layer expose a PyNN front-end and provides
a pre-partitioned and pre-placed population graph to the
sPyNNaker library that generate the configuration files to
be sent to SpiNNaker for the simulation.

4.1 Partitioning
In order to design an efficient Partitioning algorithm we
adopted a Multilevel Partition Based Approache (MPBA). Two
clustering algorithms were identified such as easily appli-
cable on the graph partition problem, the Highly Connected

Fig. 9: Flowchart of SNN Spectral Analysis based Parti-
tioning and Placement algorithm. From SNN Population
Graph to the chip placement of neurons.

Sub-graphs (HCS) and the Spectral Clustering. The HCS al-
gorithm implement recursively bi-partition steps over the
input graph until the sub-graphs reach a predefined de-
gree of connectivity [27]. The definition of the degree of
connectivity for the termination condition and the choice
of the method to be used for execute the bi-partition steps
are the major problems of this method. These problems are
avoided if the Spectral Clustering techniques are adopted.
The Spectral Clustering method make use of the eigenvec-
tors of the similarity matrix associated to the input graph to
obtained an optimised spatial disposition of the data [28].
Applying this method on the Neuron Graph we obtained an
optimised spatial disposition of the neurons useful for both
Partitioning and Placement phases.

9

The Population Graph is transformed in a more detailed
Neuron Graph representation extracting the neuron grouped
in the populations and generating all the synaptic connec-
tions. The Neuron Graph is a directed graph G(N,S) where
N and S are respectively the neurons and the synapses sets.
Each synapse s ∈ S, is defined with four parameters: The
source neuron i, the target neuron j, the synaptic weight
wij and the synaptic delay dij .

An undirected graphs can be represented through the
Adjacency matrix A(i, j) = 1 if wij > 0 and elaborated in
order to obtain the Affinity matrix L=D−A where D is the
Degree matrix (a diagonal matrix containing the degree of
each vertex). In case of direct graph, the elaboration required
a more complex procedure. Since the Normalized Laplacian
matrix of G defined in Equation 1 has to be computed.
In Equation 1, I represents the Identity matrix, P is the
Transition matrix of the graph G induced by a random walk
methods and Φ is the matrix with the Perron vector of P in
the diagonal and zeros elsewhere [29].

L = I − (Φ
1
2PΦ−

1
2 + Φ−

1
2PT Φ

1
2)

2
(1)

Using L like Affinity matrix we compute eigenvalues and
eigenvectors. Each neuron can be represented in u dimen-
sions of the spectral space using the first u eigenvectors
sorted from the largest to the smallest eigenvalues. The
number of dimensions u, is fixed such as u = k where
the k parameter represents the number of clusters to be
imposed to the first step of the clustering algorithm. The
k parameter can be calculated using the Equation 2, where
N is the number of neurons to be simulated, c represent the
available cores on each chip and n is the maximum number
of neurons that can be executed on each core.

k = d N

c ∗ n
e (2)

The k-Means clustering procedure is at this point used to
transform the Neuron graph into the Part-population Graph.
The objective function in Equation 3 aims to minimize the
distance between the x points of the cluster S with respect
to the cluster center φ.

min

k∑
i=1

∑
x∈Si

‖ x− φi ‖2 (3)

Clustering is executed in three steps: i) k cluster centroids
are chosen randomly; ii) for each iteration, points are as-
signed to the closer centroid and the new cluster centroid is
updated; iii) computation ends when the difference between
the objective function value in two successive iterations
is lower than a fixed threshold. Concluded the clustering
procedure, each cluster is analysed and divided in part-
populations. Neurons belonging to the same population are
grouped to create sub-clusters of size compatible with core
constraints. The clusters centroids are then used as vertex of
the SNN Part-population Graph representation. Three meth-
ods can be used to make this intra-cluster division: Random
neuron division, position based neuron division, or using a
balanced sub-clustering method. For the Partitioning algo-
rithm here reported has been used the k-Means algorithm
together with an heuristic voted to balance the number of
neurons for each sub-cluster.

During the cluster division phase the Fusion procedure
is executed in order to prevent the generation of small part-
populations that lead to unoptimised use of resources and
to increase the packet traffic. If neurons belonging to the
same population are split in more than one clusters and
one of them has less than 20% of neurons that a core can
simulate, these neurons are moved into the nearest cluster.
In Figure 10 a simple example is shown, where a neuron
belonging to the green population is clustered with neurons
of the blue population. The fusion procedure recognise the
green neuron and reassign it to one of the green sub-clusters,
avoiding the creation of a supplementary vertex into the
Part-population Graph.

Fig. 10: Fusion step. This procedure allows to merge un-
completed clusters in order to optimize the resources use.

4.2 Placement
The part-populations placement on the SpiNNaker cores
is made by considering the coordinates in the eigenvec-
tors space obtained during the Partitioning. Since part-
populations have coordinates in k dimensions, a dimension
reduction process is applied to place them on the planar
hexagonal mesh formed by SpiNNaker chips. This process
can be done by using the first two eigenvalues only or by
applying an algorithm to calculate a more accurate multi-
dimensional scaling. The application of a multidimensional
scaling algorithm on the points coordinates is able to re-
duce the dimensionality of points taking into account the
distances in the k dimensional space. In the SNN-SA-PP
this task is done using a Sammon Mapping algorithm [30].
This algorithm uses a non-linear approach to minimize the
relative distances d of the high dimensional points with
respect to the relative distances of the points with low
dimensionality (Equation 4).

E =
1∑

i<j d
∗
ij

∑
i<j

(d∗ij − dij)2

d∗ij
(4)

Using the Equation 4 we map the points in the Sammon space,
a bi-dimensional space populated by the part-populations
to be placed on the SpiNNaker architecture. In order to
exploits the spatial information of part-populations during
their placement over the chips, we divided the Sammon
space applying a rectangular grid with shifted columns
(placement step in Figure 9). This grid has z rows and z
columns with z = d

√
p/ce where p is the number of part-

populations and c is the max number of part-populations
for each chip. Even columns are vertically moved for mimic
an hexagonal shape, in this way each rectangle is in touch
with six neighbours and represents a SpiNNaker chip.

All points that fall in a rectangle should be mapped
on a core of the relative chip. Since more points than
available cores can fall in the same square a Legalization

10

step is executed to move the extra part-populations to the
free neighbours chips. This procedure is implemented as a
greedy algorithm that move extra points to the free nearest
areas (as shown in Figure 9 at Placement step).

At last step, the SRCPops isolated in the early phase
are directly placed on the reserved cores. The spike source
neuron models (SRC) are used in SNNs to start or maintain
special regimes of activity. For example, in the Cortical
Microcircuit analysed in Section 3.3, the SRC neurons are
used to simulate the background activity of adjacent cortical
areas. SRC neuron is usually connected to a single target
neuron and configured to simulate an high level of activity
generating an intense traffic of packets. For this motivations
placing SRCPops on the same chips that host the target
neurons is a good practice to reduce the R2R traffic.

5 RESULTS

The validation process adopted to demonstrate the improve-
ment obtained using the SNN-SA-PP algorithm is here dis-
cussed, together with the achieved results. Three Partition-
ing and Placement variants are adopted for this purpose.
i) The No-Fusion make use of the SNN-SA-PP algorithm de-
scribed in Section 4 with the exception of the fusion step that
is not implemented. ii) The Fusion uses the full procedure
SNN-SA-PP shown in Figure 9 to transform the Population
graph into an optimized SpiNNaker configuration. iii) The
Random is used as a reference to validate the improvement
obtained by the other two SNN-SA-PP variants. It makes
a random division of Neuron graph considering only the
number-of-neurons per part-population that must be kept
homogeneous. Whereas, it apply a radial placement of the
IF part-populations keeping in the same chip the associated
SRCPops and DelayExtension.

Fig. 11: Distribution of R2R/C2R ratio computed on a two
configurations N05-K05 and N05-K20. 20 simulations have
been performed for the three SNN-P&P techniques.

The Cortical Microcircuit (CM) has been used to demon-
strate the effectiveness of SNN-SA-PP method implemented
in GHOST and to compare the achieved results with those
obtained by the use of the SNN-PP implemented in PAC-
MAN. In order to be compliant with the experiment pro-
posed in Section 3.3 the scaling factor N05-K20 has been
adopted. Moreover, in order to observe the system response
when synapses number decrease from 3 M (20%) to 750 k
(5%) we used a second scaling factor equal to N05-K05.

Six rounds of simulations were executed to extract the
ratio R2R/C2R and the overall R2R packets circulating in
the network. In each round, 20 simulation were performed
using one of the three SNN-PP variant (Fusion, No-Fusion
or Random) to set-up the SpiNNaker board with one of
the two scaled CM. R2R/C2R ratio represents the traffic
circulating in the inter-chip network versus the traffic gen-
erated into the chips. This ratio is used to compare the
performances of the three investigated SNN-PP variants.
Lower values of this rate correspond to the capacity of
network to keep local the communications, reducing the
number of packet circulating on the inter-chip links.

As can be seen in Table 1, the N05-K05 SNN placed
with the SNN-PP Random variant generate an average of
292 k R2R packets. Instead, the network scaled at N05-K20
generate an average of 323 k R2R packets. In Figure 11 it is
shown as CM configurations generated using the SNN-PP
Random variant produce small fluctuations on the R2R/C2R
ratio, with all the values concentrated near 9.10E-2 for the
N05-K05 case and 2.55E-2 for the N05-K20.

The executions of N05-K05 configured with SNN-PP No-
Fusion variant produced a larger range of R2R/C2R ratio
(Figure 11.a). Indeed, if compared with the Random variant,
only part of the experiments come out with more balanced
configurations. This was can be due to the generation of
small part-populations (less than 10 neurons) that lead to the
use of supplementary cores, thus increasing the R2R traffic.

To prevent this unwanted behaviour, in the SNN-PP has
been added the Fusion step that is able to solve this problem.
Experiments performed using the SNN-PP Fusion variant
demonstrate that the R2R/C2R rate is always lower than
the rate produced by the Random variant. Considering the
N05-K20 we note that even the R2R/C2R rate of SNN-PP
No-Fusion variant is always better than the rate of Random.

Partitioning & Placement Packets R2R [k]

CM config. Version Worst Average Best

N05-K05
Random 302 292 283

No-Fusion 378(+25%) 318(+9%) 231(-18%)

Fusion 265(-12%) 237(-19%) 228(-19%)

N05-K20
Random 331 323 309

No-Fusion 411(+24%) 264(-18%) 245(-21%)

Fusion 289(-13%) 252(-22%) 238(-23%)

TABLE 1: Cortical microcircuit R2R traffic detected for
two configurations N05-K05 and N05-K20 when three Par-
titioning and Placement variants of proposed technique are
applied: Random, No-Fusion and Fusion. R2R packets per-
centage is computed comparing Spectral and Fusion variant
with the Random configuration.

11

Fig. 12: The placing of CM network: each hexagon repre-
sent a SpiNNaker chip. The color represent the CM popula-
tion inside the chip, in gray the chip that runs the SRCPops.

This is principally due to the higher number of connections
that produce more distant points for the clustering algo-
rithm that can better balance the clusters and make rare the
generation of small clusters.

The average of R2R packets produced by N05-K20
placed on SpiNNaker using the SNN-PP No-Fusion is re-
duced of 60 k packets with respect to those placed with the
Random variant (Table 1). This is not true for N05-K05 where
the influence of small part-population affects the average.
Indeed, an increase of 26 k R2R packets is detected when the
No-fusion variant is used. CM configurations generated with
Fusion variant give always better balanced traffic and less
R2R packets than the Random and No-fusion variants. The
Fusion worst case with 265 k and 289 k packets is better than
Random best case of 20 k R2R packets (-6% of R2R packet). In
average the Fusion variant decreases the R2R packets of 55 k
in N05-K05 and 70 k in CM N05-K20 (20% of R2R packet
less than Random variant).

First and third quartiles of Fusion box plots in Figure
11 confirm that the spectral analysis is a suitable technique
that applied to the SNN-PP problem within SpiNNaker can
produce good results in reducing the inter-chip traffic. Effect
is enforced if associated with a fusion system capable to
avoid the generation of little Part-populations.

At last analysis step, we propose the comparison be-
tween CM Partitioned and Placed using PACMAN and
the configuration produced by our SNN-SA-PP algorithm
implemented in GHOST. As it is possible to note in Figure
12 the 24 M of R2R packets generated by CM placed with
PACMAN are reduced to 250 k if CM is configured with
GHOST allowing a 96X reduction of R2R traffic.

6 CONCLUSIONS

In this paper we described a methodology to efficiently
map spiking neuron populations in neuromorphic plat-
forms for reliable and scalable SNN simulations. We applied
our methodology to SpiNNaker, a densely interconnected
neuromorphic multi-chip many-core platform for real-time
SNN simulations. We first described a top-down profiling
analysis performed to characterise reliability issues in the
SpiNNaker platform. This profiling methodology was de-
signed in order to highlight the impact of neuron population
mapping on the optimal platforms resource exploitation.
We discussed the profiling methodology based on the use

of custom SNN configurations that revealed both Core-
to-Router and Router-to-Router traffic issues. The Core-to-
Router traffic analysis was useful to detect packet conflicts
in the internal router tree related to traffic congestion caused
by the hight contemporaneity and intensity of generated
spikes. While exploiting the Router-to-Router analysis, we
found out that simultaneous occupation of links in both
directions is a potential source of unreliability.

A simulation of a Cortical Microcircuit SNN was evalu-
ated to characterise unreliable SpiNNaker behaviours such
as packet losses in communication links and simulation
failure when the PACMAN SNN-PP algorithm is used. In
the second part of the paper we focused on the cluster-based
SNN-PP algorithm we developed where SNNs represented
as Population Graphs are exploded in Neuron graphs and clus-
tered using Spectral Clustering techniques. Isolated clusters
were then arranged in a Part-population Graph and placed on
the available cores and chips using the information collected
during the clustering step. This method was implemented in
a Python module compliant with the PACMAN tool chain,
called GHOST.

A Cortical Microcircuit was simulated again with two
scale factors in order to demonstrate the effectiveness of the
developed SNN-PP cluster approach with respect to random
neuron placement. Moreover, from these simulations was
evident that the Fusion procedure, which is capable to
reduce the number of used cores, results in lower R2R traffic.

Finally comparisons were made between configurations
produced by PACMAN SNN-PP algorithm and the SNN-
SA-PP implemented in GHOST. These comparisons showed
a R2R traffic reduction of 96X when GHOST is adopted. In
future works we plan to upgrade the SNN-PP algorithm
phases by expanding the clustering and legalization steps.
In addition we plan to improve the portability of the algo-
rithm in order to give support to alternative SNN descrip-
tion languages used in different neuromorphic platforms.

ACKNOWLEDGMENTS

The research leading to these results has received funding
from the European Union Seventh Framework Programme
([FP7/2007-2013]) under grant agreement no 604102 (HBP).
We also thank the APT Group of Manchester University
for providing us the SpiNNaker board, and in particular
Prof. S. Furber and Mr. A. Rowley for their discussions and
constructive suggestions.

REFERENCES

[1] W. Maass, “Networks of spiking neurons: the third generation of
neural network models,” Neural networks, vol. 10, no. 9, pp. 1659–
1671, 1997.

[2] D. F. Goodman and R. Brette, “Brian simulator,” Scholarpedia,
vol. 8, no. 1, p. 10883, 2013.

[3] C. Eliasmith, T. C. Stewart, X. Choo, T. Bekolay, T. DeWolf, Y. Tang,
and D. Rasmussen, “A large-scale model of the functioning brain,”
science, vol. 338, no. 6111, pp. 1202–1205, 2012.

[4] H. Markram, “The blue brain project,” Nature Reviews Neuroscience,
vol. 7, no. 2, pp. 153–160, 2006.

[5] K. Minkovich, C. M. Thibeault, M. J. O’Brien, A. Nogin, Y. Cho,
and N. Srinivasa, “Hrlsim: a high performance spiking neural net-
work simulator for gpgpu clusters,” Neural Networks and Learning
Systems, IEEE Transactions on, vol. 25, no. 2, pp. 316–331, 2014.

[6] S. B. Furber, F. Galluppi, S. Temple, and L. Plana, “The spinnaker
project,” Proceedings of the IEEE, vol. 102, no. 5, pp. 652–665, 2014.

12

[7] S. B. Furber, D. R. Lester, L. Plana, J. D. Garside, E. Painkras,
S. Temple, and A. D. Brown, “Overview of the spinnaker system
architecture,” Computers, IEEE Transactions on, vol. 62, no. 12, pp.
2454–2467, 2013.

[8] D. Monroe, “Neuromorphic computing gets ready for the (really)
big time,” Communications of the ACM, vol. 57, no. 6, pp. 13–15,
2014.

[9] L. F. Abbott, “Lapicque’s introduction of the integrate-and-fire
model neuron (1907),” Brain research bulletin, vol. 50, no. 5, pp.
303–304, 1999.

[10] E. M. Izhikevich, “Simple model of spiking neurons,” IEEE Trans-
actions on neural networks, vol. 14, no. 6, pp. 1569–1572, 2003.

[11] T. Bekolay, J. Bergstra, E. Hunsberger, T. DeWolf, T. C. Stewart,
D. Rasmussen, X. Choo, A. R. Voelker, and C. Eliasmith, “Nengo:
a python tool for building large-scale functional brain models,”
Frontiers in neuroinformatics, vol. 7, 2013.

[12] A. P. Davison, D. Brüderle, J. Eppler, J. Kremkow, E. Muller,
D. Pecevski, L. Perrinet, and P. Yger, “Pynn: a common interface
for neuronal network simulators,” Frontiers in neuroinformatics,
vol. 2, 2008.

[13] K. D. Carlson, M. Beyeler, N. Dutt, and J. L. Krichmar, “Gpgpu
accelerated simulation and parameter tuning for neuromorphic
applications,” in Design Automation Conference (ASP-DAC), 2014
19th Asia and South Pacific. IEEE, 2014, pp. 570–577.

[14] S. Furber, S. Temple, and A. Brown, “On-chip and inter-chip
networks for modeling large-scale neural systems,” in Circuits
and Systems, 2006. ISCAS 2006. Proceedings. 2006 IEEE International
Symposium on. IEEE, 2006, pp. 4–pp.

[15] K. Boahen, “Point-to-point connectivity between neuromorphic
chips using address events,” Circuits and Systems II: Analog and
Digital Signal Processing, IEEE Transactions on, vol. 47, no. 5, pp.
416–434, 2000.

[16] T. Sharp, C. Patterson, and S. Furber, “Distributed configuration of
massively-parallel simulation on spinnaker neuromorphic hard-
ware,” in Neural Networks (IJCNN), The 2011 International Joint
Conference on. IEEE, 2011, pp. 1099–1105.

[17] F. Galluppi, S. Davies, A. Rast, T. Sharp, L. A. Plana, and S. Furber,
“A hierachical configuration system for a massively parallel neural
hardware platform,” in Proceedings of the 9th conference on Comput-
ing Frontiers. ACM, 2012, pp. 183–192.

[18] A. D. Rast, F. Galluppi, X. Jin, and S. Furber, “The leaky integrate-
and-fire neuron: A platform for synaptic model exploration on the
spinnaker chip,” in Neural Networks (IJCNN), The 2010 International
Joint Conference on. IEEE, 2010, pp. 1–8.

[19] T. Sharp, R. Petersen, and S. Furber, “Real-time million-synapse
simulation of rat barrel cortex,” Frontiers in neuroscience, vol. 8,
2014.

[20] J. Navaridas, S. Furber, J. Garside, X. Jin, M. Khan, D. Lester,
M. Luján, J. Miguel-Alonso, E. Painkras, C. Patterson, L. A. Plana,
A. Rast, D. Richards, Y. Shib, S. Temple, J. Wue, and S. Yangf,
“Spinnaker: fault tolerance in a power-and area-constrained large-
scale neuromimetic architecture,” Parallel Computing, vol. 39,
no. 11, pp. 693–708, 2013.

[21] G. Urgese, F. Barchi, and E. Macii, “Top-down profiling of appli-
cation specific many-core neuromorphic platforms,” in Embedded
Multicore/Manycore SoCs (MCSoC), 2015 IEEE 9th International Sym-
posium on. IEEE, 2015.

[22] S. Furber, “Spinnaker - a chip multiprocessor for
neural network simulation. datasheet. v2.02,” 2011.
[Online]. Available: https://solem.cs.man.ac.uk/documentation/
datasheet/SpiNN2DataShtV202.pdf

[23] T. C. Potjans and M. Diesmann, “The cell-type specific cortical
microcircuit: relating structure and activity in a full-scale spiking
network model,” Cerebral cortex, vol. 24, no. 3, pp. 785–806, 2014.

[24] B. S. Bhattacharya, C. Patterson, F. Galluppi, S. J. Durrant, and
S. Furber, “Engineering a thalamo-cortico-thalamic circuit on spin-
naker: a preliminary study toward modeling sleep and wakeful-
ness,” Frontiers in neural circuits, vol. 8, 2014.

[25] C. Chu, “Placement,” Electronic Design Automation: Synthesis, Veri-
fication, and Testing, pp. 635–684, 2007.

[26] A. Brown, D. Lester, L. Plana, S. Furber, and P. Wilson, “Spinnaker:
The design automation problem,” in Advances in Neuro-Information
Processing. Springer, 2009, pp. 1049–1056.

[27] E. Hartuv and R. Shamir, “A clustering algorithm based on graph
connectivity,” Information processing letters, vol. 76, no. 4, pp. 175–
181, 2000.

[28] U. Von Luxburg, “A tutorial on spectral clustering,” Statistics and
computing, vol. 17, no. 4, pp. 395–416, 2007.

[29] F. Chung, “Laplacians and the cheeger inequality for directed
graphs,” Annals of Combinatorics, vol. 9, no. 1, pp. 1–19, 2005.

[30] J. W. Sammon, “A nonlinear mapping for data structure analysis,”
IEEE Transactions on computers, no. 5, pp. 401–409, 1969.

Gianvito Urgese is Ph.D. student at the Dept.
of Control and Computer Engineering of Politec-
nico di Torino. He received his M.Sc. degree
(summa cum laude) in Electrical Engineering at
Politecnico di Torino. He designed, during his
M.Sc. thesis, an optimized HW accelerator for
sequence alignment, implemented in VHDL on
a systolic array architecture. He was, in 2011,
research trainee at Teseo S.p.A. involved in the
design of a system for structural health monitor-
ing in composite materials. In 2008 he collabo-

rate with the INRIM institute for a project concerning the redefinition
of Boltzmann constant. His research interests focus on: (i) Research
and design of optimized task-specific bioinformatics algorithms; (ii) De-
velopment of tools for the study of non coding biological sequences
(miRNA, siRNA and lncRNA); (iii) Design of heterogeneous SW/HW
architectures to accelerate bioinformatics algorithms, including parallel
implementation on FPGA and GPU; (iv) Design of partitioning and
placement algorithms to map Spiking Neural Networks in the SpiNNaker
neuromorphic platform.

Francesco Barchi is research assistant at the
Dept. of Control and Computer Engineering of
Politecnico di Torino. He received his M.Sc. de-
gree in Computer Engineering at Politecnico di
Torino. He has experience in multidisciplinary
task with a collaboration with GAMUT s.r.l for
the development of a MASW analysis software,
and he designed, during his M.Sc. thesis, an
optimized technique for partitioning and place-
ment of SNN in the SpiNNaker neuromorphic
platform. His research interests focus on opti-

mization problems and software develop for bioinformatics algorithms:
MD, SNN and sequence alignment on heterogeneous platform, from
GPU to many-chip multi-core architecture.

Enrico Macii is a Full Professor of Computer
Engineering at Politecnico di Torino. From 1991
to 1997 he was also an Adjunct Faculty at the
University of Colorado at Boulder. He holds a
PhD degree in Computer Engineering from Po-
litecnico di Torino (1995). Since 2007, he is the
Vice Rector for Research and Technology Trans-
fer at Politecnico di Torino, and since 2012 also
the Rector’s Delegate for International Affairs.
He was the National FP7 ICT Delegate from
2011 until 2013, and one of the Italian Mem-

bers of the Public Authorities Board of the ENIAC and ARTEMIS Joint
Undertakings from 2009 until 2013. His research interests are in the
design of electronic digital circuits and systems, with particular emphasis
on lowpower consumption aspects. In the field above he has authored
around 450 scientific publications.

Andrea Acquaviva is Associate Professor at
Politecnico di Torino, Italy. He received the Ph.D.
degree in electrical engineering from the Uni-
versity of Bologna, Italy, in 2003. In 2003, he
became an Assistant Professor with the Com-
puter Science Department, University of Urbino,
Italy. From 2005 to 2007, he was a Visiting Re-
searcher with the Ecole Polytechnique Federale
de Lausanne, Switzerland. In 2006, he joined the
Department of Computer Science, University of
Verona, Italy. He has been with the Department

of Computer Engineering and Automation, Politecnico di Torino. His
research interests focus mainly on parallel computing for distributed em-
bedded systems such as multi-core and sensor networks and simulation
and analysis of biological systems using parallel architectures. In the
fields above, he has authored over 140 scientific publications.

